xref: /linux/drivers/md/bcache/btree.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 #define insert_lock(s, b)	((b)->level <= (s)->lock)
103 
104 /*
105  * These macros are for recursing down the btree - they handle the details of
106  * locking and looking up nodes in the cache for you. They're best treated as
107  * mere syntax when reading code that uses them.
108  *
109  * op->lock determines whether we take a read or a write lock at a given depth.
110  * If you've got a read lock and find that you need a write lock (i.e. you're
111  * going to have to split), set op->lock and return -EINTR; btree_root() will
112  * call you again and you'll have the correct lock.
113  */
114 
115 /**
116  * btree - recurse down the btree on a specified key
117  * @fn:		function to call, which will be passed the child node
118  * @key:	key to recurse on
119  * @b:		parent btree node
120  * @op:		pointer to struct btree_op
121  */
122 #define btree(fn, key, b, op, ...)					\
123 ({									\
124 	int _r, l = (b)->level - 1;					\
125 	bool _w = l <= (op)->lock;					\
126 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
127 						  _w, b);		\
128 	if (!IS_ERR(_child)) {						\
129 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
130 		rw_unlock(_w, _child);					\
131 	} else								\
132 		_r = PTR_ERR(_child);					\
133 	_r;								\
134 })
135 
136 /**
137  * btree_root - call a function on the root of the btree
138  * @fn:		function to call, which will be passed the child node
139  * @c:		cache set
140  * @op:		pointer to struct btree_op
141  */
142 #define btree_root(fn, c, op, ...)					\
143 ({									\
144 	int _r = -EINTR;						\
145 	do {								\
146 		struct btree *_b = (c)->root;				\
147 		bool _w = insert_lock(op, _b);				\
148 		rw_lock(_w, _b, _b->level);				\
149 		if (_b == (c)->root &&					\
150 		    _w == insert_lock(op, _b)) {			\
151 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
152 		}							\
153 		rw_unlock(_w, _b);					\
154 		bch_cannibalize_unlock(c);				\
155 		if (_r == -EINTR)					\
156 			schedule();					\
157 	} while (_r == -EINTR);						\
158 									\
159 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
160 	_r;								\
161 })
162 
163 static inline struct bset *write_block(struct btree *b)
164 {
165 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
166 }
167 
168 static void bch_btree_init_next(struct btree *b)
169 {
170 	/* If not a leaf node, always sort */
171 	if (b->level && b->keys.nsets)
172 		bch_btree_sort(&b->keys, &b->c->sort);
173 	else
174 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
175 
176 	if (b->written < btree_blocks(b))
177 		bch_bset_init_next(&b->keys, write_block(b),
178 				   bset_magic(&b->c->sb));
179 
180 }
181 
182 /* Btree key manipulation */
183 
184 void bkey_put(struct cache_set *c, struct bkey *k)
185 {
186 	unsigned int i;
187 
188 	for (i = 0; i < KEY_PTRS(k); i++)
189 		if (ptr_available(c, k, i))
190 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
191 }
192 
193 /* Btree IO */
194 
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
196 {
197 	uint64_t crc = b->key.ptr[0];
198 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
199 
200 	crc = bch_crc64_update(crc, data, end - data);
201 	return crc ^ 0xffffffffffffffffULL;
202 }
203 
204 void bch_btree_node_read_done(struct btree *b)
205 {
206 	const char *err = "bad btree header";
207 	struct bset *i = btree_bset_first(b);
208 	struct btree_iter *iter;
209 
210 	/*
211 	 * c->fill_iter can allocate an iterator with more memory space
212 	 * than static MAX_BSETS.
213 	 * See the comment arount cache_set->fill_iter.
214 	 */
215 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
216 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
217 	iter->used = 0;
218 
219 #ifdef CONFIG_BCACHE_DEBUG
220 	iter->b = &b->keys;
221 #endif
222 
223 	if (!i->seq)
224 		goto err;
225 
226 	for (;
227 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
228 	     i = write_block(b)) {
229 		err = "unsupported bset version";
230 		if (i->version > BCACHE_BSET_VERSION)
231 			goto err;
232 
233 		err = "bad btree header";
234 		if (b->written + set_blocks(i, block_bytes(b->c)) >
235 		    btree_blocks(b))
236 			goto err;
237 
238 		err = "bad magic";
239 		if (i->magic != bset_magic(&b->c->sb))
240 			goto err;
241 
242 		err = "bad checksum";
243 		switch (i->version) {
244 		case 0:
245 			if (i->csum != csum_set(i))
246 				goto err;
247 			break;
248 		case BCACHE_BSET_VERSION:
249 			if (i->csum != btree_csum_set(b, i))
250 				goto err;
251 			break;
252 		}
253 
254 		err = "empty set";
255 		if (i != b->keys.set[0].data && !i->keys)
256 			goto err;
257 
258 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
259 
260 		b->written += set_blocks(i, block_bytes(b->c));
261 	}
262 
263 	err = "corrupted btree";
264 	for (i = write_block(b);
265 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
266 	     i = ((void *) i) + block_bytes(b->c))
267 		if (i->seq == b->keys.set[0].data->seq)
268 			goto err;
269 
270 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
271 
272 	i = b->keys.set[0].data;
273 	err = "short btree key";
274 	if (b->keys.set[0].size &&
275 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
276 		goto err;
277 
278 	if (b->written < btree_blocks(b))
279 		bch_bset_init_next(&b->keys, write_block(b),
280 				   bset_magic(&b->c->sb));
281 out:
282 	mempool_free(iter, &b->c->fill_iter);
283 	return;
284 err:
285 	set_btree_node_io_error(b);
286 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
287 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
288 			    bset_block_offset(b, i), i->keys);
289 	goto out;
290 }
291 
292 static void btree_node_read_endio(struct bio *bio)
293 {
294 	struct closure *cl = bio->bi_private;
295 
296 	closure_put(cl);
297 }
298 
299 static void bch_btree_node_read(struct btree *b)
300 {
301 	uint64_t start_time = local_clock();
302 	struct closure cl;
303 	struct bio *bio;
304 
305 	trace_bcache_btree_read(b);
306 
307 	closure_init_stack(&cl);
308 
309 	bio = bch_bbio_alloc(b->c);
310 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
311 	bio->bi_end_io	= btree_node_read_endio;
312 	bio->bi_private	= &cl;
313 	bio->bi_opf = REQ_OP_READ | REQ_META;
314 
315 	bch_bio_map(bio, b->keys.set[0].data);
316 
317 	bch_submit_bbio(bio, b->c, &b->key, 0);
318 	closure_sync(&cl);
319 
320 	if (bio->bi_status)
321 		set_btree_node_io_error(b);
322 
323 	bch_bbio_free(bio, b->c);
324 
325 	if (btree_node_io_error(b))
326 		goto err;
327 
328 	bch_btree_node_read_done(b);
329 	bch_time_stats_update(&b->c->btree_read_time, start_time);
330 
331 	return;
332 err:
333 	bch_cache_set_error(b->c, "io error reading bucket %zu",
334 			    PTR_BUCKET_NR(b->c, &b->key, 0));
335 }
336 
337 static void btree_complete_write(struct btree *b, struct btree_write *w)
338 {
339 	if (w->prio_blocked &&
340 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
341 		wake_up_allocators(b->c);
342 
343 	if (w->journal) {
344 		atomic_dec_bug(w->journal);
345 		__closure_wake_up(&b->c->journal.wait);
346 	}
347 
348 	w->prio_blocked	= 0;
349 	w->journal	= NULL;
350 }
351 
352 static void btree_node_write_unlock(struct closure *cl)
353 {
354 	struct btree *b = container_of(cl, struct btree, io);
355 
356 	up(&b->io_mutex);
357 }
358 
359 static void __btree_node_write_done(struct closure *cl)
360 {
361 	struct btree *b = container_of(cl, struct btree, io);
362 	struct btree_write *w = btree_prev_write(b);
363 
364 	bch_bbio_free(b->bio, b->c);
365 	b->bio = NULL;
366 	btree_complete_write(b, w);
367 
368 	if (btree_node_dirty(b))
369 		schedule_delayed_work(&b->work, 30 * HZ);
370 
371 	closure_return_with_destructor(cl, btree_node_write_unlock);
372 }
373 
374 static void btree_node_write_done(struct closure *cl)
375 {
376 	struct btree *b = container_of(cl, struct btree, io);
377 
378 	bio_free_pages(b->bio);
379 	__btree_node_write_done(cl);
380 }
381 
382 static void btree_node_write_endio(struct bio *bio)
383 {
384 	struct closure *cl = bio->bi_private;
385 	struct btree *b = container_of(cl, struct btree, io);
386 
387 	if (bio->bi_status)
388 		set_btree_node_io_error(b);
389 
390 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
391 	closure_put(cl);
392 }
393 
394 static void do_btree_node_write(struct btree *b)
395 {
396 	struct closure *cl = &b->io;
397 	struct bset *i = btree_bset_last(b);
398 	BKEY_PADDED(key) k;
399 
400 	i->version	= BCACHE_BSET_VERSION;
401 	i->csum		= btree_csum_set(b, i);
402 
403 	BUG_ON(b->bio);
404 	b->bio = bch_bbio_alloc(b->c);
405 
406 	b->bio->bi_end_io	= btree_node_write_endio;
407 	b->bio->bi_private	= cl;
408 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
409 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
410 	bch_bio_map(b->bio, i);
411 
412 	/*
413 	 * If we're appending to a leaf node, we don't technically need FUA -
414 	 * this write just needs to be persisted before the next journal write,
415 	 * which will be marked FLUSH|FUA.
