1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache journalling code, for btree insertions 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 #include "extents.h" 12 13 #include <trace/events/bcache.h> 14 15 /* 16 * Journal replay/recovery: 17 * 18 * This code is all driven from run_cache_set(); we first read the journal 19 * entries, do some other stuff, then we mark all the keys in the journal 20 * entries (same as garbage collection would), then we replay them - reinserting 21 * them into the cache in precisely the same order as they appear in the 22 * journal. 23 * 24 * We only journal keys that go in leaf nodes, which simplifies things quite a 25 * bit. 26 */ 27 28 static void journal_read_endio(struct bio *bio) 29 { 30 struct closure *cl = bio->bi_private; 31 32 closure_put(cl); 33 } 34 35 static int journal_read_bucket(struct cache *ca, struct list_head *list, 36 unsigned int bucket_index) 37 { 38 struct journal_device *ja = &ca->journal; 39 struct bio *bio = &ja->bio; 40 41 struct journal_replay *i; 42 struct jset *j, *data = ca->set->journal.w[0].data; 43 struct closure cl; 44 unsigned int len, left, offset = 0; 45 int ret = 0; 46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 47 48 closure_init_stack(&cl); 49 50 pr_debug("reading %u\n", bucket_index); 51 52 while (offset < ca->sb.bucket_size) { 53 reread: left = ca->sb.bucket_size - offset; 54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); 55 56 bio_reset(bio, ca->bdev, REQ_OP_READ); 57 bio->bi_iter.bi_sector = bucket + offset; 58 bio->bi_iter.bi_size = len << 9; 59 60 bio->bi_end_io = journal_read_endio; 61 bio->bi_private = &cl; 62 bch_bio_map(bio, data); 63 64 closure_bio_submit(ca->set, bio, &cl); 65 closure_sync(&cl); 66 67 /* This function could be simpler now since we no longer write 68 * journal entries that overlap bucket boundaries; this means 69 * the start of a bucket will always have a valid journal entry 70 * if it has any journal entries at all. 71 */ 72 73 j = data; 74 while (len) { 75 struct list_head *where; 76 size_t blocks, bytes = set_bytes(j); 77 78 if (j->magic != jset_magic(&ca->sb)) { 79 pr_debug("%u: bad magic\n", bucket_index); 80 return ret; 81 } 82 83 if (bytes > left << 9 || 84 bytes > PAGE_SIZE << JSET_BITS) { 85 pr_info("%u: too big, %zu bytes, offset %u\n", 86 bucket_index, bytes, offset); 87 return ret; 88 } 89 90 if (bytes > len << 9) 91 goto reread; 92 93 if (j->csum != csum_set(j)) { 94 pr_info("%u: bad csum, %zu bytes, offset %u\n", 95 bucket_index, bytes, offset); 96 return ret; 97 } 98 99 blocks = set_blocks(j, block_bytes(ca)); 100 101 /* 102 * Nodes in 'list' are in linear increasing order of 103 * i->j.seq, the node on head has the smallest (oldest) 104 * journal seq, the node on tail has the biggest 105 * (latest) journal seq. 106 */ 107 108 /* 109 * Check from the oldest jset for last_seq. If 110 * i->j.seq < j->last_seq, it means the oldest jset 111 * in list is expired and useless, remove it from 112 * this list. Otherwise, j is a candidate jset for 113 * further following checks. 