1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 #define insert_lock(s, b) ((b)->level <= (s)->lock) 103 104 /* 105 * These macros are for recursing down the btree - they handle the details of 106 * locking and looking up nodes in the cache for you. They're best treated as 107 * mere syntax when reading code that uses them. 108 * 109 * op->lock determines whether we take a read or a write lock at a given depth. 110 * If you've got a read lock and find that you need a write lock (i.e. you're 111 * going to have to split), set op->lock and return -EINTR; btree_root() will 112 * call you again and you'll have the correct lock. 113 */ 114 115 /** 116 * btree - recurse down the btree on a specified key 117 * @fn: function to call, which will be passed the child node 118 * @key: key to recurse on 119 * @b: parent btree node 120 * @op: pointer to struct btree_op 121 */ 122 #define btree(fn, key, b, op, ...) \ 123 ({ \ 124 int _r, l = (b)->level - 1; \ 125 bool _w = l <= (op)->lock; \ 126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \ 127 _w, b); \ 128 if (!IS_ERR(_child)) { \ 129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ 130 rw_unlock(_w, _child); \ 131 } else \ 132 _r = PTR_ERR(_child); \ 133 _r; \ 134 }) 135 136 /** 137 * btree_root - call a function on the root of the btree 138 * @fn: function to call, which will be passed the child node 139 * @c: cache set 140 * @op: pointer to struct btree_op 141 */ 142 #define btree_root(fn, c, op, ...) \ 143 ({ \ 144 int _r = -EINTR; \ 145 do { \ 146 struct btree *_b = (c)->root; \ 147 bool _w = insert_lock(op, _b); \ 148 rw_lock(_w, _b, _b->level); \ 149 if (_b == (c)->root && \ 150 _w == insert_lock(op, _b)) { \ 151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ 152 } \ 153 rw_unlock(_w, _b); \ 154 bch_cannibalize_unlock(c); \ 155 if (_r == -EINTR) \ 156 schedule(); \ 157 } while (_r == -EINTR); \ 158 \ 159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \ 160 _r; \ 161 }) 162 163 static inline struct bset *write_block(struct btree *b) 164 { 165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c); 166 } 167 168 static void bch_btree_init_next(struct btree *b) 169 { 170 /* If not a leaf node, always sort */ 171 if (b->level && b->keys.nsets) 172 bch_btree_sort(&b->keys, &b->c->sort); 173 else 174 bch_btree_sort_lazy(&b->keys, &b->c->sort); 175 176 if (b->written < btree_blocks(b)) 177 bch_bset_init_next(&b->keys, write_block(b), 178 bset_magic(&b->c->sb)); 179 180 } 181 182 /* Btree key manipulation */ 183 184 void bkey_put(struct cache_set *c, struct bkey *k) 185 { 186 unsigned i; 187 188 for (i = 0; i < KEY_PTRS(k); i++) 189 if (ptr_available(c, k, i)) 190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 191 } 192 193 /* Btree IO */ 194 195 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 196 { 197 uint64_t crc = b->key.ptr[0]; 198 void *data = (void *) i + 8, *end = bset_bkey_last(i); 199 200 crc = bch_crc64_update(crc, data, end - data); 201 return crc ^ 0xffffffffffffffffULL; 202 } 203 204 void bch_btree_node_read_done(struct btree *b) 205 { 206 const char *err = "bad btree header"; 207 struct bset *i = btree_bset_first(b); 208 struct btree_iter *iter; 209 210 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 211 iter->size = b->c->sb.bucket_size / b->c->sb.block_size; 212 iter->used = 0; 213 214 #ifdef CONFIG_BCACHE_DEBUG 215 iter->b = &b->keys; 216 #endif 217 218 if (!i->seq) 219 goto err; 220 221 for (; 222 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 223 i = write_block(b)) { 224 err = "unsupported bset version"; 225 if (i->version > BCACHE_BSET_VERSION) 226 goto err; 227 228 err = "bad btree header"; 229 if (b->written + set_blocks(i, block_bytes(b->c)) > 230 btree_blocks(b)) 231 goto err; 232 233 err = "bad magic"; 234 if (i->magic != bset_magic(&b->c->sb)) 235 goto err; 236 237 err = "bad checksum"; 238 switch (i->version) { 239 case 0: 240 if (i->csum != csum_set(i)) 241 goto err; 242 break; 243 case BCACHE_BSET_VERSION: 244 if (i->csum != btree_csum_set(b, i)) 245 goto err; 246 break; 247 } 248 249 err = "empty set"; 250 if (i != b->keys.set[0].data && !i->keys) 251 goto err; 252 253 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 254 255 b->written += set_blocks(i, block_bytes(b->c)); 256 } 257 258 err = "corrupted btree"; 259 for (i = write_block(b); 260 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 261 i = ((void *) i) + block_bytes(b->c)) 262 if (i->seq == b->keys.set[0].data->seq) 263 goto err; 264 265 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 266 267 i = b->keys.set[0].data; 268 err = "short btree key"; 269 if (b->keys.set[0].size && 270 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 271 goto err; 272 273 if (b->written < btree_blocks(b)) 274 bch_bset_init_next(&b->keys, write_block(b), 275 bset_magic(&b->c->sb)); 276 out: 277 mempool_free(iter, &b->c->fill_iter); 278 return; 279 err: 280 set_btree_node_io_error(b); 281 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 282 err, PTR_BUCKET_NR(b->c, &b->key, 0), 283 bset_block_offset(b, i), i->keys); 284 goto out; 285 } 286 287 static void btree_node_read_endio(struct bio *bio) 288 { 289 struct closure *cl = bio->bi_private; 290 closure_put(cl); 291 } 292 293 static void bch_btree_node_read(struct btree *b) 294 { 295 uint64_t start_time = local_clock(); 296 struct closure cl; 297 struct bio *bio; 298 299 trace_bcache_btree_read(b); 300 301 closure_init_stack(&cl); 302 303 bio = bch_bbio_alloc(b->c); 304 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 305 bio->bi_end_io = btree_node_read_endio; 306 bio->bi_private = &cl; 307 bio->bi_opf = REQ_OP_READ | REQ_META; 308 309 bch_bio_map(bio, b->keys.set[0].data); 310 311 bch_submit_bbio(bio, b->c, &b->key, 0); 312 closure_sync(&cl); 313 314 if (bio->bi_status) 315 set_btree_node_io_error(b); 316 317 bch_bbio_free(bio, b->c); 318 319 if (btree_node_io_error(b)) 320 goto err; 321 322 bch_btree_node_read_done(b); 323 bch_time_stats_update(&b->c->btree_read_time, start_time); 324 325 return; 326 err: 327 bch_cache_set_error(b->c, "io error reading bucket %zu", 328 PTR_BUCKET_NR(b->c, &b->key, 0)); 329 } 330 331 static void btree_complete_write(struct btree *b, struct btree_write *w) 332 { 333 if (w->prio_blocked && 334 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 335 wake_up_allocators(b->c); 336 337 if (w->journal) { 338 atomic_dec_bug(w->journal); 339 __closure_wake_up(&b->c->journal.wait); 340 } 341 342 w->prio_blocked = 0; 343 w->journal = NULL; 344 } 345 346 static void btree_node_write_unlock(struct closure *cl) 347 { 348 struct btree *b = container_of(cl, struct btree, io); 349 350 up(&b->io_mutex); 351 } 352 353 static void __btree_node_write_done(struct closure *cl) 354 { 355 struct btree *b = container_of(cl, struct btree, io); 356 struct btree_write *w = btree_prev_write(b); 357 358 bch_bbio_free(b->bio, b->c); 359 b->bio = NULL; 360 btree_complete_write(b, w); 361 362 if (btree_node_dirty(b)) 363 schedule_delayed_work(&b->work, 30 * HZ); 364 365 closure_return_with_destructor(cl, btree_node_write_unlock); 366 } 367 368 static void btree_node_write_done(struct closure *cl) 369 { 370 struct btree *b = container_of(cl, struct btree, io); 371 372 bio_free_pages(b->bio); 373 __btree_node_write_done(cl); 374 } 375 376 static void btree_node_write_endio(struct bio *bio) 377 { 378 struct closure *cl = bio->bi_private; 379 struct btree *b = container_of(cl, struct btree, io); 380 381 if (bio->bi_status) 382 set_btree_node_io_error(b); 383 384 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 385 closure_put(cl); 386 } 387 388 static void do_btree_node_write(struct btree *b) 389 { 390 struct closure *cl = &b->io; 391 struct bset *i = btree_bset_last(b); 392 BKEY_PADDED(key) k; 393 394 i->version = BCACHE_BSET_VERSION; 395 i->csum = btree_csum_set(b, i); 396 397 BUG_ON(b->bio); 398 b->bio = bch_bbio_alloc(b->c); 399 400 b->bio->bi_end_io = btree_node_write_endio; 401 b->bio->bi_private = cl; 402 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c)); 403 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 404 bch_bio_map(b->bio, i); 405 406 /* 407 * If we're appending to a leaf node, we don't technically need FUA - 408 * this write just needs to be persisted before the next journal write, 409 * which will be marked FLUSH|FUA. 410 * 411 * Similarly if we're writing a new btree root - the pointer is going to 412 * be in the next journal entry. 