xref: /linux/drivers/md/bcache/request.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14 
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
19 
20 #include <trace/events/bcache.h>
21 
22 #define CUTOFF_CACHE_ADD	95
23 #define CUTOFF_CACHE_READA	90
24 
25 struct kmem_cache *bch_search_cache;
26 
27 static void bch_data_insert_start(struct closure *);
28 
29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30 {
31 	return BDEV_CACHE_MODE(&dc->sb);
32 }
33 
34 static bool verify(struct cached_dev *dc, struct bio *bio)
35 {
36 	return dc->verify;
37 }
38 
39 static void bio_csum(struct bio *bio, struct bkey *k)
40 {
41 	struct bio_vec bv;
42 	struct bvec_iter iter;
43 	uint64_t csum = 0;
44 
45 	bio_for_each_segment(bv, bio, iter) {
46 		void *d = kmap(bv.bv_page) + bv.bv_offset;
47 		csum = bch_crc64_update(csum, d, bv.bv_len);
48 		kunmap(bv.bv_page);
49 	}
50 
51 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52 }
53 
54 /* Insert data into cache */
55 
56 static void bch_data_insert_keys(struct closure *cl)
57 {
58 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
59 	atomic_t *journal_ref = NULL;
60 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
61 	int ret;
62 
63 	/*
64 	 * If we're looping, might already be waiting on
65 	 * another journal write - can't wait on more than one journal write at
66 	 * a time
67 	 *
68 	 * XXX: this looks wrong
69 	 */
70 #if 0
71 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72 		closure_sync(&s->cl);
73 #endif
74 
75 	if (!op->replace)
76 		journal_ref = bch_journal(op->c, &op->insert_keys,
77 					  op->flush_journal ? cl : NULL);
78 
79 	ret = bch_btree_insert(op->c, &op->insert_keys,
80 			       journal_ref, replace_key);
81 	if (ret == -ESRCH) {
82 		op->replace_collision = true;
83 	} else if (ret) {
84 		op->error		= -ENOMEM;
85 		op->insert_data_done	= true;
86 	}
87 
88 	if (journal_ref)
89 		atomic_dec_bug(journal_ref);
90 
91 	if (!op->insert_data_done)
92 		continue_at(cl, bch_data_insert_start, op->wq);
93 
94 	bch_keylist_free(&op->insert_keys);
95 	closure_return(cl);
96 }
97 
98 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
99 			       struct cache_set *c)
100 {
101 	size_t oldsize = bch_keylist_nkeys(l);
102 	size_t newsize = oldsize + u64s;
103 
104 	/*
105 	 * The journalling code doesn't handle the case where the keys to insert
106 	 * is bigger than an empty write: If we just return -ENOMEM here,
107 	 * bio_insert() and bio_invalidate() will insert the keys created so far
108 	 * and finish the rest when the keylist is empty.
109 	 */
110 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
111 		return -ENOMEM;
112 
113 	return __bch_keylist_realloc(l, u64s);
114 }
115 
116 static void bch_data_invalidate(struct closure *cl)
117 {
118 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
119 	struct bio *bio = op->bio;
120 
121 	pr_debug("invalidating %i sectors from %llu",
122 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
123 
124 	while (bio_sectors(bio)) {
125 		unsigned sectors = min(bio_sectors(bio),
126 				       1U << (KEY_SIZE_BITS - 1));
127 
128 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
129 			goto out;
130 
131 		bio->bi_iter.bi_sector	+= sectors;
132 		bio->bi_iter.bi_size	-= sectors << 9;
133 
134 		bch_keylist_add(&op->insert_keys,
135 				&KEY(op->inode, bio->bi_iter.bi_sector, sectors));
136 	}
137 
138 	op->insert_data_done = true;
139 	bio_put(bio);
140 out:
141 	continue_at(cl, bch_data_insert_keys, op->wq);
142 }
143 
144 static void bch_data_insert_error(struct closure *cl)
145 {
146 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
147 
148 	/*
149 	 * Our data write just errored, which means we've got a bunch of keys to
150 	 * insert that point to data that wasn't succesfully written.
151 	 *
152 	 * We don't have to insert those keys but we still have to invalidate
153 	 * that region of the cache - so, if we just strip off all the pointers
154 	 * from the keys we'll accomplish just that.
