1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Main bcache entry point - handle a read or a write request and decide what to 4 * do with it; the make_request functions are called by the block layer. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "request.h" 14 #include "writeback.h" 15 16 #include <linux/module.h> 17 #include <linux/hash.h> 18 #include <linux/random.h> 19 #include <linux/backing-dev.h> 20 21 #include <trace/events/bcache.h> 22 23 #define CUTOFF_CACHE_ADD 95 24 #define CUTOFF_CACHE_READA 90 25 26 struct kmem_cache *bch_search_cache; 27 28 static void bch_data_insert_start(struct closure *cl); 29 30 static unsigned int cache_mode(struct cached_dev *dc) 31 { 32 return BDEV_CACHE_MODE(&dc->sb); 33 } 34 35 static bool verify(struct cached_dev *dc) 36 { 37 return dc->verify; 38 } 39 40 static void bio_csum(struct bio *bio, struct bkey *k) 41 { 42 struct bio_vec bv; 43 struct bvec_iter iter; 44 uint64_t csum = 0; 45 46 bio_for_each_segment(bv, bio, iter) { 47 void *d = kmap(bv.bv_page) + bv.bv_offset; 48 49 csum = bch_crc64_update(csum, d, bv.bv_len); 50 kunmap(bv.bv_page); 51 } 52 53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 54 } 55 56 /* Insert data into cache */ 57 58 static void bch_data_insert_keys(struct closure *cl) 59 { 60 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 61 atomic_t *journal_ref = NULL; 62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 63 int ret; 64 65 /* 66 * If we're looping, might already be waiting on 67 * another journal write - can't wait on more than one journal write at 68 * a time 69 * 70 * XXX: this looks wrong 71 */ 72 #if 0 73 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 74 closure_sync(&s->cl); 75 #endif 76 77 if (!op->replace) 78 journal_ref = bch_journal(op->c, &op->insert_keys, 79 op->flush_journal ? cl : NULL); 80 81 ret = bch_btree_insert(op->c, &op->insert_keys, 82 journal_ref, replace_key); 83 if (ret == -ESRCH) { 84 op->replace_collision = true; 85 } else if (ret) { 86 op->status = BLK_STS_RESOURCE; 87 op->insert_data_done = true; 88 } 89 90 if (journal_ref) 91 atomic_dec_bug(journal_ref); 92 93 if (!op->insert_data_done) { 94 continue_at(cl, bch_data_insert_start, op->wq); 95 return; 96 } 97 98 bch_keylist_free(&op->insert_keys); 99 closure_return(cl); 100 } 101 102 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s, 103 struct cache_set *c) 104 { 105 size_t oldsize = bch_keylist_nkeys(l); 106 size_t newsize = oldsize + u64s; 107 108 /* 109 * The journalling code doesn't handle the case where the keys to insert 110 * is bigger than an empty write: If we just return -ENOMEM here, 111 * bch_data_insert_keys() will insert the keys created so far 112 * and finish the rest when the keylist is empty. 113 */ 114 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 115 return -ENOMEM; 116 117 return __bch_keylist_realloc(l, u64s); 118 } 119 120 static void bch_data_invalidate(struct closure *cl) 121 { 122 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 123 struct bio *bio = op->bio; 124 125 pr_debug("invalidating %i sectors from %llu", 126 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 127 128 while (bio_sectors(bio)) { 129 unsigned int sectors = min(bio_sectors(bio), 130 1U << (KEY_SIZE_BITS - 1)); 131 132 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 133 goto out; 134 135 bio->bi_iter.bi_sector += sectors; 136 bio->bi_iter.bi_size -= sectors << 9; 137 138 bch_keylist_add(&op->insert_keys, 139 &KEY(op->inode, 140 bio->bi_iter.bi_sector, 141 sectors)); 142 } 143 144 op->insert_data_done = true; 145 /* get in bch_data_insert() */ 146 bio_put(bio); 147 out: 148 continue_at(cl, bch_data_insert_keys, op->wq); 149 } 150 151 static void bch_data_insert_error(struct closure *cl) 152 { 153 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 154 155 /* 156 * Our data write just errored, which means we've got a bunch of keys to 157 * insert that point to data that wasn't successfully written. 158 * 159 * We don't have to insert those keys but we still have to invalidate 160 * that region of the cache - so, if we just strip off all the pointers 161 * from the keys we'll accomplish just that. 162 */ 163 164 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 165 166 while (src != op->insert_keys.top) { 167 struct bkey *n = bkey_next(src); 168 169 SET_KEY_PTRS(src, 0); 170 memmove(dst, src, bkey_bytes(src)); 171 172 dst = bkey_next(dst); 173 src = n; 174 } 175 176 op->insert_keys.top = dst; 177 178 bch_data_insert_keys(cl); 179 } 180 181 static void bch_data_insert_endio(struct bio *bio) 182 { 183 struct closure *cl = bio->bi_private; 184 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 185 186 if (bio->bi_status) { 187 /* TODO: We could try to recover from this. */ 188 if (op->writeback) 189 op->status = bio->bi_status; 190 else if (!op->replace) 191 set_closure_fn(cl, bch_data_insert_error, op->wq); 192 else 193 set_closure_fn(cl, NULL, NULL); 194 } 195 196 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache"); 197 } 198 199 static void bch_data_insert_start(struct closure *cl) 200 { 201 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 202 struct bio *bio = op->bio, *n; 203 204 if (op->bypass) 205 return bch_data_invalidate(cl); 206 207 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) 208 wake_up_gc(op->c); 209 210 /* 211 * Journal writes are marked REQ_PREFLUSH; if the original write was a 212 * flush, it'll wait on the journal write. 