xref: /linux/drivers/md/bcache/request.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20 
21 #include <trace/events/bcache.h>
22 
23 #define CUTOFF_CACHE_ADD	95
24 #define CUTOFF_CACHE_READA	90
25 
26 struct kmem_cache *bch_search_cache;
27 
28 static void bch_data_insert_start(struct closure *cl);
29 
30 static unsigned int cache_mode(struct cached_dev *dc)
31 {
32 	return BDEV_CACHE_MODE(&dc->sb);
33 }
34 
35 static bool verify(struct cached_dev *dc)
36 {
37 	return dc->verify;
38 }
39 
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 	struct bio_vec bv;
43 	struct bvec_iter iter;
44 	uint64_t csum = 0;
45 
46 	bio_for_each_segment(bv, bio, iter) {
47 		void *d = kmap(bv.bv_page) + bv.bv_offset;
48 
49 		csum = bch_crc64_update(csum, d, bv.bv_len);
50 		kunmap(bv.bv_page);
51 	}
52 
53 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54 }
55 
56 /* Insert data into cache */
57 
58 static void bch_data_insert_keys(struct closure *cl)
59 {
60 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 	atomic_t *journal_ref = NULL;
62 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 	int ret;
64 
65 	/*
66 	 * If we're looping, might already be waiting on
67 	 * another journal write - can't wait on more than one journal write at
68 	 * a time
69 	 *
70 	 * XXX: this looks wrong
71 	 */
72 #if 0
73 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
74 		closure_sync(&s->cl);
75 #endif
76 
77 	if (!op->replace)
78 		journal_ref = bch_journal(op->c, &op->insert_keys,
79 					  op->flush_journal ? cl : NULL);
80 
81 	ret = bch_btree_insert(op->c, &op->insert_keys,
82 			       journal_ref, replace_key);
83 	if (ret == -ESRCH) {
84 		op->replace_collision = true;
85 	} else if (ret) {
86 		op->status		= BLK_STS_RESOURCE;
87 		op->insert_data_done	= true;
88 	}
89 
90 	if (journal_ref)
91 		atomic_dec_bug(journal_ref);
92 
93 	if (!op->insert_data_done) {
94 		continue_at(cl, bch_data_insert_start, op->wq);
95 		return;
96 	}
97 
98 	bch_keylist_free(&op->insert_keys);
99 	closure_return(cl);
100 }
101 
102 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
103 			       struct cache_set *c)
104 {
105 	size_t oldsize = bch_keylist_nkeys(l);
106 	size_t newsize = oldsize + u64s;
107 
108 	/*
109 	 * The journalling code doesn't handle the case where the keys to insert
110 	 * is bigger than an empty write: If we just return -ENOMEM here,
111 	 * bch_data_insert_keys() will insert the keys created so far
112 	 * and finish the rest when the keylist is empty.
113 	 */
114 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
115 		return -ENOMEM;
116 
117 	return __bch_keylist_realloc(l, u64s);
118 }
119 
120 static void bch_data_invalidate(struct closure *cl)
121 {
122 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
123 	struct bio *bio = op->bio;
124 
125 	pr_debug("invalidating %i sectors from %llu",
126 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
127 
128 	while (bio_sectors(bio)) {
129 		unsigned int sectors = min(bio_sectors(bio),
130 				       1U << (KEY_SIZE_BITS - 1));
131 
132 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
133 			goto out;
134 
135 		bio->bi_iter.bi_sector	+= sectors;
136 		bio->bi_iter.bi_size	-= sectors << 9;
137 
138 		bch_keylist_add(&op->insert_keys,
139 				&KEY(op->inode,
140 				     bio->bi_iter.bi_sector,
141 				     sectors));
142 	}
143 
144 	op->insert_data_done = true;
145 	/* get in bch_data_insert() */
146 	bio_put(bio);
147 out:
148 	continue_at(cl, bch_data_insert_keys, op->wq);
149 }
150 
151 static void bch_data_insert_error(struct closure *cl)
152 {
153 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
154 
155 	/*
156 	 * Our data write just errored, which means we've got a bunch of keys to
157 	 * insert that point to data that wasn't successfully written.
158 	 *
159 	 * We don't have to insert those keys but we still have to invalidate
160 	 * that region of the cache - so, if we just strip off all the pointers
161 	 * from the keys we'll accomplish just that.
162 	 */
163 
164 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
165 
166 	while (src != op->insert_keys.top) {
167 		struct bkey *n = bkey_next(src);
168 
169 		SET_KEY_PTRS(src, 0);
170 		memmove(dst, src, bkey_bytes(src));
171 
172 		dst = bkey_next(dst);
173 		src = n;
174 	}
175 
176 	op->insert_keys.top = dst;
177 
178 	bch_data_insert_keys(cl);
179 }
180 
181 static void bch_data_insert_endio(struct bio *bio)
182 {
183 	struct closure *cl = bio->bi_private;
184 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
185 
186 	if (bio->bi_status) {
187 		/* TODO: We could try to recover from this. */
188 		if (op->writeback)
189 			op->status = bio->bi_status;
190 		else if (!op->replace)
191 			set_closure_fn(cl, bch_data_insert_error, op->wq);
192 		else
193 			set_closure_fn(cl, NULL, NULL);
194 	}
195 
196 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
197 }
198 
199 static void bch_data_insert_start(struct closure *cl)
200 {
201 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
202 	struct bio *bio = op->bio, *n;
203 
204 	if (op->bypass)
205 		return bch_data_invalidate(cl);
206 
207 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
208 		wake_up_gc(op->c);
209 
210 	/*
211 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
212 	 * flush, it'll wait on the journal write.