155 	 */
156 
157 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
158 
159 	while (src != op->insert_keys.top) {
160 		struct bkey *n = bkey_next(src);
161 
162 		SET_KEY_PTRS(src, 0);
163 		memmove(dst, src, bkey_bytes(src));
164 
165 		dst = bkey_next(dst);
166 		src = n;
167 	}
168 
169 	op->insert_keys.top = dst;
170 
171 	bch_data_insert_keys(cl);
172 }
173 
174 static void bch_data_insert_endio(struct bio *bio, int error)
175 {
176 	struct closure *cl = bio->bi_private;
177 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
178 
179 	if (error) {
180 		/* TODO: We could try to recover from this. */
181 		if (op->writeback)
182 			op->error = error;
183 		else if (!op->replace)
184 			set_closure_fn(cl, bch_data_insert_error, op->wq);
185 		else
186 			set_closure_fn(cl, NULL, NULL);
187 	}
188 
189 	bch_bbio_endio(op->c, bio, error, "writing data to cache");
190 }
191 
192 static void bch_data_insert_start(struct closure *cl)
193 {
194 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
195 	struct bio *bio = op->bio, *n;
196 
197 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
198 		set_gc_sectors(op->c);
199 		wake_up_gc(op->c);
200 	}
201 
202 	if (op->bypass)
203 		return bch_data_invalidate(cl);
204 
205 	/*
206 	 * Journal writes are marked REQ_FLUSH; if the original write was a
207 	 * flush, it'll wait on the journal write.
208 	 */
209 	bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
210 
211 	do {
212 		unsigned i;
213 		struct bkey *k;
214 		struct bio_set *split = op->c->bio_split;
215 
216 		/* 1 for the device pointer and 1 for the chksum */
217 		if (bch_keylist_realloc(&op->insert_keys,
218 					3 + (op->csum ? 1 : 0),
219 					op->c))
220 			continue_at(cl, bch_data_insert_keys, op->wq);
221 
222 		k = op->insert_keys.top;
223 		bkey_init(k);
224 		SET_KEY_INODE(k, op->inode);
225 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
226 
227 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
228 				       op->write_point, op->write_prio,
229 				       op->writeback))
230 			goto err;
231 
232 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
233 
234 		n->bi_end_io	= bch_data_insert_endio;
235 		n->bi_private	= cl;
236 
237 		if (op->writeback) {
238 			SET_KEY_DIRTY(k, true);
239 
240 			for (i = 0; i < KEY_PTRS(k); i++)
241 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
242 					    GC_MARK_DIRTY);
243 		}
244 
245 		SET_KEY_CSUM(k, op->csum);
246 		if (KEY_CSUM(k))
247 			bio_csum(n, k);
248 
249 		trace_bcache_cache_insert(k);
250 		bch_keylist_push(&op->insert_keys);
251 
252 		n->bi_rw |= REQ_WRITE;
253 		bch_submit_bbio(n, op->c, k, 0);
254 	} while (n != bio);
255 
256 	op->insert_data_done = true;
257 	continue_at(cl, bch_data_insert_keys, op->wq);
258 err:
259 	/* bch_alloc_sectors() blocks if s->writeback = true */
260 	BUG_ON(op->writeback);
261 
262 	/*
263 	 * But if it's not a writeback write we'd rather just bail out if
264 	 * there aren't any buckets ready to write to - it might take awhile and
265 	 * we might be starving btree writes for gc or something.
266 	 */
267 
268 	if (!op->replace) {
269 		/*
270 		 * Writethrough write: We can't complete the write until we've
271 		 * updated the index. But we don't want to delay the write while
272 		 * we wait for buckets to be freed up, so just invalidate the
273 		 * rest of the write.
274 		 */
275 		op->bypass = true;
276 		return bch_data_invalidate(cl);
277 	} else {
278 		/*
279 		 * From a cache miss, we can just insert the keys for the data
280 		 * we have written or bail out if we didn't do anything.
281 		 */
282 		op->insert_data_done = true;
283 		bio_put(bio);
284 
285 		if (!bch_keylist_empty(&op->insert_keys))
286 			continue_at(cl, bch_data_insert_keys, op->wq);
287 		else
288 			closure_return(cl);
289 	}
290 }
291 
292 /**
293  * bch_data_insert - stick some data in the cache
294  *
295  * This is the starting point for any data to end up in a cache device; it could
296  * be from a normal write, or a writeback write, or a write to a flash only
297  * volume - it's also used by the moving garbage collector to compact data in
298  * mostly empty buckets.