213 */ 214 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA); 215 216 do { 217 unsigned int i; 218 struct bkey *k; 219 struct bio_set *split = &op->c->bio_split; 220 221 /* 1 for the device pointer and 1 for the chksum */ 222 if (bch_keylist_realloc(&op->insert_keys, 223 3 + (op->csum ? 1 : 0), 224 op->c)) { 225 continue_at(cl, bch_data_insert_keys, op->wq); 226 return; 227 } 228 229 k = op->insert_keys.top; 230 bkey_init(k); 231 SET_KEY_INODE(k, op->inode); 232 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 233 234 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 235 op->write_point, op->write_prio, 236 op->writeback)) 237 goto err; 238 239 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 240 241 n->bi_end_io = bch_data_insert_endio; 242 n->bi_private = cl; 243 244 if (op->writeback) { 245 SET_KEY_DIRTY(k, true); 246 247 for (i = 0; i < KEY_PTRS(k); i++) 248 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 249 GC_MARK_DIRTY); 250 } 251 252 SET_KEY_CSUM(k, op->csum); 253 if (KEY_CSUM(k)) 254 bio_csum(n, k); 255 256 trace_bcache_cache_insert(k); 257 bch_keylist_push(&op->insert_keys); 258 259 bio_set_op_attrs(n, REQ_OP_WRITE, 0); 260 bch_submit_bbio(n, op->c, k, 0); 261 } while (n != bio); 262 263 op->insert_data_done = true; 264 continue_at(cl, bch_data_insert_keys, op->wq); 265 return; 266 err: 267 /* bch_alloc_sectors() blocks if s->writeback = true */ 268 BUG_ON(op->writeback); 269 270 /* 271 * But if it's not a writeback write we'd rather just bail out if 272 * there aren't any buckets ready to write to - it might take awhile and 273 * we might be starving btree writes for gc or something. 274 */ 275 276 if (!op->replace) { 277 /* 278 * Writethrough write: We can't complete the write until we've 279 * updated the index. But we don't want to delay the write while 280 * we wait for buckets to be freed up, so just invalidate the 281 * rest of the write. 282 */ 283 op->bypass = true; 284 return bch_data_invalidate(cl); 285 } else { 286 /* 287 * From a cache miss, we can just insert the keys for the data 288 * we have written or bail out if we didn't do anything. 289 */ 290 op->insert_data_done = true; 291 bio_put(bio); 292 293 if (!bch_keylist_empty(&op->insert_keys)) 294 continue_at(cl, bch_data_insert_keys, op->wq); 295 else 296 closure_return(cl); 297 } 298 } 299 300 /** 301 * bch_data_insert - stick some data in the cache 302 * @cl: closure pointer. 303 * 304 * This is the starting point for any data to end up in a cache device; it could 305 * be from a normal write, or a writeback write, or a write to a flash only 306 * volume - it's also used by the moving garbage collector to compact data in 307 * mostly empty buckets. 308 * 309 * It first writes the data to the cache, creating a list of keys to be inserted 310 * (if the data had to be fragmented there will be multiple keys); after the 311 * data is written it calls bch_journal, and after the keys have been added to 312 * the next journal write they're inserted into the btree. 313 * 314 * It inserts the data in op->bio; bi_sector is used for the key offset, 315 * and op->inode is used for the key inode. 316 * 317 * If op->bypass is true, instead of inserting the data it invalidates the 318 * region of the cache represented by op->bio and op->inode. 319 */ 320 void bch_data_insert(struct closure *cl) 321 { 322 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 323 324 trace_bcache_write(op->c, op->inode, op->bio, 325 op->writeback, op->bypass); 326 327 bch_keylist_init(&op->insert_keys); 328 bio_get(op->bio); 329 bch_data_insert_start(cl); 330 } 331 332 /* Congested? */ 333 334 unsigned int bch_get_congested(struct cache_set *c) 335 { 336 int i; 337 long rand; 338 339 if (!c->congested_read_threshold_us && 340 !c->congested_write_threshold_us) 341 return 0; 342 343 i = (local_clock_us() - c->congested_last_us) / 1024; 344 if (i < 0) 345 return 0; 346 347 i += atomic_read(&c->congested); 348 if (i >= 0) 349 return 0; 350 351 i += CONGESTED_MAX; 352 353 if (i > 0) 354 i = fract_exp_two(i, 6); 355 356 rand = get_random_int(); 357 i -= bitmap_weight(&rand, BITS_PER_LONG); 358 359 return i > 0 ? i : 