413 * 414 * But if we're writing a new btree node (that isn't a root) or 415 * appending to a non leaf btree node, we need either FUA or a flush 416 * when we write the parent with the new pointer. FUA is cheaper than a 417 * flush, and writes appending to leaf nodes aren't blocking anything so 418 * just make all btree node writes FUA to keep things sane. 419 */ 420 421 bkey_copy(&k.key, &b->key); 422 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 423 bset_sector_offset(&b->keys, i)); 424 425 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 426 int j; 427 struct bio_vec *bv; 428 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 429 430 bio_for_each_segment_all(bv, b->bio, j) 431 memcpy(page_address(bv->bv_page), 432 base + j * PAGE_SIZE, PAGE_SIZE); 433 434 bch_submit_bbio(b->bio, b->c, &k.key, 0); 435 436 continue_at(cl, btree_node_write_done, NULL); 437 } else { 438 /* No problem for multipage bvec since the bio is just allocated */ 439 b->bio->bi_vcnt = 0; 440 bch_bio_map(b->bio, i); 441 442 bch_submit_bbio(b->bio, b->c, &k.key, 0); 443 444 closure_sync(cl); 445 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 446 } 447 } 448 449 void __bch_btree_node_write(struct btree *b, struct closure *parent) 450 { 451 struct bset *i = btree_bset_last(b); 452 453 lockdep_assert_held(&b->write_lock); 454 455 trace_bcache_btree_write(b); 456 457 BUG_ON(current->bio_list); 458 BUG_ON(b->written >= btree_blocks(b)); 459 BUG_ON(b->written && !i->keys); 460 BUG_ON(btree_bset_first(b)->seq != i->seq); 461 bch_check_keys(&b->keys, "writing"); 462 463 cancel_delayed_work(&b->work); 464 465 /* If caller isn't waiting for write, parent refcount is cache set */ 466 down(&b->io_mutex); 467 closure_init(&b->io, parent ?: &b->c->cl); 468 469 clear_bit(BTREE_NODE_dirty, &b->flags); 470 change_bit(BTREE_NODE_write_idx, &b->flags); 471 472 do_btree_node_write(b); 473 474 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size, 475 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); 476 477 b->written += set_blocks(i, block_bytes(b->c)); 478 } 479 480 void bch_btree_node_write(struct btree *b, struct closure *parent) 481 { 482 unsigned nsets = b->keys.nsets; 483 484 lockdep_assert_held(&b->lock); 485 486 __bch_btree_node_write(b, parent); 487 488 /* 489 * do verify if there was more than one set initially (i.e. we did a 490 * sort) and we sorted down to a single set: 491 */ 492 if (nsets && !b->keys.nsets) 493 bch_btree_verify(b); 494 495 bch_btree_init_next(b); 496 } 497 498 static void bch_btree_node_write_sync(struct btree *b) 499 { 500 struct closure cl; 501 502 closure_init_stack(&cl); 503 504 mutex_lock(&b->write_lock); 505 bch_btree_node_write(b, &cl); 506 mutex_unlock(&b->write_lock); 507 508 closure_sync(&cl); 509 } 510 511 static void btree_node_write_work(struct work_struct *w) 512 { 513 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 514 515 mutex_lock(&b->write_lock); 516 if (btree_node_dirty(b)) 517 __bch_btree_node_write(b, NULL); 518 mutex_unlock(&b->write_lock); 519 } 520 521 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 522 { 523 struct bset *i = btree_bset_last(b); 524 struct btree_write *w = btree_current_write(b); 525 526 lockdep_assert_held(&b->write_lock); 527 528 BUG_ON(!b->written); 529 BUG_ON(!i->keys); 530 531 if (!btree_node_dirty(b)) 532 schedule_delayed_work(&b->work, 30 * HZ); 533 534 set_btree_node_dirty(b); 535 536 if (journal_ref) { 537 if (w->journal && 538 journal_pin_cmp(b->c, w->journal, journal_ref)) { 539 atomic_dec_bug(w->journal); 540 w->journal = NULL; 541 } 542 543 if (!w->journal) { 544 w->journal = journal_ref; 545 atomic_inc(w->journal); 546 } 547 } 548 549 /* Force write if set is too big */ 550 if (set_bytes(i) > PAGE_SIZE - 48 && 551 !current->bio_list) 552 bch_btree_node_write(b, NULL); 553 } 554 555 /* 556 * Btree in memory cache - allocation/freeing 557 * mca -> memory cache 558 */ 559 560 #define mca_reserve(c) (((c->root && c->root->level) \ 561 ? c->root->level : 1) * 8 + 16) 562 #define mca_can_free(c) \ 563 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 564 565 static void mca_data_free(struct btree *b) 566 { 567 BUG_ON(b->io_mutex.count != 1); 568 569 bch_btree_keys_free(&b->keys); 570 571 b->c->btree_cache_used--; 572 list_move(&b->list, &b->c->btree_cache_freed); 573 } 574 575 static void mca_bucket_free(struct btree *b) 576 { 577 BUG_ON(btree_node_dirty(b)); 578 579 b->key.ptr[0] = 0; 580 hlist_del_init_rcu(&b->hash); 581 list_move(&b->list, &b->c->btree_cache_freeable); 582 } 583 584 static unsigned btree_order(struct bkey *k) 585 { 586 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 587 } 588 589 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 590 { 591 if (!bch_btree_keys_alloc(&b->keys, 592 max_t(unsigned, 593 ilog2(b->c->btree_pages), 594 btree_order(k)), 595 gfp)) { 596 b->c->btree_cache_used++; 597 list_move(&b->list, &b->c->btree_cache); 598 } else { 599 list_move(&b->list, &b->c->btree_cache_freed); 600 } 601 } 602 603 static struct btree *mca_bucket_alloc(struct cache_set *c, 604 struct bkey *k, gfp_t gfp) 605 { 606 struct btree *b = kzalloc(sizeof(struct btree), gfp); 607 if (!b) 608 return NULL; 609 610 init_rwsem(&b->lock); 611 lockdep_set_novalidate_class(&b->lock); 612 mutex_init(&b->write_lock); 613 lockdep_set_novalidate_class(&b->write_lock); 614 INIT_LIST_HEAD(&b->list); 615 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 616 b->c = c; 617 sema_init(&b->io_mutex, 1); 618 619 mca_data_alloc(b, k, gfp); 620 return b; 621 } 622 623 static int mca_reap(struct btree *b, unsigned min_order, bool flush) 624 { 625 struct closure cl; 626 627 closure_init_stack(&cl); 628 lockdep_assert_held(&b->c->bucket_lock); 629 630 if (!down_write_trylock(&b->lock)) 631 return -ENOMEM; 632 633 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 634 635 if (b->keys.page_order < min_order) 636 goto out_unlock; 637 638 if (!flush) { 639 if (btree_node_dirty(b)) 640 goto out_unlock; 641 642 if (down_trylock(&b->io_mutex)) 643 goto out_unlock; 644 up(&b->io_mutex); 645 } 646 647 mutex_lock(&b->write_lock); 648 if (btree_node_dirty(b)) 649 __bch_btree_node_write(b, &cl); 650 mutex_unlock(&b->write_lock); 651 652 closure_sync(&cl); 653 654 /* wait for any in flight btree write */ 655 down(&b->io_mutex); 656 up(&b->io_mutex); 657 658 return 0; 659 out_unlock: 660 rw_unlock(true, b); 661 return -ENOMEM; 662 } 663 664 static unsigned long bch_mca_scan(struct shrinker *shrink, 665 struct shrink_control *sc) 666 { 667 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 668 struct btree *b, *t; 669 unsigned long i, nr = sc->nr_to_scan; 670 unsigned long freed = 0; 671 unsigned int btree_cache_used; 672 673 if (c->shrinker_disabled) 674 return SHRINK_STOP; 675 676 if (c->btree_cache_alloc_lock) 677 return SHRINK_STOP; 678 679 /* Return -1 if we can't do anything right now */ 680 if (sc->gfp_mask & __GFP_IO) 681 mutex_lock(&c->bucket_lock); 682 else if (!mutex_trylock(&c->bucket_lock)) 683 return -1; 684 685 /* 686 * It's _really_ critical that we don't free too many btree nodes - we 687 * have to always leave ourselves a reserve. The reserve is how we 688 * guarantee that allocating memory for a new btree node can always 689 * succeed, so that inserting keys into the btree can always succeed and 690 * IO can always make forward progress: 