299  *
300  * It first writes the data to the cache, creating a list of keys to be inserted
301  * (if the data had to be fragmented there will be multiple keys); after the
302  * data is written it calls bch_journal, and after the keys have been added to
303  * the next journal write they're inserted into the btree.
304  *
305  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
306  * and op->inode is used for the key inode.
307  *
308  * If s->bypass is true, instead of inserting the data it invalidates the
309  * region of the cache represented by s->cache_bio and op->inode.
310  */
311 void bch_data_insert(struct closure *cl)
312 {
313 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
314 
315 	trace_bcache_write(op->c, op->inode, op->bio,
316 			   op->writeback, op->bypass);
317 
318 	bch_keylist_init(&op->insert_keys);
319 	bio_get(op->bio);
320 	bch_data_insert_start(cl);
321 }
322 
323 /* Congested? */
324 
325 unsigned bch_get_congested(struct cache_set *c)
326 {
327 	int i;
328 	long rand;
329 
330 	if (!c->congested_read_threshold_us &&
331 	    !c->congested_write_threshold_us)
332 		return 0;
333 
334 	i = (local_clock_us() - c->congested_last_us) / 1024;
335 	if (i < 0)
336 		return 0;
337 
338 	i += atomic_read(&c->congested);
339 	if (i >= 0)
340 		return 0;
341 
342 	i += CONGESTED_MAX;
343 
344 	if (i > 0)
345 		i = fract_exp_two(i, 6);
346 
347 	rand = get_random_int();
348 	i -= bitmap_weight(&rand, BITS_PER_LONG);
349 
350 	return i > 0 ? i : 1;
351 }
352 
353 static void add_sequential(struct task_struct *t)
354 {
355 	ewma_add(t->sequential_io_avg,
356 		 t->sequential_io, 8, 0);
357 
358 	t->sequential_io = 0;
359 }
360 
361 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
362 {
363 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
364 }
365 
366 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
367 {
368 	struct cache_set *c = dc->disk.c;
369 	unsigned mode = cache_mode(dc, bio);
370 	unsigned sectors, congested = bch_get_congested(c);
371 	struct task_struct *task = current;
372 	struct io *i;
373 
374 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
375 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
376 	    (bio->bi_rw & REQ_DISCARD))
377 		goto skip;
378 
379 	if (mode == CACHE_MODE_NONE ||
380 	    (mode == CACHE_MODE_WRITEAROUND &&
381 	     (bio->bi_rw & REQ_WRITE)))
382 		goto skip;
383 
384 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
385 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
386 		pr_debug("skipping unaligned io");
387 		goto skip;
388 	}
389 
390 	if (bypass_torture_test(dc)) {
391 		if ((get_random_int() & 3) == 3)
392 			goto skip;
393 		else
394 			goto rescale;
395 	}
396 
397 	if (!congested && !dc->sequential_cutoff)
398 		goto rescale;
399 
400 	if (!congested &&
401 	    mode == CACHE_MODE_WRITEBACK &&
402 	    (bio->bi_rw & REQ_WRITE) &&
403 	    (bio->bi_rw & REQ_SYNC))
404 		goto rescale;
405 
406 	spin_lock(&dc->io_lock);
407 
408 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
409 		if (i->last == bio->bi_iter.bi_sector &&
410 		    time_before(jiffies, i->jiffies))
411 			goto found;
412 
413 	i = list_first_entry(&dc->io_lru, struct io, lru);
414 
415 	add_sequential(task);
416 	i->sequential = 0;
417 found:
418 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
419 		i->sequential	+= bio->bi_iter.bi_size;
420 
421 	i->last			 = bio_end_sector(bio);
422 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
423 	task->sequential_io	 = i->sequential;
424 
425 	hlist_del(&i->hash);
426 	hlist_add_head(&i->hash, iohash(dc, i->last));
427 	list_move_tail(&i->lru, &dc->io_lru);
428 
429 	spin_unlock(&dc->io_lock);
430 
431 	sectors = max(task->sequential_io,
432 		      task->sequential_io_avg) >> 9;
433 
