xref: /linux/drivers/md/bcache/request.c (revision 0a98bf52b15dfd66da2cf666495b3f7841c7b5ab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Main bcache entry point - handle a read or a write request and decide what to
4  * do with it; the make_request functions are called by the block layer.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
20 
21 #include <trace/events/bcache.h>
22 
23 #define CUTOFF_CACHE_ADD	95
24 #define CUTOFF_CACHE_READA	90
25 
26 struct kmem_cache *bch_search_cache;
27 
28 static void bch_data_insert_start(struct closure *cl);
29 
30 static unsigned int cache_mode(struct cached_dev *dc)
31 {
32 	return BDEV_CACHE_MODE(&dc->sb);
33 }
34 
35 static bool verify(struct cached_dev *dc)
36 {
37 	return dc->verify;
38 }
39 
40 static void bio_csum(struct bio *bio, struct bkey *k)
41 {
42 	struct bio_vec bv;
43 	struct bvec_iter iter;
44 	uint64_t csum = 0;
45 
46 	bio_for_each_segment(bv, bio, iter) {
47 		void *d = kmap(bv.bv_page) + bv.bv_offset;
48 
49 		csum = bch_crc64_update(csum, d, bv.bv_len);
50 		kunmap(bv.bv_page);
51 	}
52 
53 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54 }
55 
56 /* Insert data into cache */
57 
58 static void bch_data_insert_keys(struct closure *cl)
59 {
60 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 	atomic_t *journal_ref = NULL;
62 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 	int ret;
64 
65 	/*
66 	 * If we're looping, might already be waiting on
67 	 * another journal write - can't wait on more than one journal write at
68 	 * a time
69 	 *
70 	 * XXX: this looks wrong
71 	 */
72 #if 0
73 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
74 		closure_sync(&s->cl);
75 #endif
76 
77 	if (!op->replace)
78 		journal_ref = bch_journal(op->c, &op->insert_keys,
79 					  op->flush_journal ? cl : NULL);
80 
81 	ret = bch_btree_insert(op->c, &op->insert_keys,
82 			       journal_ref, replace_key);
83 	if (ret == -ESRCH) {
84 		op->replace_collision = true;
85 	} else if (ret) {
86 		op->status		= BLK_STS_RESOURCE;
87 		op->insert_data_done	= true;
88 	}
89 
90 	if (journal_ref)
91 		atomic_dec_bug(journal_ref);
92 
93 	if (!op->insert_data_done) {
94 		continue_at(cl, bch_data_insert_start, op->wq);
95 		return;
96 	}
97 
98 	bch_keylist_free(&op->insert_keys);
99 	closure_return(cl);
100 }
101 
102 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
103 			       struct cache_set *c)
104 {
105 	size_t oldsize = bch_keylist_nkeys(l);
106 	size_t newsize = oldsize + u64s;
107 
108 	/*
109 	 * The journalling code doesn't handle the case where the keys to insert
110 	 * is bigger than an empty write: If we just return -ENOMEM here,
111 	 * bch_data_insert_keys() will insert the keys created so far
112 	 * and finish the rest when the keylist is empty.
113 	 */
114 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
115 		return -ENOMEM;
116 
117 	return __bch_keylist_realloc(l, u64s);
118 }
119 
120 static void bch_data_invalidate(struct closure *cl)
121 {
122 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
123 	struct bio *bio = op->bio;
124 
125 	pr_debug("invalidating %i sectors from %llu",
126 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
127 
128 	while (bio_sectors(bio)) {
129 		unsigned int sectors = min(bio_sectors(bio),
130 				       1U << (KEY_SIZE_BITS - 1));
131 
132 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
133 			goto out;
134 
135 		bio->bi_iter.bi_sector	+= sectors;
136 		bio->bi_iter.bi_size	-= sectors << 9;
137 
138 		bch_keylist_add(&op->insert_keys,
139 				&KEY(op->inode,
140 				     bio->bi_iter.bi_sector,
141 				     sectors));
142 	}
143 
144 	op->insert_data_done = true;
145 	/* get in bch_data_insert() */
146 	bio_put(bio);
147 out:
148 	continue_at(cl, bch_data_insert_keys, op->wq);
149 }
150 
151 static void bch_data_insert_error(struct closure *cl)
152 {
153 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
154 
155 	/*
156 	 * Our data write just errored, which means we've got a bunch of keys to
157 	 * insert that point to data that wasn't successfully written.
158 	 *
159 	 * We don't have to insert those keys but we still have to invalidate
160 	 * that region of the cache - so, if we just strip off all the pointers
161 	 * from the keys we'll accomplish just that.
162 	 */
163 
164 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
165 
166 	while (src != op->insert_keys.top) {
167 		struct bkey *n = bkey_next(src);
168 
169 		SET_KEY_PTRS(src, 0);
170 		memmove(dst, src, bkey_bytes(src));
171 
172 		dst = bkey_next(dst);
173 		src = n;
174 	}
175 
176 	op->insert_keys.top = dst;
177 
178 	bch_data_insert_keys(cl);
179 }
180 
181 static void bch_data_insert_endio(struct bio *bio)
182 {
183 	struct closure *cl = bio->bi_private;
184 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
185 
186 	if (bio->bi_status) {
187 		/* TODO: We could try to recover from this. */
188 		if (op->writeback)
189 			op->status = bio->bi_status;
190 		else if (!op->replace)
191 			set_closure_fn(cl, bch_data_insert_error, op->wq);
192 		else
193 			set_closure_fn(cl, NULL, NULL);
194 	}
195 
196 	bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
197 }
198 
199 static void bch_data_insert_start(struct closure *cl)
200 {
201 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
202 	struct bio *bio = op->bio, *n;
203 
204 	if (op->bypass)
205 		return bch_data_invalidate(cl);
206 
207 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
208 		wake_up_gc(op->c);
209 
210 	/*
211 	 * Journal writes are marked REQ_PREFLUSH; if the original write was a
212 	 * flush, it'll wait on the journal write.
