1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Main bcache entry point - handle a read or a write request and decide what to 4 * do with it; the make_request functions are called by the block layer. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "request.h" 14 #include "writeback.h" 15 16 #include <linux/module.h> 17 #include <linux/hash.h> 18 #include <linux/random.h> 19 #include <linux/backing-dev.h> 20 21 #include <trace/events/bcache.h> 22 23 #define CUTOFF_CACHE_ADD 95 24 #define CUTOFF_CACHE_READA 90 25 26 struct kmem_cache *bch_search_cache; 27 28 static CLOSURE_CALLBACK(bch_data_insert_start); 29 30 static unsigned int cache_mode(struct cached_dev *dc) 31 { 32 return BDEV_CACHE_MODE(&dc->sb); 33 } 34 35 static bool verify(struct cached_dev *dc) 36 { 37 return dc->verify; 38 } 39 40 static void bio_csum(struct bio *bio, struct bkey *k) 41 { 42 struct bio_vec bv; 43 struct bvec_iter iter; 44 uint64_t csum = 0; 45 46 bio_for_each_segment(bv, bio, iter) { 47 void *d = bvec_kmap_local(&bv); 48 49 csum = crc64_be(csum, d, bv.bv_len); 50 kunmap_local(d); 51 } 52 53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 54 } 55 56 /* Insert data into cache */ 57 58 static CLOSURE_CALLBACK(bch_data_insert_keys) 59 { 60 closure_type(op, struct data_insert_op, cl); 61 atomic_t *journal_ref = NULL; 62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 63 int ret; 64 65 if (!op->replace) 66 journal_ref = bch_journal(op->c, &op->insert_keys, 67 op->flush_journal ? cl : NULL); 68 69 ret = bch_btree_insert(op->c, &op->insert_keys, 70 journal_ref, replace_key); 71 if (ret == -ESRCH) { 72 op->replace_collision = true; 73 } else if (ret) { 74 op->status = BLK_STS_RESOURCE; 75 op->insert_data_done = true; 76 } 77 78 if (journal_ref) 79 atomic_dec_bug(journal_ref); 80 81 if (!op->insert_data_done) { 82 continue_at(cl, bch_data_insert_start, op->wq); 83 return; 84 } 85 86 bch_keylist_free(&op->insert_keys); 87 closure_return(cl); 88 } 89 90 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s, 91 struct cache_set *c) 92 { 93 size_t oldsize = bch_keylist_nkeys(l); 94 size_t newsize = oldsize + u64s; 95 96 /* 97 * The journalling code doesn't handle the case where the keys to insert 98 * is bigger than an empty write: If we just return -ENOMEM here, 99 * bch_data_insert_keys() will insert the keys created so far 100 * and finish the rest when the keylist is empty. 101 */ 102 if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset)) 103 return -ENOMEM; 104 105 return __bch_keylist_realloc(l, u64s); 106 } 107 108 static void bch_data_invalidate(struct closure *cl) 109 { 110 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 111 struct bio *bio = op->bio; 112 113 pr_debug("invalidating %i sectors from %llu\n", 114 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 115 116 while (bio_sectors(bio)) { 117 unsigned int sectors = min(bio_sectors(bio), 118 1U << (KEY_SIZE_BITS - 1)); 119 120 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 121 goto out; 122 123 bio->bi_iter.bi_sector += sectors; 124 bio->bi_iter.bi_size -= sectors << 9; 125 126 bch_keylist_add(&op->insert_keys, 127 &KEY(op->inode, 128 bio->bi_iter.bi_sector, 129 sectors)); 130 } 131 132 op->insert_data_done = true; 133 /* get in bch_data_insert() */ 134 bio_put(bio); 135 out: 136 continue_at(cl, bch_data_insert_keys, op->wq); 137 } 138 139 static CLOSURE_CALLBACK(bch_data_insert_error) 140 { 141 closure_type(op, struct data_insert_op, cl); 142 143 /* 144 * Our data write just errored, which means we've got a bunch of keys to 145 * insert that point to data that wasn't successfully written. 146 * 147 * We don't have to insert those keys but we still have to invalidate 148 * that region of the cache - so, if we just strip off all the pointers 149 * from the keys we'll accomplish just that. 150 */ 151 152 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 153 154 while (src != op->insert_keys.top) { 155 struct bkey *n = bkey_next(src); 156 157 SET_KEY_PTRS(src, 0); 158 memmove(dst, src, bkey_bytes(src)); 159 160 dst = bkey_next(dst); 161 src = n; 162 } 163 164 op->insert_keys.top = dst; 165 166 bch_data_insert_keys(&cl->work); 167 } 168 169 static void bch_data_insert_endio(struct bio *bio) 170 { 171 struct closure *cl = bio->bi_private; 172 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 173 174 if (bio->bi_status) { 175 /* TODO: We could try to recover from this. */ 176 if (op->writeback) 177 op->status = bio->bi_status; 178 else if (!op->replace) 179 set_closure_fn(cl, bch_data_insert_error, op->wq); 180 else 181 set_closure_fn(cl, NULL, NULL); 182 } 183 184 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); 185 } 186 187 static CLOSURE_CALLBACK(bch_data_insert_start) 188 { 189 closure_type(op, struct data_insert_op, cl); 190 struct bio *bio = op->bio, *n; 191 192 if (op->bypass) 193 return bch_data_invalidate(cl); 194 195 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) 196 wake_up_gc(op->c); 197 198 /* 199 * Journal writes are marked REQ_PREFLUSH; if the original write was a 200 * flush, it'll wait on the journal write. 