416 	 *
417 	 * Similarly if we're writing a new btree root - the pointer is going to
418 	 * be in the next journal entry.
419 	 *
420 	 * But if we're writing a new btree node (that isn't a root) or
421 	 * appending to a non leaf btree node, we need either FUA or a flush
422 	 * when we write the parent with the new pointer. FUA is cheaper than a
423 	 * flush, and writes appending to leaf nodes aren't blocking anything so
424 	 * just make all btree node writes FUA to keep things sane.
425 	 */
426 
427 	bkey_copy(&k.key, &b->key);
428 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
429 		       bset_sector_offset(&b->keys, i));
430 
431 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
432 		int j;
433 		struct bio_vec *bv;
434 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
435 
436 		bio_for_each_segment_all(bv, b->bio, j)
437 			memcpy(page_address(bv->bv_page),
438 			       base + j * PAGE_SIZE, PAGE_SIZE);
439 
440 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
441 
442 		continue_at(cl, btree_node_write_done, NULL);
443 	} else {
444 		/*
445 		 * No problem for multipage bvec since the bio is
446 		 * just allocated
447 		 */
448 		b->bio->bi_vcnt = 0;
449 		bch_bio_map(b->bio, i);
450 
451 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
452 
453 		closure_sync(cl);
454 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
455 	}
456 }
457 
458 void __bch_btree_node_write(struct btree *b, struct closure *parent)
459 {
460 	struct bset *i = btree_bset_last(b);
461 
462 	lockdep_assert_held(&b->write_lock);
463 
464 	trace_bcache_btree_write(b);
465 
466 	BUG_ON(current->bio_list);
467 	BUG_ON(b->written >= btree_blocks(b));
468 	BUG_ON(b->written && !i->keys);
469 	BUG_ON(btree_bset_first(b)->seq != i->seq);
470 	bch_check_keys(&b->keys, "writing");
471 
472 	cancel_delayed_work(&b->work);
473 
474 	/* If caller isn't waiting for write, parent refcount is cache set */
475 	down(&b->io_mutex);
476 	closure_init(&b->io, parent ?: &b->c->cl);
477 
478 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
479 	change_bit(BTREE_NODE_write_idx, &b->flags);
480 
481 	do_btree_node_write(b);
482 
483 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
484 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
485 
486 	b->written += set_blocks(i, block_bytes(b->c));
487 }
488 
489 void bch_btree_node_write(struct btree *b, struct closure *parent)
490 {
491 	unsigned int nsets = b->keys.nsets;
492 
493 	lockdep_assert_held(&b->lock);
494 
495 	__bch_btree_node_write(b, parent);
496 
497 	/*
498 	 * do verify if there was more than one set initially (i.e. we did a
499 	 * sort) and we sorted down to a single set:
500 	 */
501 	if (nsets && !b->keys.nsets)
502 		bch_btree_verify(b);
503 
504 	bch_btree_init_next(b);
505 }
506 
507 static void bch_btree_node_write_sync(struct btree *b)
508 {
509 	struct closure cl;
510 
511 	closure_init_stack(&cl);
512 
513 	mutex_lock(&b->write_lock);
514 	bch_btree_node_write(b, &cl);
515 	mutex_unlock(&b->write_lock);
516 
517 	closure_sync(&cl);
518 }
519 
520 static void btree_node_write_work(struct work_struct *w)
521 {
522 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
523 
524 	mutex_lock(&b->write_lock);
525 	if (btree_node_dirty(b))
526 		__bch_btree_node_write(b, NULL);
527 	mutex_unlock(&b->write_lock);
528 }
529 
530 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
531 {
532 	struct bset *i = btree_bset_last(b);
533 	struct btree_write *w = btree_current_write(b);
534 
535 	lockdep_assert_held(&b->write_lock);
536 
537 	BUG_ON(!b->written);
538 	BUG_ON(!i->keys);
539 
540 	if (!btree_node_dirty(b))
541 		schedule_delayed_work(&b->work, 30 * HZ);
542 
543 	set_btree_node_dirty(b);
544 
545 	if (journal_ref) {
546 		if (w->journal &&
547 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
548 			atomic_dec_bug(w->journal);
549 			w->journal = NULL;
550 		}
551 
552 		if (!w->journal) {
553 			w->journal = journal_ref;
554 			atomic_inc(w->journal);
555 		}
556 	}
557 
558 	/* Force write if set is too big */
559 	if (set_bytes(i) > PAGE_SIZE - 48 &&
560 	    !current->bio_list)
561 		bch_btree_node_write(b, NULL);
562 }
563 
564 /*
565  * Btree in memory cache - allocation/freeing
566  * mca -> memory cache
567  */
568 
569 #define mca_reserve(c)	(((c->root && c->root->level)		\
570 			  ? c->root->level : 1) * 8 + 16)
571 #define mca_can_free(c)						\
572 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
573 
574 static void mca_data_free(struct btree *b)
575 {
576 	BUG_ON(b->io_mutex.count != 1);
577 
578 	bch_btree_keys_free(&b->keys);
579 
580 	b->c->btree_cache_used--;
581 	list_move(&b->list, &b->c->btree_cache_freed);
582 }
583 
584 static void mca_bucket_free(struct btree *b)
585 {
586 	BUG_ON(btree_node_dirty(b));
587 
588 	b->key.ptr[0] = 0;
589 	hlist_del_init_rcu(&b->hash);
590 	list_move(&b->list, &b->c->btree_cache_freeable);
591 }
592 
593 static unsigned int btree_order(struct bkey *k)
594 {
595 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
596 }
597 
598 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
599 {
600 	if (!bch_btree_keys_alloc(&b->keys,
601 				  max_t(unsigned int,
602 					ilog2(b->c->btree_pages),
603 					btree_order(k)),
604 				  gfp)) {
605 		b->c->btree_cache_used++;
606 		list_move(&b->list, &b->c->btree_cache);
607 	} else {
608 		list_move(&b->list, &b->c->btree_cache_freed);
609 	}
610 }
611 
612 static struct btree *mca_bucket_alloc(struct cache_set *c,
613 				      struct bkey *k, gfp_t gfp)
614 {
615 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
616 
617 	if (!b)
618 		return NULL;
619 
620 	init_rwsem(&b->lock);
621 	lockdep_set_novalidate_class(&b->lock);
622 	mutex_init(&b->write_lock);
623 	lockdep_set_novalidate_class(&b->write_lock);
624 	INIT_LIST_HEAD(&b->list);
625 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
626 	b->c = c;
627 	sema_init(&b->io_mutex, 1);
628 
629 	mca_data_alloc(b, k, gfp);
630 	return b;
631 }
632 
633 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
634 {
635 	struct closure cl;
636 
637 	closure_init_stack(&cl);
638 	lockdep_assert_held(&b->c->bucket_lock);
639 
640 	if (!down_write_trylock(&b->lock))
641 		return -ENOMEM;
642 
643 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
644 
645 	if (b->keys.page_order < min_order)
646 		goto out_unlock;
647 
648 	if (!flush) {
649 		if (btree_node_dirty(b))
650 			goto out_unlock;
651 
652 		if (down_trylock(&b->io_mutex))