114 */ 115 while (!list_empty(list)) { 116 i = list_first_entry(list, 117 struct journal_replay, list); 118 if (i->j.seq >= j->last_seq) 119 break; 120 list_del(&i->list); 121 kfree(i); 122 } 123 124 /* iterate list in reverse order (from latest jset) */ 125 list_for_each_entry_reverse(i, list, list) { 126 if (j->seq == i->j.seq) 127 goto next_set; 128 129 /* 130 * if j->seq is less than any i->j.last_seq 131 * in list, j is an expired and useless jset. 132 */ 133 if (j->seq < i->j.last_seq) 134 goto next_set; 135 136 /* 137 * 'where' points to first jset in list which 138 * is elder then j. 139 */ 140 if (j->seq > i->j.seq) { 141 where = &i->list; 142 goto add; 143 } 144 } 145 146 where = list; 147 add: 148 i = kmalloc(offsetof(struct journal_replay, j) + 149 bytes, GFP_KERNEL); 150 if (!i) 151 return -ENOMEM; 152 unsafe_memcpy(&i->j, j, bytes, 153 /* "bytes" was calculated by set_bytes() above */); 154 /* Add to the location after 'where' points to */ 155 list_add(&i->list, where); 156 ret = 1; 157 158 if (j->seq > ja->seq[bucket_index]) 159 ja->seq[bucket_index] = j->seq; 160 next_set: 161 offset += blocks * ca->sb.block_size; 162 len -= blocks * ca->sb.block_size; 163 j = ((void *) j) + blocks * block_bytes(ca); 164 } 165 } 166 167 return ret; 168 } 169 170 int bch_journal_read(struct cache_set *c, struct list_head *list) 171 { 172 #define read_bucket(b) \ 173 ({ \ 174 ret = journal_read_bucket(ca, list, b); \ 175 __set_bit(b, bitmap); \ 176 if (ret < 0) \ 177 return ret; \ 178 ret; \ 179 }) 180 181 struct cache *ca = c->cache; 182 int ret = 0; 183 struct journal_device *ja = &ca->journal; 184 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); 185 unsigned int i, l, r, m; 186 uint64_t seq; 187 188 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 189 pr_debug("%u journal buckets\n", ca->sb.njournal_buckets); 190 191 /* 192 * Read journal buckets ordered by golden ratio hash to quickly 193 * find a sequence of buckets with valid journal entries 194 */ 195 for (i = 0; i < ca->sb.njournal_buckets; i++) { 196 /* 197 * We must try the index l with ZERO first for 198 * correctness due to the scenario that the journal 199 * bucket is circular buffer which might have wrapped 200 */ 201 l = (i * 2654435769U) % ca->sb.njournal_buckets; 202 203 if (test_bit(l, bitmap)) 204 break; 205 206 if (read_bucket(l)) 207 goto bsearch; 208 } 209 210 /* 211 * If that fails, check all the buckets we haven't checked 212 * already 213 */ 214 pr_debug("falling back to linear search\n"); 215 216 for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets) 217 if (read_bucket(l)) 218 goto bsearch; 219 220 /* no journal entries on this device? */ 221 if (l == ca->sb.njournal_buckets) 222 goto out; 223 bsearch: 224 BUG_ON(list_empty(list)); 225 226 /* Binary search */ 227 m = l; 228 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 229 pr_debug("starting binary search, l %u r %u\n", l, r); 230 231 while (l + 1 < r) { 232 seq = list_entry(list->prev, struct journal_replay, 233 list)->j.seq; 234 235 m = (l + r) >> 1; 236 read_bucket(m); 237 238 if (seq != list_entry(list->prev, struct journal_replay, 239 list)->j.seq) 240 l = m; 241 else 242 r = m; 243 } 244 245 /* 246 * Read buckets in reverse order until we stop finding more 247 * journal entries 248 */ 249 pr_debug("finishing up: m %u njournal_buckets %u\n", 250 m, ca->sb.njournal_buckets); 251 l = m; 252 253 while (1) { 254 if (!l--) 255 l = ca->sb.njournal_buckets - 1; 256 257 if (l == m) 258 break; 259 260 if (test_bit(l, bitmap)) 261 continue; 262 263 if (!read_bucket(l)) 264 break; 265 } 266 267 seq = 0; 268 269 for (i = 0; i < ca->sb.njournal_buckets; i++) 270 if (ja->seq[i] > seq) { 271 seq = ja->seq[i]; 272 /* 273 * When journal_reclaim() goes