213 	 */
214 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
215 
216 	do {
217 		unsigned int i;
218 		struct bkey *k;
219 		struct bio_set *split = &op->c->bio_split;
220 
221 		/* 1 for the device pointer and 1 for the chksum */
222 		if (bch_keylist_realloc(&op->insert_keys,
223 					3 + (op->csum ? 1 : 0),
224 					op->c)) {
225 			continue_at(cl, bch_data_insert_keys, op->wq);
226 			return;
227 		}
228 
229 		k = op->insert_keys.top;
230 		bkey_init(k);
231 		SET_KEY_INODE(k, op->inode);
232 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
233 
234 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
235 				       op->write_point, op->write_prio,
236 				       op->writeback))
237 			goto err;
238 
239 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
240 
241 		n->bi_end_io	= bch_data_insert_endio;
242 		n->bi_private	= cl;
243 
244 		if (op->writeback) {
245 			SET_KEY_DIRTY(k, true);
246 
247 			for (i = 0; i < KEY_PTRS(k); i++)
248 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
249 					    GC_MARK_DIRTY);
250 		}
251 
252 		SET_KEY_CSUM(k, op->csum);
253 		if (KEY_CSUM(k))
254 			bio_csum(n, k);
255 
256 		trace_bcache_cache_insert(k);
257 		bch_keylist_push(&op->insert_keys);
258 
259 		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
260 		bch_submit_bbio(n, op->c, k, 0);
261 	} while (n != bio);
262 
263 	op->insert_data_done = true;
264 	continue_at(cl, bch_data_insert_keys, op->wq);
265 	return;
266 err:
267 	/* bch_alloc_sectors() blocks if s->writeback = true */
268 	BUG_ON(op->writeback);
269 
270 	/*
271 	 * But if it's not a writeback write we'd rather just bail out if
272 	 * there aren't any buckets ready to write to - it might take awhile and
273 	 * we might be starving btree writes for gc or something.
274 	 */
275 
276 	if (!op->replace) {
277 		/*
278 		 * Writethrough write: We can't complete the write until we've
279 		 * updated the index. But we don't want to delay the write while
280 		 * we wait for buckets to be freed up, so just invalidate the
281 		 * rest of the write.
282 		 */
283 		op->bypass = true;
284 		return bch_data_invalidate(cl);
285 	} else {
286 		/*
287 		 * From a cache miss, we can just insert the keys for the data
288 		 * we have written or bail out if we didn't do anything.
289 		 */
290 		op->insert_data_done = true;
291 		bio_put(bio);
292 
293 		if (!bch_keylist_empty(&op->insert_keys))
294 			continue_at(cl, bch_data_insert_keys, op->wq);
295 		else
296 			closure_return(cl);
297 	}
298 }
299 
300 /**
301  * bch_data_insert - stick some data in the cache
302  * @cl: closure pointer.
303  *
304  * This is the starting point for any data to end up in a cache device; it could
305  * be from a normal write, or a writeback write, or a write to a flash only
306  * volume - it's also used by the moving garbage collector to compact data in
307  * mostly empty buckets.
308  *
309  * It first writes the data to the cache, creating a list of keys to be inserted
310  * (if the data had to be fragmented there will be multiple keys); after the
311  * data is written it calls bch_journal, and after the keys have been added to
312  * the next journal write they're inserted into the btree.
313  *
314  * It inserts the data in op->bio; bi_sector is used for the key offset,
315  * and op->inode is used for the key inode.
316  *
317  * If op->bypass is true, instead of inserting the data it invalidates the
318  * region of the cache represented by op->bio and op->inode.
319  */
320 void bch_data_insert(struct closure *cl)
321 {
322 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
323 
324 	trace_bcache_write(op->c, op->inode, op->bio,
325 			   op->writeback, op->bypass);
326 
327 	bch_keylist_init(&op->insert_keys);
328 	bio_get(op->bio);
329 	bch_data_insert_start(cl);
330 }
331 
332 /* Congested? */
333 
334 unsigned int bch_get_congested(struct cache_set *c)
335 {
336 	int i;
337 	long rand;
338 
339 	if (!c->congested_read_threshold_us &&
340 	    !c->congested_write_threshold_us)
341 		return 0;
342 
343 	i = (local_clock_us() - c->congested_last_us) / 1024;
344 	if (i < 0)
345 		return 0;
346 
347 	i += atomic_read(&c->congested);
348 	if (i >= 0)
349 		return 0;
350 
351 	i += CONGESTED_MAX;
352 
353 	if (i > 0)
354 		i = fract_exp_two(i, 6);
355 
356 	rand = get_random_int();
357 	i -= bitmap_weight(&rand, BITS_PER_LONG);
358 
359 	return i > 0 ? i : 1;
360 }
361 
362 static void add_sequential(struct task_struct *t)
363 {
364 	ewma_add(t->sequential_io_avg,
365 		 t->sequential_io, 8, 0);
366 
367 	t->sequential_io = 0;
368 }
369 
370 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
371 {
372 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
373 }
374 
375 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
376 {
377 	struct cache_set *c = dc->disk.c;
378 	unsigned int mode = cache_mode(dc);
379 	unsigned int sectors, congested = bch_get_congested(c);
380 	struct task_struct *task = current;
381 	struct io *i;
382 
383 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
384 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
385 	    (bio_op(bio) == REQ_OP_DISCARD))
386 		goto skip;
387 
388 	if (mode == CACHE_MODE_NONE ||
389 	    (mode == CACHE_MODE_WRITEAROUND &&
390 	     op_is_write(bio_op(bio))))
391 		goto skip;
392 
393 	/*
394 	 * Flag for bypass if the IO is for read-ahead or background,
395 	 * unless the read-ahead request is for metadata
396 	 * (eg, for gfs2 or xfs).
