xref: /linux/drivers/md/bcache/journal.c (revision b2d0f5d5dc53532e6f07bc546a476a55ebdfe0f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache journalling code, for btree insertions
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 #include "extents.h"
12 
13 #include <trace/events/bcache.h>
14 
15 /*
16  * Journal replay/recovery:
17  *
18  * This code is all driven from run_cache_set(); we first read the journal
19  * entries, do some other stuff, then we mark all the keys in the journal
20  * entries (same as garbage collection would), then we replay them - reinserting
21  * them into the cache in precisely the same order as they appear in the
22  * journal.
23  *
24  * We only journal keys that go in leaf nodes, which simplifies things quite a
25  * bit.
26  */
27 
28 static void journal_read_endio(struct bio *bio)
29 {
30 	struct closure *cl = bio->bi_private;
31 	closure_put(cl);
32 }
33 
34 static int journal_read_bucket(struct cache *ca, struct list_head *list,
35 			       unsigned bucket_index)
36 {
37 	struct journal_device *ja = &ca->journal;
38 	struct bio *bio = &ja->bio;
39 
40 	struct journal_replay *i;
41 	struct jset *j, *data = ca->set->journal.w[0].data;
42 	struct closure cl;
43 	unsigned len, left, offset = 0;
44 	int ret = 0;
45 	sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
46 
47 	closure_init_stack(&cl);
48 
49 	pr_debug("reading %u", bucket_index);
50 
51 	while (offset < ca->sb.bucket_size) {
52 reread:		left = ca->sb.bucket_size - offset;
53 		len = min_t(unsigned, left, PAGE_SECTORS << JSET_BITS);
54 
55 		bio_reset(bio);
56 		bio->bi_iter.bi_sector	= bucket + offset;
57 		bio_set_dev(bio, ca->bdev);
58 		bio->bi_iter.bi_size	= len << 9;
59 
60 		bio->bi_end_io	= journal_read_endio;
61 		bio->bi_private = &cl;
62 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
63 		bch_bio_map(bio, data);
64 
65 		closure_bio_submit(bio, &cl);
66 		closure_sync(&cl);
67 
68 		/* This function could be simpler now since we no longer write
69 		 * journal entries that overlap bucket boundaries; this means
70 		 * the start of a bucket will always have a valid journal entry
71 		 * if it has any journal entries at all.
72 		 */
73 
74 		j = data;
75 		while (len) {
76 			struct list_head *where;
77 			size_t blocks, bytes = set_bytes(j);
78 
79 			if (j->magic != jset_magic(&ca->sb)) {
80 				pr_debug("%u: bad magic", bucket_index);
81 				return ret;
82 			}
83 
84 			if (bytes > left << 9 ||
85 			    bytes > PAGE_SIZE << JSET_BITS) {
86 				pr_info("%u: too big, %zu bytes, offset %u",
87 					bucket_index, bytes, offset);
88 				return ret;
89 			}
90 
91 			if (bytes > len << 9)
92 				goto reread;
93 
94 			if (j->csum != csum_set(j)) {
95 				pr_info("%u: bad csum, %zu bytes, offset %u",
96 					bucket_index, bytes, offset);
97 				return ret;
98 			}
99 
100 			blocks = set_blocks(j, block_bytes(ca->set));
101 
102 			while (!list_empty(list)) {
103 				i = list_first_entry(list,
104 					struct journal_replay, list);
105 				if (i->j.seq >= j->last_seq)
106 					break;
107 				list_del(&i->list);
108 				kfree(i);
109 			}
110 
111 			list_for_each_entry_reverse(i, list, list) {
112 				if (j->seq == i->j.seq)
113 					goto next_set;
114 
115 				if (j->seq < i->j.last_seq)
116 					goto next_set;
117 
118 				if (j->seq > i->j.seq) {
119 					where = &i->list;
120 					goto add;
121 				}
122 			}
123 
124 			where = list;
125 add:
126 			i = kmalloc(offsetof(struct journal_replay, j) +
127 				    bytes, GFP_KERNEL);
128 			if (!i)
129 				return -ENOMEM;
130 			memcpy(&i->j, j, bytes);
131 			list_add(&i->list, where);
132 			ret = 1;
133 
134 			ja->seq[bucket_index] = j->seq;
135 next_set:
136 			offset	+= blocks * ca->sb.block_size;