653 			goto out_unlock;
654 		up(&b->io_mutex);
655 	}
656 
657 	mutex_lock(&b->write_lock);
658 	if (btree_node_dirty(b))
659 		__bch_btree_node_write(b, &cl);
660 	mutex_unlock(&b->write_lock);
661 
662 	closure_sync(&cl);
663 
664 	/* wait for any in flight btree write */
665 	down(&b->io_mutex);
666 	up(&b->io_mutex);
667 
668 	return 0;
669 out_unlock:
670 	rw_unlock(true, b);
671 	return -ENOMEM;
672 }
673 
674 static unsigned long bch_mca_scan(struct shrinker *shrink,
675 				  struct shrink_control *sc)
676 {
677 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
678 	struct btree *b, *t;
679 	unsigned long i, nr = sc->nr_to_scan;
680 	unsigned long freed = 0;
681 	unsigned int btree_cache_used;
682 
683 	if (c->shrinker_disabled)
684 		return SHRINK_STOP;
685 
686 	if (c->btree_cache_alloc_lock)
687 		return SHRINK_STOP;
688 
689 	/* Return -1 if we can't do anything right now */
690 	if (sc->gfp_mask & __GFP_IO)
691 		mutex_lock(&c->bucket_lock);
692 	else if (!mutex_trylock(&c->bucket_lock))
693 		return -1;
694 
695 	/*
696 	 * It's _really_ critical that we don't free too many btree nodes - we
697 	 * have to always leave ourselves a reserve. The reserve is how we
698 	 * guarantee that allocating memory for a new btree node can always
699 	 * succeed, so that inserting keys into the btree can always succeed and
700 	 * IO can always make forward progress:
701 	 */
702 	nr /= c->btree_pages;
703 	nr = min_t(unsigned long, nr, mca_can_free(c));
704 
705 	i = 0;
706 	btree_cache_used = c->btree_cache_used;
707 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
708 		if (nr <= 0)
709 			goto out;
710 
711 		if (++i > 3 &&
712 		    !mca_reap(b, 0, false)) {
713 			mca_data_free(b);
714 			rw_unlock(true, b);
715 			freed++;
716 		}
717 		nr--;
718 	}
719 
720 	for (;  (nr--) && i < btree_cache_used; i++) {
721 		if (list_empty(&c->btree_cache))
722 			goto out;
723 
724 		b = list_first_entry(&c->btree_cache, struct btree, list);
725 		list_rotate_left(&c->btree_cache);
726 
727 		if (!b->accessed &&
728 		    !mca_reap(b, 0, false)) {
729 			mca_bucket_free(b);
730 			mca_data_free(b);
731 			rw_unlock(true, b);
732 			freed++;
733 		} else
734 			b->accessed = 0;
735 	}
736 out:
737 	mutex_unlock(&c->bucket_lock);
738 	return freed * c->btree_pages;
739 }
740 
741 static unsigned long bch_mca_count(struct shrinker *shrink,
742 				   struct shrink_control *sc)
743 {
744 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
745 
746 	if (c->shrinker_disabled)
747 		return 0;
748 
749 	if (c->btree_cache_alloc_lock)
750 		return 0;
751 
752 	return mca_can_free(c) * c->btree_pages;
753 }
754 
755 void bch_btree_cache_free(struct cache_set *c)
756 {
757 	struct btree *b;
758 	struct closure cl;
759 
760 	closure_init_stack(&cl);
761 
762 	if (c->shrink.list.next)
763 		unregister_shrinker(&c->shrink);
764 
765 	mutex_lock(&c->bucket_lock);
766 
767 #ifdef CONFIG_BCACHE_DEBUG
768 	if (c->verify_data)
769 		list_move(&c->verify_data->list, &c->btree_cache);
770 
771 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
772 #endif
773 
774 	list_splice(&c->btree_cache_freeable,
775 		    &c->btree_cache);
776 
777 	while (!list_empty(&c->btree_cache)) {
778 		b = list_first_entry(&c->btree_cache, struct btree, list);
779 
780 		if (btree_node_dirty(b))
781 			btree_complete_write(b, btree_current_write(b));
782 		clear_bit(BTREE_NODE_dirty, &b->flags);
783 
784 		mca_data_free(b);
785 	}
786 
787 	while (!list_empty(&c->btree_cache_freed)) {
788 		b = list_first_entry(&c->btree_cache_freed,
789 				     struct btree, list);
790 		list_del(&b->list);
791 		cancel_delayed_work_sync(&b->work);
792 		kfree(b);
793 	}
794 
795 	mutex_unlock(&c->bucket_lock);
796 }
797 
798 int bch_btree_cache_alloc(struct cache_set *c)
799 {
800 	unsigned int i;
801 
802 	for (i = 0; i < mca_reserve(c); i++)
803 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
804 			return -ENOMEM;
805 
806 	list_splice_init(&c->btree_cache,
807 			 &c->btree_cache_freeable);
808 
809 #ifdef CONFIG_BCACHE_DEBUG
810 	mutex_init(&c->verify_lock);
811 
812 	c->verify_ondisk = (void *)
813 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
814 
815 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
816 
817 	if (c->verify_data &&
818 	    c->verify_data->keys.set->data)
819 		list_del_init(&c->verify_data->list);
820 	else
821 		c->verify_data = NULL;
822 #endif
823 
824 	c->shrink.count_objects = bch_mca_count;
825 	c->shrink.scan_objects = bch_mca_scan;
826 	c->shrink.seeks = 4;
827 	c->shrink.batch = c->btree_pages * 2;
828 
829 	if (register_shrinker(&c->shrink))
830 		pr_warn("bcache: %s: could not register shrinker",
831 				__func__);
832 
833 	return 0;
834 }
835 
836 /* Btree in memory cache - hash table */
837 
838 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
839 {
840 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
841 }
842 
843 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
844 {
845 	struct btree *b;
846 
847 	rcu_read_lock();
848 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
849 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
850 			goto out;
851 	b = NULL;
852 out:
853 	rcu_read_unlock();
854 	return b;
855 }
856 
857 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
858 {
859 	struct task_struct *old;
860 
861 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
862 	if (old && old != current) {
863 		if (op)
864 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
865 					TASK_UNINTERRUPTIBLE);
866 		return -EINTR;
867 	}
868 
869 	return 0;
870 }
871 
872 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
873 				     struct bkey *k)
874 {
875 	struct btree *b;
876 
877 	trace_bcache_btree_cache_cannibalize(c);
878 
879 	if (mca_cannibalize_lock(c, op))
880 		return ERR_PTR(-EINTR);
881 
882 	list_for_each_entry_reverse(b, &c->btree_cache, list)
883 		if (!mca_reap(b, btree_order(k), false))
884 			return b;
885 
886 	list_for_each_entry_reverse(b, &c->btree_cache, list)
887 		if (!mca_reap(b, btree_order(k), true))
888 			return b;
889 
890 	WARN(1, "btree cache cannibalize failed\n");
891 	return ERR_PTR(-ENOMEM);
892 }
893 
894 /*
895  * We can only have one thread cannibalizing other cached btree nodes at a time,
896  * or we'll deadlock. We use an open coded mutex to ensure that, which a
897  * cannibalize_bucket() will take. This means every time we unlock the root of
898  * the btree, we need to release this lock if we have it held.