397 	 */
398 	if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
399 	    !(bio->bi_opf & (REQ_META|REQ_PRIO)))
400 		goto skip;
401 
402 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
403 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
404 		pr_debug("skipping unaligned io");
405 		goto skip;
406 	}
407 
408 	if (bypass_torture_test(dc)) {
409 		if ((get_random_int() & 3) == 3)
410 			goto skip;
411 		else
412 			goto rescale;
413 	}
414 
415 	if (!congested && !dc->sequential_cutoff)
416 		goto rescale;
417 
418 	spin_lock(&dc->io_lock);
419 
420 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
421 		if (i->last == bio->bi_iter.bi_sector &&
422 		    time_before(jiffies, i->jiffies))
423 			goto found;
424 
425 	i = list_first_entry(&dc->io_lru, struct io, lru);
426 
427 	add_sequential(task);
428 	i->sequential = 0;
429 found:
430 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
431 		i->sequential	+= bio->bi_iter.bi_size;
432 
433 	i->last			 = bio_end_sector(bio);
434 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
435 	task->sequential_io	 = i->sequential;
436 
437 	hlist_del(&i->hash);
438 	hlist_add_head(&i->hash, iohash(dc, i->last));
439 	list_move_tail(&i->lru, &dc->io_lru);
440 
441 	spin_unlock(&dc->io_lock);
442 
443 	sectors = max(task->sequential_io,
444 		      task->sequential_io_avg) >> 9;
445 
446 	if (dc->sequential_cutoff &&
447 	    sectors >= dc->sequential_cutoff >> 9) {
448 		trace_bcache_bypass_sequential(bio);
449 		goto skip;
450 	}
451 
452 	if (congested && sectors >= congested) {
453 		trace_bcache_bypass_congested(bio);
454 		goto skip;
455 	}
456 
457 rescale:
458 	bch_rescale_priorities(c, bio_sectors(bio));
459 	return false;
460 skip:
461 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
462 	return true;
463 }
464 
465 /* Cache lookup */
466 
467 struct search {
468 	/* Stack frame for bio_complete */
469 	struct closure		cl;
470 
471 	struct bbio		bio;
472 	struct bio		*orig_bio;
473 	struct bio		*cache_miss;
474 	struct bcache_device	*d;
475 
476 	unsigned int		insert_bio_sectors;
477 	unsigned int		recoverable:1;
478 	unsigned int		write:1;
479 	unsigned int		read_dirty_data:1;
480 	unsigned int		cache_missed:1;
481 
482 	unsigned long		start_time;
483 
484 	struct btree_op		op;
485 	struct data_insert_op	iop;
486 };
487 
488 static void bch_cache_read_endio(struct bio *bio)
489 {
490 	struct bbio *b = container_of(bio, struct bbio, bio);
491 	struct closure *cl = bio->bi_private;
492 	struct search *s = container_of(cl, struct search, cl);
493 
494 	/*
495 	 * If the bucket was reused while our bio was in flight, we might have
496 	 * read the wrong data. Set s->error but not error so it doesn't get
497 	 * counted against the cache device, but we'll still reread the data
498 	 * from the backing device.
499 	 */
500 
501 	if (bio->bi_status)
502 		s->iop.status = bio->bi_status;
503 	else if (!KEY_DIRTY(&b->key) &&
504 		 ptr_stale(s->iop.c, &b->key, 0)) {
505 		atomic_long_inc(&s->iop.c->cache_read_races);
506 		s->iop.status = BLK_STS_IOERR;
507 	}
508 
509 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
510 }
511 
512 /*
513  * Read from a single key, handling the initial cache miss if the key starts in
514  * the middle of the bio
515  */
516 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
517 {
518 	struct search *s = container_of(op, struct search, op);
519 	struct bio *n, *bio = &s->bio.bio;
520 	struct bkey *bio_key;
521 	unsigned int ptr;
522 
523 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
524 		return MAP_CONTINUE;
525 
526 	if (KEY_INODE(k) != s->iop.inode ||
527 	    KEY_START(k) > bio->bi_iter.bi_sector) {
528 		unsigned int bio_sectors = bio_sectors(bio);
529 		unsigned int sectors = KEY_INODE(k) == s->iop.inode
530 			? min_t(uint64_t, INT_MAX,
531 				KEY_START(k) - bio->bi_iter.bi_sector)
532 			: INT_MAX;
533 		int ret = s->d->cache_miss(b, s, bio, sectors);
534 
535 		if (ret != MAP_CONTINUE)
536 			return ret;
537 
538 		/* if this was a complete miss we shouldn't get here */
539 		BUG_ON(bio_sectors <= sectors);
540 	}
541 
542 	if (!KEY_SIZE(k))
543 		return MAP_CONTINUE;
544 
545 	/* XXX: figure out best pointer - for multiple cache devices */
546 	ptr = 0;
547 
548 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
549 
550 	if (KEY_DIRTY(k))
551 		s->read_dirty_data = true;
552 
553 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
554 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
555 			   GFP_NOIO, &s->d->bio_split);
556 
557 	bio_key = &container_of(n, struct bbio, bio)->key;
558 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
559 
560 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
561 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
562 
563 	n->bi_end_io	= bch_cache_read_endio;
564 	n->bi_private	= &s->cl;
565 
566 	/*
567 	 * The bucket we're reading from might be reused while our bio
568 	 * is in flight, and we could then end up reading the wrong
569 	 * data.