137 			len	-= blocks * ca->sb.block_size;
138 			j = ((void *) j) + blocks * block_bytes(ca);
139 		}
140 	}
141 
142 	return ret;
143 }
144 
145 int bch_journal_read(struct cache_set *c, struct list_head *list)
146 {
147 #define read_bucket(b)							\
148 	({								\
149 		int ret = journal_read_bucket(ca, list, b);		\
150 		__set_bit(b, bitmap);					\
151 		if (ret < 0)						\
152 			return ret;					\
153 		ret;							\
154 	})
155 
156 	struct cache *ca;
157 	unsigned iter;
158 
159 	for_each_cache(ca, c, iter) {
160 		struct journal_device *ja = &ca->journal;
161 		DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
162 		unsigned i, l, r, m;
163 		uint64_t seq;
164 
165 		bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
166 		pr_debug("%u journal buckets", ca->sb.njournal_buckets);
167 
168 		/*
169 		 * Read journal buckets ordered by golden ratio hash to quickly
170 		 * find a sequence of buckets with valid journal entries
171 		 */
172 		for (i = 0; i < ca->sb.njournal_buckets; i++) {
173 			l = (i * 2654435769U) % ca->sb.njournal_buckets;
174 
175 			if (test_bit(l, bitmap))
176 				break;
177 
178 			if (read_bucket(l))
179 				goto bsearch;
180 		}
181 
182 		/*
183 		 * If that fails, check all the buckets we haven't checked
184 		 * already
185 		 */
186 		pr_debug("falling back to linear search");
187 
188 		for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets);
189 		     l < ca->sb.njournal_buckets;
190 		     l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets, l + 1))
191 			if (read_bucket(l))
192 				goto bsearch;
193 
194 		/* no journal entries on this device? */
195 		if (l == ca->sb.njournal_buckets)
196 			continue;
197 bsearch:
198 		BUG_ON(list_empty(list));
199 
200 		/* Binary search */
201 		m = l;
202 		r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
203 		pr_debug("starting binary search, l %u r %u", l, r);
204 
205 		while (l + 1 < r) {
206 			seq = list_entry(list->prev, struct journal_replay,
207 					 list)->j.seq;
208 
209 			m = (l + r) >> 1;
210 			read_bucket(m);
211 
212 			if (seq != list_entry(list->prev, struct journal_replay,
213 					      list)->j.seq)
214 				l = m;
215 			else
216 				r = m;
217 		}
218 
219 		/*
220 		 * Read buckets in reverse order until we stop finding more
221 		 * journal entries
222 		 */
223 		pr_debug("finishing up: m %u njournal_buckets %u",
224 			 m, ca->sb.njournal_buckets);
225 		l = m;
226 
227 		while (1) {
228 			if (!l--)
229 				l = ca->sb.njournal_buckets - 1;
230 
231 			if (l == m)
232 				break;
233 
234 			if (test_bit(l, bitmap))
235 				continue;
236 
237 			if (!read_bucket(l))
238 				break;
239 		}
240 
241 		seq = 0;
242 
243 		for (i = 0; i < ca->sb.njournal_buckets; i++)
244 			if (ja->seq[i] > seq) {
245 				seq = ja->seq[i];
246 				/*
247 				 * When journal_reclaim() goes to allocate for
248 				 * the first time, it'll use the bucket after
249 				 * ja->cur_idx
250 				 */
251 				ja->cur_idx = i;
252 				ja->last_idx = ja->discard_idx = (i + 1) %
253 					ca->sb.njournal_buckets;
254 
255 			}
256 	}
257 
258 	if (!list_empty(list))
259 		c->journal.seq = list_entry(list->prev,
260 					    struct journal_replay,
261 					    list)->j.seq;
262 
263 	return 0;
264 #undef read_bucket
265 }
266 
267 void bch_journal_mark(struct cache_set *c, struct list_head *list)
268 {
269 	atomic_t p = { 0 };
270 	struct bkey *k;
271 	struct journal_replay *i;
272 	struct journal *j = &c->journal;
273 	uint64_t last = j->seq;
274 
275 	/*
276 	 * journal.pin should never fill up - we never write a journal
277 	 * entry when it would fill up. But if for some reason it does, we
278 	 * iterate over the list in reverse order so that we can just skip that
279 	 * refcount instead of bugging.