1; 360 } 361 362 static void add_sequential(struct task_struct *t) 363 { 364 ewma_add(t->sequential_io_avg, 365 t->sequential_io, 8, 0); 366 367 t->sequential_io = 0; 368 } 369 370 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 371 { 372 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 373 } 374 375 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 376 { 377 struct cache_set *c = dc->disk.c; 378 unsigned int mode = cache_mode(dc); 379 unsigned int sectors, congested = bch_get_congested(c); 380 struct task_struct *task = current; 381 struct io *i; 382 383 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 384 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 385 (bio_op(bio) == REQ_OP_DISCARD)) 386 goto skip; 387 388 if (mode == CACHE_MODE_NONE || 389 (mode == CACHE_MODE_WRITEAROUND && 390 op_is_write(bio_op(bio)))) 391 goto skip; 392 393 /* 394 * Flag for bypass if the IO is for read-ahead or background, 395 * unless the read-ahead request is for metadata 396 * (eg, for gfs2 or xfs). 397 */ 398 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) && 399 !(bio->bi_opf & (REQ_META|REQ_PRIO))) 400 goto skip; 401 402 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 403 bio_sectors(bio) & (c->sb.block_size - 1)) { 404 pr_debug("skipping unaligned io"); 405 goto skip; 406 } 407 408 if (bypass_torture_test(dc)) { 409 if ((get_random_int() & 3) == 3) 410 goto skip; 411 else 412 goto rescale; 413 } 414 415 if (!congested && !dc->sequential_cutoff) 416 goto rescale; 417 418 spin_lock(&dc->io_lock); 419 420 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 421 if (i->last == bio->bi_iter.bi_sector && 422 time_before(jiffies, i->jiffies)) 423 goto found; 424 425 i = list_first_entry(&dc->io_lru, struct io, lru); 426 427 add_sequential(task); 428 i->sequential = 0; 429 found: 430 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 431 i->sequential += bio->bi_iter.bi_size; 432 433 i->last = bio_end_sector(bio); 434 i->jiffies = jiffies + msecs_to_jiffies(5000); 435 task->sequential_io = i->sequential; 436 437 hlist_del(&i->hash); 438 hlist_add_head(&i->hash, iohash(dc, i->last)); 439 list_move_tail(&i->lru, &dc->io_lru); 440 441 spin_unlock(&dc->io_lock); 442 443 sectors = max(task->sequential_io, 444 task->sequential_io_avg) >> 9; 445 446 if (dc->sequential_cutoff && 447 sectors >= dc->sequential_cutoff >> 9) { 448 trace_bcache_bypass_sequential(bio); 449 goto skip; 450 } 451 452 if (congested && sectors >= congested) { 453 trace_bcache_bypass_congested(bio); 454 goto skip; 455 } 456 457 rescale: 458 bch_rescale_priorities(c, bio_sectors(bio)); 459 return false; 460 skip: 461 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 462 return true; 463 } 464 465 /* Cache lookup */ 466 467 struct search { 468 /* Stack frame for bio_complete */ 469 struct closure cl; 470 471 struct bbio bio; 472 struct bio *orig_bio; 473 struct bio *cache_miss; 474 struct bcache_device *d; 475 476 unsigned int insert_bio_sectors; 477 unsigned int recoverable:1; 478 unsigned int write:1; 479 unsigned int read_dirty_data:1; 480 unsigned int cache_missed:1; 481 482 unsigned long start_time; 483 484 struct btree_op op; 485 struct data_insert_op iop; 486 }; 487 488 static void bch_cache_read_endio(struct bio *bio) 489 { 490 struct bbio *b = container_of(bio, struct bbio, bio); 491 struct closure *cl = bio->bi_private; 492 struct search *s = container_of(cl, struct search, cl); 493 494 /* 495 * If the bucket was reused while our bio was in flight, we might have 496 * read the wrong data. Set s->error but not error so it doesn't get 497 * counted against the cache device, but we'll still reread the data 498 * from the backing device. 499 */ 500 501 if (bio->bi_status) 502 s->iop.status = bio->bi_status; 503 else if (!KEY_DIRTY(&b->key) && 504 ptr_stale(s->iop.c, &b->key, 0)) { 505 atomic_long_inc(&s->iop.c->cache_read_races); 506 s->iop.status = BLK_STS_IOERR; 507 } 508 509 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache"); 510 } 511 512 /* 513 * Read from a single key, handling the initial cache miss if the key starts in 514 * the middle of the bio 515 */ 516 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 517 { 518 struct search *s = container_of(op, struct search, op); 519 struct bio *n, *bio = &s->bio.bio; 520 struct bkey *bio_key; 521 unsigned int ptr; 522 523 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 524 return MAP_CONTINUE; 525 526 if (KEY_INODE(k) != s->iop.inode || 527 KEY_START(k) > bio->bi_iter.bi_sector) { 528 unsigned int bio_sectors = bio_sectors(bio); 529 unsigned int sectors = KEY_INODE(k) == s->iop.inode 530 ? min_t(uint64_t, INT_MAX, 531 KEY_START(k) - bio->bi_iter.bi_sector) 532 : INT_MAX; 533 int ret = s->d->cache_miss(b, s, bio, sectors); 534 535 if (ret != MAP_CONTINUE) 536 return