570 	 *
571 	 * We guard against this by checking (in cache_read_endio()) if
572 	 * the pointer is stale again; if so, we treat it as an error
573 	 * and reread from the backing device (but we don't pass that
574 	 * error up anywhere).
575 	 */
576 
577 	__bch_submit_bbio(n, b->c);
578 	return n == bio ? MAP_DONE : MAP_CONTINUE;
579 }
580 
581 static void cache_lookup(struct closure *cl)
582 {
583 	struct search *s = container_of(cl, struct search, iop.cl);
584 	struct bio *bio = &s->bio.bio;
585 	struct cached_dev *dc;
586 	int ret;
587 
588 	bch_btree_op_init(&s->op, -1);
589 
590 	ret = bch_btree_map_keys(&s->op, s->iop.c,
591 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
592 				 cache_lookup_fn, MAP_END_KEY);
593 	if (ret == -EAGAIN) {
594 		continue_at(cl, cache_lookup, bcache_wq);
595 		return;
596 	}
597 
598 	/*
599 	 * We might meet err when searching the btree, If that happens, we will
600 	 * get negative ret, in this scenario we should not recover data from
601 	 * backing device (when cache device is dirty) because we don't know
602 	 * whether bkeys the read request covered are all clean.
603 	 *
604 	 * And after that happened, s->iop.status is still its initial value
605 	 * before we submit s->bio.bio
606 	 */
607 	if (ret < 0) {
608 		BUG_ON(ret == -EINTR);
609 		if (s->d && s->d->c &&
610 				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
611 			dc = container_of(s->d, struct cached_dev, disk);
612 			if (dc && atomic_read(&dc->has_dirty))
613 				s->recoverable = false;
614 		}
615 		if (!s->iop.status)
616 			s->iop.status = BLK_STS_IOERR;
617 	}
618 
619 	closure_return(cl);
620 }
621 
622 /* Common code for the make_request functions */
623 
624 static void request_endio(struct bio *bio)
625 {
626 	struct closure *cl = bio->bi_private;
627 
628 	if (bio->bi_status) {
629 		struct search *s = container_of(cl, struct search, cl);
630 
631 		s->iop.status = bio->bi_status;
632 		/* Only cache read errors are recoverable */
633 		s->recoverable = false;
634 	}
635 
636 	bio_put(bio);
637 	closure_put(cl);
638 }
639 
640 static void backing_request_endio(struct bio *bio)
641 {
642 	struct closure *cl = bio->bi_private;
643 
644 	if (bio->bi_status) {
645 		struct search *s = container_of(cl, struct search, cl);
646 		struct cached_dev *dc = container_of(s->d,
647 						     struct cached_dev, disk);
648 		/*
649 		 * If a bio has REQ_PREFLUSH for writeback mode, it is
650 		 * speically assembled in cached_dev_write() for a non-zero
651 		 * write request which has REQ_PREFLUSH. we don't set
652 		 * s->iop.status by this failure, the status will be decided
653 		 * by result of bch_data_insert() operation.
654 		 */
655 		if (unlikely(s->iop.writeback &&
656 			     bio->bi_opf & REQ_PREFLUSH)) {
657 			pr_err("Can't flush %s: returned bi_status %i",
658 				dc->backing_dev_name, bio->bi_status);
659 		} else {
660 			/* set to orig_bio->bi_status in bio_complete() */
661 			s->iop.status = bio->bi_status;
662 		}
663 		s->recoverable = false;
664 		/* should count I/O error for backing device here */
665 		bch_count_backing_io_errors(dc, bio);
666 	}
667 
668 	bio_put(bio);
669 	closure_put(cl);
670 }
671 
672 static void bio_complete(struct search *s)
673 {
674 	if (s->orig_bio) {
675 		generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
676 				    &s->d->disk->part0, s->start_time);
677 
678 		trace_bcache_request_end(s->d, s->orig_bio);
679 		s->orig_bio->bi_status = s->iop.status;
680 		bio_endio(s->orig_bio);
681 		s->orig_bio = NULL;
682 	}
683 }
684 
685 static void do_bio_hook(struct search *s,
686 			struct bio *orig_bio,
687 			bio_end_io_t *end_io_fn)
688 {
689 	struct bio *bio = &s->bio.bio;
690 
691 	bio_init(bio, NULL, 0);
692 	__bio_clone_fast(bio, orig_bio);
693 	/*
694 	 * bi_end_io can be set separately somewhere else, e.g. the
695 	 * variants in,
696 	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
697 	 * - n->bi_end_io from cache_lookup_fn()
698 	 */
699 	bio->bi_end_io		= end_io_fn;
700 	bio->bi_private		= &s->cl;
701 
702 	bio_cnt_set(bio, 3);
703 }
704 
705 static void search_free(struct closure *cl)
706 {
707 	struct search *s = container_of(cl, struct search, cl);
708 
709 	atomic_dec(&s->d->c->search_inflight);
710 
711 	if (s->iop.bio)
712 		bio_put(s->iop.bio);
713 
714 	bio_complete(s);
715 	closure_debug_destroy(cl);
716 	mempool_free(s, &s->d->c->search);
717 }
718 
719 static inline struct search *search_alloc(struct bio *bio,