280 	 */
281 
282 	list_for_each_entry_reverse(i, list, list) {
283 		BUG_ON(last < i->j.seq);
284 		i->pin = NULL;
285 
286 		while (last-- != i->j.seq)
287 			if (fifo_free(&j->pin) > 1) {
288 				fifo_push_front(&j->pin, p);
289 				atomic_set(&fifo_front(&j->pin), 0);
290 			}
291 
292 		if (fifo_free(&j->pin) > 1) {
293 			fifo_push_front(&j->pin, p);
294 			i->pin = &fifo_front(&j->pin);
295 			atomic_set(i->pin, 1);
296 		}
297 
298 		for (k = i->j.start;
299 		     k < bset_bkey_last(&i->j);
300 		     k = bkey_next(k))
301 			if (!__bch_extent_invalid(c, k)) {
302 				unsigned j;
303 
304 				for (j = 0; j < KEY_PTRS(k); j++)
305 					if (ptr_available(c, k, j))
306 						atomic_inc(&PTR_BUCKET(c, k, j)->pin);
307 
308 				bch_initial_mark_key(c, 0, k);
309 			}
310 	}
311 }
312 
313 int bch_journal_replay(struct cache_set *s, struct list_head *list)
314 {
315 	int ret = 0, keys = 0, entries = 0;
316 	struct bkey *k;
317 	struct journal_replay *i =
318 		list_entry(list->prev, struct journal_replay, list);
319 
320 	uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
321 	struct keylist keylist;
322 
323 	list_for_each_entry(i, list, list) {
324 		BUG_ON(i->pin && atomic_read(i->pin) != 1);
325 
326 		cache_set_err_on(n != i->j.seq, s,
327 "bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)",
328 				 n, i->j.seq - 1, start, end);
329 
330 		for (k = i->j.start;
331 		     k < bset_bkey_last(&i->j);
332 		     k = bkey_next(k)) {
333 			trace_bcache_journal_replay_key(k);
334 
335 			bch_keylist_init_single(&keylist, k);
336 
337 			ret = bch_btree_insert(s, &keylist, i->pin, NULL);
338 			if (ret)
339 				goto err;
340 
341 			BUG_ON(!bch_keylist_empty(&keylist));
342 			keys++;
343 
344 			cond_resched();
345 		}
346 
347 		if (i->pin)
348 			atomic_dec(i->pin);
349 		n = i->j.seq + 1;
350 		entries++;
351 	}
352 
353 	pr_info("journal replay done, %i keys in %i entries, seq %llu",
354 		keys, entries, end);
355 err:
356 	while (!list_empty(list)) {
357 		i = list_first_entry(list, struct journal_replay, list);
358 		list_del(&i->list);
359 		kfree(i);
360 	}
361 
362 	return ret;
363 }
364 
365 /* Journalling */
366 
367 static void btree_flush_write(struct cache_set *c)
368 {
369 	/*
370 	 * Try to find the btree node with that references the oldest journal
371 	 * entry, best is our current candidate and is locked if non NULL:
372 	 */
373 	struct btree *b, *best;
374 	unsigned i;
375 retry:
376 	best = NULL;
377 
378 	for_each_cached_btree(b, c, i)
379 		if (btree_current_write(b)->journal) {
380 			if (!best)
381 				best = b;
382 			else if (journal_pin_cmp(c,
383 					btree_current_write(best)->journal,
384 					btree_current_write(b)->journal)) {
385 				best = b;
386 			}
387 		}
388 
389 	b = best;
390 	if (b) {
391 		mutex_lock(&b->write_lock);
392 		if (!btree_current_write(b)->journal) {
393 			mutex_unlock(&b->write_lock);
394 			/* We raced */
395 			goto retry;
396 		}
397 
398 		__bch_btree_node_write(b, NULL);
399 		mutex_unlock(&b->write_lock);
400 	}
401 }
402 
403 #define last_seq(j)	((j)->seq - fifo_used(&(j)->pin) + 1)
404 
405 static void journal_discard_endio(struct bio *bio)
406 {
407 	struct journal_device *ja =
408 		container_of(bio, struct journal_device, discard_bio);
409 	struct cache *ca = container_of(ja, struct cache, journal);
410 
411 	atomic_set(&ja->discard_in_flight, DISCARD_DONE);
412 
413 	closure_wake_up(&ca->set->journal.wait);
414 	closure_put(&ca->set->cl);
415 }
416 
417 static void journal_discard_work(struct work_struct *work)
418 {
419 	struct journal_device *ja =
420 		container_of(work, struct journal_device, discard_work);
421 
422 	submit_bio(&ja->discard_bio);
423 }
424 
425 static void do_journal_discard(struct cache *ca)
426 {
427 	struct journal_device *ja = &ca->journal;
428 	struct bio *bio = &ja->discard_bio;
429 
430 	if (!ca->discard) {
431 		ja->discard_idx = ja->last_idx;