201 */ 202 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); 203 204 do { 205 unsigned int i; 206 struct bkey *k; 207 struct bio_set *split = &op->c->bio_split; 208 209 /* 1 for the device pointer and 1 for the chksum */ 210 if (bch_keylist_realloc(&op->insert_keys, 211 3 + (op->csum ? 1 : 0), 212 op->c)) { 213 continue_at(cl, bch_data_insert_keys, op->wq); 214 return; 215 } 216 217 k = op->insert_keys.top; 218 bkey_init(k); 219 SET_KEY_INODE(k, op->inode); 220 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 221 222 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 223 op->write_point, op->write_prio, 224 op->writeback)) 225 goto err; 226 227 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 228 229 n->bi_end_io = bch_data_insert_endio; 230 n->bi_private = cl; 231 232 if (op->writeback) { 233 SET_KEY_DIRTY(k, true); 234 235 for (i = 0; i < KEY_PTRS(k); i++) 236 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 237 GC_MARK_DIRTY); 238 } 239 240 SET_KEY_CSUM(k, op->csum); 241 if (KEY_CSUM(k)) 242 bio_csum(n, k); 243 244 trace_bcache_cache_insert(k); 245 bch_keylist_push(&op->insert_keys); 246 247 n->bi_opf = REQ_OP_WRITE; 248 bch_submit_bbio(n, op->c, k, 0); 249 } while (n != bio); 250 251 op->insert_data_done = true; 252 continue_at(cl, bch_data_insert_keys, op->wq); 253 return; 254 err: 255 /* bch_alloc_sectors() blocks if s->writeback = true */ 256 BUG_ON(op->writeback); 257 258 /* 259 * But if it's not a writeback write we'd rather just bail out if 260 * there aren't any buckets ready to write to - it might take awhile and 261 * we might be starving btree writes for gc or something. 262 */ 263 264 if (!op->replace) { 265 /* 266 * Writethrough write: We can't complete the write until we've 267 * updated the index. But we don't want to delay the write while 268 * we wait for buckets to be freed up, so just invalidate the 269 * rest of the write. 270 */ 271 op->bypass = true; 272 return bch_data_invalidate(cl); 273 } else { 274 /* 275 * From a cache miss, we can just insert the keys for the data 276 * we have written or bail out if we didn't do anything. 277 */ 278 op->insert_data_done = true; 279 bio_put(bio); 280 281 if (!bch_keylist_empty(&op->insert_keys)) 282 continue_at(cl, bch_data_insert_keys, op->wq); 283 else 284 closure_return(cl); 285 } 286 } 287 288 /** 289 * bch_data_insert - stick some data in the cache 290 * @cl: closure pointer. 291 * 292 * This is the starting point for any data to end up in a cache device; it could 293 * be from a normal write, or a writeback write, or a write to a flash only 294 * volume - it's also used by the moving garbage collector to compact data in 295 * mostly empty buckets. 296 * 297 * It first writes the data to the cache, creating a list of keys to be inserted 298 * (if the data had to be fragmented there will be multiple keys); after the 299 * data is written it calls bch_journal, and after the keys have been added to 300 * the next journal write they're inserted into the btree. 301 * 302 * It inserts the data in op->bio; bi_sector is used for the key offset, 303 * and op->inode is used for the key inode. 304 * 305 * If op->bypass is true, instead of inserting the data it invalidates the 306 * region of the cache represented by op->bio and op->inode. 307 */ 308 CLOSURE_CALLBACK(bch_data_insert) 309 { 310 closure_type(op, struct data_insert_op, cl); 311 312 trace_bcache_write(op->c, op->inode, op->bio, 313 op->writeback, op->bypass); 314 315 bch_keylist_init(&op->insert_keys); 316 bio_get(op->bio); 317 bch_data_insert_start(&cl->work); 318 } 319 320 /* 321 * Congested? Return 0 (not congested) or the limit (in sectors) 322 * beyond which we should bypass the cache due to congestion. 323 */ 324 unsigned int bch_get_congested(const struct cache_set *c) 325 { 326 int i; 327 328 if (!c->congested_read_threshold_us && 329 !c->congested_write_threshold_us) 330 return 0; 331 332 i = (local_clock_us() - c->congested_last_us) / 1024; 333 if (i < 0) 334 return 0; 335 336 i += atomic_read(&c->congested); 337 if (i >= 0) 338 return 0; 339 340 i += CONGESTED_MAX; 341 342 if (i > 0) 343 i = fract_exp_two(i, 6); 344 345 i -= hweight32(get_random_u32()); 346 347 return i > 0 ? i : 1; 348 } 349 350 static void add_sequential(struct task_struct *t) 351 { 352 ewma_add(t->sequential_io_avg, 353 t->sequential_io, 8, 0); 354 355 t->sequential_io = 0; 356 } 357 358 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 359 { 360 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 361 } 362 363 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 364 { 365 struct cache_set *c = dc->disk.c; 366 unsigned int mode = cache_mode(dc); 367 unsigned int sectors, congested; 368 struct task_struct *task = current; 369 struct io *i; 370 371 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 372 (bio_op(bio) == REQ_OP_DISCARD)) 373 goto skip; 374 375 if (c->gc_stats.in_use > CUTOFF_CACHE_ADD) { 376 /* 377 * If cached buckets are all clean now, 'true' will be 378 * returned and all requests will bypass the cache device. 