xref: /linux/drivers/md/bcache/btree.h (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 #ifndef _BCACHE_BTREE_H
2 #define _BCACHE_BTREE_H
3 
4 /*
5  * THE BTREE:
6  *
7  * At a high level, bcache's btree is relatively standard b+ tree. All keys and
8  * pointers are in the leaves; interior nodes only have pointers to the child
9  * nodes.
10  *
11  * In the interior nodes, a struct bkey always points to a child btree node, and
12  * the key is the highest key in the child node - except that the highest key in
13  * an interior node is always MAX_KEY. The size field refers to the size on disk
14  * of the child node - this would allow us to have variable sized btree nodes
15  * (handy for keeping the depth of the btree 1 by expanding just the root).
16  *
17  * Btree nodes are themselves log structured, but this is hidden fairly
18  * thoroughly. Btree nodes on disk will in practice have extents that overlap
19  * (because they were written at different times), but in memory we never have
20  * overlapping extents - when we read in a btree node from disk, the first thing
21  * we do is resort all the sets of keys with a mergesort, and in the same pass
22  * we check for overlapping extents and adjust them appropriately.
23  *
24  * struct btree_op is a central interface to the btree code. It's used for
25  * specifying read vs. write locking, and the embedded closure is used for
26  * waiting on IO or reserve memory.
27  *
28  * BTREE CACHE:
29  *
30  * Btree nodes are cached in memory; traversing the btree might require reading
31  * in btree nodes which is handled mostly transparently.
32  *
33  * bch_btree_node_get() looks up a btree node in the cache and reads it in from
34  * disk if necessary. This function is almost never called directly though - the
35  * btree() macro is used to get a btree node, call some function on it, and
36  * unlock the node after the function returns.
37  *
38  * The root is special cased - it's taken out of the cache's lru (thus pinning
39  * it in memory), so we can find the root of the btree by just dereferencing a
40  * pointer instead of looking it up in the cache. This makes locking a bit
41  * tricky, since the root pointer is protected by the lock in the btree node it
42  * points to - the btree_root() macro handles this.
43  *
44  * In various places we must be able to allocate memory for multiple btree nodes
45  * in order to make forward progress. To do this we use the btree cache itself
46  * as a reserve; if __get_free_pages() fails, we'll find a node in the btree
47  * cache we can reuse. We can't allow more than one thread to be doing this at a
48  * time, so there's a lock, implemented by a pointer to the btree_op closure -
49  * this allows the btree_root() macro to implicitly release this lock.
50  *
51  * BTREE IO:
52  *
53  * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles
54  * this.
55  *
56  * For writing, we have two btree_write structs embeddded in struct btree - one
57  * write in flight, and one being set up, and we toggle between them.
58  *
59  * Writing is done with a single function -  bch_btree_write() really serves two
60  * different purposes and should be broken up into two different functions. When
61  * passing now = false, it merely indicates that the node is now dirty - calling
62  * it ensures that the dirty keys will be written at some point in the future.
63  *
64  * When passing now = true, bch_btree_write() causes a write to happen
65  * "immediately" (if there was already a write in flight, it'll cause the write
66  * to happen as soon as the previous write completes). It returns immediately
67  * though - but it takes a refcount on the closure in struct btree_op you passed
68  * to it, so a closure_sync() later can be used to wait for the write to
69  * complete.
70  *
71  * This is handy because btree_split() and garbage collection can issue writes
72  * in parallel, reducing the amount of time they have to hold write locks.
73  *
74  * LOCKING:
75  *
76  * When traversing the btree, we may need write locks starting at some level -
77  * inserting a key into the btree will typically only require a write lock on
78  * the leaf node.
79  *
80  * This is specified with the lock field in struct btree_op; lock = 0 means we
81  * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get()
82  * checks this field and returns the node with the appropriate lock held.
83  *
84  * If, after traversing the btree, the insertion code discovers it has to split
85  * then it must restart from the root and take new locks - to do this it changes
86  * the lock field and returns -EINTR, which causes the btree_root() macro to
87  * loop.
88  *
89  * Handling cache misses require a different mechanism for upgrading to a write
90  * lock. We do cache lookups with only a read lock held, but if we get a cache
91  * miss and we wish to insert this data into the cache, we have to insert a
92  * placeholder key to detect races - otherwise, we could race with a write and
93  * overwrite the data that was just written to the cache with stale data from
94  * the backing device.
95  *
96  * For this we use a sequence number that write locks and unlocks increment - to
97  * insert the check key it unlocks the btree node and then takes a write lock,
98  * and fails if the sequence number doesn't match.