ret; 537 538 /* if this was a complete miss we shouldn't get here */ 539 BUG_ON(bio_sectors <= sectors); 540 } 541 542 if (!KEY_SIZE(k)) 543 return MAP_CONTINUE; 544 545 /* XXX: figure out best pointer - for multiple cache devices */ 546 ptr = 0; 547 548 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 549 550 if (KEY_DIRTY(k)) 551 s->read_dirty_data = true; 552 553 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 554 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 555 GFP_NOIO, &s->d->bio_split); 556 557 bio_key = &container_of(n, struct bbio, bio)->key; 558 bch_bkey_copy_single_ptr(bio_key, k, ptr); 559 560 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 561 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 562 563 n->bi_end_io = bch_cache_read_endio; 564 n->bi_private = &s->cl; 565 566 /* 567 * The bucket we're reading from might be reused while our bio 568 * is in flight, and we could then end up reading the wrong 569 * data. 570 * 571 * We guard against this by checking (in cache_read_endio()) if 572 * the pointer is stale again; if so, we treat it as an error 573 * and reread from the backing device (but we don't pass that 574 * error up anywhere). 575 */ 576 577 __bch_submit_bbio(n, b->c); 578 return n == bio ? MAP_DONE : MAP_CONTINUE; 579 } 580 581 static void cache_lookup(struct closure *cl) 582 { 583 struct search *s = container_of(cl, struct search, iop.cl); 584 struct bio *bio = &s->bio.bio; 585 struct cached_dev *dc; 586 int ret; 587 588 bch_btree_op_init(&s->op, -1); 589 590 ret = bch_btree_map_keys(&s->op, s->iop.c, 591 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 592 cache_lookup_fn, MAP_END_KEY); 593 if (ret == -EAGAIN) { 594 continue_at(cl, cache_lookup, bcache_wq); 595 return; 596 } 597 598 /* 599 * We might meet err when searching the btree, If that happens, we will 600 * get negative ret, in this scenario we should not recover data from 601 * backing device (when cache device is dirty) because we don't know 602 * whether bkeys the read request covered are all clean. 603 * 604 * And after that happened, s->iop.status is still its initial value 605 * before we submit s->bio.bio 606 */ 607 if (ret < 0) { 608 BUG_ON(ret == -EINTR); 609 if (s->d && s->d->c && 610 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) { 611 dc = container_of(s->d, struct cached_dev, disk); 612 if (dc && atomic_read(&dc->has_dirty)) 613 s->recoverable = false; 614 } 615 if (!s->iop.status) 616 s->iop.status = BLK_STS_IOERR; 617 } 618 619 closure_return(cl); 620 } 621 622 /* Common code for the make_request functions */ 623 624 static void request_endio(struct bio *bio) 625 { 626 struct closure *cl = bio->bi_private; 627 628 if (bio->bi_status) { 629 struct search *s = container_of(cl, struct search, cl); 630 631 s->iop.status = bio->bi_status; 632 /* Only cache read errors are recoverable */ 633 s->recoverable = false; 634 } 635 636 bio_put(bio); 637 closure_put(cl); 638 } 639 640 static void backing_request_endio(struct bio *bio) 641 { 642 struct closure *cl = bio->bi_private; 643 644 if (bio->bi_status) { 645 struct search *s = container_of(cl, struct search, cl); 646 struct cached_dev *dc = container_of(s->d, 647 struct cached_dev, disk); 648 /* 649 * If a bio has REQ_PREFLUSH for writeback mode, it is 650 * speically assembled in cached_dev_write() for a non-zero 651 * write request which has REQ_PREFLUSH. we don't set 652 * s->iop.status by this failure, the status will be decided 653 * by result of bch_data_insert() operation. 654 */ 655 if (unlikely(s->iop.writeback && 656 bio->bi_opf & REQ_PREFLUSH)) { 657 pr_err("Can't flush %s: returned bi_status %i", 658 dc->backing_dev_name, bio->bi_status); 659 } else { 660 /* set to orig_bio->bi_status in bio_complete() */ 661 s->iop.status = bio->bi_status; 662 } 663 s->recoverable = false; 664 /* should count I/O error for backing device here */ 665 bch_count_backing_io_errors(dc, bio); 666 } 667 668 bio_put(bio); 669 closure_put(cl); 670 } 671 672 static void bio_complete(struct search *s) 673 { 674 if (s->orig_bio) { 675 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio), 676 &s->d->disk->part0, s->start_time); 677 678 trace_bcache_request_end(s->d, s->orig_bio); 679 s->orig_bio->bi_status = s->iop.status; 680 bio_endio(s->orig_bio); 681 s->orig_bio = NULL; 682 } 683 } 684 685 static void do_bio_hook(struct search *s, 686 struct bio *orig_bio, 687 bio_end_io_t *end_io_fn) 688 { 689 struct bio *bio = &s->bio.bio; 690 691 bio_init(bio, NULL, 0); 692 __bio_clone_fast(bio, orig_bio); 693 /* 694 * bi_end_io can be set separately somewhere else, e.g. the 695 * variants in, 696 * - cache_bio->bi_end_io from cached_dev_cache_miss() 697 * - n->bi_end_io from cache_lookup_fn() 698 */ 699 bio->bi_end_io = end_io_fn; 700 bio->bi_private = &s->cl; 