379 * Then c->sectors_to_gc has no chance to be negative, and 380 * gc thread won't wake up and caching won't work forever. 381 * Here call force_wake_up_gc() to avoid such aftermath. 382 */ 383 if (BDEV_STATE(&dc->sb) == BDEV_STATE_CLEAN && 384 c->gc_mark_valid) 385 force_wake_up_gc(c); 386 387 goto skip; 388 } 389 390 if (mode == CACHE_MODE_NONE || 391 (mode == CACHE_MODE_WRITEAROUND && 392 op_is_write(bio_op(bio)))) 393 goto skip; 394 395 /* 396 * If the bio is for read-ahead or background IO, bypass it or 397 * not depends on the following situations, 398 * - If the IO is for meta data, always cache it and no bypass 399 * - If the IO is not meta data, check dc->cache_reada_policy, 400 * BCH_CACHE_READA_ALL: cache it and not bypass 401 * BCH_CACHE_READA_META_ONLY: not cache it and bypass 402 * That is, read-ahead request for metadata always get cached 403 * (eg, for gfs2 or xfs). 404 */ 405 if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) { 406 if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) && 407 (dc->cache_readahead_policy != BCH_CACHE_READA_ALL)) 408 goto skip; 409 } 410 411 if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) || 412 bio_sectors(bio) & (c->cache->sb.block_size - 1)) { 413 pr_debug("skipping unaligned io\n"); 414 goto skip; 415 } 416 417 if (bypass_torture_test(dc)) { 418 if (get_random_u32_below(4) == 3) 419 goto skip; 420 else 421 goto rescale; 422 } 423 424 congested = bch_get_congested(c); 425 if (!congested && !dc->sequential_cutoff) 426 goto rescale; 427 428 spin_lock(&dc->io_lock); 429 430 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 431 if (i->last == bio->bi_iter.bi_sector && 432 time_before(jiffies, i->jiffies)) 433 goto found; 434 435 i = list_first_entry(&dc->io_lru, struct io, lru); 436 437 add_sequential(task); 438 i->sequential = 0; 439 found: 440 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 441 i->sequential += bio->bi_iter.bi_size; 442 443 i->last = bio_end_sector(bio); 444 i->jiffies = jiffies + msecs_to_jiffies(5000); 445 task->sequential_io = i->sequential; 446 447 hlist_del(&i->hash); 448 hlist_add_head(&i->hash, iohash(dc, i->last)); 449 list_move_tail(&i->lru, &dc->io_lru); 450 451 spin_unlock(&dc->io_lock); 452 453 sectors = max(task->sequential_io, 454 task->sequential_io_avg) >> 9; 455 456 if (dc->sequential_cutoff && 457 sectors >= dc->sequential_cutoff >> 9) { 458 trace_bcache_bypass_sequential(bio); 459 goto skip; 460 } 461 462 if (congested && sectors >= congested) { 463 trace_bcache_bypass_congested(bio); 464 goto skip; 465 } 466 467 rescale: 468 bch_rescale_priorities(c, bio_sectors(bio)); 469 return false; 470 skip: 471 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 472 return true; 473 } 474 475 /* Cache lookup */ 476 477 struct search { 478 /* Stack frame for bio_complete */ 479 struct closure cl; 480 481 struct bbio bio; 482 struct bio *orig_bio; 483 struct bio *cache_miss; 484 struct bcache_device *d; 485 486 unsigned int insert_bio_sectors; 487 unsigned int recoverable:1; 488 unsigned int write:1; 489 unsigned int read_dirty_data:1; 490 unsigned int cache_missed:1; 491 492 struct block_device *orig_bdev; 493 unsigned long start_time; 494 495 struct btree_op op; 496 struct data_insert_op iop; 497 }; 498 499 static void bch_cache_read_endio(struct bio *bio) 500 { 501 struct bbio *b = container_of(bio, struct bbio, bio); 502 struct closure *cl = bio->bi_private; 503 struct search *s = container_of(cl, struct search, cl); 504 505 /* 506 * If the bucket was reused while our bio was in flight, we might have 507 * read the wrong data. Set s->error but not error so it doesn't get 508 * counted against the cache device, but we'll still reread the data 509 * from the backing device. 