to allocate for 274 * the first time, it'll use the bucket after 275 * ja->cur_idx 276 */ 277 ja->cur_idx = i; 278 ja->last_idx = (i + 1) % ca->sb.njournal_buckets; 279 280 } 281 282 out: 283 if (!list_empty(list)) 284 c->journal.seq = list_entry(list->prev, 285 struct journal_replay, 286 list)->j.seq; 287 288 return 0; 289 #undef read_bucket 290 } 291 292 void bch_journal_mark(struct cache_set *c, struct list_head *list) 293 { 294 atomic_t p = { 0 }; 295 struct bkey *k; 296 struct journal_replay *i; 297 struct journal *j = &c->journal; 298 uint64_t last = j->seq; 299 300 /* 301 * journal.pin should never fill up - we never write a journal 302 * entry when it would fill up. But if for some reason it does, we 303 * iterate over the list in reverse order so that we can just skip that 304 * refcount instead of bugging. 305 */ 306 307 list_for_each_entry_reverse(i, list, list) { 308 BUG_ON(last < i->j.seq); 309 i->pin = NULL; 310 311 while (last-- != i->j.seq) 312 if (fifo_free(&j->pin) > 1) { 313 fifo_push_front(&j->pin, p); 314 atomic_set(&fifo_front(&j->pin), 0); 315 } 316 317 if (fifo_free(&j->pin) > 1) { 318 fifo_push_front(&j->pin, p); 319 i->pin = &fifo_front(&j->pin); 320 atomic_set(i->pin, 1); 321 } 322 323 for (k = i->j.start; 324 k < bset_bkey_last(&i->j); 325 k = bkey_next(k)) 326 if (!__bch_extent_invalid(c, k)) { 327 unsigned int j; 328 329 for (j = 0; j < KEY_PTRS(k); j++) 330 if (ptr_available(c, k, j)) 331 atomic_inc(&PTR_BUCKET(c, k, j)->pin); 332 333 bch_initial_mark_key(c, 0, k); 334 } 335 } 336 } 337 338 int bch_journal_replay(struct cache_set *s, struct list_head *list) 339 { 340 int ret = 0, keys = 0, entries = 0; 341 struct bkey *k; 342 struct journal_replay *i = 343 list_entry(list->prev, struct journal_replay, list); 344 345 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 346 struct keylist keylist; 347 348 list_for_each_entry(i, list, list) { 349 BUG_ON(i->pin && atomic_read(i->pin) != 1); 350 351 if (n != i->j.seq) { 352 pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n", 353 n, i->j.seq - 1, start, end); 354 ret = -EIO; 355 goto err; 356 } 357 358 for (k = i->j.start; 359 k < bset_bkey_last(&i->j); 360 k = bkey_next(k)) { 361 trace_bcache_journal_replay_key(k); 362 363 bch_keylist_init_single(&keylist, k); 364 365 ret = bch_btree_insert(s, &keylist, i->pin, NULL); 366 if (ret) 367 goto err; 368 369 BUG_ON(!bch_keylist_empty(&keylist)); 370 keys++; 371 372 cond_resched(); 373 } 374 375 if (i->pin) 376 atomic_dec(i->pin); 377 n = i->j.seq + 1; 378 entries++; 379 } 380 381 pr_info("journal replay done, %i keys in %i entries, seq %llu\n", 382 keys, entries, end); 383 err: 384 while (!list_empty(list)) { 385 i = list_first_entry(list, struct journal_replay, list); 386 list_del(&i->list); 387 kfree(i); 388 } 389 390 return ret; 391 } 392 393 void bch_journal_space_reserve(struct journal *j) 394 { 395 j->do_reserve = true; 396 } 397 398 /* Journalling */ 399 400 static void btree_flush_write(struct cache_set *c) 401 { 402 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; 403 unsigned int i, nr; 404 int ref_nr; 405 atomic_t *fifo_front_p, *now_fifo_front_p; 406 size_t mask; 407 408 if (c->journal.btree_flushing) 409 return; 410 411 spin_lock(&c->journal.flush_write_lock); 412 if (c->journal.btree_flushing) { 413 spin_unlock(&c->journal.flush_write_lock); 414 return; 415 } 416 c->journal.btree_flushing = true; 417 spin_unlock(&c->journal.flush_write_lock); 418 419 /* get the oldest journal entry and check its refcount */ 420 spin_lock(&c->journal.lock); 421 fifo_front_p = &fifo_front(&c->journal.pin); 422 ref_nr = atomic_read(fifo_front_p); 423 if (ref_nr <= 0) { 424 /* 425 * do nothing if no btree node references 426 * the oldest journal entry 427 */ 428 spin_unlock(&c->journal.lock); 429 goto out; 430 } 431 spin_unlock(&c->journal.lock); 432 433 mask = c->journal.pin.mask; 434 nr = 0; 435 atomic_long_inc(&c->flush_write); 436 memset(btree_nodes, 0, sizeof(btree_nodes)); 437 438 mutex_lock(&c->bucket_lock); 439 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 440 /* 441 * It is safe to get now_fifo_front_p without holding 442 * c->journal.lock here, because we don't need to know 443 * the exactly accurate value, just check whether the 444 * front pointer of c->journal.pin is changed. 445 */ 446 now_fifo_front_p = &fifo_front(&c->journal.pin); 447 /* 448 * If the oldest journal entry is reclaimed and front 449 * pointer of c->journal.pin changes, it is unnecessary 450 * to scan c->btree_cache anymore, just quit the loop and 451 * flush out what we have already. 452 */ 453 if (now_fifo_front_p != fifo_front_p) 454 break; 455 /* 456 * quit this loop if all matching btree nodes are 457 * scanned and record in btree_nodes[] already. 458 */ 459 ref_nr = atomic_read(fifo_front_p); 460 if (nr >= ref_nr) 461 break; 462 463 if (btree_node_journal_flush(b)) 464 pr_err("BUG: flush_write bit should not be set here!\n"); 465 466 mutex_lock(&b->write_lock); 467 468 if (!btree_node_dirty(b)) { 469 mutex_unlock(&b->write_lock); 470 continue; 471 } 472 473 if (!btree_current_write(b)->journal) { 474 mutex_unlock(&b->write_lock); 475 continue; 476 } 477 478 /* 479 * Only select the btree node which exactly references 480 * the oldest journal entry. 481 * 482 * If the journal entry pointed by fifo_front_p is 483 * reclaimed in parallel, don't worry: 484 * - the list_for_each_xxx loop will quit when checking 485 * next now_fifo_front_p. 486 * - If there are matched nodes recorded in btree_nodes[], 487 * they are clean now (this is why and how the oldest 488 * journal entry can be reclaimed). These selected nodes 489 * will be ignored and skipped in the following for-loop. 490 */ 491 if (((btree_current_write(b)->journal - fifo_front_p) & 492 mask) != 0) { 493 mutex_unlock(&b->write_lock); 494 continue; 495 } 496 497 set_btree_node_journal_flush(b); 498 499 mutex_unlock(&b->write_lock); 500 501 btree_nodes[nr++] = b; 502 /* 503 * To avoid holding c->bucket_lock too long time, 504 * only scan for BTREE_FLUSH_NR matched btree nodes 505 * at most. If there are more btree nodes reference 506 * the oldest journal entry, try to flush them next 507 * time when btree_flush_write() is called. 508 */ 509 if (nr == BTREE_FLUSH_NR) 510 break; 511 } 512 mutex_unlock(&c->bucket_lock); 513 514 for (i = 0; i < nr; i++) { 515 b = btree_nodes[i]; 516 if (!b) { 517 pr_err("BUG: btree_nodes[%d] is NULL\n", i); 518 continue; 519 } 520 521 /* safe to check without holding b->write_lock */ 522 if (!btree_node_journal_flush(b)) { 523 pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b); 524 continue; 525 } 526 527 mutex_lock(&b->write_lock); 528 if (!btree_current_write(b)->journal) { 529 clear_bit(BTREE_NODE_journal_flush, &b->flags); 530 mutex_unlock(&b->write_lock); 531 