899  */
900 static void bch_cannibalize_unlock(struct cache_set *c)
901 {
902 	if (c->btree_cache_alloc_lock == current) {
903 		c->btree_cache_alloc_lock = NULL;
904 		wake_up(&c->btree_cache_wait);
905 	}
906 }
907 
908 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
909 			       struct bkey *k, int level)
910 {
911 	struct btree *b;
912 
913 	BUG_ON(current->bio_list);
914 
915 	lockdep_assert_held(&c->bucket_lock);
916 
917 	if (mca_find(c, k))
918 		return NULL;
919 
920 	/* btree_free() doesn't free memory; it sticks the node on the end of
921 	 * the list. Check if there's any freed nodes there:
922 	 */
923 	list_for_each_entry(b, &c->btree_cache_freeable, list)
924 		if (!mca_reap(b, btree_order(k), false))
925 			goto out;
926 
927 	/* We never free struct btree itself, just the memory that holds the on
928 	 * disk node. Check the freed list before allocating a new one:
929 	 */
930 	list_for_each_entry(b, &c->btree_cache_freed, list)
931 		if (!mca_reap(b, 0, false)) {
932 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
933 			if (!b->keys.set[0].data)
934 				goto err;
935 			else
936 				goto out;
937 		}
938 
939 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
940 	if (!b)
941 		goto err;
942 
943 	BUG_ON(!down_write_trylock(&b->lock));
944 	if (!b->keys.set->data)
945 		goto err;
946 out:
947 	BUG_ON(b->io_mutex.count != 1);
948 
949 	bkey_copy(&b->key, k);
950 	list_move(&b->list, &c->btree_cache);
951 	hlist_del_init_rcu(&b->hash);
952 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
953 
954 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
955 	b->parent	= (void *) ~0UL;
956 	b->flags	= 0;
957 	b->written	= 0;
958 	b->level	= level;
959 
960 	if (!b->level)
961 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
962 				    &b->c->expensive_debug_checks);
963 	else
964 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
965 				    &b->c->expensive_debug_checks);
966 
967 	return b;
968 err:
969 	if (b)
970 		rw_unlock(true, b);
971 
972 	b = mca_cannibalize(c, op, k);
973 	if (!IS_ERR(b))
974 		goto out;
975 
976 	return b;
977 }
978 
979 /*
980  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
981  * in from disk if necessary.
982  *
983  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
984  *
985  * The btree node will have either a read or a write lock held, depending on
986  * level and op->lock.
987  */
988 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
989 				 struct bkey *k, int level, bool write,
990 				 struct btree *parent)
991 {
992 	int i = 0;
993 	struct btree *b;
994 
995 	BUG_ON(level < 0);
996 retry:
997 	b = mca_find(c, k);
998 
999 	if (!b) {
1000 		if (current->bio_list)
1001 			return ERR_PTR(-EAGAIN);
1002 
1003 		mutex_lock(&c->bucket_lock);
1004 		b = mca_alloc(c, op, k, level);
1005 		mutex_unlock(&c->bucket_lock);
1006 
1007 		if (!b)
1008 			goto retry;
1009 		if (IS_ERR(b))
1010 			return b;
1011 
1012 		bch_btree_node_read(b);
1013 
1014 		if (!write)
1015 			downgrade_write(&b->lock);
1016 	} else {
1017 		rw_lock(write, b, level);
1018 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1019 			rw_unlock(write, b);
1020 			goto retry;
1021 		}
1022 		BUG_ON(b->level != level);
1023 	}
1024 
1025 	if (btree_node_io_error(b)) {
1026 		rw_unlock(write, b);
1027 		return ERR_PTR(-EIO);
1028 	}
1029 
1030 	BUG_ON(!b->written);
1031 
1032 	b->parent = parent;
1033 	b->accessed = 1;
1034 
1035 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1036 		prefetch(b->keys.set[i].tree);
1037 		prefetch(b->keys.set[i].data);
1038 	}
1039 
1040 	for (; i <= b->keys.nsets; i++)
1041 		prefetch(b->keys.set[i].data);
1042 
1043 	return b;
1044 }
1045 
1046 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1047 {
1048 	struct btree *b;
1049 
1050 	mutex_lock(&parent->c->bucket_lock);
1051 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1052 	mutex_unlock(&parent->c->bucket_lock);
1053 
1054 	if (!IS_ERR_OR_NULL(b)) {
1055 		b->parent = parent;
1056 		bch_btree_node_read(b);
1057 		rw_unlock(true, b);
1058 	}
1059 }
1060 
1061 /* Btree alloc */
1062 
1063 static void btree_node_free(struct btree *b)
1064 {
1065 	trace_bcache_btree_node_free(b);
1066 
1067 	BUG_ON(b == b->c->root);
1068 
1069 	mutex_lock(&b->write_lock);
1070 
1071 	if (btree_node_dirty(b))
1072 		btree_complete_write(b, btree_current_write(b));
1073 	clear_bit(BTREE_NODE_dirty, &b->flags);
1074 
1075 	mutex_unlock(&b->write_lock);
1076 
1077 	cancel_delayed_work(&b->work);
1078 
1079 	mutex_lock(&b->c->bucket_lock);
1080 	bch_bucket_free(b->c, &b->key);
1081 	mca_bucket_free(b);
1082 	mutex_unlock(&b->c->bucket_lock);
1083 }
1084 
1085 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1086 				     int level, bool wait,
1087 				     struct btree *parent)
1088 {
1089 	BKEY_PADDED(key) k;
1090 	struct btree *b = ERR_PTR(-EAGAIN);
1091 
1092 	mutex_lock(&c->bucket_lock);
1093 retry:
1094 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1095 		goto err;
1096 
1097 	bkey_put(c, &k.key);
1098 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1099 
1100 	b = mca_alloc(c, op, &k.key, level);
1101 	if (IS_ERR(b))
1102 		goto err_free;
1103 
1104 	if (!b) {
1105 		cache_bug(c,
1106 			"Tried to allocate bucket that was in btree cache");
1107 		goto retry;
1108 	}
1109 
1110 	b->accessed = 1;
1111 	b->parent = parent;
1112 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1113 
1114 	mutex_unlock(&c->bucket_lock);
1115 
1116 	trace_bcache_btree_node_alloc(b);
1117 	return b;
1118 err_free:
1119 	bch_bucket_free(c, &k.key);
1120 err:
1121 	mutex_unlock(&c->bucket_lock);
1122 
1123 	trace_bcache_btree_node_alloc_fail(c);
1124 	return b;
1125 }
1126 
1127 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1128 					  struct btree_op *op, int level,
1129 					  struct btree *parent)
1130 {
1131 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1132 }
1133 
1134 static struct btree *btree_node_alloc_replacement(struct btree *b,
1135 						  struct btree_op *op)
1136 {
1137 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1138 
1139 	if (!IS_ERR_OR_NULL(n)) {
1140 		mutex_lock(&n->write_lock);
1141 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1142 		bkey_copy_key(&n->key, &b->key);
1143 		mutex_unlock(&n->write_lock);
1144 	}
1145 
1146 	return n;
1147 }
1148 
1149 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1150 {
1151 	unsigned int i;
1152 
1153 	mutex_lock(&b->c->bucket_lock);
1154 
1155 	atomic_inc(&b->c->prio_blocked);
1156 
1157 	bkey_copy(k, &b->key);
1158 	bkey_copy_key(k, &ZERO_KEY);
1159 
1160 	for (i = 0; i < KEY_PTRS(k); i++)
1161 		SET_PTR_GEN(k, i,
1162 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1163 					PTR_BUCKET(b->c, &b->key, i)));
1164 
1165 	mutex_unlock(&b->c->bucket_lock);
1166 }
1167 
1168 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1169 {
