1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache journalling code, for btree insertions 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 #include "extents.h" 12 13 #include <trace/events/bcache.h> 14 15 /* 16 * Journal replay/recovery: 17 * 18 * This code is all driven from run_cache_set(); we first read the journal 19 * entries, do some other stuff, then we mark all the keys in the journal 20 * entries (same as garbage collection would), then we replay them - reinserting 21 * them into the cache in precisely the same order as they appear in the 22 * journal. 23 * 24 * We only journal keys that go in leaf nodes, which simplifies things quite a 25 * bit. 26 */ 27 28 static void journal_read_endio(struct bio *bio) 29 { 30 struct closure *cl = bio->bi_private; 31 32 closure_put(cl); 33 } 34 35 static int journal_read_bucket(struct cache *ca, struct list_head *list, 36 unsigned int bucket_index) 37 { 38 struct journal_device *ja = &ca->journal; 39 struct bio *bio = &ja->bio; 40 41 struct journal_replay *i; 42 struct jset *j, *data = ca->set->journal.w[0].data; 43 struct closure cl; 44 unsigned int len, left, offset = 0; 45 int ret = 0; 46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); 47 48 closure_init_stack(&cl); 49 50 pr_debug("reading %u\n", bucket_index); 51 52 while (offset < ca->sb.bucket_size) { 53 reread: left = ca->sb.bucket_size - offset; 54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS); 55 56 bio_reset(bio); 57 bio->bi_iter.bi_sector = bucket + offset; 58 bio_set_dev(bio, ca->bdev); 59 bio->bi_iter.bi_size = len << 9; 60 61 bio->bi_end_io = journal_read_endio; 62 bio->bi_private = &cl; 63 bio_set_op_attrs(bio, REQ_OP_READ, 0); 64 bch_bio_map(bio, data); 65 66 closure_bio_submit(ca->set, bio, &cl); 67 closure_sync(&cl); 68 69 /* This function could be simpler now since we no longer write 70 * journal entries that overlap bucket boundaries; this means 71 * the start of a bucket will always have a valid journal entry 72 * if it has any journal entries at all. 73 */ 74 75 j = data; 76 while (len) { 77 struct list_head *where; 78 size_t blocks, bytes = set_bytes(j); 79 80 if (j->magic != jset_magic(&ca->sb)) { 81 pr_debug("%u: bad magic\n", bucket_index); 82 return ret; 83 } 84 85 if (bytes > left << 9 || 86 bytes > PAGE_SIZE << JSET_BITS) { 87 pr_info("%u: too big, %zu bytes, offset %u\n", 88 bucket_index, bytes, offset); 89 return ret; 90 } 91 92 if (bytes > len << 9) 93 goto reread; 94 95 if (j->csum != csum_set(j)) { 96 pr_info("%u: bad csum, %zu bytes, offset %u\n", 97 bucket_index, bytes, offset); 98 return ret; 99 } 100 101 blocks = set_blocks(j, block_bytes(ca)); 102 103 /* 104 * Nodes in 'list' are in linear increasing order of 105 * i->j.seq, the node on head has the smallest (oldest) 106 * journal seq, the node on tail has the biggest 107 * (latest) journal seq. 108 */ 109 110 /* 111 * Check from the oldest jset for last_seq. If 112 * i->j.seq < j->last_seq, it means the oldest jset 113 * in list is expired and useless, remove it from 114 * this list. Otherwise, j is a condidate jset for 115 * further following checks. 