434 	if (dc->sequential_cutoff &&
435 	    sectors >= dc->sequential_cutoff >> 9) {
436 		trace_bcache_bypass_sequential(bio);
437 		goto skip;
438 	}
439 
440 	if (congested && sectors >= congested) {
441 		trace_bcache_bypass_congested(bio);
442 		goto skip;
443 	}
444 
445 rescale:
446 	bch_rescale_priorities(c, bio_sectors(bio));
447 	return false;
448 skip:
449 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
450 	return true;
451 }
452 
453 /* Cache lookup */
454 
455 struct search {
456 	/* Stack frame for bio_complete */
457 	struct closure		cl;
458 
459 	struct bbio		bio;
460 	struct bio		*orig_bio;
461 	struct bio		*cache_miss;
462 	struct bcache_device	*d;
463 
464 	unsigned		insert_bio_sectors;
465 	unsigned		recoverable:1;
466 	unsigned		write:1;
467 	unsigned		read_dirty_data:1;
468 
469 	unsigned long		start_time;
470 
471 	struct btree_op		op;
472 	struct data_insert_op	iop;
473 };
474 
475 static void bch_cache_read_endio(struct bio *bio, int error)
476 {
477 	struct bbio *b = container_of(bio, struct bbio, bio);
478 	struct closure *cl = bio->bi_private;
479 	struct search *s = container_of(cl, struct search, cl);
480 
481 	/*
482 	 * If the bucket was reused while our bio was in flight, we might have
483 	 * read the wrong data. Set s->error but not error so it doesn't get
484 	 * counted against the cache device, but we'll still reread the data
485 	 * from the backing device.
486 	 */
487 
488 	if (error)
489 		s->iop.error = error;
490 	else if (!KEY_DIRTY(&b->key) &&
491 		 ptr_stale(s->iop.c, &b->key, 0)) {
492 		atomic_long_inc(&s->iop.c->cache_read_races);
493 		s->iop.error = -EINTR;
494 	}
495 
496 	bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
497 }
498 
499 /*
500  * Read from a single key, handling the initial cache miss if the key starts in
501  * the middle of the bio
502  */
503 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
504 {
505 	struct search *s = container_of(op, struct search, op);
506 	struct bio *n, *bio = &s->bio.bio;
507 	struct bkey *bio_key;
508 	unsigned ptr;
509 
510 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
511 		return MAP_CONTINUE;
512 
513 	if (KEY_INODE(k) != s->iop.inode ||
514 	    KEY_START(k) > bio->bi_iter.bi_sector) {
515 		unsigned bio_sectors = bio_sectors(bio);
516 		unsigned sectors = KEY_INODE(k) == s->iop.inode
517 			? min_t(uint64_t, INT_MAX,
518 				KEY_START(k) - bio->bi_iter.bi_sector)
519 			: INT_MAX;
520 
521 		int ret = s->d->cache_miss(b, s, bio, sectors);
522 		if (ret != MAP_CONTINUE)
523 			return ret;
524 
525 		/* if this was a complete miss we shouldn't get here */
526 		BUG_ON(bio_sectors <= sectors);
527 	}
528 
529 	if (!KEY_SIZE(k))
530 		return MAP_CONTINUE;
531 
532 	/* XXX: figure out best pointer - for multiple cache devices */
533 	ptr = 0;
534 
535 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
536 
537 	if (KEY_DIRTY(k))
538 		s->read_dirty_data = true;
539 
540 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
541 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
542 			   GFP_NOIO, s->d->bio_split);
543 
544 	bio_key = &container_of(n, struct bbio, bio)->key;
545 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
546 
547 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
548 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
549 
550 	n->bi_end_io	= bch_cache_read_endio;
551 	n->bi_private	= &s->cl;
552 
553 	/*
554 	 * The bucket we're reading from might be reused while our bio
555 	 * is in flight, and we could then end up reading the wrong
556 	 * data.
557 	 *
558 	 * We guard against this by checking (in cache_read_endio()) if
559 	 * the pointer is stale again; if so, we treat it as an error
560 	 * and reread from the backing device (but we don't pass that
561 	 * error up anywhere).