99  */
100 
101 #include "bset.h"
102 #include "debug.h"
103 
104 struct btree_write {
105 	atomic_t		*journal;
106 
107 	/* If btree_split() frees a btree node, it writes a new pointer to that
108 	 * btree node indicating it was freed; it takes a refcount on
109 	 * c->prio_blocked because we can't write the gens until the new
110 	 * pointer is on disk. This allows btree_write_endio() to release the
111 	 * refcount that btree_split() took.
112 	 */
113 	int			prio_blocked;
114 };
115 
116 struct btree {
117 	/* Hottest entries first */
118 	struct hlist_node	hash;
119 
120 	/* Key/pointer for this btree node */
121 	BKEY_PADDED(key);
122 
123 	/* Single bit - set when accessed, cleared by shrinker */
124 	unsigned long		accessed;
125 	unsigned long		seq;
126 	struct rw_semaphore	lock;
127 	struct cache_set	*c;
128 	struct btree		*parent;
129 
130 	unsigned long		flags;
131 	uint16_t		written;	/* would be nice to kill */
132 	uint8_t			level;
133 	uint8_t			nsets;
134 	uint8_t			page_order;
135 
136 	/*
137 	 * Set of sorted keys - the real btree node - plus a binary search tree
138 	 *
139 	 * sets[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
140 	 * to the memory we have allocated for this btree node. Additionally,
141 	 * set[0]->data points to the entire btree node as it exists on disk.
142 	 */
143 	struct bset_tree	sets[MAX_BSETS];
144 
145 	/* For outstanding btree writes, used as a lock - protects write_idx */
146 	struct closure_with_waitlist	io;
147 
148 	struct list_head	list;
149 	struct delayed_work	work;
150 
151 	struct btree_write	writes[2];
152 	struct bio		*bio;
153 };
154 
155 #define BTREE_FLAG(flag)						\
156 static inline bool btree_node_ ## flag(struct btree *b)			\
157 {	return test_bit(BTREE_NODE_ ## flag, &b->flags); }		\
158 									\
159 static inline void set_btree_node_ ## flag(struct btree *b)		\
160 {	set_bit(BTREE_NODE_ ## flag, &b->flags); }			\
161 
162 enum btree_flags {
163 	BTREE_NODE_io_error,
164 	BTREE_NODE_dirty,
165 	BTREE_NODE_write_idx,
166 };
167 
168 BTREE_FLAG(io_error);
169 BTREE_FLAG(dirty);
170 BTREE_FLAG(write_idx);
171 
172 static inline struct btree_write *btree_current_write(struct btree *b)
173 {
174 	return b->writes + btree_node_write_idx(b);
175 }
176 
177 static inline struct btree_write *btree_prev_write(struct btree *b)
178 {
179 	return b->writes + (btree_node_write_idx(b) ^ 1);
180 }
181 
182 static inline unsigned bset_offset(struct btree *b, struct bset *i)
183 {
184 	return (((size_t) i) - ((size_t) b->sets->data)) >> 9;
185 }
186 
187 static inline struct bset *write_block(struct btree *b)
188 {
189 	return ((void *) b->sets[0].data) + b->written * block_bytes(b->c);
190 }
191 
192 static inline bool bset_written(struct btree *b, struct bset_tree *t)
193 {
194 	return t->data < write_block(b);
195 }
196 
197 static inline bool bkey_written(struct btree *b, struct bkey *k)
198 {
199 	return k < write_block(b)->start;
200 }
201 
202 static inline void set_gc_sectors(struct cache_set *c)
203 {
204 	atomic_set(&c->sectors_to_gc, c->sb.bucket_size * c->nbuckets / 16);
205 }
206 
207 static inline struct bkey *bch_btree_iter_init(struct btree *b,
208 					       struct btree_iter *iter,
209 					       struct bkey *search)
210 {
211 	return __bch_btree_iter_init(b, iter, search, b->sets);
212 }
213 
214 static inline bool bch_ptr_invalid(struct btree *b, const struct bkey *k)
215 {
216 	if (b->level)
217 		return bch_btree_ptr_invalid(b->c, k);
218 	else
219 		return bch_extent_ptr_invalid(b->c, k);
220 }
221 
222 void bkey_put(struct cache_set *c, struct bkey *k);
223 
224 /* Looping macros */
225 
226 #define for_each_cached_btree(b, c, iter)				\
227 	for (iter = 0;							\