510 */ 511 512 if (bio->bi_status) 513 s->iop.status = bio->bi_status; 514 else if (!KEY_DIRTY(&b->key) && 515 ptr_stale(s->iop.c, &b->key, 0)) { 516 atomic_long_inc(&s->iop.c->cache_read_races); 517 s->iop.status = BLK_STS_IOERR; 518 } 519 520 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); 521 } 522 523 /* 524 * Read from a single key, handling the initial cache miss if the key starts in 525 * the middle of the bio 526 */ 527 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 528 { 529 struct search *s = container_of(op, struct search, op); 530 struct bio *n, *bio = &s->bio.bio; 531 struct bkey *bio_key; 532 unsigned int ptr; 533 534 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 535 return MAP_CONTINUE; 536 537 if (KEY_INODE(k) != s->iop.inode || 538 KEY_START(k) > bio->bi_iter.bi_sector) { 539 unsigned int bio_sectors = bio_sectors(bio); 540 unsigned int sectors = KEY_INODE(k) == s->iop.inode 541 ? min_t(uint64_t, INT_MAX, 542 KEY_START(k) - bio->bi_iter.bi_sector) 543 : INT_MAX; 544 int ret = s->d->cache_miss(b, s, bio, sectors); 545 546 if (ret != MAP_CONTINUE) 547 return ret; 548 549 /* if this was a complete miss we shouldn't get here */ 550 BUG_ON(bio_sectors <= sectors); 551 } 552 553 if (!KEY_SIZE(k)) 554 return MAP_CONTINUE; 555 556 /* XXX: figure out best pointer - for multiple cache devices */ 557 ptr = 0; 558 559 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 560 561 if (KEY_DIRTY(k)) 562 s->read_dirty_data = true; 563 564 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 565 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 566 GFP_NOIO, &s->d->bio_split); 567 568 bio_key = &container_of(n, struct bbio, bio)->key; 569 bch_bkey_copy_single_ptr(bio_key, k, ptr); 570 571 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 572 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 573 574 n->bi_end_io = bch_cache_read_endio; 575 n->bi_private = &s->cl; 576 577 /* 578 * The bucket we're reading from might be reused while our bio 579 * is in flight, and we could then end up reading the wrong 580 * data. 581 * 582 * We guard against this by checking (in cache_read_endio()) if 583 * the pointer is stale again; if so, we treat it as an error 584 * and reread from the backing device (but we don't pass that 585 * error up anywhere). 586 */ 587 588 __bch_submit_bbio(n, b->c); 589 return n == bio ? MAP_DONE : MAP_CONTINUE; 590 } 591 592 static CLOSURE_CALLBACK(cache_lookup) 593 { 594 closure_type(s, struct search, iop.cl); 595 struct bio *bio = &s->bio.bio; 596 struct cached_dev *dc; 597 int ret; 598 599 bch_btree_op_init(&s->op, -1); 600 601 ret = bch_btree_map_keys(&s->op, s->iop.c, 602 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 603 cache_lookup_fn, MAP_END_KEY); 604 if (ret == -EAGAIN) { 605 continue_at(cl, cache_lookup, bcache_wq); 606 return; 607 } 608 609 /* 610 * We might meet err when searching the btree, If that happens, we will 611 * get negative ret, in this scenario we should not recover data from 612 * backing device (when cache device is dirty) because we don't know 613 * whether bkeys the read request covered are all clean. 614 * 615 * And after that happened, s->iop.status is still its initial value 616 * before we submit s->bio.bio 617 */ 618 if (ret < 0) { 619 BUG_ON(ret == -EINTR); 620 if (s->d && s->d->c && 621 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) { 622 dc = container_of(s->d, struct cached_dev, disk); 623 if (dc && atomic_read(&dc->has_dirty)) 624 s->recoverable = false; 625 } 626 if (!s->iop.status) 627 s->iop.status = BLK_STS_IOERR; 628 } 629 630 closure_return(cl); 631 } 632 633 /* Common code for the make_request functions */ 634 635 static void request_endio(struct bio *bio) 636 { 637 struct closure *cl = bio->bi_private; 638 639 if (bio->bi_status) { 640 struct search *s = container_of(cl, struct search, cl); 641 642 s->iop.status = bio->bi_status; 643 /* Only cache read errors are recoverable */ 644 s->recoverable = false; 645 } 646 647 bio_put(bio); 648 closure_put(cl); 649 } 650 651 static void backing_request_endio(struct bio *bio) 652 { 653 struct closure *cl = bio->bi_private; 654 655 if (bio->bi_status) { 656 struct search *s = container_of(cl, struct search, cl); 657 struct cached_dev *dc = container_of(s->d, 658 struct cached_dev, disk); 659 /* 660 * If a bio has REQ_PREFLUSH for writeback mode, it is 661 * speically assembled in cached_dev_write() for a non-zero 662 * write request which has REQ_PREFLUSH. we don't set 663 * s->iop.status by this failure, the status will be decided 664 * by result of bch_data_insert() operation. 