213 	 */
214 	bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
215 
216 	do {
217 		unsigned int i;
218 		struct bkey *k;
219 		struct bio_set *split = &op->c->bio_split;
220 
221 		/* 1 for the device pointer and 1 for the chksum */
222 		if (bch_keylist_realloc(&op->insert_keys,
223 					3 + (op->csum ? 1 : 0),
224 					op->c)) {
225 			continue_at(cl, bch_data_insert_keys, op->wq);
226 			return;
227 		}
228 
229 		k = op->insert_keys.top;
230 		bkey_init(k);
231 		SET_KEY_INODE(k, op->inode);
232 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
233 
234 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
235 				       op->write_point, op->write_prio,
236 				       op->writeback))
237 			goto err;
238 
239 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
240 
241 		n->bi_end_io	= bch_data_insert_endio;
242 		n->bi_private	= cl;
243 
244 		if (op->writeback) {
245 			SET_KEY_DIRTY(k, true);
246 
247 			for (i = 0; i < KEY_PTRS(k); i++)
248 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
249 					    GC_MARK_DIRTY);
250 		}
251 
252 		SET_KEY_CSUM(k, op->csum);
253 		if (KEY_CSUM(k))
254 			bio_csum(n, k);
255 
256 		trace_bcache_cache_insert(k);
257 		bch_keylist_push(&op->insert_keys);
258 
259 		bio_set_op_attrs(n, REQ_OP_WRITE, 0);
260 		bch_submit_bbio(n, op->c, k, 0);
261 	} while (n != bio);
262 
263 	op->insert_data_done = true;
264 	continue_at(cl, bch_data_insert_keys, op->wq);
265 	return;
266 err:
267 	/* bch_alloc_sectors() blocks if s->writeback = true */
268 	BUG_ON(op->writeback);
269 
270 	/*
271 	 * But if it's not a writeback write we'd rather just bail out if
272 	 * there aren't any buckets ready to write to - it might take awhile and
273 	 * we might be starving btree writes for gc or something.
274 	 */
275 
276 	if (!op->replace) {
277 		/*
278 		 * Writethrough write: We can't complete the write until we've
279 		 * updated the index. But we don't want to delay the write while
280 		 * we wait for buckets to be freed up, so just invalidate the
281 		 * rest of the write.
282 		 */
283 		op->bypass = true;
284 		return bch_data_invalidate(cl);
285 	} else {
286 		/*
287 		 * From a cache miss, we can just insert the keys for the data
288 		 * we have written or bail out if we didn't do anything.
289 		 */
290 		op->insert_data_done = true;
291 		bio_put(bio);
292 
293 		if (!bch_keylist_empty(&op->insert_keys))
294 			continue_at(cl, bch_data_insert_keys, op->wq);
295 		else
296 			closure_return(cl);
297 	}
298 }
299 
300 /**
301  * bch_data_insert - stick some data in the cache
302  * @cl: closure pointer.
303  *
304  * This is the starting point for any data to end up in a cache device; it could
305  * be from a normal write, or a writeback write, or a write to a flash only
306  * volume - it's also used by the moving garbage collector to compact data in
307  * mostly empty buckets.
308  *
309  * It first writes the data to the cache, creating a list of keys to be inserted
310  * (if the data had to be fragmented there will be multiple keys); after the
311  * data is written it calls bch_journal, and after the keys have been added to
312  * the next journal write they're inserted into the btree.
313  *
314  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
315  * and op->inode is used for the key inode.
316  *
317  * If s->bypass is true, instead of inserting the data it invalidates the
318  * region of the cache represented by s->cache_bio and op->inode.
319  */
320 void bch_data_insert(struct closure *cl)
321 {
322 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
323 
324 	trace_bcache_write(op->c, op->inode, op->bio,
325 			   op->writeback, op->bypass);
326 
327 	bch_keylist_init(&op->insert_keys);
328 	bio_get(op->bio);
329 	bch_data_insert_start(cl);
330 }
331 
332 /* Congested? */
333 
334 unsigned int bch_get_congested(struct cache_set *c)
335 {
336 	int i;
337 	long rand;
338 
339 	if (!c->congested_read_threshold_us &&
340 	    !c->congested_write_threshold_us)
341 		return 0;
342 
343 	i = (local_clock_us() - c->congested_last_us) / 1024;
344 	if (i < 0)
345 		return 0;
346 
347 	i += atomic_read(&c->congested);
348 	if (i >= 0)
349 		return 0;
350 
351 	i += CONGESTED_MAX;
352 
353 	if (i > 0)
354 		i = fract_exp_two(i, 6);
355 
356 	rand = get_random_int();
357 	i -= bitmap_weight(&rand, BITS_PER_LONG);
358 
359 	return i > 0 ? i : 1;
360 }
361 
362 static void add_sequential(struct task_struct *t)
363 {
364 	ewma_add(t->sequential_io_avg,
365 		 t->sequential_io, 8, 0);
366 
367 	t->sequential_io = 0;
368 }
369 
370 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
371 {
372 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
373 }
374 
375 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
376 {
377 	struct cache_set *c = dc->disk.c;
378 	unsigned int mode = cache_mode(dc);
379 	unsigned int sectors, congested = bch_get_congested(c);
380 	struct task_struct *task = current;
381 	struct io *i;
382 
383 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
384 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
385 	    (bio_op(bio) == REQ_OP_DISCARD))
386 		goto skip;
387 
388 	if (mode == CACHE_MODE_NONE ||
389 	    (mode == CACHE_MODE_WRITEAROUND &&
390 	     op_is_write(bio_op(bio))))
391 		goto skip;
392 
393 	/*
394 	 * Flag for bypass if the IO is for read-ahead or background,
395 	 * unless the read-ahead request is for metadata (eg, for gfs2).