701 702 bio_cnt_set(bio, 3); 703 } 704 705 static void search_free(struct closure *cl) 706 { 707 struct search *s = container_of(cl, struct search, cl); 708 709 atomic_dec(&s->d->c->search_inflight); 710 711 if (s->iop.bio) 712 bio_put(s->iop.bio); 713 714 bio_complete(s); 715 closure_debug_destroy(cl); 716 mempool_free(s, &s->d->c->search); 717 } 718 719 static inline struct search *search_alloc(struct bio *bio, 720 struct bcache_device *d) 721 { 722 struct search *s; 723 724 s = mempool_alloc(&d->c->search, GFP_NOIO); 725 726 closure_init(&s->cl, NULL); 727 do_bio_hook(s, bio, request_endio); 728 atomic_inc(&d->c->search_inflight); 729 730 s->orig_bio = bio; 731 s->cache_miss = NULL; 732 s->cache_missed = 0; 733 s->d = d; 734 s->recoverable = 1; 735 s->write = op_is_write(bio_op(bio)); 736 s->read_dirty_data = 0; 737 s->start_time = jiffies; 738 739 s->iop.c = d->c; 740 s->iop.bio = NULL; 741 s->iop.inode = d->id; 742 s->iop.write_point = hash_long((unsigned long) current, 16); 743 s->iop.write_prio = 0; 744 s->iop.status = 0; 745 s->iop.flags = 0; 746 s->iop.flush_journal = op_is_flush(bio->bi_opf); 747 s->iop.wq = bcache_wq; 748 749 return s; 750 } 751 752 /* Cached devices */ 753 754 static void cached_dev_bio_complete(struct closure *cl) 755 { 756 struct search *s = container_of(cl, struct search, cl); 757 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 758 759 search_free(cl); 760 cached_dev_put(dc); 761 } 762 763 /* Process reads */ 764 765 static void cached_dev_cache_miss_done(struct closure *cl) 766 { 767 struct search *s = container_of(cl, struct search, cl); 768 769 if (s->iop.replace_collision) 770 bch_mark_cache_miss_collision(s->iop.c, s->d); 771 772 if (s->iop.bio) 773 bio_free_pages(s->iop.bio); 774 775 cached_dev_bio_complete(cl); 776 } 777 778 static void cached_dev_read_error(struct closure *cl) 779 { 780 struct search *s = container_of(cl, struct search, cl); 781 struct bio *bio = &s->bio.bio; 782 783 /* 784 * If read request hit dirty data (s->read_dirty_data is true), 785 * then recovery a failed read request from cached device may 786 * get a stale data back. So read failure recovery is only 787 * permitted when read request hit clean data in cache device, 788 * or when cache read race happened. 789 */ 790 if (s->recoverable && !s->read_dirty_data) { 791 /* Retry from the backing device: */ 792 trace_bcache_read_retry(s->orig_bio); 793 794 s->iop.status = 0; 795 do_bio_hook(s, s->orig_bio, backing_request_endio); 796 797 /* XXX: invalidate cache */ 798 799 /* I/O request sent to backing device */ 800 closure_bio_submit(s->iop.c, bio, cl); 801 } 802 803 continue_at(cl, cached_dev_cache_miss_done, NULL); 804 } 805 806 static void cached_dev_read_done(struct closure *cl) 807 { 808 struct search *s = container_of(cl, struct search, cl); 809 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 810 811 /* 812 * We had a cache miss; cache_bio now contains data ready to be inserted 813 * into the cache. 814 * 815 * First, we copy the data we just read from cache_bio's bounce buffers 816 * to the buffers the original bio pointed to: 817 */ 818 819 if (s->iop.bio) { 820 bio_reset(s->iop.bio); 821 s->iop.bio->bi_iter.bi_sector = 822 s->cache_miss->bi_iter.bi_sector; 823 bio_copy_dev(s->iop.bio, s->cache_miss); 824 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 825 bch_bio_map(s->iop.bio, NULL); 826 827 bio_copy_data(s->cache_miss, s->iop.bio); 828 829 bio_put(s->cache_miss); 830 s->cache_miss = NULL; 831 } 832 833 if (verify(dc) && s->recoverable && !s->read_dirty_data) 834 bch_data_verify(dc, s->orig_bio); 835 836 bio_complete(s); 837 838 if (s->iop.bio && 839 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 840 BUG_ON(!s->iop.replace); 841 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 842 } 843 844 continue_at(cl, cached_dev_cache_miss_done, NULL); 845 } 846 847 static void cached_dev_read_done_bh(struct closure *cl) 848 { 849 struct search *s = container_of(cl, struct search, cl); 850 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 851 852 bch_mark_cache_accounting(s->iop.c, s->d, 853 !s->cache_missed, s->iop.bypass); 854 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass); 855 856 if (s->iop.status) 857 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 858 else if (s->iop.bio || verify(dc)) 859 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 860 else 861 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 862 } 863 864 static int cached_dev_cache_miss(struct btree *b, struct search *s, 865 struct bio *bio, unsigned int sectors) 866 { 867 int ret = MAP_CONTINUE; 868 unsigned int reada = 0; 869 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 870 struct bio *miss, *cache_bio; 871 872 s->cache_missed = 1; 873 874 if (s->cache_miss || s->iop.bypass) { 875 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 876 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 877 goto out_submit; 878 } 879 880 if (!