665 */ 666 if (unlikely(s->iop.writeback && 667 bio->bi_opf & REQ_PREFLUSH)) { 668 pr_err("Can't flush %pg: returned bi_status %i\n", 669 dc->bdev, bio->bi_status); 670 } else { 671 /* set to orig_bio->bi_status in bio_complete() */ 672 s->iop.status = bio->bi_status; 673 } 674 s->recoverable = false; 675 /* should count I/O error for backing device here */ 676 bch_count_backing_io_errors(dc, bio); 677 } 678 679 bio_put(bio); 680 closure_put(cl); 681 } 682 683 static void bio_complete(struct search *s) 684 { 685 if (s->orig_bio) { 686 /* Count on bcache device */ 687 bio_end_io_acct_remapped(s->orig_bio, s->start_time, 688 s->orig_bdev); 689 trace_bcache_request_end(s->d, s->orig_bio); 690 s->orig_bio->bi_status = s->iop.status; 691 bio_endio(s->orig_bio); 692 s->orig_bio = NULL; 693 } 694 } 695 696 static void do_bio_hook(struct search *s, 697 struct bio *orig_bio, 698 bio_end_io_t *end_io_fn) 699 { 700 struct bio *bio = &s->bio.bio; 701 702 bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO); 703 /* 704 * bi_end_io can be set separately somewhere else, e.g. the 705 * variants in, 706 * - cache_bio->bi_end_io from cached_dev_cache_miss() 707 * - n->bi_end_io from cache_lookup_fn() 708 */ 709 bio->bi_end_io = end_io_fn; 710 bio->bi_private = &s->cl; 711 712 bio_cnt_set(bio, 3); 713 } 714 715 static CLOSURE_CALLBACK(search_free) 716 { 717 closure_type(s, struct search, cl); 718 719 atomic_dec(&s->iop.c->search_inflight); 720 721 if (s->iop.bio) 722 bio_put(s->iop.bio); 723 724 bio_complete(s); 725 closure_debug_destroy(cl); 726 mempool_free(s, &s->iop.c->search); 727 } 728 729 static inline struct search *search_alloc(struct bio *bio, 730 struct bcache_device *d, struct block_device *orig_bdev, 731 unsigned long start_time) 732 { 733 struct search *s; 734 735 s = mempool_alloc(&d->c->search, GFP_NOIO); 736 737 closure_init(&s->cl, NULL); 738 do_bio_hook(s, bio, request_endio); 739 atomic_inc(&d->c->search_inflight); 740 741 s->orig_bio = bio; 742 s->cache_miss = NULL; 743 s->cache_missed = 0; 744 s->d = d; 745 s->recoverable = 1; 746 s->write = op_is_write(bio_op(bio)); 747 s->read_dirty_data = 0; 748 /* Count on the bcache device */ 749 s->orig_bdev = orig_bdev; 750 s->start_time = start_time; 751 s->iop.c = d->c; 752 s->iop.bio = NULL; 753 s->iop.inode = d->id; 754 s->iop.write_point = hash_long((unsigned long) current, 16); 755 s->iop.write_prio = 0; 756 s->iop.status = 0; 757 s->iop.flags = 0; 758 s->iop.flush_journal = op_is_flush(bio->bi_opf); 759 s->iop.wq = bcache_wq; 760 761 return s; 762 } 763 764 /* Cached devices */ 765 766 static CLOSURE_CALLBACK(cached_dev_bio_complete) 767 { 768 closure_type(s, struct search, cl); 769 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 770 771 cached_dev_put(dc); 772 search_free(&cl->work); 773 } 774 775 /* Process reads */ 776 777 static CLOSURE_CALLBACK(cached_dev_read_error_done) 778 { 779 closure_type(s, struct search, cl); 780 781 if (s->iop.replace_collision) 782 bch_mark_cache_miss_collision(s->iop.c, s->d); 783 784 if (s->iop.bio) 785 bio_free_pages(s->iop.bio); 786 787 cached_dev_bio_complete(&cl->work); 788 } 789 790 static CLOSURE_CALLBACK(cached_dev_read_error) 791 { 792 closure_type(s, struct search, cl); 793 struct bio *bio = &s->bio.bio; 794 795 /* 796 * If read request hit dirty data (s->read_dirty_data is true), 797 * then recovery a failed read request from cached device may 798 * get a stale data back. So read failure recovery is only 799 * permitted when read request hit clean data in cache device, 800 * or when cache read race happened. 801 */ 802 if (s->recoverable && !s->read_dirty_data) { 803 /* Retry from the backing device: */ 804 trace_bcache_read_retry(s->orig_bio); 805 806 s->iop.status = 0; 807 do_bio_hook(s, s->orig_bio, backing_request_endio); 808 809 /* XXX: invalidate cache */ 810 811 /* I/O request sent to backing device */ 812 closure_bio_submit(s->iop.c, bio, cl); 813 } 814 815 continue_at(cl, cached_dev_read_error_done, NULL); 816 } 817 818 static CLOSURE_CALLBACK(cached_dev_cache_miss_done) 819 { 820 closure_type(s, struct search, cl); 821 struct bcache_device *d = s->d; 822 823 if (s->iop.replace_collision) 824 bch_mark_cache_miss_collision(s->iop.c, s->d); 825 826 if (s->iop.bio) 827 bio_free_pages(s->iop.bio); 828 829 cached_dev_bio_complete(&cl->work); 830 closure_put(&d->cl); 831 } 832 833 static CLOSURE_CALLBACK(cached_dev_read_done) 834 { 835 closure_type(s, struct search, cl); 836 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 837 838 /* 839 * We had a cache miss; cache_bio now contains data ready to be inserted 840 * into the cache. 