396 	 */
397 	if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
398 	    !(bio->bi_opf & REQ_PRIO))
399 		goto skip;
400 
401 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
402 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
403 		pr_debug("skipping unaligned io");
404 		goto skip;
405 	}
406 
407 	if (bypass_torture_test(dc)) {
408 		if ((get_random_int() & 3) == 3)
409 			goto skip;
410 		else
411 			goto rescale;
412 	}
413 
414 	if (!congested && !dc->sequential_cutoff)
415 		goto rescale;
416 
417 	spin_lock(&dc->io_lock);
418 
419 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
420 		if (i->last == bio->bi_iter.bi_sector &&
421 		    time_before(jiffies, i->jiffies))
422 			goto found;
423 
424 	i = list_first_entry(&dc->io_lru, struct io, lru);
425 
426 	add_sequential(task);
427 	i->sequential = 0;
428 found:
429 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
430 		i->sequential	+= bio->bi_iter.bi_size;
431 
432 	i->last			 = bio_end_sector(bio);
433 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
434 	task->sequential_io	 = i->sequential;
435 
436 	hlist_del(&i->hash);
437 	hlist_add_head(&i->hash, iohash(dc, i->last));
438 	list_move_tail(&i->lru, &dc->io_lru);
439 
440 	spin_unlock(&dc->io_lock);
441 
442 	sectors = max(task->sequential_io,
443 		      task->sequential_io_avg) >> 9;
444 
445 	if (dc->sequential_cutoff &&
446 	    sectors >= dc->sequential_cutoff >> 9) {
447 		trace_bcache_bypass_sequential(bio);
448 		goto skip;
449 	}
450 
451 	if (congested && sectors >= congested) {
452 		trace_bcache_bypass_congested(bio);
453 		goto skip;
454 	}
455 
456 rescale:
457 	bch_rescale_priorities(c, bio_sectors(bio));
458 	return false;
459 skip:
460 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
461 	return true;
462 }
463 
464 /* Cache lookup */
465 
466 struct search {
467 	/* Stack frame for bio_complete */
468 	struct closure		cl;
469 
470 	struct bbio		bio;
471 	struct bio		*orig_bio;
472 	struct bio		*cache_miss;
473 	struct bcache_device	*d;
474 
475 	unsigned int		insert_bio_sectors;
476 	unsigned int		recoverable:1;
477 	unsigned int		write:1;
478 	unsigned int		read_dirty_data:1;
479 	unsigned int		cache_missed:1;
480 
481 	unsigned long		start_time;
482 
483 	struct btree_op		op;
484 	struct data_insert_op	iop;
485 };
486 
487 static void bch_cache_read_endio(struct bio *bio)
488 {
489 	struct bbio *b = container_of(bio, struct bbio, bio);
490 	struct closure *cl = bio->bi_private;
491 	struct search *s = container_of(cl, struct search, cl);
492 
493 	/*
494 	 * If the bucket was reused while our bio was in flight, we might have
495 	 * read the wrong data. Set s->error but not error so it doesn't get
496 	 * counted against the cache device, but we'll still reread the data
497 	 * from the backing device.
498 	 */
499 
500 	if (bio->bi_status)
501 		s->iop.status = bio->bi_status;
502 	else if (!KEY_DIRTY(&b->key) &&
503 		 ptr_stale(s->iop.c, &b->key, 0)) {
504 		atomic_long_inc(&s->iop.c->cache_read_races);
505 		s->iop.status = BLK_STS_IOERR;
506 	}
507 
508 	bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
509 }
510 
511 /*
512  * Read from a single key, handling the initial cache miss if the key starts in
513  * the middle of the bio
514  */
515 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
516 {
517 	struct search *s = container_of(op, struct search, op);
518 	struct bio *n, *bio = &s->bio.bio;
519 	struct bkey *bio_key;
520 	unsigned int ptr;
521 
522 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
523 		return MAP_CONTINUE;
524 
525 	if (KEY_INODE(k) != s->iop.inode ||
526 	    KEY_START(k) > bio->bi_iter.bi_sector) {
527 		unsigned int bio_sectors = bio_sectors(bio);
528 		unsigned int sectors = KEY_INODE(k) == s->iop.inode
529 			? min_t(uint64_t, INT_MAX,
530 				KEY_START(k) - bio->bi_iter.bi_sector)
531 			: INT_MAX;
532 		int ret = s->d->cache_miss(b, s, bio, sectors);
533 
534 		if (ret != MAP_CONTINUE)
535 			return ret;
536 
537 		/* if this was a complete miss we shouldn't get here */
538 		BUG_ON(bio_sectors <= sectors);
539 	}
540 
541 	if (!KEY_SIZE(k))
542 		return MAP_CONTINUE;
543 
544 	/* XXX: figure out best pointer - for multiple cache devices */
545 	ptr = 0;
546 
547 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
548 
549 	if (KEY_DIRTY(k))
550 		s->read_dirty_data = true;
551 
552 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
553 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
554 			   GFP_NOIO, &s->d->bio_split);
555 
556 	bio_key = &container_of(n, struct bbio, bio)->key;
557 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
558 
559 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
560 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
561 
562 	n->bi_end_io	= bch_cache_read_endio;
563 	n->bi_private	= &s->cl;
564 
565 	/*
566 	 * The bucket we're reading from might be reused while our bio
567 	 * is in flight, and we could then end up reading the wrong
568 	 * data.