1170 	struct cache_set *c = b->c;
1171 	struct cache *ca;
1172 	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1173 
1174 	mutex_lock(&c->bucket_lock);
1175 
1176 	for_each_cache(ca, c, i)
1177 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1178 			if (op)
1179 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1180 						TASK_UNINTERRUPTIBLE);
1181 			mutex_unlock(&c->bucket_lock);
1182 			return -EINTR;
1183 		}
1184 
1185 	mutex_unlock(&c->bucket_lock);
1186 
1187 	return mca_cannibalize_lock(b->c, op);
1188 }
1189 
1190 /* Garbage collection */
1191 
1192 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1193 				    struct bkey *k)
1194 {
1195 	uint8_t stale = 0;
1196 	unsigned int i;
1197 	struct bucket *g;
1198 
1199 	/*
1200 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1201 	 * freed, but since ptr_bad() returns true we'll never actually use them
1202 	 * for anything and thus we don't want mark their pointers here
1203 	 */
1204 	if (!bkey_cmp(k, &ZERO_KEY))
1205 		return stale;
1206 
1207 	for (i = 0; i < KEY_PTRS(k); i++) {
1208 		if (!ptr_available(c, k, i))
1209 			continue;
1210 
1211 		g = PTR_BUCKET(c, k, i);
1212 
1213 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1214 			g->last_gc = PTR_GEN(k, i);
1215 
1216 		if (ptr_stale(c, k, i)) {
1217 			stale = max(stale, ptr_stale(c, k, i));
1218 			continue;
1219 		}
1220 
1221 		cache_bug_on(GC_MARK(g) &&
1222 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1223 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1224 			     GC_MARK(g), level);
1225 
1226 		if (level)
1227 			SET_GC_MARK(g, GC_MARK_METADATA);
1228 		else if (KEY_DIRTY(k))
1229 			SET_GC_MARK(g, GC_MARK_DIRTY);
1230 		else if (!GC_MARK(g))
1231 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1232 
1233 		/* guard against overflow */
1234 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1235 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1236 					     MAX_GC_SECTORS_USED));
1237 
1238 		BUG_ON(!GC_SECTORS_USED(g));
1239 	}
1240 
1241 	return stale;
1242 }
1243 
1244 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1245 
1246 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1247 {
1248 	unsigned int i;
1249 
1250 	for (i = 0; i < KEY_PTRS(k); i++)
1251 		if (ptr_available(c, k, i) &&
1252 		    !ptr_stale(c, k, i)) {
1253 			struct bucket *b = PTR_BUCKET(c, k, i);
1254 
1255 			b->gen = PTR_GEN(k, i);
1256 
1257 			if (level && bkey_cmp(k, &ZERO_KEY))
1258 				b->prio = BTREE_PRIO;
1259 			else if (!level && b->prio == BTREE_PRIO)
1260 				b->prio = INITIAL_PRIO;
1261 		}
1262 
1263 	__bch_btree_mark_key(c, level, k);
1264 }
1265 
1266 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1267 {
1268 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1269 }
1270 
1271 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1272 {
1273 	uint8_t stale = 0;
1274 	unsigned int keys = 0, good_keys = 0;
1275 	struct bkey *k;
1276 	struct btree_iter iter;
1277 	struct bset_tree *t;
1278 
1279 	gc->nodes++;
1280 
1281 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1282 		stale = max(stale, btree_mark_key(b, k));
1283 		keys++;
1284 
1285 		if (bch_ptr_bad(&b->keys, k))
1286 			continue;
1287 
1288 		gc->key_bytes += bkey_u64s(k);
1289 		gc->nkeys++;
1290 		good_keys++;
1291 
1292 		gc->data += KEY_SIZE(k);
1293 	}
1294 
1295 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1296 		btree_bug_on(t->size &&
1297 			     bset_written(&b->keys, t) &&
1298 			     bkey_cmp(&b->key, &t->end) < 0,
1299 			     b, "found short btree key in gc");
1300 
1301 	if (b->c->gc_always_rewrite)
1302 		return true;
1303 
1304 	if (stale > 10)
1305 		return true;
1306 
1307 	if ((keys - good_keys) * 2 > keys)
1308 		return true;
1309 
1310 	return false;
1311 }
1312 
1313 #define GC_MERGE_NODES	4U
1314 
1315 struct gc_merge_info {
1316 	struct btree	*b;
1317 	unsigned int	keys;
1318 };
1319 
1320 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1321 				 struct keylist *insert_keys,
1322 				 atomic_t *journal_ref,
1323 				 struct bkey *replace_key);
1324 
1325 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1326 			     struct gc_stat *gc, struct gc_merge_info *r)
1327 {
1328 	unsigned int i, nodes = 0, keys = 0, blocks;
1329 	struct btree *new_nodes[GC_MERGE_NODES];
1330 	struct keylist keylist;
1331 	struct closure cl;
1332 	struct bkey *k;
1333 
1334 	bch_keylist_init(&keylist);
1335 
1336 	if (btree_check_reserve(b, NULL))
1337 		return 0;
1338 
1339 	memset(new_nodes, 0, sizeof(new_nodes));
1340 	closure_init_stack(&cl);
1341 
1342 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1343 		keys += r[nodes++].keys;
1344 
1345 	blocks = btree_default_blocks(b->c) * 2 / 3;
1346 
1347 	if (nodes < 2 ||
1348 	    __set_blocks(b->keys.set[0].data, keys,
1349 			 block_bytes(b->c)) > blocks * (nodes - 1))
1350 		return 0;
1351 
1352 	for (i = 0; i < nodes; i++) {
1353 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1354 		if (IS_ERR_OR_NULL(new_nodes[i]))
1355 			goto out_nocoalesce;
1356 	}
1357 
1358 	/*
1359 	 * We have to check the reserve here, after we've allocated our new
1360 	 * nodes, to make sure the insert below will succeed - we also check
1361 	 * before as an optimization to potentially avoid a bunch of expensive
1362 	 * allocs/sorts
1363 	 */
1364 	if (btree_check_reserve(b, NULL))
1365 		goto out_nocoalesce;
1366 
1367 	for (i = 0; i < nodes; i++)
1368 		mutex_lock(&new_nodes[i]->write_lock);
1369 
1370 	for (i = nodes - 1; i > 0; --i) {
1371 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1372 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1373 		struct bkey *k, *last = NULL;
1374 
1375 		keys = 0;
1376 
1377 		if (i > 1) {
1378 			for (k = n2->start;
1379 			     k < bset_bkey_last(n2);
1380 			     k = bkey_next(k)) {
1381 				if (__set_blocks(n1, n1->keys + keys +
1382 						 bkey_u64s(k),
1383 						 block_bytes(b->c)) > blocks)
1384 					break;
1385 
1386 				last = k;
1387 				keys += bkey_u64s(k);
1388 			}
1389 		} else {
1390 			/*
1391 			 * Last node we're not getting rid of - we're getting
1392 			 * rid of the node at r[0]. Have to try and fit all of
1393 			 * the remaining keys into this node; we can't ensure
1394 			 * they will always fit due to rounding and variable
1395 			 * length keys (shouldn't be possible in practice,
1396 			 * though)
1397 			 */
1398 			if (__set_blocks(n1, n1->keys + n2->keys,
1399 					 block_bytes(b->c)) >
1400 			    btree_blocks(new_nodes[i]))
1401 				goto out_nocoalesce;
1402 
1403 			keys = n2->keys;
1404 			/* Take the key of the node we're getting rid of */
1405 			last = &r->b->key;
1406 		}
1407 
1408 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1409 		       btree_blocks(new_nodes[i]));
1410 
1411 		if (last)
1412 			bkey_copy_key(&new_nodes[i]->key, last);
1413 
1414 		memcpy(bset_bkey_last(n1),
1415 		       n2->start,