562 	 */
563 
564 	__bch_submit_bbio(n, b->c);
565 	return n == bio ? MAP_DONE : MAP_CONTINUE;
566 }
567 
568 static void cache_lookup(struct closure *cl)
569 {
570 	struct search *s = container_of(cl, struct search, iop.cl);
571 	struct bio *bio = &s->bio.bio;
572 	int ret;
573 
574 	bch_btree_op_init(&s->op, -1);
575 
576 	ret = bch_btree_map_keys(&s->op, s->iop.c,
577 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
578 				 cache_lookup_fn, MAP_END_KEY);
579 	if (ret == -EAGAIN)
580 		continue_at(cl, cache_lookup, bcache_wq);
581 
582 	closure_return(cl);
583 }
584 
585 /* Common code for the make_request functions */
586 
587 static void request_endio(struct bio *bio, int error)
588 {
589 	struct closure *cl = bio->bi_private;
590 
591 	if (error) {
592 		struct search *s = container_of(cl, struct search, cl);
593 		s->iop.error = error;
594 		/* Only cache read errors are recoverable */
595 		s->recoverable = false;
596 	}
597 
598 	bio_put(bio);
599 	closure_put(cl);
600 }
601 
602 static void bio_complete(struct search *s)
603 {
604 	if (s->orig_bio) {
605 		generic_end_io_acct(bio_data_dir(s->orig_bio),
606 				    &s->d->disk->part0, s->start_time);
607 
608 		trace_bcache_request_end(s->d, s->orig_bio);
609 		bio_endio(s->orig_bio, s->iop.error);
610 		s->orig_bio = NULL;
611 	}
612 }
613 
614 static void do_bio_hook(struct search *s, struct bio *orig_bio)
615 {
616 	struct bio *bio = &s->bio.bio;
617 
618 	bio_init(bio);
619 	__bio_clone_fast(bio, orig_bio);
620 	bio->bi_end_io		= request_endio;
621 	bio->bi_private		= &s->cl;
622 
623 	bio_cnt_set(bio, 3);
624 }
625 
626 static void search_free(struct closure *cl)
627 {
628 	struct search *s = container_of(cl, struct search, cl);
629 	bio_complete(s);
630 
631 	if (s->iop.bio)
632 		bio_put(s->iop.bio);
633 
634 	closure_debug_destroy(cl);
635 	mempool_free(s, s->d->c->search);
636 }
637 
638 static inline struct search *search_alloc(struct bio *bio,
639 					  struct bcache_device *d)
640 {
641 	struct search *s;
642 
643 	s = mempool_alloc(d->c->search, GFP_NOIO);
644 
645 	closure_init(&s->cl, NULL);
646 	do_bio_hook(s, bio);
647 
648 	s->orig_bio		= bio;
649 	s->cache_miss		= NULL;
650 	s->d			= d;
651 	s->recoverable		= 1;
652 	s->write		= (bio->bi_rw & REQ_WRITE) != 0;
653 	s->read_dirty_data	= 0;
654 	s->start_time		= jiffies;
655 
656 	s->iop.c		= d->c;
657 	s->iop.bio		= NULL;
658 	s->iop.inode		= d->id;
659 	s->iop.write_point	= hash_long((unsigned long) current, 16);
660 	s->iop.write_prio	= 0;
661 	s->iop.error		= 0;
662 	s->iop.flags		= 0;
663 	s->iop.flush_journal	= (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
664 	s->iop.wq		= bcache_wq;
665 
666 	return s;
667 }
668 
669 /* Cached devices */
670 
671 static void cached_dev_bio_complete(struct closure *cl)
672 {
673 	struct search *s = container_of(cl, struct search, cl);
674 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
675 
676 	search_free(cl);
677 	cached_dev_put(dc);
678 }
679 
680 /* Process reads */
681 
682 static void cached_dev_cache_miss_done(struct closure *cl)
683 {
684 	struct search *s = container_of(cl, struct search, cl);
685 
686 	if (s->iop.replace_collision)
687 		bch_mark_cache_miss_collision(s->iop.c, s->d);
688 
689 	if (s->iop.bio) {
690 		int i;
691 		struct bio_vec *bv;
692 
693 		bio_for_each_segment_all(bv, s->iop.bio, i)
694 			__free_page(bv->bv_page);
695 	}
696 
697 	cached_dev_bio_complete(cl);
698 }
699 
700 static void cached_dev_read_error(struct closure *cl)
701 {
702 	struct search *s = container_of(cl, struct search, cl);
703 	struct bio *bio = &s->bio.bio;
704 
705 	if (s->recoverable) {
706 		/* Retry from the backing device: */
707 		trace_bcache_read_retry(s->orig_bio);
708 
709 		s->iop.error = 0;
710 		do_bio_hook(s, s->orig_bio);
711 
712 		/* XXX: invalidate cache */
713 
714 		closure_bio_submit(bio, cl, s->d);
715 	}
716 
717 	continue_at(cl, cached_dev_cache_miss_done, NULL);
718 }
719 
720 static void cached_dev_read_done(struct closure *cl)
721 {
722 	struct search *s = container_of(cl, struct search, cl);
723 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
724 
725 	/*
726 	 * We had a cache miss; cache_bio now contains data ready to be inserted
727 	 * into the cache.