569 	 *
570 	 * We guard against this by checking (in cache_read_endio()) if
571 	 * the pointer is stale again; if so, we treat it as an error
572 	 * and reread from the backing device (but we don't pass that
573 	 * error up anywhere).
574 	 */
575 
576 	__bch_submit_bbio(n, b->c);
577 	return n == bio ? MAP_DONE : MAP_CONTINUE;
578 }
579 
580 static void cache_lookup(struct closure *cl)
581 {
582 	struct search *s = container_of(cl, struct search, iop.cl);
583 	struct bio *bio = &s->bio.bio;
584 	struct cached_dev *dc;
585 	int ret;
586 
587 	bch_btree_op_init(&s->op, -1);
588 
589 	ret = bch_btree_map_keys(&s->op, s->iop.c,
590 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
591 				 cache_lookup_fn, MAP_END_KEY);
592 	if (ret == -EAGAIN) {
593 		continue_at(cl, cache_lookup, bcache_wq);
594 		return;
595 	}
596 
597 	/*
598 	 * We might meet err when searching the btree, If that happens, we will
599 	 * get negative ret, in this scenario we should not recover data from
600 	 * backing device (when cache device is dirty) because we don't know
601 	 * whether bkeys the read request covered are all clean.
602 	 *
603 	 * And after that happened, s->iop.status is still its initial value
604 	 * before we submit s->bio.bio
605 	 */
606 	if (ret < 0) {
607 		BUG_ON(ret == -EINTR);
608 		if (s->d && s->d->c &&
609 				!UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
610 			dc = container_of(s->d, struct cached_dev, disk);
611 			if (dc && atomic_read(&dc->has_dirty))
612 				s->recoverable = false;
613 		}
614 		if (!s->iop.status)
615 			s->iop.status = BLK_STS_IOERR;
616 	}
617 
618 	closure_return(cl);
619 }
620 
621 /* Common code for the make_request functions */
622 
623 static void request_endio(struct bio *bio)
624 {
625 	struct closure *cl = bio->bi_private;
626 
627 	if (bio->bi_status) {
628 		struct search *s = container_of(cl, struct search, cl);
629 
630 		s->iop.status = bio->bi_status;
631 		/* Only cache read errors are recoverable */
632 		s->recoverable = false;
633 	}
634 
635 	bio_put(bio);
636 	closure_put(cl);
637 }
638 
639 static void backing_request_endio(struct bio *bio)
640 {
641 	struct closure *cl = bio->bi_private;
642 
643 	if (bio->bi_status) {
644 		struct search *s = container_of(cl, struct search, cl);
645 		struct cached_dev *dc = container_of(s->d,
646 						     struct cached_dev, disk);
647 		/*
648 		 * If a bio has REQ_PREFLUSH for writeback mode, it is
649 		 * speically assembled in cached_dev_write() for a non-zero
650 		 * write request which has REQ_PREFLUSH. we don't set
651 		 * s->iop.status by this failure, the status will be decided
652 		 * by result of bch_data_insert() operation.
653 		 */
654 		if (unlikely(s->iop.writeback &&
655 			     bio->bi_opf & REQ_PREFLUSH)) {
656 			pr_err("Can't flush %s: returned bi_status %i",
657 				dc->backing_dev_name, bio->bi_status);
658 		} else {
659 			/* set to orig_bio->bi_status in bio_complete() */
660 			s->iop.status = bio->bi_status;
661 		}
662 		s->recoverable = false;
663 		/* should count I/O error for backing device here */
664 		bch_count_backing_io_errors(dc, bio);
665 	}
666 
667 	bio_put(bio);
668 	closure_put(cl);
669 }
670 
671 static void bio_complete(struct search *s)
672 {
673 	if (s->orig_bio) {
674 		generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
675 				    &s->d->disk->part0, s->start_time);
676 
677 		trace_bcache_request_end(s->d, s->orig_bio);
678 		s->orig_bio->bi_status = s->iop.status;
679 		bio_endio(s->orig_bio);
680 		s->orig_bio = NULL;
681 	}
682 }
683 
684 static void do_bio_hook(struct search *s,
685 			struct bio *orig_bio,
686 			bio_end_io_t *end_io_fn)
687 {
688 	struct bio *bio = &s->bio.bio;
689 
690 	bio_init(bio, NULL, 0);
691 	__bio_clone_fast(bio, orig_bio);
692 	/*
693 	 * bi_end_io can be set separately somewhere else, e.g. the
694 	 * variants in,
695 	 * - cache_bio->bi_end_io from cached_dev_cache_miss()
696 	 * - n->bi_end_io from cache_lookup_fn()
697 	 */
698 	bio->bi_end_io		= end_io_fn;
699 	bio->bi_private		= &s->cl;
700 
701 	bio_cnt_set(bio, 3);
702 }
703 
704 static void search_free(struct closure *cl)
705 {
706 	struct search *s = container_of(cl, struct search, cl);
707 
708 	atomic_dec(&s->d->c->search_inflight);
709 
710 	if (s->iop.bio)
711 		bio_put(s->iop.bio);
712 
713 	bio_complete(s);
714 	closure_debug_destroy(cl);
715 	mempool_free(s, &s->d->c->search);
716 }
717 