720 					  struct bcache_device *d)
721 {
722 	struct search *s;
723 
724 	s = mempool_alloc(&d->c->search, GFP_NOIO);
725 
726 	closure_init(&s->cl, NULL);
727 	do_bio_hook(s, bio, request_endio);
728 	atomic_inc(&d->c->search_inflight);
729 
730 	s->orig_bio		= bio;
731 	s->cache_miss		= NULL;
732 	s->cache_missed		= 0;
733 	s->d			= d;
734 	s->recoverable		= 1;
735 	s->write		= op_is_write(bio_op(bio));
736 	s->read_dirty_data	= 0;
737 	s->start_time		= jiffies;
738 
739 	s->iop.c		= d->c;
740 	s->iop.bio		= NULL;
741 	s->iop.inode		= d->id;
742 	s->iop.write_point	= hash_long((unsigned long) current, 16);
743 	s->iop.write_prio	= 0;
744 	s->iop.status		= 0;
745 	s->iop.flags		= 0;
746 	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
747 	s->iop.wq		= bcache_wq;
748 
749 	return s;
750 }
751 
752 /* Cached devices */
753 
754 static void cached_dev_bio_complete(struct closure *cl)
755 {
756 	struct search *s = container_of(cl, struct search, cl);
757 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
758 
759 	search_free(cl);
760 	cached_dev_put(dc);
761 }
762 
763 /* Process reads */
764 
765 static void cached_dev_cache_miss_done(struct closure *cl)
766 {
767 	struct search *s = container_of(cl, struct search, cl);
768 
769 	if (s->iop.replace_collision)
770 		bch_mark_cache_miss_collision(s->iop.c, s->d);
771 
772 	if (s->iop.bio)
773 		bio_free_pages(s->iop.bio);
774 
775 	cached_dev_bio_complete(cl);
776 }
777 
778 static void cached_dev_read_error(struct closure *cl)
779 {
780 	struct search *s = container_of(cl, struct search, cl);
781 	struct bio *bio = &s->bio.bio;
782 
783 	/*
784 	 * If read request hit dirty data (s->read_dirty_data is true),
785 	 * then recovery a failed read request from cached device may
786 	 * get a stale data back. So read failure recovery is only
787 	 * permitted when read request hit clean data in cache device,
788 	 * or when cache read race happened.
789 	 */
790 	if (s->recoverable && !s->read_dirty_data) {
791 		/* Retry from the backing device: */
792 		trace_bcache_read_retry(s->orig_bio);
793 
794 		s->iop.status = 0;
795 		do_bio_hook(s, s->orig_bio, backing_request_endio);
796 
797 		/* XXX: invalidate cache */
798 
799 		/* I/O request sent to backing device */
800 		closure_bio_submit(s->iop.c, bio, cl);
801 	}
802 
803 	continue_at(cl, cached_dev_cache_miss_done, NULL);
804 }
805 
806 static void cached_dev_read_done(struct closure *cl)
807 {
808 	struct search *s = container_of(cl, struct search, cl);
809 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
810 
811 	/*
812 	 * We had a cache miss; cache_bio now contains data ready to be inserted
813 	 * into the cache.
814 	 *
815 	 * First, we copy the data we just read from cache_bio's bounce buffers
816 	 * to the buffers the original bio pointed to:
817 	 */
818 
819 	if (s->iop.bio) {
820 		bio_reset(s->iop.bio);
821 		s->iop.bio->bi_iter.bi_sector =
822 			s->cache_miss->bi_iter.bi_sector;
823 		bio_copy_dev(s->iop.bio, s->cache_miss);
824 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
825 		bch_bio_map(s->iop.bio, NULL);
826 
827 		bio_copy_data(s->cache_miss, s->iop.bio);
828 
829 		bio_put(s->cache_miss);
830 		s->cache_miss = NULL;
831 	}
832 
833 	if (verify(dc) && s->recoverable && !s->read_dirty_data)
834 		bch_data_verify(dc, s->orig_bio);
835 
836 	bio_complete(s);
837 
838 	if (s->iop.bio &&
839 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
840 		BUG_ON(!s->iop.replace);
841 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
842 	}
843 
844 	continue_at(cl, cached_dev_cache_miss_done, NULL);
845 }
846 
847 static void cached_dev_read_done_bh(struct closure *cl)
848 {
849 	struct search *s = container_of(cl, struct search, cl);
850 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
851 
852 	bch_mark_cache_accounting(s->iop.c, s->d,
853 				  !s->cache_missed, s->iop.bypass);
854 	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
855 
856 	if (s->iop.status)
857 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
858 	else if (s->iop.bio || verify(dc))
859 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
860 	else
861 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
862 }
863 
864 static int cached_dev_cache_miss(struct btree *b, struct search *s,
865 				 struct bio *bio, unsigned int sectors)
866 {
867 	int ret = MAP_CONTINUE;
868 	unsigned int reada = 0;
869 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