1416 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1417 
1418 		n1->keys += keys;
1419 		r[i].keys = n1->keys;
1420 
1421 		memmove(n2->start,
1422 			bset_bkey_idx(n2, keys),
1423 			(void *) bset_bkey_last(n2) -
1424 			(void *) bset_bkey_idx(n2, keys));
1425 
1426 		n2->keys -= keys;
1427 
1428 		if (__bch_keylist_realloc(&keylist,
1429 					  bkey_u64s(&new_nodes[i]->key)))
1430 			goto out_nocoalesce;
1431 
1432 		bch_btree_node_write(new_nodes[i], &cl);
1433 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1434 	}
1435 
1436 	for (i = 0; i < nodes; i++)
1437 		mutex_unlock(&new_nodes[i]->write_lock);
1438 
1439 	closure_sync(&cl);
1440 
1441 	/* We emptied out this node */
1442 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1443 	btree_node_free(new_nodes[0]);
1444 	rw_unlock(true, new_nodes[0]);
1445 	new_nodes[0] = NULL;
1446 
1447 	for (i = 0; i < nodes; i++) {
1448 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1449 			goto out_nocoalesce;
1450 
1451 		make_btree_freeing_key(r[i].b, keylist.top);
1452 		bch_keylist_push(&keylist);
1453 	}
1454 
1455 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1456 	BUG_ON(!bch_keylist_empty(&keylist));
1457 
1458 	for (i = 0; i < nodes; i++) {
1459 		btree_node_free(r[i].b);
1460 		rw_unlock(true, r[i].b);
1461 
1462 		r[i].b = new_nodes[i];
1463 	}
1464 
1465 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1466 	r[nodes - 1].b = ERR_PTR(-EINTR);
1467 
1468 	trace_bcache_btree_gc_coalesce(nodes);
1469 	gc->nodes--;
1470 
1471 	bch_keylist_free(&keylist);
1472 
1473 	/* Invalidated our iterator */
1474 	return -EINTR;
1475 
1476 out_nocoalesce:
1477 	closure_sync(&cl);
1478 	bch_keylist_free(&keylist);
1479 
1480 	while ((k = bch_keylist_pop(&keylist)))
1481 		if (!bkey_cmp(k, &ZERO_KEY))
1482 			atomic_dec(&b->c->prio_blocked);
1483 
1484 	for (i = 0; i < nodes; i++)
1485 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1486 			btree_node_free(new_nodes[i]);
1487 			rw_unlock(true, new_nodes[i]);
1488 		}
1489 	return 0;
1490 }
1491 
1492 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1493 				 struct btree *replace)
1494 {
1495 	struct keylist keys;
1496 	struct btree *n;
1497 
1498 	if (btree_check_reserve(b, NULL))
1499 		return 0;
1500 
1501 	n = btree_node_alloc_replacement(replace, NULL);
1502 
1503 	/* recheck reserve after allocating replacement node */
1504 	if (btree_check_reserve(b, NULL)) {
1505 		btree_node_free(n);
1506 		rw_unlock(true, n);
1507 		return 0;
1508 	}
1509 
1510 	bch_btree_node_write_sync(n);
1511 
1512 	bch_keylist_init(&keys);
1513 	bch_keylist_add(&keys, &n->key);
1514 
1515 	make_btree_freeing_key(replace, keys.top);
1516 	bch_keylist_push(&keys);
1517 
1518 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1519 	BUG_ON(!bch_keylist_empty(&keys));
1520 
1521 	btree_node_free(replace);
1522 	rw_unlock(true, n);
1523 
1524 	/* Invalidated our iterator */
1525 	return -EINTR;
1526 }
1527 
1528 static unsigned int btree_gc_count_keys(struct btree *b)
1529 {
1530 	struct bkey *k;
1531 	struct btree_iter iter;
1532 	unsigned int ret = 0;
1533 
1534 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1535 		ret += bkey_u64s(k);
1536 
1537 	return ret;
1538 }
1539 
1540 static size_t btree_gc_min_nodes(struct cache_set *c)
1541 {
1542 	size_t min_nodes;
1543 
1544 	/*
1545 	 * Since incremental GC would stop 100ms when front
1546 	 * side I/O comes, so when there are many btree nodes,
1547 	 * if GC only processes constant (100) nodes each time,
1548 	 * GC would last a long time, and the front side I/Os
1549 	 * would run out of the buckets (since no new bucket
1550 	 * can be allocated during GC), and be blocked again.
1551 	 * So GC should not process constant nodes, but varied
1552 	 * nodes according to the number of btree nodes, which
1553 	 * realized by dividing GC into constant(100) times,
1554 	 * so when there are many btree nodes, GC can process
1555 	 * more nodes each time, otherwise, GC will process less
1556 	 * nodes each time (but no less than MIN_GC_NODES)
1557 	 */
1558 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1559 	if (min_nodes < MIN_GC_NODES)
1560 		min_nodes = MIN_GC_NODES;
1561 
1562 	return min_nodes;
1563 }
1564 
1565 
1566 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1567 			    struct closure *writes, struct gc_stat *gc)
1568 {
1569 	int ret = 0;
1570 	bool should_rewrite;
1571 	struct bkey *k;
1572 	struct btree_iter iter;
1573 	struct gc_merge_info r[GC_MERGE_NODES];
1574 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1575 
1576 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1577 
1578 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1579 		i->b = ERR_PTR(-EINTR);
1580 
1581 	while (1) {
1582 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1583 		if (k) {
1584 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1585 						  true, b);
1586 			if (IS_ERR(r->b)) {
1587 				ret = PTR_ERR(r->b);
1588 				break;
1589 			}
1590 
1591 			r->keys = btree_gc_count_keys(r->b);
1592 
1593 			ret = btree_gc_coalesce(b, op, gc, r);
1594 			if (ret)
1595 				break;
1596 		}
1597 
1598 		if (!last->b)
1599 			break;
1600 
1601 		if (!IS_ERR(last->b)) {
1602 			should_rewrite = btree_gc_mark_node(last->b, gc);
1603 			if (should_rewrite) {
1604 				ret = btree_gc_rewrite_node(b, op, last->b);
1605 				if (ret)
1606 					break;
1607 			}
1608 
1609 			if (last->b->level) {
1610 				ret = btree_gc_recurse(last->b, op, writes, gc);
1611 				if (ret)
1612 					break;
1613 			}
1614 
1615 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1616 
1617 			/*
1618 			 * Must flush leaf nodes before gc ends, since replace
1619 			 * operations aren't journalled
1620 			 */
1621 			mutex_lock(&last->b->write_lock);
1622 			if (btree_node_dirty(last->b))
1623 				bch_btree_node_write(last->b, writes);
1624 			mutex_unlock(&last->b->write_lock);
1625 			rw_unlock(true, last->b);
1626 		}
1627 
1628 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1629 		r->b = NULL;
1630 
1631 		if (atomic_read(&b->c->search_inflight) &&
1632 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1633 			gc->nodes_pre =  gc->nodes;
1634 			ret = -EAGAIN;
1635 			break;
1636 		}
1637 
1638 		if (need_resched()) {
1639 			ret = -EAGAIN;
1640 			break;
1641 		}
1642 	}
1643 
1644 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1645 		if (!IS_ERR_OR_NULL(i->b)) {
1646 			mutex_lock(&i->b->write_lock);
1647 			if (btree_node_dirty(i->b))
1648 				bch_btree_node_write(i->b, writes);
1649 			mutex_unlock(&i->b->write_lock);
1650 			rw_unlock(true, i->b);
1651 		}
1652 
1653 	return ret;
1654 }
1655 
1656 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1657 			     struct closure *writes, struct gc_stat *gc)
1658 {
1659 	struct btree *n = NULL;
1660 	int ret = 0;
1661 	bool should_rewrite;
1662 
1663 	should_rewrite = btree_gc_mark_node(b, gc);