718 static inline struct search *search_alloc(struct bio *bio,
719 					  struct bcache_device *d)
720 {
721 	struct search *s;
722 
723 	s = mempool_alloc(&d->c->search, GFP_NOIO);
724 
725 	closure_init(&s->cl, NULL);
726 	do_bio_hook(s, bio, request_endio);
727 	atomic_inc(&d->c->search_inflight);
728 
729 	s->orig_bio		= bio;
730 	s->cache_miss		= NULL;
731 	s->cache_missed		= 0;
732 	s->d			= d;
733 	s->recoverable		= 1;
734 	s->write		= op_is_write(bio_op(bio));
735 	s->read_dirty_data	= 0;
736 	s->start_time		= jiffies;
737 
738 	s->iop.c		= d->c;
739 	s->iop.bio		= NULL;
740 	s->iop.inode		= d->id;
741 	s->iop.write_point	= hash_long((unsigned long) current, 16);
742 	s->iop.write_prio	= 0;
743 	s->iop.status		= 0;
744 	s->iop.flags		= 0;
745 	s->iop.flush_journal	= op_is_flush(bio->bi_opf);
746 	s->iop.wq		= bcache_wq;
747 
748 	return s;
749 }
750 
751 /* Cached devices */
752 
753 static void cached_dev_bio_complete(struct closure *cl)
754 {
755 	struct search *s = container_of(cl, struct search, cl);
756 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
757 
758 	search_free(cl);
759 	cached_dev_put(dc);
760 }
761 
762 /* Process reads */
763 
764 static void cached_dev_cache_miss_done(struct closure *cl)
765 {
766 	struct search *s = container_of(cl, struct search, cl);
767 
768 	if (s->iop.replace_collision)
769 		bch_mark_cache_miss_collision(s->iop.c, s->d);
770 
771 	if (s->iop.bio)
772 		bio_free_pages(s->iop.bio);
773 
774 	cached_dev_bio_complete(cl);
775 }
776 
777 static void cached_dev_read_error(struct closure *cl)
778 {
779 	struct search *s = container_of(cl, struct search, cl);
780 	struct bio *bio = &s->bio.bio;
781 
782 	/*
783 	 * If read request hit dirty data (s->read_dirty_data is true),
784 	 * then recovery a failed read request from cached device may
785 	 * get a stale data back. So read failure recovery is only
786 	 * permitted when read request hit clean data in cache device,
787 	 * or when cache read race happened.
788 	 */
789 	if (s->recoverable && !s->read_dirty_data) {
790 		/* Retry from the backing device: */
791 		trace_bcache_read_retry(s->orig_bio);
792 
793 		s->iop.status = 0;
794 		do_bio_hook(s, s->orig_bio, backing_request_endio);
795 
796 		/* XXX: invalidate cache */
797 
798 		/* I/O request sent to backing device */
799 		closure_bio_submit(s->iop.c, bio, cl);
800 	}
801 
802 	continue_at(cl, cached_dev_cache_miss_done, NULL);
803 }
804 
805 static void cached_dev_read_done(struct closure *cl)
806 {
807 	struct search *s = container_of(cl, struct search, cl);
808 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
809 
810 	/*
811 	 * We had a cache miss; cache_bio now contains data ready to be inserted
812 	 * into the cache.
813 	 *
814 	 * First, we copy the data we just read from cache_bio's bounce buffers
815 	 * to the buffers the original bio pointed to:
816 	 */
817 
818 	if (s->iop.bio) {
819 		bio_reset(s->iop.bio);
820 		s->iop.bio->bi_iter.bi_sector =
821 			s->cache_miss->bi_iter.bi_sector;
822 		bio_copy_dev(s->iop.bio, s->cache_miss);
823 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
824 		bch_bio_map(s->iop.bio, NULL);
825 
826 		bio_copy_data(s->cache_miss, s->iop.bio);
827 
828 		bio_put(s->cache_miss);
829 		s->cache_miss = NULL;
830 	}
831 
832 	if (verify(dc) && s->recoverable && !s->read_dirty_data)
833 		bch_data_verify(dc, s->orig_bio);
834 
835 	bio_complete(s);
836 
837 	if (s->iop.bio &&
838 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
839 		BUG_ON(!s->iop.replace);
840 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
841 	}
842 
843 	continue_at(cl, cached_dev_cache_miss_done, NULL);
844 }
845 
846 static void cached_dev_read_done_bh(struct closure *cl)
847 {
848 	struct search *s = container_of(cl, struct search, cl);
849 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
850 
851 	bch_mark_cache_accounting(s->iop.c, s->d,
852 				  !s->cache_missed, s->iop.bypass);
853 	trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
854 
855 	if (s->iop.status)
856 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
857 	else if (s->iop.bio || verify(dc))
858 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
859 	else
860 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
861 }
862 
863 static int cached_dev_cache_miss(struct btree *b, struct search *s,
864 				 struct bio *bio, unsigned int sectors)
865 {
866 	int ret = MAP_CONTINUE;
867 	unsigned int reada = 0;