691 */ 692 nr /= c->btree_pages; 693 nr = min_t(unsigned long, nr, mca_can_free(c)); 694 695 i = 0; 696 btree_cache_used = c->btree_cache_used; 697 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { 698 if (nr <= 0) 699 goto out; 700 701 if (++i > 3 && 702 !mca_reap(b, 0, false)) { 703 mca_data_free(b); 704 rw_unlock(true, b); 705 freed++; 706 } 707 nr--; 708 } 709 710 for (; (nr--) && i < btree_cache_used; i++) { 711 if (list_empty(&c->btree_cache)) 712 goto out; 713 714 b = list_first_entry(&c->btree_cache, struct btree, list); 715 list_rotate_left(&c->btree_cache); 716 717 if (!b->accessed && 718 !mca_reap(b, 0, false)) { 719 mca_bucket_free(b); 720 mca_data_free(b); 721 rw_unlock(true, b); 722 freed++; 723 } else 724 b->accessed = 0; 725 } 726 out: 727 mutex_unlock(&c->bucket_lock); 728 return freed * c->btree_pages; 729 } 730 731 static unsigned long bch_mca_count(struct shrinker *shrink, 732 struct shrink_control *sc) 733 { 734 struct cache_set *c = container_of(shrink, struct cache_set, shrink); 735 736 if (c->shrinker_disabled) 737 return 0; 738 739 if (c->btree_cache_alloc_lock) 740 return 0; 741 742 return mca_can_free(c) * c->btree_pages; 743 } 744 745 void bch_btree_cache_free(struct cache_set *c) 746 { 747 struct btree *b; 748 struct closure cl; 749 closure_init_stack(&cl); 750 751 if (c->shrink.list.next) 752 unregister_shrinker(&c->shrink); 753 754 mutex_lock(&c->bucket_lock); 755 756 #ifdef CONFIG_BCACHE_DEBUG 757 if (c->verify_data) 758 list_move(&c->verify_data->list, &c->btree_cache); 759 760 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c))); 761 #endif 762 763 list_splice(&c->btree_cache_freeable, 764 &c->btree_cache); 765 766 while (!list_empty(&c->btree_cache)) { 767 b = list_first_entry(&c->btree_cache, struct btree, list); 768 769 if (btree_node_dirty(b)) 770 btree_complete_write(b, btree_current_write(b)); 771 clear_bit(BTREE_NODE_dirty, &b->flags); 772 773 mca_data_free(b); 774 } 775 776 while (!list_empty(&c->btree_cache_freed)) { 777 b = list_first_entry(&c->btree_cache_freed, 778 struct btree, list); 779 list_del(&b->list); 780 cancel_delayed_work_sync(&b->work); 781 kfree(b); 782 } 783 784 mutex_unlock(&c->bucket_lock); 785 } 786 787 int bch_btree_cache_alloc(struct cache_set *c) 788 { 789 unsigned i; 790 791 for (i = 0; i < mca_reserve(c); i++) 792 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 793 return -ENOMEM; 794 795 list_splice_init(&c->btree_cache, 796 &c->btree_cache_freeable); 797 798 #ifdef CONFIG_BCACHE_DEBUG 799 mutex_init(&c->verify_lock); 800 801 c->verify_ondisk = (void *) 802 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c))); 803 804 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 805 806 if (c->verify_data && 807 c->verify_data->keys.set->data) 808 list_del_init(&c->verify_data->list); 809 else 810 c->verify_data = NULL; 811 #endif 812 813 c->shrink.count_objects = bch_mca_count; 814 c->shrink.scan_objects = bch_mca_scan; 815 c->shrink.seeks = 4; 816 c->shrink.batch = c->btree_pages * 2; 817 818 if (register_shrinker(&c->shrink)) 819 pr_warn("bcache: %s: could not register shrinker", 820 __func__); 821 822 return 0; 823 } 824 825 /* Btree in memory cache - hash table */ 826 827 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 828 { 829 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 830 } 831 832 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 833 { 834 struct btree *b; 835 836 rcu_read_lock(); 837 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 838 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 839 goto out; 840 b = NULL; 841 out: 842 rcu_read_unlock(); 843 return b; 844 } 845 846 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 847 { 848 struct task_struct *old; 849 850 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current); 851 if (old && old != current) { 852 if (op) 853 prepare_to_wait(&c->btree_cache_wait, &op->wait, 854 TASK_UNINTERRUPTIBLE); 855 return -EINTR; 856 } 857 858 return 0; 859 } 860 861 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 862 struct bkey *k) 863 { 864 struct btree *b; 865 866 trace_bcache_btree_cache_cannibalize(c); 867 868 if (mca_cannibalize_lock(c, op)) 869 return ERR_PTR(-EINTR); 870 871 list_for_each_entry_reverse(b, &c->btree_cache, list) 872 if (!mca_reap(b, btree_order(k), false)) 873 return b; 874 875 list_for_each_entry_reverse(b, &c->btree_cache, list) 876 if (!mca_reap(b, btree_order(k), true)) 877 return b; 878 879 WARN(1, "btree cache cannibalize failed\n"); 880 return ERR_PTR(-ENOMEM); 881 } 882 883 /* 884 * We can only have one thread cannibalizing other cached btree nodes at a time, 885 * or we'll deadlock. We use an open coded mutex to ensure that, which a 886 * cannibalize_bucket() will take. This means every time we unlock the root of 887 * the btree, we need to release this lock if we have it held. 888 */ 889 static void bch_cannibalize_unlock(struct cache_set *c) 890 { 891 if (c->btree_cache_alloc_lock == current) { 892 c->btree_cache_alloc_lock = NULL; 893 wake_up(&c->btree_cache_wait); 894 } 895 } 896 897 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 898 struct bkey *k, int level) 899 { 900 struct btree *b; 901 902 BUG_ON(current->bio_list); 903 904 lockdep_assert_held(&c->bucket_lock); 905 906 if (mca_find(c, k)) 907 return NULL; 908 909 /* btree_free() doesn't free memory; it sticks the node on the end of 910 * the list. Check if there's any freed nodes there: 911 */ 912 list_for_each_entry(b, &c->btree_cache_freeable, list) 913 if (!mca_reap(b, btree_order(k), false)) 914 goto out; 915 916 /* We never free struct btree itself, just the memory that holds the on 917 * disk node. Check the freed list before allocating a new one: 918 */ 919 list_for_each_entry(b, &c->btree_cache_freed, list) 920 if (!mca_reap(b, 0, false)) { 921 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 922 if (!b->keys.set[0].data) 923 goto err; 924 else 925 goto out; 926 } 927 928 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 929 if (!b) 930 goto err; 931 932 BUG_ON(!down_write_trylock(&b->lock)); 933 if (!b->keys.set->data) 934 goto err; 935 out: 936 BUG_ON(b->io_mutex.count != 1); 937 938 bkey_copy(&b->key, k); 939 list_move(&b->list, &c->btree_cache); 940 hlist_del_init_rcu(&b->hash); 941 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 942 943 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 944 b->parent = (void *) ~0UL; 945 b->flags = 0; 946 b->written = 0; 947 b->level = level; 948 949 if (!b->level) 950 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 951 &b->c->expensive_debug_checks); 952 else 953 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 954 &b->c->expensive_debug_checks); 955 956 return b; 957 err: 958 if (b) 959 rw_unlock(true, b); 960 961 b = mca_cannibalize(c, op, k); 962 if (!IS_ERR(b)) 963 goto out; 964 965 return b; 966 } 967 968 /* 969 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 970 * in from disk if necessary. 971 * 972 * If IO is necessary and running under generic_make_request, returns -EAGAIN. 