116 */ 117 while (!list_empty(list)) { 118 i = list_first_entry(list, 119 struct journal_replay, list); 120 if (i->j.seq >= j->last_seq) 121 break; 122 list_del(&i->list); 123 kfree(i); 124 } 125 126 /* iterate list in reverse order (from latest jset) */ 127 list_for_each_entry_reverse(i, list, list) { 128 if (j->seq == i->j.seq) 129 goto next_set; 130 131 /* 132 * if j->seq is less than any i->j.last_seq 133 * in list, j is an expired and useless jset. 134 */ 135 if (j->seq < i->j.last_seq) 136 goto next_set; 137 138 /* 139 * 'where' points to first jset in list which 140 * is elder then j. 141 */ 142 if (j->seq > i->j.seq) { 143 where = &i->list; 144 goto add; 145 } 146 } 147 148 where = list; 149 add: 150 i = kmalloc(offsetof(struct journal_replay, j) + 151 bytes, GFP_KERNEL); 152 if (!i) 153 return -ENOMEM; 154 memcpy(&i->j, j, bytes); 155 /* Add to the location after 'where' points to */ 156 list_add(&i->list, where); 157 ret = 1; 158 159 if (j->seq > ja->seq[bucket_index]) 160 ja->seq[bucket_index] = j->seq; 161 next_set: 162 offset += blocks * ca->sb.block_size; 163 len -= blocks * ca->sb.block_size; 164 j = ((void *) j) + blocks * block_bytes(ca); 165 } 166 } 167 168 return ret; 169 } 170 171 int bch_journal_read(struct cache_set *c, struct list_head *list) 172 { 173 #define read_bucket(b) \ 174 ({ \ 175 ret = journal_read_bucket(ca, list, b); \ 176 __set_bit(b, bitmap); \ 177 if (ret < 0) \ 178 return ret; \ 179 ret; \ 180 }) 181 182 struct cache *ca = c->cache; 183 int ret = 0; 184 struct journal_device *ja = &ca->journal; 185 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS); 186 unsigned int i, l, r, m; 187 uint64_t seq; 188 189 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); 190 pr_debug("%u journal buckets\n", ca->sb.njournal_buckets); 191 192 /* 193 * Read journal buckets ordered by golden ratio hash to quickly 194 * find a sequence of buckets with valid journal entries 195 */ 196 for (i = 0; i < ca->sb.njournal_buckets; i++) { 197 /* 198 * We must try the index l with ZERO first for 199 * correctness due to the scenario that the journal 200 * bucket is circular buffer which might have wrapped 201 */ 202 l = (i * 2654435769U) % ca->sb.njournal_buckets; 203 204 if (test_bit(l, bitmap)) 205 break; 206 207 if (read_bucket(l)) 208 goto bsearch; 209 } 210 211 /* 212 * If that fails, check all the buckets we haven't checked 213 * already 214 */ 215 pr_debug("falling back to linear search\n"); 216 217 for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets) 218 if (read_bucket(l)) 219 goto bsearch; 220 221 /* no journal entries on this device? */ 222 if (l == ca->sb.njournal_buckets) 223 goto out; 224 bsearch: 225 BUG_ON(list_empty(list)); 226 227 /* Binary search */ 228 m = l; 229 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); 230 pr_debug("starting binary search, l %u r %u\n", l, r); 231 232 while (l + 1 < r) { 233 seq = list_entry(list->prev, struct journal_replay, 234 list)->j.seq; 235 236 m = (l + r) >> 1; 237 read_bucket(m); 238 239 if (seq != list_entry(list->prev, struct journal_replay, 240 list)->j.seq) 241 l = m; 242 else 243 r = m; 244 } 245 246 /* 247 * Read buckets in reverse order until we stop finding more 248 * journal entries 249 */ 250 pr_debug("finishing up: m %u njournal_buckets %u\n", 251 m, ca->sb.njournal_buckets); 252 l = m; 253 254 while (1) { 255 if (!l--) 256 l = ca->sb.njournal_buckets - 1; 257 258 if (l == m) 259 break; 260 261 if (test_bit(l, bitmap)) 262 continue; 263 264 if (!read_bucket(l)) 265 break; 266 } 267 268 seq = 0; 269 270 for (i = 0; i < ca->sb.njournal_buckets; i++) 271 if (ja->seq[i] > seq) { 272 seq = ja->seq[i]; 273 /* 274 * When journal_reclaim() goes to allocate for 275 * the first time, it'll use the bucket after 276 * ja->cur_idx 277 */ 278 ja->cur_idx = i; 279 ja->last_idx = ja->discard_idx = (i + 1) % 280 ca->sb.njournal_buckets; 281 282 } 283 284 out: 285 if (!list_empty(list)) 286 c->journal.seq = list_entry(list->prev, 287 struct journal_replay, 288 list)->j.seq; 289 290 return 0; 291 #undef read_bucket 292 } 293 294 void bch_journal_mark(struct cache_set *c, struct list_head *list) 295 { 296 atomic_t p = { 0 }; 297 struct bkey *k; 298 struct journal_replay *i; 299 struct journal *j = &c->journal; 300 uint64_t last = j->seq; 301 302 /* 303 * journal.pin should never fill up - we never write a journal 304 * entry when it would fill up. But if for some reason it does, we 305 * iterate over the list in reverse order so that we can just skip that 306 * refcount instead of bugging. 