1664 	if (should_rewrite) {
1665 		n = btree_node_alloc_replacement(b, NULL);
1666 
1667 		if (!IS_ERR_OR_NULL(n)) {
1668 			bch_btree_node_write_sync(n);
1669 
1670 			bch_btree_set_root(n);
1671 			btree_node_free(b);
1672 			rw_unlock(true, n);
1673 
1674 			return -EINTR;
1675 		}
1676 	}
1677 
1678 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1679 
1680 	if (b->level) {
1681 		ret = btree_gc_recurse(b, op, writes, gc);
1682 		if (ret)
1683 			return ret;
1684 	}
1685 
1686 	bkey_copy_key(&b->c->gc_done, &b->key);
1687 
1688 	return ret;
1689 }
1690 
1691 static void btree_gc_start(struct cache_set *c)
1692 {
1693 	struct cache *ca;
1694 	struct bucket *b;
1695 	unsigned int i;
1696 
1697 	if (!c->gc_mark_valid)
1698 		return;
1699 
1700 	mutex_lock(&c->bucket_lock);
1701 
1702 	c->gc_mark_valid = 0;
1703 	c->gc_done = ZERO_KEY;
1704 
1705 	for_each_cache(ca, c, i)
1706 		for_each_bucket(b, ca) {
1707 			b->last_gc = b->gen;
1708 			if (!atomic_read(&b->pin)) {
1709 				SET_GC_MARK(b, 0);
1710 				SET_GC_SECTORS_USED(b, 0);
1711 			}
1712 		}
1713 
1714 	mutex_unlock(&c->bucket_lock);
1715 }
1716 
1717 static void bch_btree_gc_finish(struct cache_set *c)
1718 {
1719 	struct bucket *b;
1720 	struct cache *ca;
1721 	unsigned int i;
1722 
1723 	mutex_lock(&c->bucket_lock);
1724 
1725 	set_gc_sectors(c);
1726 	c->gc_mark_valid = 1;
1727 	c->need_gc	= 0;
1728 
1729 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1730 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1731 			    GC_MARK_METADATA);
1732 
1733 	/* don't reclaim buckets to which writeback keys point */
1734 	rcu_read_lock();
1735 	for (i = 0; i < c->devices_max_used; i++) {
1736 		struct bcache_device *d = c->devices[i];
1737 		struct cached_dev *dc;
1738 		struct keybuf_key *w, *n;
1739 		unsigned int j;
1740 
1741 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1742 			continue;
1743 		dc = container_of(d, struct cached_dev, disk);
1744 
1745 		spin_lock(&dc->writeback_keys.lock);
1746 		rbtree_postorder_for_each_entry_safe(w, n,
1747 					&dc->writeback_keys.keys, node)
1748 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1749 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1750 					    GC_MARK_DIRTY);
1751 		spin_unlock(&dc->writeback_keys.lock);
1752 	}
1753 	rcu_read_unlock();
1754 
1755 	c->avail_nbuckets = 0;
1756 	for_each_cache(ca, c, i) {
1757 		uint64_t *i;
1758 
1759 		ca->invalidate_needs_gc = 0;
1760 
1761 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1762 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1763 
1764 		for (i = ca->prio_buckets;
1765 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1766 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1767 
1768 		for_each_bucket(b, ca) {
1769 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1770 
1771 			if (atomic_read(&b->pin))
1772 				continue;
1773 
1774 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1775 
1776 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1777 				c->avail_nbuckets++;
1778 		}
1779 	}
1780 
1781 	mutex_unlock(&c->bucket_lock);
1782 }
1783 
1784 static void bch_btree_gc(struct cache_set *c)
1785 {
1786 	int ret;
1787 	struct gc_stat stats;
1788 	struct closure writes;
1789 	struct btree_op op;
1790 	uint64_t start_time = local_clock();
1791 
1792 	trace_bcache_gc_start(c);
1793 
1794 	memset(&stats, 0, sizeof(struct gc_stat));
1795 	closure_init_stack(&writes);
1796 	bch_btree_op_init(&op, SHRT_MAX);
1797 
1798 	btree_gc_start(c);
1799 
1800 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1801 	do {
1802 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1803 		closure_sync(&writes);
1804 		cond_resched();
1805 
1806 		if (ret == -EAGAIN)
1807 			schedule_timeout_interruptible(msecs_to_jiffies
1808 						       (GC_SLEEP_MS));
1809 		else if (ret)
1810 			pr_warn("gc failed!");
1811 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1812 
1813 	bch_btree_gc_finish(c);
1814 	wake_up_allocators(c);
1815 
1816 	bch_time_stats_update(&c->btree_gc_time, start_time);
1817 
1818 	stats.key_bytes *= sizeof(uint64_t);
1819 	stats.data	<<= 9;
1820 	bch_update_bucket_in_use(c, &stats);
1821 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1822 
1823 	trace_bcache_gc_end(c);
1824 
1825 	bch_moving_gc(c);
1826 }
1827 
1828 static bool gc_should_run(struct cache_set *c)
1829 {
1830 	struct cache *ca;
1831 	unsigned int i;
1832 
1833 	for_each_cache(ca, c, i)
1834 		if (ca->invalidate_needs_gc)
1835 			return true;
1836 
1837 	if (atomic_read(&c->sectors_to_gc) < 0)
1838 		return true;
1839 
1840 	return false;
1841 }
1842 
1843 static int bch_gc_thread(void *arg)
1844 {
1845 	struct cache_set *c = arg;
1846 
1847 	while (1) {
1848 		wait_event_interruptible(c->gc_wait,
1849 			   kthread_should_stop() ||
1850 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1851 			   gc_should_run(c));
1852 
1853 		if (kthread_should_stop() ||
1854 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1855 			break;
1856 
1857 		set_gc_sectors(c);
1858 		bch_btree_gc(c);
1859 	}
1860 
1861 	wait_for_kthread_stop();
1862 	return 0;
1863 }
1864 
1865 int bch_gc_thread_start(struct cache_set *c)
1866 {
1867 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1868 	return PTR_ERR_OR_ZERO(c->gc_thread);
1869 }
1870 
1871 /* Initial partial gc */
1872 
1873 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1874 {
1875 	int ret = 0;
1876 	struct bkey *k, *p = NULL;
1877 	struct btree_iter iter;
1878 
1879 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1880 		bch_initial_mark_key(b->c, b->level, k);
1881 
1882 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1883 
1884 	if (b->level) {
1885 		bch_btree_iter_init(&b->keys, &iter, NULL);
1886 
1887 		do {
1888 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1889 						       bch_ptr_bad);
1890 			if (k) {
1891 				btree_node_prefetch(b, k);
1892 				/*
1893 				 * initiallize c->gc_stats.nodes
1894 				 * for incremental GC
1895 				 */
1896 				b->c->gc_stats.nodes++;
1897 			}
1898 
1899 			if (p)
1900 				ret = btree(check_recurse, p, b, op);
1901 
1902 			p = k;
1903 		} while (p && !ret);
1904 	}
1905 
1906 	return ret;
1907 }
1908 
1909 int bch_btree_check(struct cache_set *c)
1910 {
1911 	struct btree_op op;
1912 
1913 	bch_btree_op_init(&op, SHRT_MAX);
1914 
1915 	return btree_root(check_recurse, c, &op);
1916 }
1917 
1918 void bch_initial_gc_finish(struct cache_set *c)
1919 {
1920 	struct cache *ca;
1921 	struct bucket *b;
1922 	unsigned int i;
1923 
1924 	bch_btree_gc_finish(c);
1925 
1926 	mutex_lock(&c->bucket_lock);
1927 
1928 	/*
1929 	 * We need to put some unused buckets directly on the prio freelist in
1930 	 * order to get the allocator thread started - it needs freed buckets in
1931 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1932 	 * and gens in order to free buckets.