973 * 974 * The btree node will have either a read or a write lock held, depending on 975 * level and op->lock. 976 */ 977 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 978 struct bkey *k, int level, bool write, 979 struct btree *parent) 980 { 981 int i = 0; 982 struct btree *b; 983 984 BUG_ON(level < 0); 985 retry: 986 b = mca_find(c, k); 987 988 if (!b) { 989 if (current->bio_list) 990 return ERR_PTR(-EAGAIN); 991 992 mutex_lock(&c->bucket_lock); 993 b = mca_alloc(c, op, k, level); 994 mutex_unlock(&c->bucket_lock); 995 996 if (!b) 997 goto retry; 998 if (IS_ERR(b)) 999 return b; 1000 1001 bch_btree_node_read(b); 1002 1003 if (!write) 1004 downgrade_write(&b->lock); 1005 } else { 1006 rw_lock(write, b, level); 1007 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1008 rw_unlock(write, b); 1009 goto retry; 1010 } 1011 BUG_ON(b->level != level); 1012 } 1013 1014 if (btree_node_io_error(b)) { 1015 rw_unlock(write, b); 1016 return ERR_PTR(-EIO); 1017 } 1018 1019 BUG_ON(!b->written); 1020 1021 b->parent = parent; 1022 b->accessed = 1; 1023 1024 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1025 prefetch(b->keys.set[i].tree); 1026 prefetch(b->keys.set[i].data); 1027 } 1028 1029 for (; i <= b->keys.nsets; i++) 1030 prefetch(b->keys.set[i].data); 1031 1032 return b; 1033 } 1034 1035 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1036 { 1037 struct btree *b; 1038 1039 mutex_lock(&parent->c->bucket_lock); 1040 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1041 mutex_unlock(&parent->c->bucket_lock); 1042 1043 if (!IS_ERR_OR_NULL(b)) { 1044 b->parent = parent; 1045 bch_btree_node_read(b); 1046 rw_unlock(true, b); 1047 } 1048 } 1049 1050 /* Btree alloc */ 1051 1052 static void btree_node_free(struct btree *b) 1053 { 1054 trace_bcache_btree_node_free(b); 1055 1056 BUG_ON(b == b->c->root); 1057 1058 mutex_lock(&b->write_lock); 1059 1060 if (btree_node_dirty(b)) 1061 btree_complete_write(b, btree_current_write(b)); 1062 clear_bit(BTREE_NODE_dirty, &b->flags); 1063 1064 mutex_unlock(&b->write_lock); 1065 1066 cancel_delayed_work(&b->work); 1067 1068 mutex_lock(&b->c->bucket_lock); 1069 bch_bucket_free(b->c, &b->key); 1070 mca_bucket_free(b); 1071 mutex_unlock(&b->c->bucket_lock); 1072 } 1073 1074 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1075 int level, bool wait, 1076 struct btree *parent) 1077 { 1078 BKEY_PADDED(key) k; 1079 struct btree *b = ERR_PTR(-EAGAIN); 1080 1081 mutex_lock(&c->bucket_lock); 1082 retry: 1083 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait)) 1084 goto err; 1085 1086 bkey_put(c, &k.key); 1087 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1088 1089 b = mca_alloc(c, op, &k.key, level); 1090 if (IS_ERR(b)) 1091 goto err_free; 1092 1093 if (!b) { 1094 cache_bug(c, 1095 "Tried to allocate bucket that was in btree cache"); 1096 goto retry; 1097 } 1098 1099 b->accessed = 1; 1100 b->parent = parent; 1101 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb)); 1102 1103 mutex_unlock(&c->bucket_lock); 1104 1105 trace_bcache_btree_node_alloc(b); 1106 return b; 1107 err_free: 1108 bch_bucket_free(c, &k.key); 1109 err: 1110 mutex_unlock(&c->bucket_lock); 1111 1112 trace_bcache_btree_node_alloc_fail(c); 1113 return b; 1114 } 1115 1116 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1117 struct btree_op *op, int level, 1118 struct btree *parent) 1119 { 1120 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1121 } 1122 1123 static struct btree *btree_node_alloc_replacement(struct btree *b, 1124 struct btree_op *op) 1125 { 1126 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1127 if (!IS_ERR_OR_NULL(n)) { 1128 mutex_lock(&n->write_lock); 1129 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1130 bkey_copy_key(&n->key, &b->key); 1131 mutex_unlock(&n->write_lock); 1132 } 1133 1134 return n; 1135 } 1136 1137 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1138 { 1139 unsigned i; 1140 1141 mutex_lock(&b->c->bucket_lock); 1142 1143 atomic_inc(&b->c->prio_blocked); 1144 1145 bkey_copy(k, &b->key); 1146 bkey_copy_key(k, &ZERO_KEY); 1147 1148 for (i = 0; i < KEY_PTRS(k); i++) 1149 SET_PTR_GEN(k, i, 1150 bch_inc_gen(PTR_CACHE(b->c, &b->key, i), 1151 PTR_BUCKET(b->c, &b->key, i))); 1152 1153 mutex_unlock(&b->c->bucket_lock); 1154 } 1155 1156 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1157 { 1158 struct cache_set *c = b->c; 1159 struct cache *ca; 1160 unsigned i, reserve = (c->root->level - b->level) * 2 + 1; 1161 1162 mutex_lock(&c->bucket_lock); 1163 1164 for_each_cache(ca, c, i) 1165 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1166 if (op) 1167 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1168 TASK_UNINTERRUPTIBLE); 1169 mutex_unlock(&c->bucket_lock); 1170 return -EINTR; 1171 } 1172 1173 mutex_unlock(&c->bucket_lock); 1174 1175 return mca_cannibalize_lock(b->c, op); 1176 } 1177 1178 /* Garbage collection */ 1179 1180 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1181 struct bkey *k) 1182 { 1183 uint8_t stale = 0; 1184 unsigned i; 1185 struct bucket *g; 1186 1187 /* 1188 * ptr_invalid() can't return true for the keys that mark btree nodes as 1189 * freed, but since ptr_bad() returns true we'll never actually use them 1190 * for anything and thus we don't want mark their pointers here 1191 */ 1192 if (!bkey_cmp(k, &ZERO_KEY)) 1193 return stale; 1194 1195 for (i = 0; i < KEY_PTRS(k); i++) { 1196 if (!ptr_available(c, k, i)) 1197 continue; 1198 1199 g = PTR_BUCKET(c, k, i); 1200 1201 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1202 g->last_gc = PTR_GEN(k, i); 1203 1204 if (ptr_stale(c, k, i)) { 1205 stale = max(stale, ptr_stale(c, k, i)); 1206 continue; 1207 } 1208 1209 cache_bug_on(GC_MARK(g) && 1210 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1211 c, "inconsistent ptrs: mark = %llu, level = %i", 1212 GC_MARK(g), level); 1213 1214 if (level) 1215 SET_GC_MARK(g, GC_MARK_METADATA); 1216 else if (KEY_DIRTY(k)) 1217 SET_GC_MARK(g, GC_MARK_DIRTY); 1218 else if (!GC_MARK(g)) 1219 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1220 1221 /* guard against overflow */ 1222 SET_GC_SECTORS_USED(g, min_t(unsigned, 1223 GC_SECTORS_USED(g) + KEY_SIZE(k), 1224 MAX_GC_SECTORS_USED)); 1225 1226 BUG_ON(!GC_SECTORS_USED(g)); 1227 } 1228 1229 return stale; 1230 } 1231 1232 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1233 1234 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1235 { 1236 unsigned i; 1237 1238 for (i = 0; i < KEY_PTRS(k); i++) 1239 if (ptr_available(c, k, i) && 1240 !ptr_stale(c, k, i)) { 1241 struct bucket *b = PTR_BUCKET(c, k, i); 1242 1243 b->gen = PTR_GEN(k, i); 1244 1245 if (level && bkey_cmp(k, &ZERO_KEY)) 1246 b->prio = BTREE_PRIO; 1247 else if (!level && b->prio == BTREE_PRIO) 1248 b->prio = INITIAL_PRIO; 1249 } 1250 1251 __bch_btree_mark_key(c, level, k); 1252 } 1253 1254 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1255 { 1256 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1257 } 1258 1259 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1260 { 1261 uint8_t stale = 0; 1262 unsigned keys = 0, good_keys = 0; 1263 struct bkey *k; 1264 struct btree_iter iter; 1265 struct bset_tree *t; 1266 1267 gc->nodes++; 1268 1269 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1270 stale = max(stale, btree_mark_key(b, k)); 1271 keys++; 1272 1273 if (bch_ptr_bad(&b->keys, k)) 1274 continue; 1275 1276 gc->key_bytes += bkey_u64s(k); 1277 gc->nkeys++; 1278 good_keys++; 1279 1280 gc->data += KEY_SIZE(k); 1281 } 1282 1283 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1284 btree_bug_on(t->size && 1285 bset_written(&b->keys, t) && 1286 bkey_cmp(&b->key, &t->end) < 0, 1287 b, "found short btree key in gc"); 1288 1289 if (b->c->gc_always_rewrite) 1290 return true; 1291 1292 if (stale > 10) 1293 return true; 1294 1295 if ((keys - good_keys) * 2 > keys) 1296 return true; 1297 1298 return false; 1299 } 1300 1301 #define GC_MERGE_NODES 4U 1302 1303 struct gc_merge_info { 1304 struct btree *b; 1305 unsigned keys; 1306 }; 1307 1308 static int bch_btree_insert_node(struct btree *, struct btree_op *, 1309 struct keylist *, atomic_t *, struct bkey *); 1310 1311 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1312 struct gc_stat *gc, struct gc_merge_info *r) 1313 { 1314 unsigned i, nodes = 0, keys = 0, blocks; 1315 struct btree *new_nodes[GC_MERGE_NODES]; 1316 struct keylist keylist; 1317 struct closure cl; 1318 struct bkey *k; 1319 1320 bch_keylist_init(&keylist); 1321 1322 if (btree_check_reserve(b, NULL)) 1323 return 0; 1324 1325 memset(new_nodes, 0, sizeof(new_nodes)); 1326 closure_init_stack(&cl); 1327 1328 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1329 keys += r[nodes++].keys; 1330 1331 blocks = btree_default_blocks(b->c) * 2 / 3; 1332 1333 if (nodes < 2 || 1334 __set_blocks(b->keys.set[0].data, keys, 1335 block_bytes(b->c)) > blocks * (nodes - 1)) 1336 return 0; 1337 1338 for (i = 0; i < nodes; i++) { 1339 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1340 if (IS_ERR_OR_NULL(new_nodes[i])) 1341 goto out_nocoalesce; 1342 } 1343 1344 /* 1345 * We have to check the reserve here, after we've allocated our new 1346 * nodes, to make sure the insert below will succeed - we also check 1347 * before as an optimization to potentially avoid a bunch of expensive 1348 * allocs/sorts 1349 */ 1350 if (btree_check_reserve(b, NULL)) 1351 goto out_nocoalesce; 1352 1353 for (i = 0; i < nodes; i++) 1354 mutex_lock(&new_nodes[i]->write_lock); 1355 1356 for (i = nodes - 1; i > 0; --i) { 1357 struct bset *n1 = btree_bset_first(new_nodes[i]); 1358 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1359 struct bkey *k, *last = NULL; 1360 1361 keys = 0; 1362 1363 if (i > 1) { 1364 for (k = n2->start; 1365 k < bset_bkey_last(n2); 1366 k = bkey_next(k)) { 1367 if (__set_blocks(n1, n1->keys + keys + 1368 bkey_u64s(k), 1369 block_bytes(b->c)) > blocks) 1370 break; 1371 1372 last = k; 1373 keys += bkey_u64s(k); 1374 } 1375 } else { 1376 /* 1377 * Last node we're not getting rid of - we're getting 1378 * rid of the node at r[0]. Have to try and fit all of 1379 * the remaining keys into this node; we can't ensure 1380 * they will always fit due to rounding and variable 1381 * length keys (shouldn't be possible in practice, 1382 * though) 1383 */ 1384 if (__set_blocks(n1, n1->keys + n2->keys, 1385 block_bytes(b->c)) > 1386 btree_blocks(new_nodes[i])) 1387 goto out_nocoalesce; 1388 1389 keys = n2->keys; 1390 /* Take the key of the node we're getting rid of */ 1391 last = &r->b->key; 1392 } 1393 1394 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) > 1395 btree_blocks(new_nodes[i])); 1396 1397 if (last) 1398 bkey_copy_key(&new_nodes[i]->key, last); 1399 1400 memcpy(bset_bkey_last(n1), 1401 n2->start, 1402 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1403 1404 n1->keys += keys; 1405 r[i].keys = n1->keys; 1406 1407 memmove(n2->start, 1408 bset_bkey_idx(n2, keys), 1409 (void *) bset_bkey_last(n2) - 1410 (void *) bset_bkey_idx(n2, keys)); 1411 1412 n2->keys -= keys; 1413 1414 if (__bch_keylist_realloc(&keylist, 1415 bkey_u64s(&new_nodes[i]->key))) 1416 goto out_nocoalesce; 1417 1418 bch_btree_node_write(new_nodes[i], &cl); 1419 bch_keylist_add(&keylist, &new_nodes[i]->key); 1420 } 1421 1422 for (i = 0; i < nodes; i++) 1423 mutex_unlock(&new_nodes[i]->write_lock); 1424 1425 closure_sync(&cl); 1426 1427 /* We emptied out this node */ 1428 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1429 btree_node_free(new_nodes[0]); 1430 rw_unlock(true, new_nodes[0]); 1431 new_nodes[0] = NULL; 1432 1433 for (i = 0; i < nodes; i++) { 1434 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1435 goto out_nocoalesce; 1436 1437 make_btree_freeing_key(r[i].b, keylist.top); 1438 bch_keylist_push(&keylist); 1439 } 1440 1441 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1442 BUG_ON(!bch_keylist_empty(&keylist)); 1443 1444 for (i = 0; i < nodes; i++) { 1445 btree_node_free(r[i].b); 1446 rw_unlock(true, r[i].b); 1447 1448 r[i].b = new_nodes[i]; 1449 } 1450 1451 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1452 r[nodes - 1].b = ERR_PTR(-EINTR); 1453 1454 trace_bcache_btree_gc_coalesce(nodes); 1455 gc->nodes--; 1456 1457 bch_keylist_free(&keylist); 1458 1459 /* Invalidated our iterator */ 1460 return -EINTR; 1461 1462 out_nocoalesce: 1463 closure_sync(&cl); 1464 bch_keylist_free(&keylist); 1465 1466 while ((k = bch_keylist_pop(&keylist))) 1467 if (!bkey_cmp(k, &ZERO_KEY)) 1468 atomic_dec(&b->c->prio_blocked); 1469 1470 for (i = 0; i < nodes; i++) 1471 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1472 btree_node_free(new_nodes[i]); 1473 rw_unlock(true, new_nodes[i]); 1474 } 1475 return 0; 1476 } 1477 1478 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1479 struct btree *replace) 1480 { 1481 struct keylist keys; 1482 struct btree *n; 1483 1484 if (btree_check_reserve(b, NULL)) 1485 return 0; 1486 1487 n = btree_node_alloc_replacement(replace, NULL); 1488 1489 /* recheck reserve after allocating replacement node */ 1490 if (btree_check_reserve(b, NULL)) { 1491 btree_node_free(n); 1492 rw_unlock(true, n); 1493 return 0; 1494 } 1495 1496 bch_btree_node_write_sync(n); 1497 1498 bch_keylist_init(&keys); 1499 bch_keylist_add(&keys, &n->key); 1500 1501 make_btree_freeing_key(replace, keys.top); 1502 bch_keylist_push(&keys); 1503 1504 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1505 BUG_ON(!bch_keylist_empty(&keys)); 1506 1507 btree_node_free(replace); 1508 rw_unlock(true, n); 1509 1510 /* Invalidated our iterator */ 1511 return -EINTR; 1512 } 1513 1514 static unsigned btree_gc_count_keys(struct btree *b) 1515 { 1516 struct bkey *k; 1517 struct btree_iter iter; 1518 unsigned ret = 0; 1519 1520 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1521 ret += bkey_u64s(k); 1522 1523 return ret; 1524 } 1525 1526 static size_t btree_gc_min_nodes(struct cache_set *c) 1527 { 1528 size_t min_nodes; 1529 1530 /* 1531 * Since incremental GC would stop 100ms when front 1532 * side I/O comes, so when there are many btree nodes, 1533 * if GC only processes constant (100) nodes each time, 1534 * GC would last a long time, and the front side I/Os 1535 * would run out of the buckets (since no new bucket 1536 * can be allocated during GC), and be blocked again. 1537 * So GC should not process constant nodes, but varied 1538 * nodes according to the number of btree nodes, which 1539 * realized by dividing GC into constant(100) times, 1540 * so when there are many btree nodes, GC can process 1541 * more nodes each time, otherwise, GC will process less 1542 * nodes each time (but no less than MIN_GC_NODES) 1543 */ 1544 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1545 if (min_nodes < MIN_GC_NODES) 1546 min_nodes = MIN_GC_NODES; 1547 1548 return min_nodes; 1549 } 1550 1551 1552 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1553 struct closure *writes, struct gc_stat *gc) 1554 { 1555 int ret = 0; 1556 bool should_rewrite; 1557 struct bkey *k; 1558 struct btree_iter iter; 1559 struct gc_merge_info r[GC_MERGE_NODES]; 1560 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1561 1562 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1563 1564 for (i = r; i < r + ARRAY_SIZE(r); i++) 1565 i->b = ERR_PTR(-EINTR); 1566 1567 while (1) { 1568 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1569 if (k) { 1570 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1571 true, b); 1572 if (IS_ERR(r->b)) { 1573 ret = PTR_ERR(r->b); 1574 break; 1575 } 1576 1577 r->keys = btree_gc_count_keys(r->b); 1578 1579 ret = btree_gc_coalesce(b, op, gc, r); 1580 if (ret) 1581 break; 1582 } 1583 1584 if (!last->b) 1585 break; 1586 1587 if (!IS_ERR(last->b)) { 1588 should_rewrite = btree_gc_mark_node(last->b, gc); 1589 if (should_rewrite) { 1590 ret = btree_gc_rewrite_node(b, op, last->b); 1591 if (ret) 1592 break; 1593 } 1594 1595 if (last->b->level) { 1596 ret = btree_gc_recurse(last->b, op, writes, gc); 1597 if (ret) 1598 break; 1599 } 1600 1601 bkey_copy_key(&b->c->gc_done, &last->b->key); 1602 1603 /* 1604 * Must flush leaf nodes before gc ends, since replace 1605 * operations aren't journalled 1606 */ 1607 mutex_lock(&last->b->write_lock); 1608 if (btree_node_dirty(last->b)) 1609 bch_btree_node_write(last->b, writes); 1610 mutex_unlock(&last->b->write_lock); 1611 rw_unlock(true, last->b); 1612 } 1613 1614 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1615 r->b = NULL; 1616 1617 if (atomic_read(&b->c->search_inflight) && 1618 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1619 gc->nodes_pre = gc->nodes; 1620 ret = -EAGAIN; 1621 break; 1622 } 1623 1624 if (need_resched()) { 1625 ret = -EAGAIN; 1626 break; 1627 } 1628 } 1629 