307 */ 308 309 list_for_each_entry_reverse(i, list, list) { 310 BUG_ON(last < i->j.seq); 311 i->pin = NULL; 312 313 while (last-- != i->j.seq) 314 if (fifo_free(&j->pin) > 1) { 315 fifo_push_front(&j->pin, p); 316 atomic_set(&fifo_front(&j->pin), 0); 317 } 318 319 if (fifo_free(&j->pin) > 1) { 320 fifo_push_front(&j->pin, p); 321 i->pin = &fifo_front(&j->pin); 322 atomic_set(i->pin, 1); 323 } 324 325 for (k = i->j.start; 326 k < bset_bkey_last(&i->j); 327 k = bkey_next(k)) 328 if (!__bch_extent_invalid(c, k)) { 329 unsigned int j; 330 331 for (j = 0; j < KEY_PTRS(k); j++) 332 if (ptr_available(c, k, j)) 333 atomic_inc(&PTR_BUCKET(c, k, j)->pin); 334 335 bch_initial_mark_key(c, 0, k); 336 } 337 } 338 } 339 340 static bool is_discard_enabled(struct cache_set *s) 341 { 342 struct cache *ca = s->cache; 343 344 if (ca->discard) 345 return true; 346 347 return false; 348 } 349 350 int bch_journal_replay(struct cache_set *s, struct list_head *list) 351 { 352 int ret = 0, keys = 0, entries = 0; 353 struct bkey *k; 354 struct journal_replay *i = 355 list_entry(list->prev, struct journal_replay, list); 356 357 uint64_t start = i->j.last_seq, end = i->j.seq, n = start; 358 struct keylist keylist; 359 360 list_for_each_entry(i, list, list) { 361 BUG_ON(i->pin && atomic_read(i->pin) != 1); 362 363 if (n != i->j.seq) { 364 if (n == start && is_discard_enabled(s)) 365 pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n", 366 n, i->j.seq - 1, start, end); 367 else { 368 pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n", 369 n, i->j.seq - 1, start, end); 370 ret = -EIO; 371 goto err; 372 } 373 } 374 375 for (k = i->j.start; 376 k < bset_bkey_last(&i->j); 377 k = bkey_next(k)) { 378 trace_bcache_journal_replay_key(k); 379 380 bch_keylist_init_single(&keylist, k); 381 382 ret = bch_btree_insert(s, &keylist, i->pin, NULL); 383 if (ret) 384 goto err; 385 386 BUG_ON(!bch_keylist_empty(&keylist)); 387 keys++; 388 389 cond_resched(); 390 } 391 392 if (i->pin) 393 atomic_dec(i->pin); 394 n = i->j.seq + 1; 395 entries++; 396 } 397 398 pr_info("journal replay done, %i keys in %i entries, seq %llu\n", 399 keys, entries, end); 400 err: 401 while (!list_empty(list)) { 402 i = list_first_entry(list, struct journal_replay, list); 403 list_del(&i->list); 404 kfree(i); 405 } 406 407 return ret; 408 } 409 410 /* Journalling */ 411 412 static void btree_flush_write(struct cache_set *c) 413 { 414 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR]; 415 unsigned int i, nr; 416 int ref_nr; 417 atomic_t *fifo_front_p, *now_fifo_front_p; 418 size_t mask; 419 420 if (c->journal.btree_flushing) 421 return; 422 423 spin_lock(&c->journal.flush_write_lock); 424 if (c->journal.btree_flushing) { 425 spin_unlock(&c->journal.flush_write_lock); 426 return; 427 } 428 c->journal.btree_flushing = true; 429 spin_unlock(&c->journal.flush_write_lock); 430 431 /* get the oldest journal entry and check its refcount */ 432 spin_lock(&c->journal.lock); 433 fifo_front_p = &fifo_front(&c->journal.pin); 434 ref_nr = atomic_read(fifo_front_p); 435 if (ref_nr <= 0) { 436 /* 437 * do nothing if no btree node references 438 * the oldest journal entry 439 */ 440 spin_unlock(&c->journal.lock); 441 goto out; 442 } 443 spin_unlock(&c->journal.lock); 444 445 mask = c->journal.pin.mask; 446 nr = 0; 447 atomic_long_inc(&c->flush_write); 448 memset(btree_nodes, 0, sizeof(btree_nodes)); 449 450 mutex_lock(&c->bucket_lock); 451 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 452 /* 453 * It is safe to get now_fifo_front_p without holding 454 * c->journal.lock here, because we don't need to know 455 * the exactly accurate value, just check whether the 456 * front pointer of c->journal.pin is changed. 