(bio->bi_opf & REQ_RAHEAD) && 881 !(bio->bi_opf & (REQ_META|REQ_PRIO)) && 882 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 883 reada = min_t(sector_t, dc->readahead >> 9, 884 get_capacity(bio->bi_disk) - bio_end_sector(bio)); 885 886 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 887 888 s->iop.replace_key = KEY(s->iop.inode, 889 bio->bi_iter.bi_sector + s->insert_bio_sectors, 890 s->insert_bio_sectors); 891 892 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 893 if (ret) 894 return ret; 895 896 s->iop.replace = true; 897 898 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split); 899 900 /* btree_search_recurse()'s btree iterator is no good anymore */ 901 ret = miss == bio ? MAP_DONE : -EINTR; 902 903 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 904 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 905 &dc->disk.bio_split); 906 if (!cache_bio) 907 goto out_submit; 908 909 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 910 bio_copy_dev(cache_bio, miss); 911 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 912 913 cache_bio->bi_end_io = backing_request_endio; 914 cache_bio->bi_private = &s->cl; 915 916 bch_bio_map(cache_bio, NULL); 917 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 918 goto out_put; 919 920 if (reada) 921 bch_mark_cache_readahead(s->iop.c, s->d); 922 923 s->cache_miss = miss; 924 s->iop.bio = cache_bio; 925 bio_get(cache_bio); 926 /* I/O request sent to backing device */ 927 closure_bio_submit(s->iop.c, cache_bio, &s->cl); 928 929 return ret; 930 out_put: 931 bio_put(cache_bio); 932 out_submit: 933 miss->bi_end_io = backing_request_endio; 934 miss->bi_private = &s->cl; 935 /* I/O request sent to backing device */ 936 closure_bio_submit(s->iop.c, miss, &s->cl); 937 return ret; 938 } 939 940 static void cached_dev_read(struct cached_dev *dc, struct search *s) 941 { 942 struct closure *cl = &s->cl; 943 944 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 945 continue_at(cl, cached_dev_read_done_bh, NULL); 946 } 947 948 /* Process writes */ 949 950 static void cached_dev_write_complete(struct closure *cl) 951 { 952 struct search *s = container_of(cl, struct search, cl); 953 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 954 955 up_read_non_owner(&dc->writeback_lock); 956 cached_dev_bio_complete(cl); 957 } 958 959 static void cached_dev_write(struct cached_dev *dc, struct search *s) 960 { 961 struct closure *cl = &s->cl; 962 struct bio *bio = &s->bio.bio; 963 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 964 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 965 966 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 967 968 down_read_non_owner(&dc->writeback_lock); 969 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 970 /* 971 * We overlap with some dirty data undergoing background 972 * writeback, force this write to writeback 973 */ 974 s->iop.bypass = false; 975 s->iop.writeback = true; 976 } 977 978 /* 979 * Discards aren't _required_ to do anything, so skipping if 980 * check_overlapping returned true is ok 981 * 982 * But check_overlapping drops dirty keys for which io hasn't started, 983 * so we still want to call it. 984 */ 985 if (bio_op(bio) == REQ_OP_DISCARD) 986 s->iop.bypass = true; 987 988 if (should_writeback(dc, s->orig_bio, 989 cache_mode(dc), 990 s->iop.bypass)) { 991 s->iop.bypass = false; 992 s->iop.writeback = true; 993 } 994 995 if (s->iop.bypass) { 996 s->iop.bio = s->orig_bio; 997 bio_get(s->iop.bio); 998 999 if (bio_op(bio) == REQ_OP_DISCARD && 1000 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1001 goto insert_data; 1002 1003 /* I/O request sent to backing device */ 1004 bio->bi_end_io = backing_request_endio; 1005 closure_bio_submit(s->iop.c, bio, cl); 1006 1007 } else if (s->iop.writeback) { 1008 bch_writeback_add(dc); 1009 s->iop.bio = bio; 1010 1011 if (bio->bi_opf & REQ_PREFLUSH) { 1012 /* 1013 * Also need to send a flush to the backing 1014 * device. 