1630 for (i = r; i < r + ARRAY_SIZE(r); i++) 1631 if (!IS_ERR_OR_NULL(i->b)) { 1632 mutex_lock(&i->b->write_lock); 1633 if (btree_node_dirty(i->b)) 1634 bch_btree_node_write(i->b, writes); 1635 mutex_unlock(&i->b->write_lock); 1636 rw_unlock(true, i->b); 1637 } 1638 1639 return ret; 1640 } 1641 1642 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1643 struct closure *writes, struct gc_stat *gc) 1644 { 1645 struct btree *n = NULL; 1646 int ret = 0; 1647 bool should_rewrite; 1648 1649 should_rewrite = btree_gc_mark_node(b, gc); 1650 if (should_rewrite) { 1651 n = btree_node_alloc_replacement(b, NULL); 1652 1653 if (!IS_ERR_OR_NULL(n)) { 1654 bch_btree_node_write_sync(n); 1655 1656 bch_btree_set_root(n); 1657 btree_node_free(b); 1658 rw_unlock(true, n); 1659 1660 return -EINTR; 1661 } 1662 } 1663 1664 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1665 1666 if (b->level) { 1667 ret = btree_gc_recurse(b, op, writes, gc); 1668 if (ret) 1669 return ret; 1670 } 1671 1672 bkey_copy_key(&b->c->gc_done, &b->key); 1673 1674 return ret; 1675 } 1676 1677 static void btree_gc_start(struct cache_set *c) 1678 { 1679 struct cache *ca; 1680 struct bucket *b; 1681 unsigned i; 1682 1683 if (!c->gc_mark_valid) 1684 return; 1685 1686 mutex_lock(&c->bucket_lock); 1687 1688 c->gc_mark_valid = 0; 1689 c->gc_done = ZERO_KEY; 1690 1691 for_each_cache(ca, c, i) 1692 for_each_bucket(b, ca) { 1693 b->last_gc = b->gen; 1694 if (!atomic_read(&b->pin)) { 1695 SET_GC_MARK(b, 0); 1696 SET_GC_SECTORS_USED(b, 0); 1697 } 1698 } 1699 1700 mutex_unlock(&c->bucket_lock); 1701 } 1702 1703 static void bch_btree_gc_finish(struct cache_set *c) 1704 { 1705 struct bucket *b; 1706 struct cache *ca; 1707 unsigned i; 1708 1709 mutex_lock(&c->bucket_lock); 1710 1711 set_gc_sectors(c); 1712 c->gc_mark_valid = 1; 1713 c->need_gc = 0; 1714 1715 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1716 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1717 GC_MARK_METADATA); 1718 1719 /* don't reclaim buckets to which writeback keys point */ 1720 rcu_read_lock(); 1721 for (i = 0; i < c->devices_max_used; i++) { 1722 struct bcache_device *d = c->devices[i]; 1723 struct cached_dev *dc; 1724 struct keybuf_key *w, *n; 1725 unsigned j; 1726 1727 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1728 continue; 1729 dc = container_of(d, struct cached_dev, disk); 1730 1731 spin_lock(&dc->writeback_keys.lock); 1732 rbtree_postorder_for_each_entry_safe(w, n, 1733 &dc->writeback_keys.keys, node) 1734 for (j = 0; j < KEY_PTRS(&w->key); j++) 1735 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1736 GC_MARK_DIRTY); 1737 spin_unlock(&dc->writeback_keys.lock); 1738 } 1739 rcu_read_unlock(); 1740 1741 c->avail_nbuckets = 0; 1742 for_each_cache(ca, c, i) { 1743 uint64_t *i; 1744 1745 ca->invalidate_needs_gc = 0; 1746 1747 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) 1748 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1749 1750 for (i = ca->prio_buckets; 1751 i < ca->prio_buckets + prio_buckets(ca) * 2; i++) 1752 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); 1753 1754 for_each_bucket(b, ca) { 1755 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1756 1757 if (atomic_read(&b->pin)) 1758 continue; 1759 1760 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1761 1762 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1763 c->avail_nbuckets++; 1764 } 1765 } 1766 1767 mutex_unlock(&c->bucket_lock); 1768 } 1769 1770 static void bch_btree_gc(struct cache_set *c) 1771 { 1772 int ret; 1773 struct gc_stat stats; 1774 struct closure writes; 1775 struct btree_op op; 1776 uint64_t start_time = local_clock(); 1777 1778 trace_bcache_gc_start(c); 1779 1780 memset(&stats, 0, sizeof(struct gc_stat)); 1781 closure_init_stack(&writes); 1782 bch_btree_op_init(&op, SHRT_MAX); 1783 1784 btree_gc_start(c); 1785 1786 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1787 do { 1788 ret = btree_root(gc_root, c, &op, &writes, &stats); 1789 closure_sync(&writes); 1790 cond_resched(); 1791 1792 if (ret == -EAGAIN) 1793 schedule_timeout_interruptible(msecs_to_jiffies 1794 (GC_SLEEP_MS)); 1795 else if (ret) 1796 pr_warn("gc failed!"); 1797 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1798 1799 bch_btree_gc_finish(c); 1800 wake_up_allocators(c); 1801 1802 bch_time_stats_update(&c->btree_gc_time, start_time); 1803 1804 stats.key_bytes *= sizeof(uint64_t); 1805 stats.data <<= 9; 1806 bch_update_bucket_in_use(c, &stats); 1807 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1808 1809 trace_bcache_gc_end(c); 1810 1811 bch_moving_gc(c); 1812 } 1813 1814 static bool gc_should_run(struct cache_set *c) 1815 { 1816 struct cache *ca; 1817 unsigned i; 1818 1819 for_each_cache(ca, c, i) 1820 if (ca->invalidate_needs_gc) 1821 return true; 1822 1823 if (atomic_read(&c->sectors_to_gc) < 0) 1824 return true; 1825 1826 return false; 1827 } 1828 1829 static int bch_gc_thread(void *arg) 1830 { 1831 struct cache_set *c = arg; 1832 1833 while (1) { 1834 wait_event_interruptible(c->gc_wait, 1835 kthread_should_stop() || 1836 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1837 gc_should_run(c)); 1838 1839 if (kthread_should_stop() || 1840 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1841 break; 1842 1843 set_gc_sectors(c); 1844 bch_btree_gc(c); 1845 } 1846 1847 wait_for_kthread_stop(); 1848 return 0; 1849 } 1850 1851 int bch_gc_thread_start(struct cache_set *c) 1852 { 1853 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1854 return PTR_ERR_OR_ZERO(c->gc_thread); 1855 } 1856 1857 /* Initial partial gc */ 1858 1859 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1860 { 1861 int ret = 0; 1862 struct bkey *k, *p = NULL; 1863 struct btree_iter iter; 1864 1865 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1866 bch_initial_mark_key(b->c, b->level, k); 1867 1868 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1869 1870 if (b->level) { 1871 bch_btree_iter_init(&b->keys, &iter, NULL); 1872 1873 do { 1874 k = bch_btree_iter_next_filter(&iter, &b->keys, 1875 bch_ptr_bad); 1876 if (k) { 1877 btree_node_prefetch(b, k); 1878 /* 1879 * initiallize c->gc_stats.nodes 1880 * for incremental GC 1881 */ 1882 b->c->gc_stats.nodes++; 1883 } 1884 1885 if (p) 1886 ret = btree(check_recurse, p, b, op); 1887 1888 p = k; 1889 } while (p && !ret); 1890 } 1891 1892 return ret; 1893 } 1894 1895 int bch_btree_check(struct cache_set *c) 1896 { 1897 struct btree_op op; 1898 1899 bch_btree_op_init(&op, SHRT_MAX); 1900 1901 return btree_root(check_recurse, c, &op); 1902 } 1903 1904 void bch_initial_gc_finish(struct cache_set *c) 1905 { 1906 struct cache *ca; 1907 struct bucket *b; 1908 unsigned i; 1909 1910 bch_btree_gc_finish(c); 1911 1912 mutex_lock(&c->bucket_lock); 1913 1914 /* 1915 * We need to put some unused buckets directly on the prio freelist in 1916 * order to get the allocator thread started - it needs freed buckets in 1917 * order to rewrite the prios and gens, and it needs to rewrite prios 1918 * and gens in order to free buckets. 