457 */ 458 now_fifo_front_p = &fifo_front(&c->journal.pin); 459 /* 460 * If the oldest journal entry is reclaimed and front 461 * pointer of c->journal.pin changes, it is unnecessary 462 * to scan c->btree_cache anymore, just quit the loop and 463 * flush out what we have already. 464 */ 465 if (now_fifo_front_p != fifo_front_p) 466 break; 467 /* 468 * quit this loop if all matching btree nodes are 469 * scanned and record in btree_nodes[] already. 470 */ 471 ref_nr = atomic_read(fifo_front_p); 472 if (nr >= ref_nr) 473 break; 474 475 if (btree_node_journal_flush(b)) 476 pr_err("BUG: flush_write bit should not be set here!\n"); 477 478 mutex_lock(&b->write_lock); 479 480 if (!btree_node_dirty(b)) { 481 mutex_unlock(&b->write_lock); 482 continue; 483 } 484 485 if (!btree_current_write(b)->journal) { 486 mutex_unlock(&b->write_lock); 487 continue; 488 } 489 490 /* 491 * Only select the btree node which exactly references 492 * the oldest journal entry. 493 * 494 * If the journal entry pointed by fifo_front_p is 495 * reclaimed in parallel, don't worry: 496 * - the list_for_each_xxx loop will quit when checking 497 * next now_fifo_front_p. 498 * - If there are matched nodes recorded in btree_nodes[], 499 * they are clean now (this is why and how the oldest 500 * journal entry can be reclaimed). These selected nodes 501 * will be ignored and skipped in the folowing for-loop. 502 */ 503 if (((btree_current_write(b)->journal - fifo_front_p) & 504 mask) != 0) { 505 mutex_unlock(&b->write_lock); 506 continue; 507 } 508 509 set_btree_node_journal_flush(b); 510 511 mutex_unlock(&b->write_lock); 512 513 btree_nodes[nr++] = b; 514 /* 515 * To avoid holding c->bucket_lock too long time, 516 * only scan for BTREE_FLUSH_NR matched btree nodes 517 * at most. If there are more btree nodes reference 518 * the oldest journal entry, try to flush them next 519 * time when btree_flush_write() is called. 520 */ 521 if (nr == BTREE_FLUSH_NR) 522 break; 523 } 524 mutex_unlock(&c->bucket_lock); 525 526 for (i = 0; i < nr; i++) { 527 b = btree_nodes[i]; 528 if (!b) { 529 pr_err("BUG: btree_nodes[%d] is NULL\n", i); 530 continue; 531 } 532 533 /* safe to check without holding b->write_lock */ 534 if (!btree_node_journal_flush(b)) { 535 pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b); 536 continue; 537 } 538 539 mutex_lock(&b->write_lock); 540 if (!btree_current_write(b)->journal) { 541 clear_bit(BTREE_NODE_journal_flush, &b->flags); 542 mutex_unlock(&b->write_lock); 543 pr_debug("bnode %p: written by others\n", b); 544 continue; 545 } 546 547 if (!btree_node_dirty(b)) { 548 clear_bit(BTREE_NODE_journal_flush, &b->flags); 549 mutex_unlock(&b->write_lock); 550 pr_debug("bnode %p: dirty bit cleaned by others\n", b); 551 continue; 552 } 553 554 __bch_btree_node_write(b, NULL); 555 clear_bit(BTREE_NODE_journal_flush, &b->flags); 556 mutex_unlock(&b->write_lock); 557 } 558 559 out: 560 spin_lock(&c->journal.flush_write_lock); 561 c->journal.btree_flushing = false; 562 spin_unlock(&c->journal.flush_write_lock); 563 } 564 565 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) 566 567 static void journal_discard_endio(struct bio *bio) 568 { 569 struct journal_device *ja = 570 