432 		return;
433 	}
434 
435 	switch (atomic_read(&ja->discard_in_flight)) {
436 	case DISCARD_IN_FLIGHT:
437 		return;
438 
439 	case DISCARD_DONE:
440 		ja->discard_idx = (ja->discard_idx + 1) %
441 			ca->sb.njournal_buckets;
442 
443 		atomic_set(&ja->discard_in_flight, DISCARD_READY);
444 		/* fallthrough */
445 
446 	case DISCARD_READY:
447 		if (ja->discard_idx == ja->last_idx)
448 			return;
449 
450 		atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
451 
452 		bio_init(bio, bio->bi_inline_vecs, 1);
453 		bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
454 		bio->bi_iter.bi_sector	= bucket_to_sector(ca->set,
455 						ca->sb.d[ja->discard_idx]);
456 		bio_set_dev(bio, ca->bdev);
457 		bio->bi_iter.bi_size	= bucket_bytes(ca);
458 		bio->bi_end_io		= journal_discard_endio;
459 
460 		closure_get(&ca->set->cl);
461 		INIT_WORK(&ja->discard_work, journal_discard_work);
462 		schedule_work(&ja->discard_work);
463 	}
464 }
465 
466 static void journal_reclaim(struct cache_set *c)
467 {
468 	struct bkey *k = &c->journal.key;
469 	struct cache *ca;
470 	uint64_t last_seq;
471 	unsigned iter, n = 0;
472 	atomic_t p;
473 
474 	while (!atomic_read(&fifo_front(&c->journal.pin)))
475 		fifo_pop(&c->journal.pin, p);
476 
477 	last_seq = last_seq(&c->journal);
478 
479 	/* Update last_idx */
480 
481 	for_each_cache(ca, c, iter) {
482 		struct journal_device *ja = &ca->journal;
483 
484 		while (ja->last_idx != ja->cur_idx &&
485 		       ja->seq[ja->last_idx] < last_seq)
486 			ja->last_idx = (ja->last_idx + 1) %
487 				ca->sb.njournal_buckets;
488 	}
489 
490 	for_each_cache(ca, c, iter)
491 		do_journal_discard(ca);
492 
493 	if (c->journal.blocks_free)
494 		goto out;
495 
496 	/*
497 	 * Allocate:
498 	 * XXX: Sort by free journal space
499 	 */
500 
501 	for_each_cache(ca, c, iter) {
502 		struct journal_device *ja = &ca->journal;
503 		unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
504 
505 		/* No space available on this device */
506 		if (next == ja->discard_idx)
507 			continue;
508 
509 		ja->cur_idx = next;
510 		k->ptr[n++] = PTR(0,
511 				  bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
512 				  ca->sb.nr_this_dev);
513 	}
514 
515 	bkey_init(k);
516 	SET_KEY_PTRS(k, n);
517 
518 	if (n)
519 		c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
520 out:
521 	if (!journal_full(&c->journal))
522 		__closure_wake_up(&c->journal.wait);
523 }
524 
525 void bch_journal_next(struct journal *j)
526 {
527 	atomic_t p = { 1 };
528 
529 	j->cur = (j->cur == j->w)
530 		? &j->w[1]
531 		: &j->w[0];
532 
533 	/*
534 	 * The fifo_push() needs to happen at the same time as j->seq is
535 	 * incremented for last_seq() to be calculated correctly
536 	 */
537 	BUG_ON(!fifo_push(&j->pin, p));
538 	atomic_set(&fifo_back(&j->pin), 1);
539 
540 	j->cur->data->seq	= ++j->seq;
541 	j->cur->dirty		= false;
542 	j->cur->need_write	= false;
543 	j->cur->data->keys	= 0;
544 
545 	if (fifo_full(&j->pin))
546 		pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
547 }
548 
549 static void journal_write_endio(struct bio *bio)
550 {
551 	struct journal_write *w = bio->bi_private;
552 
553 	cache_set_err_on(bio->bi_status, w->c, "journal io error");
554 	closure_put(&w->c->journal.io);
555 }
556 
557 static void journal_write(struct closure *);
558 
559 static void journal_write_done(struct closure *cl)
560 {
561 	struct journal *j = container_of(cl, struct journal, io);
562 	struct journal_write *w = (j->cur == j->w)
563 		? &j->w[1]
564 		: &j->w[0];
565 
566 	__closure_wake_up(&w->wait);
567 	continue_at_nobarrier(cl, journal_write, system_wq);
568 }
569 
570 static void journal_write_unlock(struct closure *cl)
571 {
572 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
573 
574 	c->journal.io_in_flight = 0;
575 	spin_unlock(&c->journal.lock);
576 }
577 
578 static void journal_write_unlocked(struct closure *cl)