868 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
869 	struct bio *miss, *cache_bio;
870 
871 	s->cache_missed = 1;
872 
873 	if (s->cache_miss || s->iop.bypass) {
874 		miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
875 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
876 		goto out_submit;
877 	}
878 
879 	if (!(bio->bi_opf & REQ_RAHEAD) &&
880 	    !(bio->bi_opf & REQ_PRIO) &&
881 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
882 		reada = min_t(sector_t, dc->readahead >> 9,
883 			      get_capacity(bio->bi_disk) - bio_end_sector(bio));
884 
885 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
886 
887 	s->iop.replace_key = KEY(s->iop.inode,
888 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
889 				 s->insert_bio_sectors);
890 
891 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
892 	if (ret)
893 		return ret;
894 
895 	s->iop.replace = true;
896 
897 	miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
898 
899 	/* btree_search_recurse()'s btree iterator is no good anymore */
900 	ret = miss == bio ? MAP_DONE : -EINTR;
901 
902 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
903 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
904 			&dc->disk.bio_split);
905 	if (!cache_bio)
906 		goto out_submit;
907 
908 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
909 	bio_copy_dev(cache_bio, miss);
910 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
911 
912 	cache_bio->bi_end_io	= backing_request_endio;
913 	cache_bio->bi_private	= &s->cl;
914 
915 	bch_bio_map(cache_bio, NULL);
916 	if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
917 		goto out_put;
918 
919 	if (reada)
920 		bch_mark_cache_readahead(s->iop.c, s->d);
921 
922 	s->cache_miss	= miss;
923 	s->iop.bio	= cache_bio;
924 	bio_get(cache_bio);
925 	/* I/O request sent to backing device */
926 	closure_bio_submit(s->iop.c, cache_bio, &s->cl);
927 
928 	return ret;
929 out_put:
930 	bio_put(cache_bio);
931 out_submit:
932 	miss->bi_end_io		= backing_request_endio;
933 	miss->bi_private	= &s->cl;
934 	/* I/O request sent to backing device */
935 	closure_bio_submit(s->iop.c, miss, &s->cl);
936 	return ret;
937 }
938 
939 static void cached_dev_read(struct cached_dev *dc, struct search *s)
940 {
941 	struct closure *cl = &s->cl;
942 
943 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
944 	continue_at(cl, cached_dev_read_done_bh, NULL);
945 }
946 
947 /* Process writes */
948 
949 static void cached_dev_write_complete(struct closure *cl)
950 {
951 	struct search *s = container_of(cl, struct search, cl);
952 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
953 
954 	up_read_non_owner(&dc->writeback_lock);
955 	cached_dev_bio_complete(cl);
956 }
957 
958 static void cached_dev_write(struct cached_dev *dc, struct search *s)
959 {
960 	struct closure *cl = &s->cl;
961 	struct bio *bio = &s->bio.bio;
962 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
963 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
964 
965 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
966 
967 	down_read_non_owner(&dc->writeback_lock);
968 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
969 		/*
970 		 * We overlap with some dirty data undergoing background
971 		 * writeback, force this write to writeback
972 		 */
973 		s->iop.bypass = false;
974 		s->iop.writeback = true;
975 	}
976 
977 	/*
978 	 * Discards aren't _required_ to do anything, so skipping if
979 	 * check_overlapping returned true is ok
980 	 *
981 	 * But check_overlapping drops dirty keys for which io hasn't started,
982 	 * so we still want to call it.
983 	 */
984 	if (bio_op(bio) == REQ_OP_DISCARD)
985 		s->iop.bypass = true;
986 
987 	if (should_writeback(dc, s->orig_bio,
988 			     cache_mode(dc),
989 			     s->iop.bypass)) {
990 		s->iop.bypass = false;
991 		s->iop.writeback = true;
992 	}
993 
994 	if (s->iop.bypass) {
995 		s->iop.bio = s->orig_bio;
996 		bio_get(s->iop.bio);
997 
998 		if (bio_op(bio) == REQ_OP_DISCARD &&
999 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1000 			goto insert_data;
1001 
1002 		/* I/O request sent to backing device */
1003 		bio->bi_end_io = backing_request_endio;
1004 		closure_bio_submit(s->iop.c, bio, cl);
1005 
1006 	} else if (s->iop.writeback) {
1007 		bch_writeback_add(dc);
1008 		s->iop.bio = bio;
1009 
1010 		if (bio->bi_opf & REQ_PREFLUSH) {
1011 			/*
1012 			 * Also need to send a flush to the backing
1013 			 * device.