container_of(bio, struct journal_device, discard_bio); 571 struct cache *ca = container_of(ja, struct cache, journal); 572 573 atomic_set(&ja->discard_in_flight, DISCARD_DONE); 574 575 closure_wake_up(&ca->set->journal.wait); 576 closure_put(&ca->set->cl); 577 } 578 579 static void journal_discard_work(struct work_struct *work) 580 { 581 struct journal_device *ja = 582 container_of(work, struct journal_device, discard_work); 583 584 submit_bio(&ja->discard_bio); 585 } 586 587 static void do_journal_discard(struct cache *ca) 588 { 589 struct journal_device *ja = &ca->journal; 590 struct bio *bio = &ja->discard_bio; 591 592 if (!ca->discard) { 593 ja->discard_idx = ja->last_idx; 594 return; 595 } 596 597 switch (atomic_read(&ja->discard_in_flight)) { 598 case DISCARD_IN_FLIGHT: 599 return; 600 601 case DISCARD_DONE: 602 ja->discard_idx = (ja->discard_idx + 1) % 603 ca->sb.njournal_buckets; 604 605 atomic_set(&ja->discard_in_flight, DISCARD_READY); 606 fallthrough; 607 608 case DISCARD_READY: 609 if (ja->discard_idx == ja->last_idx) 610 return; 611 612 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); 613 614 bio_init(bio, bio->bi_inline_vecs, 1); 615 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0); 616 bio->bi_iter.bi_sector = bucket_to_sector(ca->set, 617 ca->sb.d[ja->discard_idx]); 618 bio_set_dev(bio, ca->bdev); 619 bio->bi_iter.bi_size = bucket_bytes(ca); 620 bio->bi_end_io = journal_discard_endio; 621 622 closure_get(&ca->set->cl); 623 INIT_WORK(&ja->discard_work, journal_discard_work); 624 queue_work(bch_journal_wq, &ja->discard_work); 625 } 626 } 627 628 static void journal_reclaim(struct cache_set *c) 629 { 630 struct bkey *k = &c->journal.key; 631 struct cache *ca = c->cache; 632 uint64_t last_seq; 633 unsigned int next; 634 struct journal_device *ja = &ca->journal; 635 atomic_t p __maybe_unused; 636 637 atomic_long_inc(&c->reclaim); 638 639 while (!atomic_read(&fifo_front(&c->journal.pin))) 640 fifo_pop(&c->journal.pin, p); 641 642 last_seq = last_seq(&c->journal); 643 644 /* Update last_idx */ 645 646 while (ja->last_idx != ja->cur_idx && 647 ja->seq[ja->last_idx] < last_seq) 648 ja->last_idx = (ja->last_idx + 1) % 649 ca->sb.njournal_buckets; 650 651 do_journal_discard(ca); 652 653 if (c->journal.blocks_free) 654 goto out; 655 656 next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; 657 /* No space available on this device */ 658 if (next == ja->discard_idx) 659 goto out; 660 661 ja->cur_idx = next; 662 k->ptr[0] = MAKE_PTR(0, 663 bucket_to_sector(c, ca->sb.d[ja->cur_idx]), 664 ca->sb.nr_this_dev); 665 atomic_long_inc(&c->reclaimed_journal_buckets); 666 667 bkey_init(k); 668 SET_KEY_PTRS(k, 1); 669 c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits; 670 671 out: 672 if (!journal_full(&c->journal)) 673 __closure_wake_up(&c->journal.wait); 674 } 675 676 void bch_journal_next(struct journal *j) 677 { 678 atomic_t p = { 1 }; 679 680 j->cur = (j->cur == j->w) 681 ? &j->w[1] 682 : &j->w[0]; 683 684 /* 685 * The fifo_push() needs to happen at the same time as j->seq is 686 * incremented for last_seq() to be calculated correctly 687 */ 688 BUG_ON(!fifo_push(&j->pin, p)); 689 atomic_set(&fifo_back(&j->pin), 1); 690 691 j->cur->data->seq = ++j->seq; 692 j->cur->dirty = false; 693 j->cur->need_write = false; 694 j->cur->data->keys = 0; 695 696 if (fifo_full(&j->pin)) 697 pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin)); 698 } 699 700 static void journal_write_endio(struct bio *bio) 701 { 702 struct journal_write *w = bio->bi_private; 703 704 cache_set_err_on(bio->bi_status, w->c, "journal io error"); 705 closure_put(&w->c->journal.io); 706 } 707 708 static