841 * 842 * First, we copy the data we just read from cache_bio's bounce buffers 843 * to the buffers the original bio pointed to: 844 */ 845 846 if (s->iop.bio) { 847 bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ); 848 s->iop.bio->bi_iter.bi_sector = 849 s->cache_miss->bi_iter.bi_sector; 850 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 851 bio_clone_blkg_association(s->iop.bio, s->cache_miss); 852 bch_bio_map(s->iop.bio, NULL); 853 854 bio_copy_data(s->cache_miss, s->iop.bio); 855 856 bio_put(s->cache_miss); 857 s->cache_miss = NULL; 858 } 859 860 if (verify(dc) && s->recoverable && !s->read_dirty_data) 861 bch_data_verify(dc, s->orig_bio); 862 863 closure_get(&dc->disk.cl); 864 bio_complete(s); 865 866 if (s->iop.bio && 867 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 868 BUG_ON(!s->iop.replace); 869 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 870 } 871 872 continue_at(cl, cached_dev_cache_miss_done, NULL); 873 } 874 875 static CLOSURE_CALLBACK(cached_dev_read_done_bh) 876 { 877 closure_type(s, struct search, cl); 878 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 879 880 bch_mark_cache_accounting(s->iop.c, s->d, 881 !s->cache_missed, s->iop.bypass); 882 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass); 883 884 if (s->iop.status) 885 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 886 else if (s->iop.bio || verify(dc)) 887 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 888 else 889 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 890 } 891 892 static int cached_dev_cache_miss(struct btree *b, struct search *s, 893 struct bio *bio, unsigned int sectors) 894 { 895 int ret = MAP_CONTINUE; 896 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 897 struct bio *miss, *cache_bio; 898 unsigned int size_limit; 899 900 s->cache_missed = 1; 901 902 if (s->cache_miss || s->iop.bypass) { 903 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 904 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 905 goto out_submit; 906 } 907 908 /* Limitation for valid replace key size and cache_bio bvecs number */ 909 size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS, 910 (1 << KEY_SIZE_BITS) - 1); 911 s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio)); 912 913 s->iop.replace_key = KEY(s->iop.inode, 914 bio->bi_iter.bi_sector + s->insert_bio_sectors, 915 s->insert_bio_sectors); 916 917 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 918 if (ret) 919 return ret; 920 921 s->iop.replace = true; 922 923 miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO, 924 &s->d->bio_split); 925 926 /* btree_search_recurse()'s btree iterator is no good anymore */ 927 ret = miss == bio ? MAP_DONE : -EINTR; 928 929 cache_bio = bio_alloc_bioset(miss->bi_bdev, 930 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 931 0, GFP_NOWAIT, &dc->disk.bio_split); 932 if (!cache_bio) 933 goto out_submit; 934 935 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 936 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 937 938 cache_bio->bi_end_io = backing_request_endio; 939 cache_bio->bi_private = &s->cl; 940 941 bch_bio_map(cache_bio, NULL); 942 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 943 goto out_put; 944 945 s->cache_miss = miss; 946 s->iop.bio = cache_bio; 947 bio_get(cache_bio); 948 /* I/O request sent to backing device */ 949 closure_bio_submit(s->iop.c, cache_bio, &s->cl); 950 951 return ret; 952 out_put: 953 bio_put(cache_bio); 954 out_submit: 955 miss->bi_end_io = backing_request_endio; 956 miss->bi_private = &s->cl; 957 /* I/O request sent to backing device */ 958 closure_bio_submit(s->iop.c, miss, &s->cl); 959 return ret; 960 } 961 962 static void cached_dev_read(struct cached_dev *dc, struct search *s) 963 { 964 struct closure *cl = &s->cl; 965 966 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 967 continue_at(cl, cached_dev_read_done_bh, NULL); 968 } 969 970 /* Process writes */ 971 972 static CLOSURE_CALLBACK(cached_dev_write_complete) 973 { 974 closure_type(s, struct search, cl); 975 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 976 977 up_read_non_owner(&dc->writeback_lock); 978 cached_dev_bio_complete(&cl->work); 979 } 980 981 static void cached_dev_write(struct cached_dev *dc, struct search *s) 982 { 983 struct closure *cl = &s->cl; 984 struct bio *bio = &s->bio.bio; 985 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 986 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 987 988 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 989 990 down_read_non_owner(&dc->writeback_lock); 991 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 992 /* 993 * We overlap with some dirty data undergoing background 994 * writeback, force this write to writeback 995 */ 996 s->iop.bypass = false; 997 s->iop.writeback = true; 998 } 999 1000 /* 1001 * Discards aren't _required_ to do anything, so skipping if 1002 * check_overlapping returned true is ok 1003 * 1004 * But check_overlapping drops dirty keys for which io hasn't started, 1005 * so we still want to call it. 1006 */ 1007 if (bio_op(bio) == REQ_OP_DISCARD) 1008 s->iop.bypass = true; 1009 1010 if (should_writeback(dc, s->orig_bio, 1011 cache_mode(dc), 1012 s->iop.bypass)) { 1013 s->iop.bypass = false; 1014 s->iop.writeback = true; 1015 } 1016 1017 if (s->iop.bypass) { 1018 s->iop.bio = s->orig_bio; 1019 bio_get(s->iop.bio); 1020 1021 if (bio_op(bio) == REQ_OP_DISCARD && 1022 !bdev_max_discard_sectors(dc->bdev)) 1023 goto insert_data; 1024 1025 /* I/O request sent to backing device */ 1026 bio->bi_end_io = backing_request_endio; 1027 closure_bio_submit(s->iop.c, bio, cl); 1028 1029 } else if (s->iop.writeback) { 1030 bch_writeback_add(dc); 1031 s->iop.bio = bio; 1032 1033 if (bio->bi_opf & REQ_PREFLUSH) { 1034 /* 1035 * Also need to send a flush to the backing 1036 * device. 