1014 			 */
1015 			struct bio *flush;
1016 
1017 			flush = bio_alloc_bioset(GFP_NOIO, 0,
1018 						 &dc->disk.bio_split);
1019 			if (!flush) {
1020 				s->iop.status = BLK_STS_RESOURCE;
1021 				goto insert_data;
1022 			}
1023 			bio_copy_dev(flush, bio);
1024 			flush->bi_end_io = backing_request_endio;
1025 			flush->bi_private = cl;
1026 			flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1027 			/* I/O request sent to backing device */
1028 			closure_bio_submit(s->iop.c, flush, cl);
1029 		}
1030 	} else {
1031 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1032 		/* I/O request sent to backing device */
1033 		bio->bi_end_io = backing_request_endio;
1034 		closure_bio_submit(s->iop.c, bio, cl);
1035 	}
1036 
1037 insert_data:
1038 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1039 	continue_at(cl, cached_dev_write_complete, NULL);
1040 }
1041 
1042 static void cached_dev_nodata(struct closure *cl)
1043 {
1044 	struct search *s = container_of(cl, struct search, cl);
1045 	struct bio *bio = &s->bio.bio;
1046 
1047 	if (s->iop.flush_journal)
1048 		bch_journal_meta(s->iop.c, cl);
1049 
1050 	/* If it's a flush, we send the flush to the backing device too */
1051 	bio->bi_end_io = backing_request_endio;
1052 	closure_bio_submit(s->iop.c, bio, cl);
1053 
1054 	continue_at(cl, cached_dev_bio_complete, NULL);
1055 }
1056 
1057 struct detached_dev_io_private {
1058 	struct bcache_device	*d;
1059 	unsigned long		start_time;
1060 	bio_end_io_t		*bi_end_io;
1061 	void			*bi_private;
1062 };
1063 
1064 static void detached_dev_end_io(struct bio *bio)
1065 {
1066 	struct detached_dev_io_private *ddip;
1067 
1068 	ddip = bio->bi_private;
1069 	bio->bi_end_io = ddip->bi_end_io;
1070 	bio->bi_private = ddip->bi_private;
1071 
1072 	generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1073 			    &ddip->d->disk->part0, ddip->start_time);
1074 
1075 	if (bio->bi_status) {
1076 		struct cached_dev *dc = container_of(ddip->d,
1077 						     struct cached_dev, disk);
1078 		/* should count I/O error for backing device here */
1079 		bch_count_backing_io_errors(dc, bio);
1080 	}
1081 
1082 	kfree(ddip);
1083 	bio->bi_end_io(bio);
1084 }
1085 
1086 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1087 {
1088 	struct detached_dev_io_private *ddip;
1089 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1090 
1091 	/*
1092 	 * no need to call closure_get(&dc->disk.cl),
1093 	 * because upper layer had already opened bcache device,
1094 	 * which would call closure_get(&dc->disk.cl)
1095 	 */
1096 	ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1097 	ddip->d = d;
1098 	ddip->start_time = jiffies;
1099 	ddip->bi_end_io = bio->bi_end_io;
1100 	ddip->bi_private = bio->bi_private;
1101 	bio->bi_end_io = detached_dev_end_io;
1102 	bio->bi_private = ddip;
1103 
1104 	if ((bio_op(bio) == REQ_OP_DISCARD) &&
1105 	    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1106 		bio->bi_end_io(bio);
1107 	else
1108 		generic_make_request(bio);
1109 }
1110 
1111 static void quit_max_writeback_rate(struct cache_set *c,
1112 				    struct cached_dev *this_dc)
1113 {
1114 	int i;
1115 	struct bcache_device *d;
1116 	struct cached_dev *dc;
1117 
1118 	/*
1119 	 * mutex bch_register_lock may compete with other parallel requesters,
1120 	 * or attach/detach operations on other backing device. Waiting to
1121 	 * the mutex lock may increase I/O request latency for seconds or more.
1122 	 * To avoid such situation, if mutext_trylock() failed, only writeback
1123 	 * rate of current cached device is set to 1, and __update_write_back()
1124 	 * will decide writeback rate of other cached devices (remember now
1125 	 * c->idle_counter is 0 already).
1126 	 */
1127 	if (mutex_trylock(&bch_register_lock)) {
1128 		for (i = 0; i < c->devices_max_used; i++) {
1129 			if (!c->devices[i])
1130 				continue;
1131 
1132 			if (UUID_FLASH_ONLY(&c->uuids[i]))
1133 				continue;
1134 
1135 			d = c->devices[i];
1136 			dc = container_of(d, struct cached_dev, disk);
1137 			/*
1138 			 * set writeback rate to default minimum value,
1139 			 * then let update_writeback_rate() to decide the
1140 			 * upcoming rate.
1141 			 */
1142 			atomic_long_set(&dc->writeback_rate.rate, 1);
1143 		}
1144 		mutex_unlock(&bch_register_lock);
1145 	} else
1146 		atomic_long_set(&this_dc->writeback_rate.rate, 1);
1147 }
1148 
1149 /* Cached devices - read & write stuff */
1150 
1151 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1152 					struct bio *bio)
1153 {
1154 	struct search *s;
1155 	struct bcache_device *d = bio->bi_disk->private_data;
1156 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1157 	int rw = bio_data_dir(bio);
1158 
1159 	if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1160 		     dc->io_disable)) {
1161 		bio->bi_status = BLK_STS_IOERR;
1162 		bio_endio(bio);
1163 		return BLK_QC_T_NONE;
1164 	}
1165 
1166 	if (likely(d->c)) {
1167 		if (atomic_read(&d->c->idle_counter))
1168 			atomic_set(&d->c->idle_counter, 0);
1169 		/*
1170 		 * If at_max_writeback_rate of cache set is true and new I/O
1171 		 * comes, quit max writeback rate of all cached devices
1172 		 * attached to this cache set, and set at_max_writeback_rate
1173 		 * to false.