pr_debug("bnode %p: written by others\n", b); 532 continue; 533 } 534 535 if (!btree_node_dirty(b)) { 536 clear_bit(BTREE_NODE_journal_flush, &b->flags); 537 mutex_unlock(&b->write_lock); 538 pr_debug("bnode %p: dirty bit cleaned by others\n", b); 539 continue; 540 } 541 542 __bch_btree_node_write(b, NULL); 543 clear_bit(BTREE_NODE_journal_flush, &b->flags); 544 mutex_unlock(&b->write_lock); 545 } 546 547 out: 548 spin_lock(&c->journal.flush_write_lock); 549 c->journal.btree_flushing = false; 550 spin_unlock(&c->journal.flush_write_lock); 551 } 552 553 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 554 555 static unsigned int free_journal_buckets(struct cache_set *c) 556 { 557 struct journal *j = &c->journal; 558 struct cache *ca = c->cache; 559 struct journal_device *ja = &c->cache->journal; 560 unsigned int n; 561 562 /* In case njournal_buckets is not power of 2 */ 563 if (ja->cur_idx >= ja->last_idx) 564 n = ca->sb.njournal_buckets + ja->last_idx - ja->cur_idx; 565 else 566 n = ja->last_idx - ja->cur_idx; 567 568 if (n > (1 + j->do_reserve)) 569 return n - (1 + j->do_reserve); 570 571 return 0; 572 } 573 574 static void journal_reclaim(struct cache_set *c) 575 { 576 struct bkey *k = &c->journal.key; 577 struct cache *ca = c->cache; 578 uint64_t last_seq; 579 struct journal_device *ja = &ca->journal; 580 atomic_t p __maybe_unused; 581 582 atomic_long_inc(&c->reclaim); 583 584 while (!atomic_read(&fifo_front(&c->journal.pin))) 585 fifo_pop(&c->journal.pin, p); 586 587 last_seq = last_seq(&c->journal); 588 589 /* Update last_idx */ 590 591 while (ja->last_idx != ja->cur_idx && 592 ja->seq[ja->last_idx] < last_seq) 593 ja->last_idx = (ja->last_idx + 1) % 594 ca->sb.njournal_buckets; 595 596 if (c->journal.blocks_free) 597 goto out; 598 599 if (!free_journal_buckets(c)) 600 goto out; 601 602 ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 603 k->ptr[0] = MAKE_PTR(0, 604 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 605 ca->sb.nr_this_dev); 606 atomic_long_inc(&c->reclaimed_journal_buckets); 607 608 bkey_init(k); 609 SET_KEY_PTRS(k, 1); 610 c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits; 611 612 out: 613 if (!journal_full(&c->journal)) 614 __closure_wake_up(&c->journal.wait); 615 } 616 617 void bch_journal_next(struct journal *j) 618 { 619 atomic_t p = { 1 }; 620 621 j->cur = (j->cur == j->w) 622 ? &j->w[1] 623 : &j->w[0]; 624 625 /* 626 * The fifo_push() needs to happen at the same time as j->seq is 627 * incremented for last_seq() to be calculated correctly 628 */ 629 BUG_ON(!fifo_push(&j->pin, p)); 630 atomic_set(&fifo_back(&j->pin), 1); 631 632 j->cur->data->seq = ++j->seq; 633 j->cur->dirty = false; 634 j->cur->need_write = false; 635 j->cur->data->keys = 0; 636 637 if (fifo_full(&j->pin)) 638 pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin)); 639 } 640 641 static void journal_write_endio(struct bio *bio) 642 { 643 struct journal_write *w = bio->bi_private; 644 645 cache_set_err_on(bio->bi_status, w->c, "journal io error"); 646 closure_put(&w->c->journal.io); 647 } 648 649 static CLOSURE_CALLBACK(journal_write); 650 651 static CLOSURE_CALLBACK(journal_write_done) 652 { 653 closure_type(j, struct journal, io); 654 struct journal_write *w = (j->cur == j->w) 655 ? &j->w[1] 656 : &j->w[0]; 657 658 __closure_wake_up(&w->wait); 659 continue_at_nobarrier(cl, journal_write, bch_journal_wq); 660 } 661 662 static