1037 */ 1038 struct bio *flush; 1039 1040 flush = bio_alloc_bioset(bio->bi_bdev, 0, 1041 REQ_OP_WRITE | REQ_PREFLUSH, 1042 GFP_NOIO, &dc->disk.bio_split); 1043 if (!flush) { 1044 s->iop.status = BLK_STS_RESOURCE; 1045 goto insert_data; 1046 } 1047 flush->bi_end_io = backing_request_endio; 1048 flush->bi_private = cl; 1049 /* I/O request sent to backing device */ 1050 closure_bio_submit(s->iop.c, flush, cl); 1051 } 1052 } else { 1053 s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO, 1054 &dc->disk.bio_split); 1055 /* I/O request sent to backing device */ 1056 bio->bi_end_io = backing_request_endio; 1057 closure_bio_submit(s->iop.c, bio, cl); 1058 } 1059 1060 insert_data: 1061 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1062 continue_at(cl, cached_dev_write_complete, NULL); 1063 } 1064 1065 static CLOSURE_CALLBACK(cached_dev_nodata) 1066 { 1067 closure_type(s, struct search, cl); 1068 struct bio *bio = &s->bio.bio; 1069 1070 if (s->iop.flush_journal) 1071 bch_journal_meta(s->iop.c, cl); 1072 1073 /* If it's a flush, we send the flush to the backing device too */ 1074 bio->bi_end_io = backing_request_endio; 1075 closure_bio_submit(s->iop.c, bio, cl); 1076 1077 continue_at(cl, cached_dev_bio_complete, NULL); 1078 } 1079 1080 struct detached_dev_io_private { 1081 struct bcache_device *d; 1082 unsigned long start_time; 1083 bio_end_io_t *bi_end_io; 1084 void *bi_private; 1085 struct block_device *orig_bdev; 1086 }; 1087 1088 static void detached_dev_end_io(struct bio *bio) 1089 { 1090 struct detached_dev_io_private *ddip; 1091 1092 ddip = bio->bi_private; 1093 bio->bi_end_io = ddip->bi_end_io; 1094 bio->bi_private = ddip->bi_private; 1095 1096 /* Count on the bcache device */ 1097 bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev); 1098 1099 if (bio->bi_status) { 1100 struct cached_dev *dc = container_of(ddip->d, 1101 struct cached_dev, disk); 1102 /* should count I/O error for backing device here */ 1103 bch_count_backing_io_errors(dc, bio); 1104 } 1105 1106 kfree(ddip); 1107 bio->bi_end_io(bio); 1108 } 1109 1110 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio, 1111 struct block_device *orig_bdev, unsigned long start_time) 1112 { 1113 struct detached_dev_io_private *ddip; 1114 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1115 1116 /* 1117 * no need to call closure_get(&dc->disk.cl), 1118 * because upper layer had already opened bcache device, 1119 * which would call closure_get(&dc->disk.cl) 1120 */ 1121 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO); 1122 if (!ddip) { 1123 bio->bi_status = BLK_STS_RESOURCE; 1124 bio->bi_end_io(bio); 1125 return; 1126 } 1127 1128 ddip->d = d; 1129 /* Count on the bcache device */ 1130 ddip->orig_bdev = orig_bdev; 1131 ddip->start_time = start_time; 1132 ddip->bi_end_io = bio->bi_end_io; 1133 ddip->bi_private = bio->bi_private; 1134 bio->bi_end_io = detached_dev_end_io; 1135 bio->bi_private = ddip; 1136 1137 if ((bio_op(bio) == REQ_OP_DISCARD) && 1138 !bdev_max_discard_sectors(dc->bdev)) 1139 bio->bi_end_io(bio); 1140 else 1141 submit_bio_noacct(bio); 1142 } 1143 1144 static void quit_max_writeback_rate(struct cache_set *c, 1145 struct cached_dev *this_dc) 1146 { 1147 int i; 1148 struct bcache_device *d; 1149 struct cached_dev *dc; 1150 1151 /* 1152 * mutex bch_register_lock may compete with other parallel requesters, 1153 * or attach/detach operations on other backing device. Waiting to 1154 * the mutex lock may increase I/O request latency for seconds or more. 1155 * To avoid such situation, if mutext_trylock() failed, only writeback 1156 * rate of current cached device is set to 1, and __update_write_back() 1157 * will decide writeback rate of other cached devices (remember now 1158 * c->idle_counter is 0 already). 