728 	 *
729 	 * First, we copy the data we just read from cache_bio's bounce buffers
730 	 * to the buffers the original bio pointed to:
731 	 */
732 
733 	if (s->iop.bio) {
734 		bio_reset(s->iop.bio);
735 		s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
736 		s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
737 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
738 		bch_bio_map(s->iop.bio, NULL);
739 
740 		bio_copy_data(s->cache_miss, s->iop.bio);
741 
742 		bio_put(s->cache_miss);
743 		s->cache_miss = NULL;
744 	}
745 
746 	if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
747 		bch_data_verify(dc, s->orig_bio);
748 
749 	bio_complete(s);
750 
751 	if (s->iop.bio &&
752 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
753 		BUG_ON(!s->iop.replace);
754 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
755 	}
756 
757 	continue_at(cl, cached_dev_cache_miss_done, NULL);
758 }
759 
760 static void cached_dev_read_done_bh(struct closure *cl)
761 {
762 	struct search *s = container_of(cl, struct search, cl);
763 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
764 
765 	bch_mark_cache_accounting(s->iop.c, s->d,
766 				  !s->cache_miss, s->iop.bypass);
767 	trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
768 
769 	if (s->iop.error)
770 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
771 	else if (s->iop.bio || verify(dc, &s->bio.bio))
772 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
773 	else
774 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
775 }
776 
777 static int cached_dev_cache_miss(struct btree *b, struct search *s,
778 				 struct bio *bio, unsigned sectors)
779 {
780 	int ret = MAP_CONTINUE;
781 	unsigned reada = 0;
782 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
783 	struct bio *miss, *cache_bio;
784 
785 	if (s->cache_miss || s->iop.bypass) {
786 		miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
787 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
788 		goto out_submit;
789 	}
790 
791 	if (!(bio->bi_rw & REQ_RAHEAD) &&
792 	    !(bio->bi_rw & REQ_META) &&
793 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
794 		reada = min_t(sector_t, dc->readahead >> 9,
795 			      bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
796 
797 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
798 
799 	s->iop.replace_key = KEY(s->iop.inode,
800 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
801 				 s->insert_bio_sectors);
802 
803 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
804 	if (ret)
805 		return ret;
806 
807 	s->iop.replace = true;
808 
809 	miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
810 
811 	/* btree_search_recurse()'s btree iterator is no good anymore */
812 	ret = miss == bio ? MAP_DONE : -EINTR;
813 
814 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
815 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
816 			dc->disk.bio_split);
817 	if (!cache_bio)
818 		goto out_submit;
819 
820 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
821 	cache_bio->bi_bdev		= miss->bi_bdev;
822 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
823 
824 	cache_bio->bi_end_io	= request_endio;
825 	cache_bio->bi_private	= &s->cl;
826 
827 	bch_bio_map(cache_bio, NULL);
828 	if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
829 		goto out_put;
830 
831 	if (reada)
832 		bch_mark_cache_readahead(s->iop.c, s->d);
833 
834 	s->cache_miss	= miss;
835 	s->iop.bio	= cache_bio;
836 	bio_get(cache_bio);
837 	closure_bio_submit(cache_bio, &s->cl, s->d);
838 
839 	return ret;
840 out_put:
841 	bio_put(cache_bio);
842 out_submit:
843 	miss->bi_end_io		= request_endio;
844 	miss->bi_private	= &s->cl;
845 	closure_bio_submit(miss, &s->cl, s->d);
846 	return ret;
847 }
848 
849 static void cached_dev_read(struct cached_dev *dc, struct search *s)
850 {
851 	struct closure *cl = &s->cl;
852 
853 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
854 	continue_at(cl, cached_dev_read_done_bh, NULL);
855 }
856 
857 /* Process writes */
858 
859 static void cached_dev_write_complete(struct closure *cl)
860 {
861 	struct search *s = container_of(cl, struct search, cl);
862 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
863 
864 	up_read_non_owner(&dc->writeback_lock);
865 	cached_dev_bio_complete(cl);
866 }
867 
868 static void cached_dev_write(struct cached_dev *dc, struct search *s)
869 {
870 	struct closure *cl = &s->cl;
871 	struct bio *bio = &s->bio.bio;
872 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
873 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
874 
875 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
876 
877 	down_read_non_owner(&dc->writeback_lock);
878 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
879 		/*
880 		 * We overlap with some dirty data undergoing background
881 		 * writeback, force this write to writeback
882 		 */
883 		s->iop.bypass = false;
884 		s->iop.writeback = true;
885 	}
886 
887 	/*
888 	 * Discards aren't _required_ to do anything, so skipping if
889 	 * check_overlapping returned true is ok
890 	 *
891 	 * But check_overlapping drops dirty keys for which io hasn't started,
892 	 * so we still want to call it.