1015 */ 1016 struct bio *flush; 1017 1018 flush = bio_alloc_bioset(GFP_NOIO, 0, 1019 &dc->disk.bio_split); 1020 if (!flush) { 1021 s->iop.status = BLK_STS_RESOURCE; 1022 goto insert_data; 1023 } 1024 bio_copy_dev(flush, bio); 1025 flush->bi_end_io = backing_request_endio; 1026 flush->bi_private = cl; 1027 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1028 /* I/O request sent to backing device */ 1029 closure_bio_submit(s->iop.c, flush, cl); 1030 } 1031 } else { 1032 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split); 1033 /* I/O request sent to backing device */ 1034 bio->bi_end_io = backing_request_endio; 1035 closure_bio_submit(s->iop.c, bio, cl); 1036 } 1037 1038 insert_data: 1039 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1040 continue_at(cl, cached_dev_write_complete, NULL); 1041 } 1042 1043 static void cached_dev_nodata(struct closure *cl) 1044 { 1045 struct search *s = container_of(cl, struct search, cl); 1046 struct bio *bio = &s->bio.bio; 1047 1048 if (s->iop.flush_journal) 1049 bch_journal_meta(s->iop.c, cl); 1050 1051 /* If it's a flush, we send the flush to the backing device too */ 1052 bio->bi_end_io = backing_request_endio; 1053 closure_bio_submit(s->iop.c, bio, cl); 1054 1055 continue_at(cl, cached_dev_bio_complete, NULL); 1056 } 1057 1058 struct detached_dev_io_private { 1059 struct bcache_device *d; 1060 unsigned long start_time; 1061 bio_end_io_t *bi_end_io; 1062 void *bi_private; 1063 }; 1064 1065 static void detached_dev_end_io(struct bio *bio) 1066 { 1067 struct detached_dev_io_private *ddip; 1068 1069 ddip = bio->bi_private; 1070 bio->bi_end_io = ddip->bi_end_io; 1071 bio->bi_private = ddip->bi_private; 1072 1073 generic_end_io_acct(ddip->d->disk->queue, bio_op(bio), 1074 &ddip->d->disk->part0, ddip->start_time); 1075 1076 if (bio->bi_status) { 1077 struct cached_dev *dc = container_of(ddip->d, 1078 struct cached_dev, disk); 1079 /* should count I/O error for backing device here */ 1080 bch_count_backing_io_errors(dc, bio); 1081 } 1082 1083 kfree(ddip); 1084 bio->bi_end_io(bio); 1085 } 1086 1087 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio) 1088 { 1089 struct detached_dev_io_private *ddip; 1090 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1091 1092 /* 1093 * no need to call closure_get(&dc->disk.cl), 1094 * because upper layer had already opened bcache device, 1095 * which would call closure_get(&dc->disk.cl) 1096 */ 1097 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO); 1098 ddip->d = d; 1099 ddip->start_time = jiffies; 1100 ddip->bi_end_io = bio->bi_end_io; 1101 ddip->bi_private = bio->bi_private; 1102 bio->bi_end_io = detached_dev_end_io; 1103 bio->bi_private = ddip; 1104 1105 if ((bio_op(bio) == REQ_OP_DISCARD) && 1106 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1107 bio->bi_end_io(bio); 1108 else 1109 generic_make_request(bio); 1110 } 1111 1112 static void quit_max_writeback_rate(struct cache_set *c, 1113 struct cached_dev *this_dc) 1114 { 1115 int i; 1116 struct bcache_device *d; 1117 struct cached_dev *dc; 1118 1119 /* 1120 * mutex bch_register_lock may compete with other parallel requesters, 1121 * or attach/detach operations on other backing device. Waiting to 1122 * the mutex lock may increase I/O request latency for seconds or more. 1123 * To avoid such situation, if mutext_trylock() failed, only writeback 1124 * rate of current cached device is set to 1, and __update_write_back() 1125 * will decide writeback rate of other cached devices (remember now 1126 * c->idle_counter is 0 already). 1127 */ 1128 if (mutex_trylock(&bch_register_lock)) { 1129 for (i = 0; i < c->devices_max_used; i++) { 1130 if (!c->devices[i]) 1131 continue; 1132 1133 if (UUID_FLASH_ONLY(&c->uuids[i])) 1134 continue; 1135 1136 d = c->devices[i]; 1137 dc = container_of(d, struct cached_dev, disk); 1138 /* 1139 * set writeback rate to default minimum value, 1140 * then let update_writeback_rate() to decide the 1141 * upcoming rate. 1142 */ 1143 atomic_long_set(&dc->writeback_rate.rate, 1); 1144 } 1145 mutex_unlock(&bch_register_lock); 1146 } else 1147 atomic_long_set(&this_dc->writeback_rate.rate, 1); 1148 } 1149 1150 /* Cached devices - read & write stuff */ 1151 1152 static blk_qc_t cached_dev_make_request(struct request_queue *q, 1153 struct bio *bio) 1154 { 1155 struct search *s; 1156 struct bcache_device *d = bio->bi_disk->private_data; 1157 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1158 int rw = bio_data_dir(bio); 1159 1160 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) || 1161 dc->io_disable)) { 1162 bio->bi_status = BLK_STS_IOERR; 1163 bio_endio(bio); 1164 return BLK_QC_T_NONE; 1165 } 1166 1167 if (likely(d->c)) { 1168 if (atomic_read(&d->c->idle_counter)) 1169 atomic_set(&d->c->idle_counter, 0); 1170 /* 1171 * If at_max_writeback_rate of cache set is true and new I/O 1172 * comes, quit max writeback rate of all cached devices 1173 * attached to this cache set, and set at_max_writeback_rate 1174 * to false. 