1919 * 1920 * This is only safe for buckets that have no live data in them, which 1921 * there should always be some of. 1922 */ 1923 for_each_cache(ca, c, i) { 1924 for_each_bucket(b, ca) { 1925 if (fifo_full(&ca->free[RESERVE_PRIO]) && 1926 fifo_full(&ca->free[RESERVE_BTREE])) 1927 break; 1928 1929 if (bch_can_invalidate_bucket(ca, b) && 1930 !GC_MARK(b)) { 1931 __bch_invalidate_one_bucket(ca, b); 1932 if (!fifo_push(&ca->free[RESERVE_PRIO], 1933 b - ca->buckets)) 1934 fifo_push(&ca->free[RESERVE_BTREE], 1935 b - ca->buckets); 1936 } 1937 } 1938 } 1939 1940 mutex_unlock(&c->bucket_lock); 1941 } 1942 1943 /* Btree insertion */ 1944 1945 static bool btree_insert_key(struct btree *b, struct bkey *k, 1946 struct bkey *replace_key) 1947 { 1948 unsigned status; 1949 1950 BUG_ON(bkey_cmp(k, &b->key) > 0); 1951 1952 status = bch_btree_insert_key(&b->keys, k, replace_key); 1953 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 1954 bch_check_keys(&b->keys, "%u for %s", status, 1955 replace_key ? "replace" : "insert"); 1956 1957 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 1958 status); 1959 return true; 1960 } else 1961 return false; 1962 } 1963 1964 static size_t insert_u64s_remaining(struct btree *b) 1965 { 1966 long ret = bch_btree_keys_u64s_remaining(&b->keys); 1967 1968 /* 1969 * Might land in the middle of an existing extent and have to split it 1970 */ 1971 if (b->keys.ops->is_extents) 1972 ret -= KEY_MAX_U64S; 1973 1974 return max(ret, 0L); 1975 } 1976 1977 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 1978 struct keylist *insert_keys, 1979 struct bkey *replace_key) 1980 { 1981 bool ret = false; 1982 int oldsize = bch_count_data(&b->keys); 1983 1984 while (!bch_keylist_empty(insert_keys)) { 1985 struct bkey *k = insert_keys->keys; 1986 1987 if (bkey_u64s(k) > insert_u64s_remaining(b)) 1988 break; 1989 1990 if (bkey_cmp(k, &b->key) <= 0) { 1991 if (!b->level) 1992 bkey_put(b->c, k); 1993 1994 ret |= btree_insert_key(b, k, replace_key); 1995 bch_keylist_pop_front(insert_keys); 1996 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 1997 BKEY_PADDED(key) temp; 1998 bkey_copy(&temp.key, insert_keys->keys); 1999 2000 bch_cut_back(&b->key, &temp.key); 2001 bch_cut_front(&b->key, insert_keys->keys); 2002 2003 ret |= btree_insert_key(b, &temp.key, replace_key); 2004 break; 2005 } else { 2006 break; 2007 } 2008 } 2009 2010 if (!ret) 2011 op->insert_collision = true; 2012 2013 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2014 2015 BUG_ON(bch_count_data(&b->keys) < oldsize); 2016 return ret; 2017 } 2018 2019 static int btree_split(struct btree *b, struct btree_op *op, 2020 struct keylist *insert_keys, 2021 struct bkey *replace_key) 2022 { 2023 bool split; 2024 struct btree *n1, *n2 = NULL, *n3 = NULL; 2025 uint64_t start_time = local_clock(); 2026 struct closure cl; 2027 struct keylist parent_keys; 2028 2029 closure_init_stack(&cl); 2030 bch_keylist_init(&parent_keys); 2031 2032 if (btree_check_reserve(b, op)) { 2033 if (!b->level) 2034 return -EINTR; 2035 else 2036 WARN(1, "insufficient reserve for split\n"); 2037 } 2038 2039 n1 = btree_node_alloc_replacement(b, op); 2040 if (IS_ERR(n1)) 2041 goto err; 2042 2043 split = set_blocks(btree_bset_first(n1), 2044 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5; 2045 2046 if (split) { 2047 unsigned keys = 0; 2048 2049 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2050 2051 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2052 if (IS_ERR(n2)) 2053 goto err_free1; 2054 2055 if (!b->parent) { 2056 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2057 if (IS_ERR(n3)) 2058 goto err_free2; 2059 } 2060 2061 mutex_lock(&n1->write_lock); 2062 mutex_lock(&n2->write_lock); 2063 2064 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2065 2066 /* 2067 * Has to be a linear search because we don't have an auxiliary 2068 * search tree yet 2069 */ 2070 2071 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2072 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2073 keys)); 2074 2075 bkey_copy_key(&n1->key, 2076 bset_bkey_idx(btree_bset_first(n1), keys)); 2077 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2078 2079 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2080 btree_bset_first(n1)->keys = keys; 2081 2082 memcpy(btree_bset_first(n2)->start, 2083 bset_bkey_last(btree_bset_first(n1)), 2084 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2085 2086 bkey_copy_key(&n2->key, &b->key); 2087 2088 bch_keylist_add(&parent_keys, &n2->key); 2089 bch_btree_node_write(n2, &cl); 2090 mutex_unlock(&n2->write_lock); 2091 rw_unlock(true, n2); 2092 } else { 2093 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2094 2095 mutex_lock(&n1->write_lock); 2096 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2097 } 2098 2099 bch_keylist_add(&parent_keys, &n1->key); 2100 bch_btree_node_write(n1, &cl); 2101 mutex_unlock(&n1->write_lock); 2102 2103 if (n3) { 2104 /* Depth increases, make a new root */ 2105 mutex_lock(&n3->write_lock); 2106 bkey_copy_key(&n3->key, &MAX_KEY); 2107 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2108 bch_btree_node_write(n3, &cl); 2109 mutex_unlock(&n3->write_lock); 2110 2111 closure_sync(&cl); 2112 bch_btree_set_root(n3); 2113 rw_unlock(true, n3); 2114 } else if (!b->parent) { 2115 /* Root filled up but didn't need to be split */ 2116 closure_sync(&cl); 2117 bch_btree_set_root(n1); 2118 } else { 2119 /* Split a non root node */ 2120 closure_sync(&cl); 2121 make_btree_freeing_key(b, parent_keys.top); 2122 bch_keylist_push(&parent_keys); 2123 2124 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2125 BUG_ON(!bch_keylist_empty(&parent_keys)); 2126 } 2127 2128 btree_node_free(b); 2129 rw_unlock(true, n1); 2130 2131 bch_time_stats_update(&b->c->btree_split_time, start_time); 2132 2133 return 0; 2134 err_free2: 2135 bkey_put(b->c, &n2->key); 2136 btree_node_free(n2); 2137 rw_unlock(true, n2); 2138 err_free1: 2139 bkey_put(b->c, &n1->key); 2140 btree_node_free(n1); 2141 rw_unlock(true, n1); 2142 err: 2143 WARN(1, "bcache: btree split failed (level %u)", b->level); 2144 2145 if (n3 == ERR_PTR(-EAGAIN) || 2146 n2 == ERR_PTR(-EAGAIN) || 2147 n1 == ERR_PTR(-EAGAIN)) 2148 return -EAGAIN; 2149 2150 return -ENOMEM; 2151 } 2152 2153 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2154 struct keylist *insert_keys, 2155 atomic_t *journal_ref, 2156 struct bkey *replace_key) 2157 { 2158 struct closure cl; 2159 2160 BUG_ON(b->level && replace_key); 2161 2162 closure_init_stack(&cl); 2163 2164 mutex_lock(&b->write_lock); 2165 2166 if (write_block(b) != btree_bset_last(b) && 2167 b->keys.last_set_unwritten) 2168 bch_btree_init_next(b); /* just wrote a set */ 2169 2170 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2171 mutex_unlock(&b->write_lock); 2172 goto split; 2173 } 2174 2175 BUG_ON(write_block(b) != btree_bset_last(b)); 2176 2177 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2178 if (!b->level) 2179 bch_btree_leaf_dirty(b, journal_ref); 2180 else 2181 bch_btree_node_write(b, &cl); 2182 } 2183 2184 mutex_unlock(&b->write_lock); 2185 2186 /* wait for btree node write if necessary, after unlock */ 2187 closure_sync(&cl); 2188 2189 return 0; 2190 split: 2191 if (current->bio_list) { 2192 op->lock = b->c->root->level + 1; 2193 return -EAGAIN; 2194 } else if (op->lock <= b->c->root->level) { 2195 op->lock = b->c->root->level + 1; 2196 return -EINTR; 2197 } else { 2198 /* Invalidated all iterators */ 2199 int ret = btree_split(b, op, insert_keys, replace_key); 2200 2201 if (bch_keylist_empty(insert_keys)) 2202 return 0; 2203 else if (!ret) 2204 return -EINTR; 2205 return ret; 2206 } 2207 } 2208 2209 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2210 struct bkey *check_key) 2211 { 2212 int ret = -EINTR; 2213 uint64_t btree_ptr = b->key.ptr[0]; 2214 unsigned long seq = b->seq; 2215 struct keylist insert; 2216 bool upgrade = op->lock == -1; 2217 2218 bch_keylist_init(&insert); 2219 2220 if (upgrade) { 2221 rw_unlock(false, b); 2222 rw_lock(true, b, b->level); 2223 2224 if (b->key.ptr[0] != btree_ptr || 2225 b->seq != seq + 1) { 2226 op->lock = b->level; 2227 goto out; 2228 } 2229 } 2230 2231 SET_KEY_PTRS(check_key, 1); 2232 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2233 2234 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2235 2236 bch_keylist_add(&insert, check_key); 2237 2238 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2239 2240 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2241 out: 2242 if (upgrade) 2243 downgrade_write(&b->lock); 2244 return ret; 2245 } 2246 2247 struct btree_insert_op { 2248 struct btree_op op; 2249 struct keylist *keys; 2250 atomic_t *journal_ref; 2251 struct bkey *replace_key; 2252 }; 2253 2254 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2255 { 2256 