1159 */ 1160 if (mutex_trylock(&bch_register_lock)) { 1161 for (i = 0; i < c->devices_max_used; i++) { 1162 if (!c->devices[i]) 1163 continue; 1164 1165 if (UUID_FLASH_ONLY(&c->uuids[i])) 1166 continue; 1167 1168 d = c->devices[i]; 1169 dc = container_of(d, struct cached_dev, disk); 1170 /* 1171 * set writeback rate to default minimum value, 1172 * then let update_writeback_rate() to decide the 1173 * upcoming rate. 1174 */ 1175 atomic_long_set(&dc->writeback_rate.rate, 1); 1176 } 1177 mutex_unlock(&bch_register_lock); 1178 } else 1179 atomic_long_set(&this_dc->writeback_rate.rate, 1); 1180 } 1181 1182 /* Cached devices - read & write stuff */ 1183 1184 void cached_dev_submit_bio(struct bio *bio) 1185 { 1186 struct search *s; 1187 struct block_device *orig_bdev = bio->bi_bdev; 1188 struct bcache_device *d = orig_bdev->bd_disk->private_data; 1189 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1190 unsigned long start_time; 1191 int rw = bio_data_dir(bio); 1192 1193 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) || 1194 dc->io_disable)) { 1195 bio->bi_status = BLK_STS_IOERR; 1196 bio_endio(bio); 1197 return; 1198 } 1199 1200 if (likely(d->c)) { 1201 if (atomic_read(&d->c->idle_counter)) 1202 atomic_set(&d->c->idle_counter, 0); 1203 /* 1204 * If at_max_writeback_rate of cache set is true and new I/O 1205 * comes, quit max writeback rate of all cached devices 1206 * attached to this cache set, and set at_max_writeback_rate 1207 * to false. 1208 */ 1209 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) { 1210 atomic_set(&d->c->at_max_writeback_rate, 0); 1211 quit_max_writeback_rate(d->c, dc); 1212 } 1213 } 1214 1215 start_time = bio_start_io_acct(bio); 1216 1217 bio_set_dev(bio, dc->bdev); 1218 bio->bi_iter.bi_sector += dc->sb.data_offset; 1219 1220 if (cached_dev_get(dc)) { 1221 s = search_alloc(bio, d, orig_bdev, start_time); 1222 trace_bcache_request_start(s->d, bio); 1223 1224 if (!bio->bi_iter.bi_size) { 1225 /* 1226 * can't call bch_journal_meta from under 1227 * submit_bio_noacct 1228 */ 1229 continue_at_nobarrier(&s->cl, 1230 cached_dev_nodata, 1231 bcache_wq); 1232 } else { 1233 s->iop.bypass = check_should_bypass(dc, bio); 1234 1235 if (rw) 1236 cached_dev_write(dc, s); 1237 else 1238 cached_dev_read(dc, s); 1239 } 1240 } else 1241 /* I/O request sent to backing device */ 1242 detached_dev_do_request(d, bio, orig_bdev, start_time); 1243 } 1244 1245 static int cached_dev_ioctl(struct bcache_device *d, blk_mode_t mode, 1246 unsigned int cmd, unsigned long arg) 1247 { 1248 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1249 1250 if (dc->io_disable) 1251 return -EIO; 1252 if (!dc->bdev->bd_disk->fops->ioctl) 1253 return -ENOTTY; 1254 return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg); 1255 } 1256 1257 void bch_cached_dev_request_init(struct cached_dev *dc) 1258 { 1259 dc->disk.cache_miss = cached_dev_cache_miss; 1260 dc->disk.ioctl = cached_dev_ioctl; 1261 } 1262 1263 /* Flash backed devices */ 1264 1265 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1266 struct bio *bio, unsigned int sectors) 1267 { 1268 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9; 1269 1270 swap(bio->bi_iter.bi_size, bytes); 1271 zero_fill_bio(bio); 1272 swap(bio->bi_iter.bi_size, bytes); 1273 1274 bio_advance(bio, bytes); 1275 1276 if (!bio->bi_iter.bi_size) 1277 return MAP_DONE; 1278 1279 return MAP_CONTINUE; 1280 } 1281 1282 static CLOSURE_CALLBACK(flash_dev_nodata) 1283 { 1284 closure_type(s, struct search, cl); 1285 1286 if (s->iop.flush_journal) 1287 bch_journal_meta(s->iop.c, cl); 1288 1289 continue_at(cl, search_free, NULL); 1290 } 1291 1292 void flash_dev_submit_bio(struct bio *bio) 1293 { 1294 struct search *s; 1295 struct closure *cl; 1296 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 1297 1298 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) { 1299 bio->bi_status = BLK_STS_IOERR; 1300 bio_endio(bio); 1301 return; 1302 } 1303 1304 s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio)); 1305 cl = &s->cl; 1306 bio = &s->bio.bio; 1307 1308 trace_bcache_request_start(s->d, bio); 1309 1310 if (!bio->bi_iter.bi_size) { 1311 /* 1312 * can't call bch_journal_meta from under submit_bio_noacct 1313 */ 1314 continue_at_nobarrier(&s->cl, 1315 flash_dev_nodata, 1316 bcache_wq); 1317 return; 1318 } else if (bio_data_dir(bio)) { 1319 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1320 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1321 &KEY(d->id, bio_end_sector(bio), 0)); 1322 1323 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; 1324 s->iop.writeback = true; 1325 s->iop.bio = bio; 1326 1327 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1328 } else { 1329 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1330 } 1331 1332 continue_at(cl, search_free, NULL); 1333 } 1334 1335 static int flash_dev_ioctl(struct bcache_device *d, blk_mode_t mode, 1336 unsigned int cmd, unsigned long arg) 1337 { 1338 return -ENOTTY; 1339 } 1340 1341 void bch_flash_dev_request_init(struct bcache_device *d) 1342 { 1343 d->cache_miss = flash_dev_cache_miss; 1344 d->ioctl = flash_dev_ioctl; 1345 } 1346 1347 void bch_request_exit(void) 1348 { 1349 kmem_cache_destroy(bch_search_cache); 1350 } 1351 1352 int __init bch_request_init(void) 1353 { 1354 bch_search_cache = KMEM_CACHE(search, 0); 1355 if (!bch_search_cache) 1356 return -ENOMEM; 1357 1358 return 0; 1359 } 1360