228 	     iter < ARRAY_SIZE((c)->bucket_hash);			\
229 	     iter++)							\
230 		hlist_for_each_entry_rcu((b), (c)->bucket_hash + iter, hash)
231 
232 #define for_each_key_filter(b, k, iter, filter)				\
233 	for (bch_btree_iter_init((b), (iter), NULL);			\
234 	     ((k) = bch_btree_iter_next_filter((iter), b, filter));)
235 
236 #define for_each_key(b, k, iter)					\
237 	for (bch_btree_iter_init((b), (iter), NULL);			\
238 	     ((k) = bch_btree_iter_next(iter));)
239 
240 /* Recursing down the btree */
241 
242 struct btree_op {
243 	/* Btree level at which we start taking write locks */
244 	short			lock;
245 
246 	unsigned		insert_collision:1;
247 };
248 
249 static inline void bch_btree_op_init(struct btree_op *op, int write_lock_level)
250 {
251 	memset(op, 0, sizeof(struct btree_op));
252 	op->lock = write_lock_level;
253 }
254 
255 static inline void rw_lock(bool w, struct btree *b, int level)
256 {
257 	w ? down_write_nested(&b->lock, level + 1)
258 	  : down_read_nested(&b->lock, level + 1);
259 	if (w)
260 		b->seq++;
261 }
262 
263 static inline void rw_unlock(bool w, struct btree *b)
264 {
265 	if (w)
266 		b->seq++;
267 	(w ? up_write : up_read)(&b->lock);
268 }
269 
270 void bch_btree_node_read(struct btree *);
271 void bch_btree_node_write(struct btree *, struct closure *);
272 
273 void bch_btree_set_root(struct btree *);
274 struct btree *bch_btree_node_alloc(struct cache_set *, int, bool);
275 struct btree *bch_btree_node_get(struct cache_set *, struct bkey *, int, bool);
276 
277 int bch_btree_insert_check_key(struct btree *, struct btree_op *,
278 			       struct bkey *);
279 int bch_btree_insert(struct cache_set *, struct keylist *,
280 		     atomic_t *, struct bkey *);
281 
282 int bch_gc_thread_start(struct cache_set *);
283 size_t bch_btree_gc_finish(struct cache_set *);
284 void bch_moving_gc(struct cache_set *);
285 int bch_btree_check(struct cache_set *);
286 uint8_t __bch_btree_mark_key(struct cache_set *, int, struct bkey *);
287 
288 static inline void wake_up_gc(struct cache_set *c)
289 {
290 	if (c->gc_thread)
291 		wake_up_process(c->gc_thread);
292 }
293 
294 #define MAP_DONE	0
295 #define MAP_CONTINUE	1
296 
297 #define MAP_ALL_NODES	0
298 #define MAP_LEAF_NODES	1
299 
300 #define MAP_END_KEY	1
301 
302 typedef int (btree_map_nodes_fn)(struct btree_op *, struct btree *);
303 int __bch_btree_map_nodes(struct btree_op *, struct cache_set *,
304 			  struct bkey *, btree_map_nodes_fn *, int);
305 
306 static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
307 				      struct bkey *from, btree_map_nodes_fn *fn)
308 {
309 	return __bch_btree_map_nodes(op, c, from, fn, MAP_ALL_NODES);
310 }
311 
312 static inline int bch_btree_map_leaf_nodes(struct btree_op *op,
313 					   struct cache_set *c,
314 					   struct bkey *from,
315 					   btree_map_nodes_fn *fn)
316 {
317 	return __bch_btree_map_nodes(op, c, from, fn, MAP_LEAF_NODES);
318 }
319 
320 typedef int (btree_map_keys_fn)(struct btree_op *, struct btree *,
321 				struct bkey *);
322 int bch_btree_map_keys(struct btree_op *, struct cache_set *,
323 		       struct bkey *, btree_map_keys_fn *, int);
324 
325 typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *);
326 
327 void bch_keybuf_init(struct keybuf *);
328 void bch_refill_keybuf(struct cache_set *, struct keybuf *,
329 		       struct bkey *, keybuf_pred_fn *);
330 bool bch_keybuf_check_overlapping(struct keybuf *, struct bkey *,
331 				  struct bkey *);
332 void bch_keybuf_del(struct keybuf *, struct keybuf_key *);
333 struct keybuf_key *bch_keybuf_next(struct keybuf *);
334 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *, struct keybuf *,
335 					  struct bkey *, keybuf_pred_fn *);
336 
337 #endif
338