struct btree_insert_op *op = container_of(b_op, 2257 struct btree_insert_op, op); 2258 2259 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2260 op->journal_ref, op->replace_key); 2261 if (ret && !bch_keylist_empty(op->keys)) 2262 return ret; 2263 else 2264 return MAP_DONE; 2265 } 2266 2267 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2268 atomic_t *journal_ref, struct bkey *replace_key) 2269 { 2270 struct btree_insert_op op; 2271 int ret = 0; 2272 2273 BUG_ON(current->bio_list); 2274 BUG_ON(bch_keylist_empty(keys)); 2275 2276 bch_btree_op_init(&op.op, 0); 2277 op.keys = keys; 2278 op.journal_ref = journal_ref; 2279 op.replace_key = replace_key; 2280 2281 while (!ret && !bch_keylist_empty(keys)) { 2282 op.op.lock = 0; 2283 ret = bch_btree_map_leaf_nodes(&op.op, c, 2284 &START_KEY(keys->keys), 2285 btree_insert_fn); 2286 } 2287 2288 if (ret) { 2289 struct bkey *k; 2290 2291 pr_err("error %i", ret); 2292 2293 while ((k = bch_keylist_pop(keys))) 2294 bkey_put(c, k); 2295 } else if (op.op.insert_collision) 2296 ret = -ESRCH; 2297 2298 return ret; 2299 } 2300 2301 void bch_btree_set_root(struct btree *b) 2302 { 2303 unsigned i; 2304 struct closure cl; 2305 2306 closure_init_stack(&cl); 2307 2308 trace_bcache_btree_set_root(b); 2309 2310 BUG_ON(!b->written); 2311 2312 for (i = 0; i < KEY_PTRS(&b->key); i++) 2313 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2314 2315 mutex_lock(&b->c->bucket_lock); 2316 list_del_init(&b->list); 2317 mutex_unlock(&b->c->bucket_lock); 2318 2319 b->c->root = b; 2320 2321 bch_journal_meta(b->c, &cl); 2322 closure_sync(&cl); 2323 } 2324 2325 /* Map across nodes or keys */ 2326 2327 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2328 struct bkey *from, 2329 btree_map_nodes_fn *fn, int flags) 2330 { 2331 int ret = MAP_CONTINUE; 2332 2333 if (b->level) { 2334 struct bkey *k; 2335 struct btree_iter iter; 2336 2337 bch_btree_iter_init(&b->keys, &iter, from); 2338 2339 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2340 bch_ptr_bad))) { 2341 ret = btree(map_nodes_recurse, k, b, 2342 op, from, fn, flags); 2343 from = NULL; 2344 2345 if (ret != MAP_CONTINUE) 2346 return ret; 2347 } 2348 } 2349 2350 if (!b->level || flags == MAP_ALL_NODES) 2351 ret = fn(op, b); 2352 2353 return ret; 2354 } 2355 2356 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2357 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2358 { 2359 return btree_root(map_nodes_recurse, c, op, from, fn, flags); 2360 } 2361 2362 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2363 struct bkey *from, btree_map_keys_fn *fn, 2364 int flags) 2365 { 2366 int ret = MAP_CONTINUE; 2367 struct bkey *k; 2368 struct btree_iter iter; 2369 2370 bch_btree_iter_init(&b->keys, &iter, from); 2371 2372 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2373 ret = !b->level 2374 ? fn(op, b, k) 2375 : btree(map_keys_recurse, k, b, op, from, fn, flags); 2376 from = NULL; 2377 2378 if (ret != MAP_CONTINUE) 2379 return ret; 2380 } 2381 2382 if (!b->level && (flags & MAP_END_KEY)) 2383 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2384 KEY_OFFSET(&b->key), 0)); 2385 2386 return ret; 2387 } 2388 2389 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2390 struct bkey *from, btree_map_keys_fn *fn, int flags) 2391 { 2392 return btree_root(map_keys_recurse, c, op, from, fn, flags); 2393 } 2394 2395 /* Keybuf code */ 2396 2397 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2398 { 2399 /* Overlapping keys compare equal */ 2400 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2401 return -1; 2402 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2403 return 1; 2404 return 0; 2405 } 2406 2407 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2408 struct keybuf_key *r) 2409 { 2410 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2411 } 2412 2413 struct refill { 2414 struct btree_op op; 2415 unsigned nr_found; 2416 struct keybuf *buf; 2417 struct bkey *end; 2418 keybuf_pred_fn *pred; 2419 }; 2420 2421 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2422 struct bkey *k) 2423 { 2424 struct refill *refill = container_of(op, struct refill, op); 2425 struct keybuf *buf = refill->buf; 2426 int ret = MAP_CONTINUE; 2427 2428 if (bkey_cmp(k, refill->end) >= 0) { 2429 ret = MAP_DONE; 2430 goto out; 2431 } 2432 2433 if (!KEY_SIZE(k)) /* end key */ 2434 goto out; 2435 2436 if (refill->pred(buf, k)) { 2437 struct keybuf_key *w; 2438 2439 spin_lock(&buf->lock); 2440 2441 w = array_alloc(&buf->freelist); 2442 if (!w) { 2443 spin_unlock(&buf->lock); 2444 return MAP_DONE; 2445 } 2446 2447 w->private = NULL; 2448 bkey_copy(&w->key, k); 2449 2450 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2451 array_free(&buf->freelist, w); 2452 else 2453 refill->nr_found++; 2454 2455 if (array_freelist_empty(&buf->freelist)) 2456 ret = MAP_DONE; 2457 2458 spin_unlock(&buf->lock); 2459 } 2460 out: 2461 buf->last_scanned = *k; 2462 return ret; 2463 } 2464 2465 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2466 struct bkey *end, keybuf_pred_fn *pred) 2467 { 2468 struct bkey start = buf->last_scanned; 2469 struct refill refill; 2470 2471 cond_resched(); 2472 2473 bch_btree_op_init(&refill.op, -1); 2474 refill.nr_found = 0; 2475 refill.buf = buf; 2476 refill.end = end; 2477 refill.pred = pred; 2478 2479 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2480 refill_keybuf_fn, MAP_END_KEY); 2481 2482 trace_bcache_keyscan(refill.nr_found, 2483 KEY_INODE(&start), KEY_OFFSET(&start), 2484 KEY_INODE(&buf->last_scanned), 2485 KEY_OFFSET(&buf->last_scanned)); 2486 2487 spin_lock(&buf->lock); 2488 2489 if (!RB_EMPTY_ROOT(&buf->keys)) { 2490 struct keybuf_key *w; 2491 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2492 buf->start = START_KEY(&w->key); 2493 2494 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2495 buf->end = w->key; 2496 } else { 2497 buf->start = MAX_KEY; 2498 buf->end = MAX_KEY; 2499 } 2500 2501 spin_unlock(&buf->lock); 2502 } 2503 2504 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2505 { 2506 rb_erase(&w->node, &buf->keys); 2507 array_free(&buf->freelist, w); 2508 } 2509 2510 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2511 { 2512 spin_lock(&buf->lock); 2513 __bch_keybuf_del(buf, w); 2514 spin_unlock(&buf->lock); 2515 } 2516 2517 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2518 struct bkey *end) 2519 { 2520 bool ret = false; 2521 struct keybuf_key *p, *w, s; 2522 s.key = *start; 2523 2524 if (bkey_cmp(end, &buf->start) <= 0 || 2525 bkey_cmp(start, &buf->end) >= 0) 2526 return false; 2527 2528 spin_lock(&buf->lock); 2529 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2530 2531 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2532 p = w; 2533 w = RB_NEXT(w, node); 2534 2535 if (p->private) 2536 ret = true; 2537 else 2538 __bch_keybuf_del(buf, p); 2539 } 2540 2541 spin_unlock(&buf->lock); 2542 return ret; 2543 } 2544 2545 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2546 { 2547 struct keybuf_key *w; 2548 spin_lock(&buf->lock); 2549 2550 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2551 2552 while (w && w->private) 2553 w = RB_NEXT(w, node); 2554 2555 if (w) 2556 w->private = ERR_PTR(-EINTR); 2557 2558 spin_unlock(&buf->lock); 2559 return w; 2560 } 2561 2562 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2563 struct keybuf *buf, 2564 struct bkey *end, 2565 keybuf_pred_fn *pred) 2566 { 2567 struct keybuf_key *ret; 2568 2569 while (1) { 2570 ret = bch_keybuf_next(buf); 2571 if (ret) 2572 break; 2573 2574 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2575 pr_debug("scan finished"); 2576 break; 2577 } 2578 2579 bch_refill_keybuf(c, buf, end, pred); 2580 } 2581 2582 return ret; 2583 } 2584 2585 void bch_keybuf_init(struct keybuf *buf) 2586 { 2587 buf->last_scanned = MAX_KEY; 2588 buf->keys = RB_ROOT; 2589 2590 spin_lock_init(&buf->lock); 2591 array_allocator_init(&buf->freelist); 2592 } 2593