CLOSURE_CALLBACK(journal_write_unlock) 663 __releases(&c->journal.lock) 664 { 665 closure_type(c, struct cache_set, journal.io); 666 667 c->journal.io_in_flight = 0; 668 spin_unlock(&c->journal.lock); 669 } 670 671 static CLOSURE_CALLBACK(journal_write_unlocked) 672 __releases(c->journal.lock) 673 { 674 closure_type(c, struct cache_set, journal.io); 675 struct cache *ca = c->cache; 676 struct journal_write *w = c->journal.cur; 677 struct bkey *k = &c->journal.key; 678 unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) * 679 ca->sb.block_size; 680 681 struct bio *bio; 682 struct bio_list list; 683 684 bio_list_init(&list); 685 686 if (!w->need_write) { 687 closure_return_with_destructor(cl, journal_write_unlock); 688 return; 689 } else if (journal_full(&c->journal)) { 690 journal_reclaim(c); 691 spin_unlock(&c->journal.lock); 692 693 btree_flush_write(c); 694 continue_at(cl, journal_write, bch_journal_wq); 695 return; 696 } 697 698 c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca)); 699 700 w->data->btree_level = c->root->level; 701 702 bkey_copy(&w->data->btree_root, &c->root->key); 703 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 704 705 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 706 w->data->magic = jset_magic(&ca->sb); 707 w->data->version = BCACHE_JSET_VERSION; 708 w->data->last_seq = last_seq(&c->journal); 709 w->data->csum = csum_set(w->data); 710 711 for (i = 0; i < KEY_PTRS(k); i++) { 712 ca = c->cache; 713 bio = &ca->journal.bio; 714 715 atomic_long_add(sectors, &ca->meta_sectors_written); 716 717 bio_reset(bio, ca->bdev, REQ_OP_WRITE | 718 REQ_SYNC | REQ_META | REQ_PREFLUSH | REQ_FUA); 719 bio->bi_iter.bi_sector = PTR_OFFSET(k, i); 720 bio->bi_iter.bi_size = sectors << 9; 721 722 bio->bi_end_io = journal_write_endio; 723 bio->bi_private = w; 724 bch_bio_map(bio, w->data); 725 726 trace_bcache_journal_write(bio, w->data->keys); 727 bio_list_add(&list, bio); 728 729 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 730 731 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 732 } 733 734 /* If KEY_PTRS(k) == 0, this jset gets lost in air */ 735 BUG_ON(i == 0); 736 737 atomic_dec_bug(&fifo_back(&c->journal.pin)); 738 bch_journal_next(&c->journal); 739 journal_reclaim(c); 740 741 spin_unlock(&c->journal.lock); 742 743 while ((bio = bio_list_pop(&list))) 744 closure_bio_submit(c, bio, cl); 745 746 continue_at(cl, journal_write_done, NULL); 747 } 748 749 static CLOSURE_CALLBACK(journal_write) 750 { 751 closure_type(c, struct cache_set, journal.io); 752 753 spin_lock(&c->journal.lock); 754 journal_write_unlocked(&cl->work); 755 } 756 757 static void journal_try_write(struct cache_set *c) 758 __releases(c->journal.lock) 759 { 760 struct closure *cl = &c->journal.io; 761 struct journal_write *w = c->journal.cur; 762 763 w->need_write = true; 764 765 if (!c->journal.io_in_flight) { 766 c->journal.io_in_flight = 1; 767 closure_call(cl, journal_write_unlocked, NULL, &c->cl); 768 } else { 769 spin_unlock(&c->journal.lock); 770 } 771 } 772 773 static struct journal_write *journal_wait_for_write(struct cache_set *c, 774 unsigned int nkeys) 775 __acquires(&c->journal.lock) 776 { 777 size_t sectors; 778 struct closure cl; 779 bool wait = false; 780 struct cache *ca = c->cache; 781 782 closure_init_stack(&cl); 783 784 spin_lock(&c->journal.lock); 785 786 while (1) { 787 struct journal_write *w = c->journal.cur; 788 