void journal_write(struct closure *cl); 709 710 static void journal_write_done(struct closure *cl) 711 { 712 struct journal *j = container_of(cl, struct journal, io); 713 struct journal_write *w = (j->cur == j->w) 714 ? &j->w[1] 715 : &j->w[0]; 716 717 __closure_wake_up(&w->wait); 718 continue_at_nobarrier(cl, journal_write, bch_journal_wq); 719 } 720 721 static void journal_write_unlock(struct closure *cl) 722 __releases(&c->journal.lock) 723 { 724 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 725 726 c->journal.io_in_flight = 0; 727 spin_unlock(&c->journal.lock); 728 } 729 730 static void journal_write_unlocked(struct closure *cl) 731 __releases(c->journal.lock) 732 { 733 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 734 struct cache *ca = c->cache; 735 struct journal_write *w = c->journal.cur; 736 struct bkey *k = &c->journal.key; 737 unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) * 738 ca->sb.block_size; 739 740 struct bio *bio; 741 struct bio_list list; 742 743 bio_list_init(&list); 744 745 if (!w->need_write) { 746 closure_return_with_destructor(cl, journal_write_unlock); 747 return; 748 } else if (journal_full(&c->journal)) { 749 journal_reclaim(c); 750 spin_unlock(&c->journal.lock); 751 752 btree_flush_write(c); 753 continue_at(cl, journal_write, bch_journal_wq); 754 return; 755 } 756 757 c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca)); 758 759 w->data->btree_level = c->root->level; 760 761 bkey_copy(&w->data->btree_root, &c->root->key); 762 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); 763 764 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; 765 w->data->magic = jset_magic(&ca->sb); 766 w->data->version = BCACHE_JSET_VERSION; 767 w->data->last_seq = last_seq(&c->journal); 768 w->data->csum = csum_set(w->data); 769 770 for (i = 0; i < KEY_PTRS(k); i++) { 771 ca = PTR_CACHE(c, k, i); 772 bio = &ca->journal.bio; 773 774 atomic_long_add(sectors, &ca->meta_sectors_written); 775 776 bio_reset(bio); 777 bio->bi_iter.bi_sector = PTR_OFFSET(k, i); 778 bio_set_dev(bio, ca->bdev); 779 bio->bi_iter.bi_size = sectors << 9; 780 781 bio->bi_end_io = journal_write_endio; 782 bio->bi_private = w; 783 bio_set_op_attrs(bio, REQ_OP_WRITE, 784 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); 785 bch_bio_map(bio, w->data); 786 787 trace_bcache_journal_write(bio, w->data->keys); 788 bio_list_add(&list, bio); 789 790 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); 791 792 ca->journal.seq[ca->journal.cur_idx] = w->data->seq; 793 } 794 795 /* If KEY_PTRS(k) == 0, this jset gets lost in air */ 796 BUG_ON(i == 0); 797 798 atomic_dec_bug(&fifo_back(&c->journal.pin)); 799 bch_journal_next(&c->journal); 800 journal_reclaim(c); 801 802 spin_unlock(&c->journal.lock); 803 804 while ((bio = bio_list_pop(&list))) 805 closure_bio_submit(c, bio, cl); 806 807 continue_at(cl, journal_write_done, NULL); 808 } 809 810 static void journal_write(struct closure *cl) 811 { 812 struct cache_set *c = container_of(cl, struct cache_set, journal.io); 813 814 spin_lock(&c->journal.lock); 815 journal_write_unlocked(cl); 816 } 817 818 static void journal_try_write(struct cache_set *c) 819 __releases(c->journal.lock) 820 { 821 struct closure *cl = &c->journal.io; 822 struct journal_write *w = c->journal.cur; 823 824 w->need_write = true; 825 826 if (!c->journal.io_in_flight) { 827 c->journal.io_in_flight = 1; 828 closure_call(cl, journal_write_unlocked, NULL, &c->cl); 829 } else { 830 spin_unlock(&c->journal.lock); 831 } 832 } 833 834 static struct journal_write *journal_wait_for_write(struct cache_set *c, 835 unsigned int nkeys) 836 __acquires(&c->journal.lock) 