579 	__releases(c->journal.lock)
580 {
581 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
582 	struct cache *ca;
583 	struct journal_write *w = c->journal.cur;
584 	struct bkey *k = &c->journal.key;
585 	unsigned i, sectors = set_blocks(w->data, block_bytes(c)) *
586 		c->sb.block_size;
587 
588 	struct bio *bio;
589 	struct bio_list list;
590 	bio_list_init(&list);
591 
592 	if (!w->need_write) {
593 		closure_return_with_destructor(cl, journal_write_unlock);
594 		return;
595 	} else if (journal_full(&c->journal)) {
596 		journal_reclaim(c);
597 		spin_unlock(&c->journal.lock);
598 
599 		btree_flush_write(c);
600 		continue_at(cl, journal_write, system_wq);
601 		return;
602 	}
603 
604 	c->journal.blocks_free -= set_blocks(w->data, block_bytes(c));
605 
606 	w->data->btree_level = c->root->level;
607 
608 	bkey_copy(&w->data->btree_root, &c->root->key);
609 	bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
610 
611 	for_each_cache(ca, c, i)
612 		w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
613 
614 	w->data->magic		= jset_magic(&c->sb);
615 	w->data->version	= BCACHE_JSET_VERSION;
616 	w->data->last_seq	= last_seq(&c->journal);
617 	w->data->csum		= csum_set(w->data);
618 
619 	for (i = 0; i < KEY_PTRS(k); i++) {
620 		ca = PTR_CACHE(c, k, i);
621 		bio = &ca->journal.bio;
622 
623 		atomic_long_add(sectors, &ca->meta_sectors_written);
624 
625 		bio_reset(bio);
626 		bio->bi_iter.bi_sector	= PTR_OFFSET(k, i);
627 		bio_set_dev(bio, ca->bdev);
628 		bio->bi_iter.bi_size = sectors << 9;
629 
630 		bio->bi_end_io	= journal_write_endio;
631 		bio->bi_private = w;
632 		bio_set_op_attrs(bio, REQ_OP_WRITE,
633 				 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
634 		bch_bio_map(bio, w->data);
635 
636 		trace_bcache_journal_write(bio);
637 		bio_list_add(&list, bio);
638 
639 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
640 
641 		ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
642 	}
643 
644 	atomic_dec_bug(&fifo_back(&c->journal.pin));
645 	bch_journal_next(&c->journal);
646 	journal_reclaim(c);
647 
648 	spin_unlock(&c->journal.lock);
649 
650 	while ((bio = bio_list_pop(&list)))
651 		closure_bio_submit(bio, cl);
652 
653 	continue_at(cl, journal_write_done, NULL);
654 }
655 
656 static void journal_write(struct closure *cl)
657 {
658 	struct cache_set *c = container_of(cl, struct cache_set, journal.io);
659 
660 	spin_lock(&c->journal.lock);
661 	journal_write_unlocked(cl);
662 }
663 
664 static void journal_try_write(struct cache_set *c)
665 	__releases(c->journal.lock)
666 {
667 	struct closure *cl = &c->journal.io;
668 	struct journal_write *w = c->journal.cur;
669 
670 	w->need_write = true;
671 
672 	if (!c->journal.io_in_flight) {
673 		c->journal.io_in_flight = 1;
674 		closure_call(cl, journal_write_unlocked, NULL, &c->cl);
675 	} else {
676 		spin_unlock(&c->journal.lock);
677 	}
678 }
679 
680 static struct journal_write *journal_wait_for_write(struct cache_set *c,
681 						    unsigned nkeys)
682 {
683 	size_t sectors;
684 	struct closure cl;
685 	bool wait = false;
686 
687 	closure_init_stack(&cl);
688 
689 	spin_lock(&c->journal.lock);
690 
691 	while (1) {
692 		struct journal_write *w = c->journal.cur;
693 
694 		sectors = __set_blocks(w->data, w->data->keys + nkeys,
695 				       block_bytes(c)) * c->sb.block_size;
696 
697 		if (sectors <= min_t(size_t,
698 				     c->journal.blocks_free * c->sb.block_size,
699 				     PAGE_SECTORS << JSET_BITS))
700 			return w;
701 
702 		if (wait)
703 			closure_wait(&c->journal.wait, &cl);
704 
705 		if (!journal_full(&c->journal)) {
706 			if (wait)
707 				trace_bcache_journal_entry_full(c);
708 
709 			/*
710 			 * XXX: If we were inserting so many keys that they
711 			 * won't fit in an _empty_ journal write, we'll
712 			 * deadlock. For now, handle this in
713 			 * bch_keylist_realloc() - but something to think about.