870 	struct bio *miss, *cache_bio;
871 
872 	s->cache_missed = 1;
873 
874 	if (s->cache_miss || s->iop.bypass) {
875 		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
876 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
877 		goto out_submit;
878 	}
879 
880 	if (!(bio->bi_opf & REQ_RAHEAD) &&
881 	    !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
882 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
883 		reada = min_t(sector_t, dc->readahead >> 9,
884 			      get_capacity(bio->bi_disk) - bio_end_sector(bio));
885 
886 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
887 
888 	s->iop.replace_key = KEY(s->iop.inode,
889 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
890 				 s->insert_bio_sectors);
891 
892 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
893 	if (ret)
894 		return ret;
895 
896 	s->iop.replace = true;
897 
898 	miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
899 
900 	/* btree_search_recurse()'s btree iterator is no good anymore */
901 	ret = miss == bio ? MAP_DONE : -EINTR;
902 
903 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
904 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
905 			&dc->disk.bio_split);
906 	if (!cache_bio)
907 		goto out_submit;
908 
909 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
910 	bio_copy_dev(cache_bio, miss);
911 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
912 
913 	cache_bio->bi_end_io	= backing_request_endio;
914 	cache_bio->bi_private	= &s->cl;
915 
916 	bch_bio_map(cache_bio, NULL);
917 	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
918 		goto out_put;
919 
920 	if (reada)
921 		bch_mark_cache_readahead(s->iop.c, s->d);
922 
923 	s->cache_miss	= miss;
924 	s->iop.bio	= cache_bio;
925 	bio_get(cache_bio);
926 	/* I/O request sent to backing device */
927 	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
928 
929 	return ret;
930 out_put:
931 	bio_put(cache_bio);
932 out_submit:
933 	miss->bi_end_io		= backing_request_endio;
934 	miss->bi_private	= &s->cl;
935 	/* I/O request sent to backing device */
936 	closure_bio_submit(s->iop.c, miss, &s->cl);
937 	return ret;
938 }
939 
940 static void cached_dev_read(struct cached_dev *dc, struct search *s)
941 {
942 	struct closure *cl = &s->cl;
943 
944 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
945 	continue_at(cl, cached_dev_read_done_bh, NULL);
946 }
947 
948 /* Process writes */
949 
950 static void cached_dev_write_complete(struct closure *cl)
951 {
952 	struct search *s = container_of(cl, struct search, cl);
953 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
954 
955 	up_read_non_owner(&dc->writeback_lock);
956 	cached_dev_bio_complete(cl);
957 }
958 
959 static void cached_dev_write(struct cached_dev *dc, struct search *s)
960 {
961 	struct closure *cl = &s->cl;
962 	struct bio *bio = &s->bio.bio;
963 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
964 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
965 
966 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
967 
968 	down_read_non_owner(&dc->writeback_lock);
969 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
970 		/*
971 		 * We overlap with some dirty data undergoing background
972 		 * writeback, force this write to writeback
973 		 */
974 		s->iop.bypass = false;
975 		s->iop.writeback = true;
976 	}
977 
978 	/*
979 	 * Discards aren't _required_ to do anything, so skipping if
980 	 * check_overlapping returned true is ok
981 	 *
982 	 * But check_overlapping drops dirty keys for which io hasn't started,
983 	 * so we still want to call it.
984 	 */
985 	if (bio_op(bio) == REQ_OP_DISCARD)
986 		s->iop.bypass = true;
987 
988 	if (should_writeback(dc, s->orig_bio,
989 			     cache_mode(dc),
990 			     s->iop.bypass)) {
991 		s->iop.bypass = false;
992 		s->iop.writeback = true;
993 	}
994 
995 	if (s->iop.bypass) {
996 		s->iop.bio = s->orig_bio;
997 		bio_get(s->iop.bio);
998 
999 		if (bio_op(bio) == REQ_OP_DISCARD &&
1000 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1001 			goto insert_data;
1002 
1003 		/* I/O request sent to backing device */
1004 		bio->bi_end_io = backing_request_endio;
1005 		closure_bio_submit(s->iop.c, bio, cl);
1006 
1007 	} else if (s->iop.writeback) {
1008 		bch_writeback_add(dc);
1009 		s->iop.bio = bio;
1010 
1011 		if (bio->bi_opf & REQ_PREFLUSH) {
1012 			/*
1013 			 * Also need to send a flush to the backing
1014 			 * device.