893 	 */
894 	if (bio->bi_rw & REQ_DISCARD)
895 		s->iop.bypass = true;
896 
897 	if (should_writeback(dc, s->orig_bio,
898 			     cache_mode(dc, bio),
899 			     s->iop.bypass)) {
900 		s->iop.bypass = false;
901 		s->iop.writeback = true;
902 	}
903 
904 	if (s->iop.bypass) {
905 		s->iop.bio = s->orig_bio;
906 		bio_get(s->iop.bio);
907 
908 		if (!(bio->bi_rw & REQ_DISCARD) ||
909 		    blk_queue_discard(bdev_get_queue(dc->bdev)))
910 			closure_bio_submit(bio, cl, s->d);
911 	} else if (s->iop.writeback) {
912 		bch_writeback_add(dc);
913 		s->iop.bio = bio;
914 
915 		if (bio->bi_rw & REQ_FLUSH) {
916 			/* Also need to send a flush to the backing device */
917 			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
918 							     dc->disk.bio_split);
919 
920 			flush->bi_rw	= WRITE_FLUSH;
921 			flush->bi_bdev	= bio->bi_bdev;
922 			flush->bi_end_io = request_endio;
923 			flush->bi_private = cl;
924 
925 			closure_bio_submit(flush, cl, s->d);
926 		}
927 	} else {
928 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
929 
930 		closure_bio_submit(bio, cl, s->d);
931 	}
932 
933 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
934 	continue_at(cl, cached_dev_write_complete, NULL);
935 }
936 
937 static void cached_dev_nodata(struct closure *cl)
938 {
939 	struct search *s = container_of(cl, struct search, cl);
940 	struct bio *bio = &s->bio.bio;
941 
942 	if (s->iop.flush_journal)
943 		bch_journal_meta(s->iop.c, cl);
944 
945 	/* If it's a flush, we send the flush to the backing device too */
946 	closure_bio_submit(bio, cl, s->d);
947 
948 	continue_at(cl, cached_dev_bio_complete, NULL);
949 }
950 
951 /* Cached devices - read & write stuff */
952 
953 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
954 {
955 	struct search *s;
956 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
957 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
958 	int rw = bio_data_dir(bio);
959 
960 	generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
961 
962 	bio->bi_bdev = dc->bdev;
963 	bio->bi_iter.bi_sector += dc->sb.data_offset;
964 
965 	if (cached_dev_get(dc)) {
966 		s = search_alloc(bio, d);
967 		trace_bcache_request_start(s->d, bio);
968 
969 		if (!bio->bi_iter.bi_size) {
970 			/*
971 			 * can't call bch_journal_meta from under
972 			 * generic_make_request
973 			 */
974 			continue_at_nobarrier(&s->cl,
975 					      cached_dev_nodata,
976 					      bcache_wq);
977 		} else {
978 			s->iop.bypass = check_should_bypass(dc, bio);
979 
980 			if (rw)
981 				cached_dev_write(dc, s);
982 			else
983 				cached_dev_read(dc, s);
984 		}
985 	} else {
986 		if ((bio->bi_rw & REQ_DISCARD) &&
987 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
988 			bio_endio(bio, 0);
989 		else
990 			bch_generic_make_request(bio, &d->bio_split_hook);
991 	}
992 }
993 
994 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
995 			    unsigned int cmd, unsigned long arg)
996 {
997 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
998 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
999 }
1000 
1001 static int cached_dev_congested(void *data, int bits)
1002 {
1003 	struct bcache_device *d = data;
1004 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1005 	struct request_queue *q = bdev_get_queue(dc->bdev);
1006 	int ret = 0;
1007 
1008 	if (bdi_congested(&q->backing_dev_info, bits))
1009 		return 1;
1010 
1011 	if (cached_dev_get(dc)) {
1012 		unsigned i;
1013 		struct cache *ca;
1014 
1015 		for_each_cache(ca, d->c, i) {
1016 			q = bdev_get_queue(ca->bdev);