1175 */ 1176 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) { 1177 atomic_set(&d->c->at_max_writeback_rate, 0); 1178 quit_max_writeback_rate(d->c, dc); 1179 } 1180 } 1181 1182 generic_start_io_acct(q, 1183 bio_op(bio), 1184 bio_sectors(bio), 1185 &d->disk->part0); 1186 1187 bio_set_dev(bio, dc->bdev); 1188 bio->bi_iter.bi_sector += dc->sb.data_offset; 1189 1190 if (cached_dev_get(dc)) { 1191 s = search_alloc(bio, d); 1192 trace_bcache_request_start(s->d, bio); 1193 1194 if (!bio->bi_iter.bi_size) { 1195 /* 1196 * can't call bch_journal_meta from under 1197 * generic_make_request 1198 */ 1199 continue_at_nobarrier(&s->cl, 1200 cached_dev_nodata, 1201 bcache_wq); 1202 } else { 1203 s->iop.bypass = check_should_bypass(dc, bio); 1204 1205 if (rw) 1206 cached_dev_write(dc, s); 1207 else 1208 cached_dev_read(dc, s); 1209 } 1210 } else 1211 /* I/O request sent to backing device */ 1212 detached_dev_do_request(d, bio); 1213 1214 return BLK_QC_T_NONE; 1215 } 1216 1217 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1218 unsigned int cmd, unsigned long arg) 1219 { 1220 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1221 1222 if (dc->io_disable) 1223 return -EIO; 1224 1225 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1226 } 1227 1228 static int cached_dev_congested(void *data, int bits) 1229 { 1230 struct bcache_device *d = data; 1231 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1232 struct request_queue *q = bdev_get_queue(dc->bdev); 1233 int ret = 0; 1234 1235 if (bdi_congested(q->backing_dev_info, bits)) 1236 return 1; 1237 1238 if (cached_dev_get(dc)) { 1239 unsigned int i; 1240 struct cache *ca; 1241 1242 for_each_cache(ca, d->c, i) { 1243 q = bdev_get_queue(ca->bdev); 1244 ret |= bdi_congested(q->backing_dev_info, bits); 1245 } 1246 1247 cached_dev_put(dc); 1248 } 1249 1250 return ret; 1251 } 1252 1253 void bch_cached_dev_request_init(struct cached_dev *dc) 1254 { 1255 struct gendisk *g = dc->disk.disk; 1256 1257 g->queue->make_request_fn = cached_dev_make_request; 1258 g->queue->backing_dev_info->congested_fn = cached_dev_congested; 1259 dc->disk.cache_miss = cached_dev_cache_miss; 1260 dc->disk.ioctl = cached_dev_ioctl; 1261 } 1262 1263 /* Flash backed devices */ 1264 1265 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1266 struct bio *bio, unsigned int sectors) 1267 { 1268 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9; 1269 1270 swap(bio->bi_iter.bi_size, bytes); 1271 zero_fill_bio(bio); 1272 swap(bio->bi_iter.bi_size, bytes); 1273 1274 bio_advance(bio, bytes); 1275 1276 if (!bio->bi_iter.bi_size) 1277 return MAP_DONE; 1278 1279 return MAP_CONTINUE; 1280 } 1281 1282 static void flash_dev_nodata(struct closure *cl) 1283 { 1284 struct search *s = container_of(cl, struct search, cl); 1285 1286 if (s->iop.flush_journal) 1287 bch_journal_meta(s->iop.c, cl); 1288 1289 continue_at(cl, search_free, NULL); 1290 } 1291 1292 static blk_qc_t flash_dev_make_request(struct request_queue *q, 1293 struct bio *bio) 1294 { 1295 struct search *s; 1296 struct closure *cl; 1297 struct bcache_device *d = bio->bi_disk->private_data; 1298 1299 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) { 1300 bio->bi_status = BLK_STS_IOERR; 1301 bio_endio(bio); 1302 return BLK_QC_T_NONE; 1303 } 1304 1305 generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0); 1306 1307 s = search_alloc(bio, d); 1308 cl = &s->cl; 1309 bio = &s->bio.bio; 1310 1311 trace_bcache_request_start(s->d, bio); 1312 1313 if (!bio->bi_iter.bi_size) { 1314 /* 1315 * can't call bch_journal_meta from under 1316 * generic_make_request 1317 */ 1318 continue_at_nobarrier(&s->cl, 1319 flash_dev_nodata, 1320 bcache_wq); 1321 return BLK_QC_T_NONE; 1322 } else if (bio_data_dir(bio)) { 1323 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1324 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1325 &KEY(d->id, bio_end_sector(bio), 0)); 1326 1327 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0; 1328 s->iop.writeback = true; 1329 s->iop.bio = bio; 1330 1331 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1332 } else { 1333 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1334 } 1335 1336 continue_at(cl, search_free, NULL); 1337 return BLK_QC_T_NONE; 1338 } 1339 1340 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1341 unsigned int cmd, unsigned long arg) 1342 { 1343 return -ENOTTY; 1344 } 1345 1346 static int flash_dev_congested(void *data, int bits) 1347 { 1348 struct bcache_device *d = data; 1349 struct request_queue *q; 1350 struct cache *ca; 1351 unsigned int i; 1352 int ret = 0; 1353 1354 for_each_cache(ca, d->c, i) { 1355 q = bdev_get_queue(ca->bdev); 1356 ret |= bdi_congested(q->backing_dev_info, bits); 1357 } 1358 1359 return ret; 1360 } 1361 1362 void bch_flash_dev_request_init(struct bcache_device *d) 1363 { 1364 struct gendisk *g = d->disk; 1365 1366 g->queue->make_request_fn = flash_dev_make_request; 1367 g->queue->backing_dev_info->congested_fn = flash_dev_congested; 1368 d->cache_miss = flash_dev_cache_miss; 1369 d->ioctl = flash_dev_ioctl; 1370 } 1371 1372 void bch_request_exit(void) 1373 { 1374 kmem_cache_destroy(bch_search_cache); 1375 } 1376 1377 int __init bch_request_init(void) 1378 { 1379 bch_search_cache = KMEM_CACHE(search, 0); 1380 if (!bch_search_cache) 1381 return -ENOMEM; 1382 1383 return 0; 1384 } 1385