789 sectors = __set_blocks(w->data, w->data->keys + nkeys, 790 block_bytes(ca)) * ca->sb.block_size; 791 792 if (sectors <= min_t(size_t, 793 c->journal.blocks_free * ca->sb.block_size, 794 PAGE_SECTORS << JSET_BITS)) 795 return w; 796 797 if (wait) 798 closure_wait(&c->journal.wait, &cl); 799 800 if (!journal_full(&c->journal)) { 801 if (wait) 802 trace_bcache_journal_entry_full(c); 803 804 /* 805 * XXX: If we were inserting so many keys that they 806 * won't fit in an _empty_ journal write, we'll 807 * deadlock. For now, handle this in 808 * bch_keylist_realloc() - but something to think about. 809 */ 810 BUG_ON(!w->data->keys); 811 812 journal_try_write(c); /* unlocks */ 813 } else { 814 if (wait) 815 trace_bcache_journal_full(c); 816 817 journal_reclaim(c); 818 spin_unlock(&c->journal.lock); 819 820 btree_flush_write(c); 821 } 822 823 closure_sync(&cl); 824 spin_lock(&c->journal.lock); 825 wait = true; 826 } 827 } 828 829 static void journal_write_work(struct work_struct *work) 830 { 831 struct cache_set *c = container_of(to_delayed_work(work), 832 struct cache_set, 833 journal.work); 834 spin_lock(&c->journal.lock); 835 if (c->journal.cur->dirty) 836 journal_try_write(c); 837 else 838 spin_unlock(&c->journal.lock); 839 } 840 841 /* 842 * Entry point to the journalling code - bio_insert() and btree_invalidate() 843 * pass bch_journal() a list of keys to be journalled, and then 844 * bch_journal() hands those same keys off to btree_insert_async() 845 */ 846 847 atomic_t *bch_journal(struct cache_set *c, 848 struct keylist *keys, 849 struct closure *parent) 850 { 851 struct journal_write *w; 852 atomic_t *ret; 853 854 /* No journaling if CACHE_SET_IO_DISABLE set already */ 855 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 856 return NULL; 857 858 if (!CACHE_SYNC(&c->cache->sb)) 859 return NULL; 860 861 w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); 862 863 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); 864 w->data->keys += bch_keylist_nkeys(keys); 865 866 ret = &fifo_back(&c->journal.pin); 867 atomic_inc(ret); 868 869 if (parent) { 870 closure_wait(&w->wait, parent); 871 journal_try_write(c); 872 } else if (!w->dirty) { 873 w->dirty = true; 874 queue_delayed_work(bch_flush_wq, &c->journal.work, 875 msecs_to_jiffies(c->journal_delay_ms)); 876 spin_unlock(&c->journal.lock); 877 } else { 878 spin_unlock(&c->journal.lock); 879 } 880 881 882 return ret; 883 } 884 885 void bch_journal_meta(struct cache_set *c, struct closure *cl) 886 { 887 struct keylist keys; 888 atomic_t *ref; 889 890 bch_keylist_init(&keys); 891 892 ref = bch_journal(c, &keys, cl); 893 if (ref) 894 atomic_dec_bug(ref); 895 } 896 897 void bch_journal_free(struct cache_set *c) 898 { 899 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 900 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 901 free_fifo(&c->journal.pin); 902 } 903 904 int bch_journal_alloc(struct cache_set *c) 905 { 906 struct journal *j = &c->journal; 907 908 spin_lock_init(&j->lock); 909 spin_lock_init(&j->flush_write_lock); 910 INIT_DELAYED_WORK(&j->work, journal_write_work); 911 912 c->journal_delay_ms = 100; 913 914 j->w[0].c = c; 915 j->w[1].c = c; 916 917 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 918 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) || 919 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS))) 920 return -ENOMEM; 921 922 return 0; 923 } 924