1017 			ret |= bdi_congested(&q->backing_dev_info, bits);
1018 		}
1019 
1020 		cached_dev_put(dc);
1021 	}
1022 
1023 	return ret;
1024 }
1025 
1026 void bch_cached_dev_request_init(struct cached_dev *dc)
1027 {
1028 	struct gendisk *g = dc->disk.disk;
1029 
1030 	g->queue->make_request_fn		= cached_dev_make_request;
1031 	g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1032 	dc->disk.cache_miss			= cached_dev_cache_miss;
1033 	dc->disk.ioctl				= cached_dev_ioctl;
1034 }
1035 
1036 /* Flash backed devices */
1037 
1038 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1039 				struct bio *bio, unsigned sectors)
1040 {
1041 	unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1042 
1043 	swap(bio->bi_iter.bi_size, bytes);
1044 	zero_fill_bio(bio);
1045 	swap(bio->bi_iter.bi_size, bytes);
1046 
1047 	bio_advance(bio, bytes);
1048 
1049 	if (!bio->bi_iter.bi_size)
1050 		return MAP_DONE;
1051 
1052 	return MAP_CONTINUE;
1053 }
1054 
1055 static void flash_dev_nodata(struct closure *cl)
1056 {
1057 	struct search *s = container_of(cl, struct search, cl);
1058 
1059 	if (s->iop.flush_journal)
1060 		bch_journal_meta(s->iop.c, cl);
1061 
1062 	continue_at(cl, search_free, NULL);
1063 }
1064 
1065 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1066 {
1067 	struct search *s;
1068 	struct closure *cl;
1069 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1070 	int rw = bio_data_dir(bio);
1071 
1072 	generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1073 
1074 	s = search_alloc(bio, d);
1075 	cl = &s->cl;
1076 	bio = &s->bio.bio;
1077 
1078 	trace_bcache_request_start(s->d, bio);
1079 
1080 	if (!bio->bi_iter.bi_size) {
1081 		/*
1082 		 * can't call bch_journal_meta from under
1083 		 * generic_make_request
1084 		 */
1085 		continue_at_nobarrier(&s->cl,
1086 				      flash_dev_nodata,
1087 				      bcache_wq);
1088 	} else if (rw) {
1089 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1090 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1091 					&KEY(d->id, bio_end_sector(bio), 0));
1092 
1093 		s->iop.bypass		= (bio->bi_rw & REQ_DISCARD) != 0;
1094 		s->iop.writeback	= true;
1095 		s->iop.bio		= bio;
1096 
1097 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1098 	} else {
1099 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1100 	}
1101 
1102 	continue_at(cl, search_free, NULL);
1103 }
1104 
1105 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1106 			   unsigned int cmd, unsigned long arg)
1107 {
1108 	return -ENOTTY;
1109 }
1110 
1111 static int flash_dev_congested(void *data, int bits)
1112 {
1113 	struct bcache_device *d = data;
1114 	struct request_queue *q;
1115 	struct cache *ca;
1116 	unsigned i;
1117 	int ret = 0;
1118 
1119 	for_each_cache(ca, d->c, i) {
1120 		q = bdev_get_queue(ca->bdev);
1121 		ret |= bdi_congested(&q->backing_dev_info, bits);
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 void bch_flash_dev_request_init(struct bcache_device *d)
1128 {
1129 	struct gendisk *g = d->disk;
1130 
1131 	g->queue->make_request_fn		= flash_dev_make_request;
1132 	g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1133 	d->cache_miss				= flash_dev_cache_miss;
1134 	d->ioctl				= flash_dev_ioctl;
1135 }
1136 
1137 void bch_request_exit(void)
1138 {
1139 	if (bch_search_cache)
1140 		kmem_cache_destroy(bch_search_cache);
1141 }
1142 
1143 int __init bch_request_init(void)
1144 {
1145 	bch_search_cache = KMEM_CACHE(search, 0);
1146 	if (!bch_search_cache)
1147 		return -ENOMEM;
1148 
1149 	return 0;
1150 }
1151