714 			 */
715 			BUG_ON(!w->data->keys);
716 
717 			journal_try_write(c); /* unlocks */
718 		} else {
719 			if (wait)
720 				trace_bcache_journal_full(c);
721 
722 			journal_reclaim(c);
723 			spin_unlock(&c->journal.lock);
724 
725 			btree_flush_write(c);
726 		}
727 
728 		closure_sync(&cl);
729 		spin_lock(&c->journal.lock);
730 		wait = true;
731 	}
732 }
733 
734 static void journal_write_work(struct work_struct *work)
735 {
736 	struct cache_set *c = container_of(to_delayed_work(work),
737 					   struct cache_set,
738 					   journal.work);
739 	spin_lock(&c->journal.lock);
740 	if (c->journal.cur->dirty)
741 		journal_try_write(c);
742 	else
743 		spin_unlock(&c->journal.lock);
744 }
745 
746 /*
747  * Entry point to the journalling code - bio_insert() and btree_invalidate()
748  * pass bch_journal() a list of keys to be journalled, and then
749  * bch_journal() hands those same keys off to btree_insert_async()
750  */
751 
752 atomic_t *bch_journal(struct cache_set *c,
753 		      struct keylist *keys,
754 		      struct closure *parent)
755 {
756 	struct journal_write *w;
757 	atomic_t *ret;
758 
759 	if (!CACHE_SYNC(&c->sb))
760 		return NULL;
761 
762 	w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
763 
764 	memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
765 	w->data->keys += bch_keylist_nkeys(keys);
766 
767 	ret = &fifo_back(&c->journal.pin);
768 	atomic_inc(ret);
769 
770 	if (parent) {
771 		closure_wait(&w->wait, parent);
772 		journal_try_write(c);
773 	} else if (!w->dirty) {
774 		w->dirty = true;
775 		schedule_delayed_work(&c->journal.work,
776 				      msecs_to_jiffies(c->journal_delay_ms));
777 		spin_unlock(&c->journal.lock);
778 	} else {
779 		spin_unlock(&c->journal.lock);
780 	}
781 
782 
783 	return ret;
784 }
785 
786 void bch_journal_meta(struct cache_set *c, struct closure *cl)
787 {
788 	struct keylist keys;
789 	atomic_t *ref;
790 
791 	bch_keylist_init(&keys);
792 
793 	ref = bch_journal(c, &keys, cl);
794 	if (ref)
795 		atomic_dec_bug(ref);
796 }
797 
798 void bch_journal_free(struct cache_set *c)
799 {
800 	free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
801 	free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
802 	free_fifo(&c->journal.pin);
803 }
804 
805 int bch_journal_alloc(struct cache_set *c)
806 {
807 	struct journal *j = &c->journal;
808 
809 	spin_lock_init(&j->lock);
810 	INIT_DELAYED_WORK(&j->work, journal_write_work);
811 
812 	c->journal_delay_ms = 100;
813 
814 	j->w[0].c = c;
815 	j->w[1].c = c;
816 
817 	if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
818 	    !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) ||
819 	    !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)))
820 		return -ENOMEM;
821 
822 	return 0;
823 }
824