1015 			 */
1016 			struct bio *flush;
1017 
1018 			flush = bio_alloc_bioset(GFP_NOIO, 0,
1019 						 &dc->disk.bio_split);
1020 			if (!flush) {
1021 				s->iop.status = BLK_STS_RESOURCE;
1022 				goto insert_data;
1023 			}
1024 			bio_copy_dev(flush, bio);
1025 			flush->bi_end_io = backing_request_endio;
1026 			flush->bi_private = cl;
1027 			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1028 			/* I/O request sent to backing device */
1029 			closure_bio_submit(s->iop.c, flush, cl);
1030 		}
1031 	} else {
1032 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1033 		/* I/O request sent to backing device */
1034 		bio->bi_end_io = backing_request_endio;
1035 		closure_bio_submit(s->iop.c, bio, cl);
1036 	}
1037 
1038 insert_data:
1039 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1040 	continue_at(cl, cached_dev_write_complete, NULL);
1041 }
1042 
1043 static void cached_dev_nodata(struct closure *cl)
1044 {
1045 	struct search *s = container_of(cl, struct search, cl);
1046 	struct bio *bio = &s->bio.bio;
1047 
1048 	if (s->iop.flush_journal)
1049 		bch_journal_meta(s->iop.c, cl);
1050 
1051 	/* If it's a flush, we send the flush to the backing device too */
1052 	bio->bi_end_io = backing_request_endio;
1053 	closure_bio_submit(s->iop.c, bio, cl);
1054 
1055 	continue_at(cl, cached_dev_bio_complete, NULL);
1056 }
1057 
1058 struct detached_dev_io_private {
1059 	struct bcache_device	*d;
1060 	unsigned long		start_time;
1061 	bio_end_io_t		*bi_end_io;
1062 	void			*bi_private;
1063 };
1064 
1065 static void detached_dev_end_io(struct bio *bio)
1066 {
1067 	struct detached_dev_io_private *ddip;
1068 
1069 	ddip = bio->bi_private;
1070 	bio->bi_end_io = ddip->bi_end_io;
1071 	bio->bi_private = ddip->bi_private;
1072 
1073 	generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1074 			    &ddip->d->disk->part0, ddip->start_time);
1075 
1076 	if (bio->bi_status) {
1077 		struct cached_dev *dc = container_of(ddip->d,
1078 						     struct cached_dev, disk);
1079 		/* should count I/O error for backing device here */
1080 		bch_count_backing_io_errors(dc, bio);
1081 	}
1082 
1083 	kfree(ddip);
1084 	bio->bi_end_io(bio);
1085 }
1086 
1087 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1088 {
1089 	struct detached_dev_io_private *ddip;
1090 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1091 
1092 	/*
1093 	 * no need to call closure_get(&dc->disk.cl),
1094 	 * because upper layer had already opened bcache device,
1095 	 * which would call closure_get(&dc->disk.cl)
1096 	 */
1097 	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1098 	ddip->d = d;
1099 	ddip->start_time = jiffies;
1100 	ddip->bi_end_io = bio->bi_end_io;
1101 	ddip->bi_private = bio->bi_private;
1102 	bio->bi_end_io = detached_dev_end_io;
1103 	bio->bi_private = ddip;
1104 
1105 	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1106 	    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1107 		bio->bi_end_io(bio);
1108 	else
1109 		generic_make_request(bio);
1110 }
1111 
1112 static void quit_max_writeback_rate(struct cache_set *c,
1113 				    struct cached_dev *this_dc)
1114 {
1115 	int i;
1116 	struct bcache_device *d;
1117 	struct cached_dev *dc;
1118 
1119 	/*
1120 	 * mutex bch_register_lock may compete with other parallel requesters,
1121 	 * or attach/detach operations on other backing device. Waiting to
1122 	 * the mutex lock may increase I/O request latency for seconds or more.
1123 	 * To avoid such situation, if mutext_trylock() failed, only writeback
1124 	 * rate of current cached device is set to 1, and __update_write_back()
1125 	 * will decide writeback rate of other cached devices (remember now
1126 	 * c->idle_counter is 0 already).
1127 	 */
1128 	if (mutex_trylock(&bch_register_lock)) {
1129 		for (i = 0; i < c->devices_max_used; i++) {
1130 			if (!c->devices[i])
1131 				continue;
1132 
1133 			if (UUID_FLASH_ONLY(&c->uuids[i]))
1134 				continue;
1135 
1136 			d = c->devices[i];
1137 			dc = container_of(d, struct cached_dev, disk);
1138 			/*
1139 			 * set writeback rate to default minimum value,
1140 			 * then let update_writeback_rate() to decide the
1141 			 * upcoming rate.
1142 			 */
1143 			atomic_long_set(&dc->writeback_rate.rate, 1);
1144 		}
1145 		mutex_unlock(&bch_register_lock);
1146 	} else
1147 		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1148 }
1149 
1150 /* Cached devices - read & write stuff */
1151 
1152 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1153 					struct bio *bio)
1154 {
1155 	struct search *s;
1156 	struct bcache_device *d = bio->bi_disk->private_data;
1157 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1158 	int rw = bio_data_dir(bio);
1159 
1160 	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1161 		     dc->io_disable)) {
1162 		bio->bi_status = BLK_STS_IOERR;
1163 		bio_endio(bio);
1164 		return BLK_QC_T_NONE;
1165 	}
1166 
1167 	if (likely(d->c)) {
1168 		if (atomic_read(&d->c->idle_counter))
1169 			atomic_set(&d->c->idle_counter, 0);
1170 		/*
1171 		 * If at_max_writeback_rate of cache set is true and new I/O
1172 		 * comes, quit max writeback rate of all cached devices
1173 		 * attached to this cache set, and set at_max_writeback_rate
1174 		 * to false.