1174 		 */
1175 		if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1176 			atomic_set(&d->c->at_max_writeback_rate, 0);
1177 			quit_max_writeback_rate(d->c, dc);
1178 		}
1179 	}
1180 
1181 	generic_start_io_acct(q,
1182 			      bio_op(bio),
1183 			      bio_sectors(bio),
1184 			      &d->disk->part0);
1185 
1186 	bio_set_dev(bio, dc->bdev);
1187 	bio->bi_iter.bi_sector += dc->sb.data_offset;
1188 
1189 	if (cached_dev_get(dc)) {
1190 		s = search_alloc(bio, d);
1191 		trace_bcache_request_start(s->d, bio);
1192 
1193 		if (!bio->bi_iter.bi_size) {
1194 			/*
1195 			 * can't call bch_journal_meta from under
1196 			 * generic_make_request
1197 			 */
1198 			continue_at_nobarrier(&s->cl,
1199 					      cached_dev_nodata,
1200 					      bcache_wq);
1201 		} else {
1202 			s->iop.bypass = check_should_bypass(dc, bio);
1203 
1204 			if (rw)
1205 				cached_dev_write(dc, s);
1206 			else
1207 				cached_dev_read(dc, s);
1208 		}
1209 	} else
1210 		/* I/O request sent to backing device */
1211 		detached_dev_do_request(d, bio);
1212 
1213 	return BLK_QC_T_NONE;
1214 }
1215 
1216 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1217 			    unsigned int cmd, unsigned long arg)
1218 {
1219 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1220 
1221 	if (dc->io_disable)
1222 		return -EIO;
1223 
1224 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1225 }
1226 
1227 static int cached_dev_congested(void *data, int bits)
1228 {
1229 	struct bcache_device *d = data;
1230 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1231 	struct request_queue *q = bdev_get_queue(dc->bdev);
1232 	int ret = 0;
1233 
1234 	if (bdi_congested(q->backing_dev_info, bits))
1235 		return 1;
1236 
1237 	if (cached_dev_get(dc)) {
1238 		unsigned int i;
1239 		struct cache *ca;
1240 
1241 		for_each_cache(ca, d->c, i) {
1242 			q = bdev_get_queue(ca->bdev);
1243 			ret |= bdi_congested(q->backing_dev_info, bits);
1244 		}
1245 
1246 		cached_dev_put(dc);
1247 	}
1248 
1249 	return ret;
1250 }
1251 
1252 void bch_cached_dev_request_init(struct cached_dev *dc)
1253 {
1254 	struct gendisk *g = dc->disk.disk;
1255 
1256 	g->queue->make_request_fn		= cached_dev_make_request;
1257 	g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1258 	dc->disk.cache_miss			= cached_dev_cache_miss;
1259 	dc->disk.ioctl				= cached_dev_ioctl;
1260 }
1261 
1262 /* Flash backed devices */
1263 
1264 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1265 				struct bio *bio, unsigned int sectors)
1266 {
1267 	unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1268 
1269 	swap(bio->bi_iter.bi_size, bytes);
1270 	zero_fill_bio(bio);
1271 	swap(bio->bi_iter.bi_size, bytes);
1272 
1273 	bio_advance(bio, bytes);
1274 
1275 	if (!bio->bi_iter.bi_size)
1276 		return MAP_DONE;
1277 
1278 	return MAP_CONTINUE;
1279 }
1280 
1281 static void flash_dev_nodata(struct closure *cl)
1282 {
1283 	struct search *s = container_of(cl, struct search, cl);
1284 
1285 	if (s->iop.flush_journal)
1286 		bch_journal_meta(s->iop.c, cl);
1287 
1288 	continue_at(cl, search_free, NULL);
1289 }
1290 
1291 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1292 					     struct bio *bio)
1293 {
1294 	struct search *s;
1295 	struct closure *cl;
1296 	struct bcache_device *d = bio->bi_disk->private_data;
1297 
1298 	if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1299 		bio->bi_status = BLK_STS_IOERR;
1300 		bio_endio(bio);
1301 		return BLK_QC_T_NONE;
1302 	}
1303 
1304 	generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1305 
1306 	s = search_alloc(bio, d);
1307 	cl = &s->cl;
1308 	bio = &s->bio.bio;
1309 
1310 	trace_bcache_request_start(s->d, bio);
1311 
1312 	if (!bio->bi_iter.bi_size) {
1313 		/*
1314 		 * can't call bch_journal_meta from under
1315 		 * generic_make_request
1316 		 */
1317 		continue_at_nobarrier(&s->cl,
1318 				      flash_dev_nodata,
1319 				      bcache_wq);
1320 		return BLK_QC_T_NONE;
1321 	} else if (bio_data_dir(bio)) {
1322 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1323 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1324 					&KEY(d->id, bio_end_sector(bio), 0));
1325 
1326 		s->iop.bypass		= (bio_op(bio) == REQ_OP_DISCARD) != 0;
1327 		s->iop.writeback	= true;
1328 		s->iop.bio		= bio;
1329 
1330 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1331 	} else {
1332 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1333 	}
1334 
1335 	continue_at(cl, search_free, NULL);
1336 	return BLK_QC_T_NONE;
1337 }
1338 
1339 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1340 			   unsigned int cmd, unsigned long arg)
1341 {
1342 	return -ENOTTY;
1343 }
1344 
1345 static int flash_dev_congested(void *data, int bits)
1346 {
1347 	struct bcache_device *d = data;
1348 	struct request_queue *q;
1349 	struct cache *ca;
1350 	unsigned int i;
1351 	int ret = 0;
1352 
1353 	for_each_cache(ca, d->c, i) {
1354 		q = bdev_get_queue(ca->bdev);
1355 		ret |= bdi_congested(q->backing_dev_info, bits);
1356 	}
1357 
1358 	return ret;
1359 }
1360 
1361 void bch_flash_dev_request_init(struct bcache_device *d)
1362 {
1363 	struct gendisk *g = d->disk;
1364 
1365 	g->queue->make_request_fn		= flash_dev_make_request;
1366 	g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1367 	d->cache_miss				= flash_dev_cache_miss;
1368 	d->ioctl				= flash_dev_ioctl;
1369 }
1370 
1371 void bch_request_exit(void)
1372 {
1373 	kmem_cache_destroy(bch_search_cache);
1374 }
1375 
1376 int __init bch_request_init(void)
1377 {
1378 	bch_search_cache = KMEM_CACHE(search, 0);
1379 	if (!bch_search_cache)
1380 		return -ENOMEM;
1381 
1382 	return 0;
1383 }
1384