837 { 838 size_t sectors; 839 struct closure cl; 840 bool wait = false; 841 struct cache *ca = c->cache; 842 843 closure_init_stack(&cl); 844 845 spin_lock(&c->journal.lock); 846 847 while (1) { 848 struct journal_write *w = c->journal.cur; 849 850 sectors = __set_blocks(w->data, w->data->keys + nkeys, 851 block_bytes(ca)) * ca->sb.block_size; 852 853 if (sectors <= min_t(size_t, 854 c->journal.blocks_free * ca->sb.block_size, 855 PAGE_SECTORS << JSET_BITS)) 856 return w; 857 858 if (wait) 859 closure_wait(&c->journal.wait, &cl); 860 861 if (!journal_full(&c->journal)) { 862 if (wait) 863 trace_bcache_journal_entry_full(c); 864 865 /* 866 * XXX: If we were inserting so many keys that they 867 * won't fit in an _empty_ journal write, we'll 868 * deadlock. For now, handle this in 869 * bch_keylist_realloc() - but something to think about. 870 */ 871 BUG_ON(!w->data->keys); 872 873 journal_try_write(c); /* unlocks */ 874 } else { 875 if (wait) 876 trace_bcache_journal_full(c); 877 878 journal_reclaim(c); 879 spin_unlock(&c->journal.lock); 880 881 btree_flush_write(c); 882 } 883 884 closure_sync(&cl); 885 spin_lock(&c->journal.lock); 886 wait = true; 887 } 888 } 889 890 static void journal_write_work(struct work_struct *work) 891 { 892 struct cache_set *c = container_of(to_delayed_work(work), 893 struct cache_set, 894 journal.work); 895 spin_lock(&c->journal.lock); 896 if (c->journal.cur->dirty) 897 journal_try_write(c); 898 else 899 spin_unlock(&c->journal.lock); 900 } 901 902 /* 903 * Entry point to the journalling code - bio_insert() and btree_invalidate() 904 * pass bch_journal() a list of keys to be journalled, and then 905 * bch_journal() hands those same keys off to btree_insert_async() 906 */ 907 908 atomic_t *bch_journal(struct cache_set *c, 909 struct keylist *keys, 910 struct closure *parent) 911 { 912 struct journal_write *w; 913 atomic_t *ret; 914 915 /* No journaling if CACHE_SET_IO_DISABLE set already */ 916 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 917 return NULL; 918 919 if (!CACHE_SYNC(&c->cache->sb)) 920 return NULL; 921 922 w = journal_wait_for_write(c, bch_keylist_nkeys(keys)); 923 924 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys)); 925 w->data->keys += bch_keylist_nkeys(keys); 926 927 ret = &fifo_back(&c->journal.pin); 928 atomic_inc(ret); 929 930 if (parent) { 931 closure_wait(&w->wait, parent); 932 journal_try_write(c); 933 } else if (!w->dirty) { 934 w->dirty = true; 935 schedule_delayed_work(&c->journal.work, 936 msecs_to_jiffies(c->journal_delay_ms)); 937 spin_unlock(&c->journal.lock); 938 } else { 939 spin_unlock(&c->journal.lock); 940 } 941 942 943 return ret; 944 } 945 946 void bch_journal_meta(struct cache_set *c, struct closure *cl) 947 { 948 struct keylist keys; 949 atomic_t *ref; 950 951 bch_keylist_init(&keys); 952 953 ref = bch_journal(c, &keys, cl); 954 if (ref) 955 atomic_dec_bug(ref); 956 } 957 958 void bch_journal_free(struct cache_set *c) 959 { 960 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); 961 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); 962 free_fifo(&c->journal.pin); 963 } 964 965 int bch_journal_alloc(struct cache_set *c) 966 { 967 struct journal *j = &c->journal; 968 969 spin_lock_init(&j->lock); 970 spin_lock_init(&j->flush_write_lock); 971 INIT_DELAYED_WORK(&j->work, journal_write_work); 972 973 c->journal_delay_ms = 100; 974 975 j->w[0].c = c; 976 j->w[1].c = c; 977 978 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || 979 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) || 980 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS))) 981 return -ENOMEM; 982 983 return 0; 984 } 985