1175 		 */
1176 		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1177 			atomic_set(&d->c->at_max_writeback_rate, 0);
1178 			quit_max_writeback_rate(d->c, dc);
1179 		}
1180 	}
1181 
1182 	generic_start_io_acct(q,
1183 			      bio_op(bio),
1184 			      bio_sectors(bio),
1185 			      &d->disk->part0);
1186 
1187 	bio_set_dev(bio, dc->bdev);
1188 	bio->bi_iter.bi_sector += dc->sb.data_offset;
1189 
1190 	if (cached_dev_get(dc)) {
1191 		s = search_alloc(bio, d);
1192 		trace_bcache_request_start(s->d, bio);
1193 
1194 		if (!bio->bi_iter.bi_size) {
1195 			/*
1196 			 * can't call bch_journal_meta from under
1197 			 * generic_make_request
1198 			 */
1199 			continue_at_nobarrier(&s->cl,
1200 					      cached_dev_nodata,
1201 					      bcache_wq);
1202 		} else {
1203 			s->iop.bypass = check_should_bypass(dc, bio);
1204 
1205 			if (rw)
1206 				cached_dev_write(dc, s);
1207 			else
1208 				cached_dev_read(dc, s);
1209 		}
1210 	} else
1211 		/* I/O request sent to backing device */
1212 		detached_dev_do_request(d, bio);
1213 
1214 	return BLK_QC_T_NONE;
1215 }
1216 
1217 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1218 			    unsigned int cmd, unsigned long arg)
1219 {
1220 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1221 
1222 	if (dc->io_disable)
1223 		return -EIO;
1224 
1225 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1226 }
1227 
1228 static int cached_dev_congested(void *data, int bits)
1229 {
1230 	struct bcache_device *d = data;
1231 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1232 	struct request_queue *q = bdev_get_queue(dc->bdev);
1233 	int ret = 0;
1234 
1235 	if (bdi_congested(q->backing_dev_info, bits))
1236 		return 1;
1237 
1238 	if (cached_dev_get(dc)) {
1239 		unsigned int i;
1240 		struct cache *ca;
1241 
1242 		for_each_cache(ca, d->c, i) {
1243 			q = bdev_get_queue(ca->bdev);
1244 			ret |= bdi_congested(q->backing_dev_info, bits);
1245 		}
1246 
1247 		cached_dev_put(dc);
1248 	}
1249 
1250 	return ret;
1251 }
1252 
1253 void bch_cached_dev_request_init(struct cached_dev *dc)
1254 {
1255 	struct gendisk *g = dc->disk.disk;
1256 
1257 	g->queue->make_request_fn		= cached_dev_make_request;
1258 	g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1259 	dc->disk.cache_miss			= cached_dev_cache_miss;
1260 	dc->disk.ioctl				= cached_dev_ioctl;
1261 }
1262 
1263 /* Flash backed devices */
1264 
1265 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1266 				struct bio *bio, unsigned int sectors)
1267 {
1268 	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1269 
1270 	swap(bio->bi_iter.bi_size, bytes);
1271 	zero_fill_bio(bio);
1272 	swap(bio->bi_iter.bi_size, bytes);
1273 
1274 	bio_advance(bio, bytes);
1275 
1276 	if (!bio->bi_iter.bi_size)
1277 		return MAP_DONE;
1278 
1279 	return MAP_CONTINUE;
1280 }
1281 
1282 static void flash_dev_nodata(struct closure *cl)
1283 {
1284 	struct search *s = container_of(cl, struct search, cl);
1285 
1286 	if (s->iop.flush_journal)
1287 		bch_journal_meta(s->iop.c, cl);
1288 
1289 	continue_at(cl, search_free, NULL);
1290 }
1291 
1292 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1293 					     struct bio *bio)
1294 {
1295 	struct search *s;
1296 	struct closure *cl;
1297 	struct bcache_device *d = bio->bi_disk->private_data;
1298 
1299 	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1300 		bio->bi_status = BLK_STS_IOERR;
1301 		bio_endio(bio);
1302 		return BLK_QC_T_NONE;
1303 	}
1304 
1305 	generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1306 
1307 	s = search_alloc(bio, d);
1308 	cl = &s->cl;
1309 	bio = &s->bio.bio;
1310 
1311 	trace_bcache_request_start(s->d, bio);
1312 
1313 	if (!bio->bi_iter.bi_size) {
1314 		/*
1315 		 * can't call bch_journal_meta from under
1316 		 * generic_make_request
1317 		 */
1318 		continue_at_nobarrier(&s->cl,
1319 				      flash_dev_nodata,
1320 				      bcache_wq);
1321 		return BLK_QC_T_NONE;
1322 	} else if (bio_data_dir(bio)) {
1323 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1324 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1325 					&KEY(d->id, bio_end_sector(bio), 0));
1326 
1327 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1328 		s->iop.writeback	= true;
1329 		s->iop.bio		= bio;
1330 
1331 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1332 	} else {
1333 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1334 	}
1335 
1336 	continue_at(cl, search_free, NULL);
1337 	return BLK_QC_T_NONE;
1338 }
1339 
1340 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1341 			   unsigned int cmd, unsigned long arg)
1342 {
1343 	return -ENOTTY;
1344 }
1345 
1346 static int flash_dev_congested(void *data, int bits)
1347 {
1348 	struct bcache_device *d = data;
1349 	struct request_queue *q;
1350 	struct cache *ca;
1351 	unsigned int i;
1352 	int ret = 0;
1353 
1354 	for_each_cache(ca, d->c, i) {
1355 		q = bdev_get_queue(ca->bdev);
1356 		ret |= bdi_congested(q->backing_dev_info, bits);
1357 	}
1358 
1359 	return ret;
1360 }
1361 
1362 void bch_flash_dev_request_init(struct bcache_device *d)
1363 {
1364 	struct gendisk *g = d->disk;
1365 
1366 	g->queue->make_request_fn		= flash_dev_make_request;
1367 	g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1368 	d->cache_miss				= flash_dev_cache_miss;
1369 	d->ioctl				= flash_dev_ioctl;
1370 }
1371 
1372 void bch_request_exit(void)
1373 {
1374 	kmem_cache_destroy(bch_search_cache);
1375 }
1376 
1377 int __init bch_request_init(void)
1378 {
1379 	bch_search_cache = KMEM_CACHE(search, 0);
1380 	if (!bch_search_cache)
1381 		return -ENOMEM;
1382 
1383 	return 0;
1384 }
1385