1933 	 *
1934 	 * This is only safe for buckets that have no live data in them, which
1935 	 * there should always be some of.
1936 	 */
1937 	for_each_cache(ca, c, i) {
1938 		for_each_bucket(b, ca) {
1939 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1940 			    fifo_full(&ca->free[RESERVE_BTREE]))
1941 				break;
1942 
1943 			if (bch_can_invalidate_bucket(ca, b) &&
1944 			    !GC_MARK(b)) {
1945 				__bch_invalidate_one_bucket(ca, b);
1946 				if (!fifo_push(&ca->free[RESERVE_PRIO],
1947 				   b - ca->buckets))
1948 					fifo_push(&ca->free[RESERVE_BTREE],
1949 						  b - ca->buckets);
1950 			}
1951 		}
1952 	}
1953 
1954 	mutex_unlock(&c->bucket_lock);
1955 }
1956 
1957 /* Btree insertion */
1958 
1959 static bool btree_insert_key(struct btree *b, struct bkey *k,
1960 			     struct bkey *replace_key)
1961 {
1962 	unsigned int status;
1963 
1964 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1965 
1966 	status = bch_btree_insert_key(&b->keys, k, replace_key);
1967 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1968 		bch_check_keys(&b->keys, "%u for %s", status,
1969 			       replace_key ? "replace" : "insert");
1970 
1971 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1972 					      status);
1973 		return true;
1974 	} else
1975 		return false;
1976 }
1977 
1978 static size_t insert_u64s_remaining(struct btree *b)
1979 {
1980 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
1981 
1982 	/*
1983 	 * Might land in the middle of an existing extent and have to split it
1984 	 */
1985 	if (b->keys.ops->is_extents)
1986 		ret -= KEY_MAX_U64S;
1987 
1988 	return max(ret, 0L);
1989 }
1990 
1991 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1992 				  struct keylist *insert_keys,
1993 				  struct bkey *replace_key)
1994 {
1995 	bool ret = false;
1996 	int oldsize = bch_count_data(&b->keys);
1997 
1998 	while (!bch_keylist_empty(insert_keys)) {
1999 		struct bkey *k = insert_keys->keys;
2000 
2001 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2002 			break;
2003 
2004 		if (bkey_cmp(k, &b->key) <= 0) {
2005 			if (!b->level)
2006 				bkey_put(b->c, k);
2007 
2008 			ret |= btree_insert_key(b, k, replace_key);
2009 			bch_keylist_pop_front(insert_keys);
2010 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2011 			BKEY_PADDED(key) temp;
2012 			bkey_copy(&temp.key, insert_keys->keys);
2013 
2014 			bch_cut_back(&b->key, &temp.key);
2015 			bch_cut_front(&b->key, insert_keys->keys);
2016 
2017 			ret |= btree_insert_key(b, &temp.key, replace_key);
2018 			break;
2019 		} else {
2020 			break;
2021 		}
2022 	}
2023 
2024 	if (!ret)
2025 		op->insert_collision = true;
2026 
2027 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2028 
2029 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2030 	return ret;
2031 }
2032 
2033 static int btree_split(struct btree *b, struct btree_op *op,
2034 		       struct keylist *insert_keys,
2035 		       struct bkey *replace_key)
2036 {
2037 	bool split;
2038 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2039 	uint64_t start_time = local_clock();
2040 	struct closure cl;
2041 	struct keylist parent_keys;
2042 
2043 	closure_init_stack(&cl);
2044 	bch_keylist_init(&parent_keys);
2045 
2046 	if (btree_check_reserve(b, op)) {
2047 		if (!b->level)
2048 			return -EINTR;
2049 		else
2050 			WARN(1, "insufficient reserve for split\n");
2051 	}
2052 
2053 	n1 = btree_node_alloc_replacement(b, op);
2054 	if (IS_ERR(n1))
2055 		goto err;
2056 
2057 	split = set_blocks(btree_bset_first(n1),
2058 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2059 
2060 	if (split) {
2061 		unsigned int keys = 0;
2062 
2063 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2064 
2065 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2066 		if (IS_ERR(n2))
2067 			goto err_free1;
2068 
2069 		if (!b->parent) {
2070 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2071 			if (IS_ERR(n3))
2072 				goto err_free2;
2073 		}
2074 
2075 		mutex_lock(&n1->write_lock);
2076 		mutex_lock(&n2->write_lock);
2077 
2078 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2079 
2080 		/*
2081 		 * Has to be a linear search because we don't have an auxiliary
2082 		 * search tree yet
2083 		 */
2084 
2085 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2086 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2087 							keys));
2088 
2089 		bkey_copy_key(&n1->key,
2090 			      bset_bkey_idx(btree_bset_first(n1), keys));
2091 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2092 
2093 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2094 		btree_bset_first(n1)->keys = keys;
2095 
2096 		memcpy(btree_bset_first(n2)->start,
2097 		       bset_bkey_last(btree_bset_first(n1)),
2098 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2099 
2100 		bkey_copy_key(&n2->key, &b->key);
2101 
2102 		bch_keylist_add(&parent_keys, &n2->key);
2103 		bch_btree_node_write(n2, &cl);
2104 		mutex_unlock(&n2->write_lock);
2105 		rw_unlock(true, n2);
2106 	} else {
2107 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2108 
2109 		mutex_lock(&n1->write_lock);
2110 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2111 	}
2112 
2113 	bch_keylist_add(&parent_keys, &n1->key);
2114 	bch_btree_node_write(n1, &cl);
2115 	mutex_unlock(&n1->write_lock);
2116 
2117 	if (n3) {
2118 		/* Depth increases, make a new root */
2119 		mutex_lock(&n3->write_lock);
2120 		bkey_copy_key(&n3->key, &MAX_KEY);
2121 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2122 		bch_btree_node_write(n3, &cl);
2123 		mutex_unlock(&n3->write_lock);
2124 
2125 		closure_sync(&cl);
2126 		bch_btree_set_root(n3);
2127 		rw_unlock(true, n3);
2128 	} else if (!b->parent) {
2129 		/* Root filled up but didn't need to be split */
2130 		closure_sync(&cl);
2131 		bch_btree_set_root(n1);
2132 	} else {
2133 		/* Split a non root node */
2134 		closure_sync(&cl);
2135 		make_btree_freeing_key(b, parent_keys.top);
2136 		bch_keylist_push(&parent_keys);
2137 
2138 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2139 		BUG_ON(!bch_keylist_empty(&parent_keys));
2140 	}
2141 
2142 	btree_node_free(b);
2143 	rw_unlock(true, n1);
2144 
2145 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2146 
2147 	return 0;
2148 err_free2:
2149 	bkey_put(b->c, &n2->key);
2150 	btree_node_free(n2);
2151 	rw_unlock(true, n2);
2152 err_free1:
2153 	bkey_put(b->c, &n1->key);
2154 	btree_node_free(n1);
2155 	rw_unlock(true, n1);
2156 err:
2157 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2158 
2159 	if (n3 == ERR_PTR(-EAGAIN) ||
2160 	    n2 == ERR_PTR(-EAGAIN) ||
2161 	    n1 == ERR_PTR(-EAGAIN))
2162 		return -EAGAIN;
2163 
2164 	return -ENOMEM;
2165 }
2166 
2167 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2168 				 struct keylist *insert_keys,
2169 				 atomic_t *journal_ref,
2170 				 struct bkey *replace_key)
2171 {
2172 	struct closure cl;
2173 
2174 	BUG_ON(b->level && replace_key);
2175 
2176 	closure_init_stack(&cl);
2177 
2178 	mutex_lock(&b->write_lock);
2179 
2180 	if (write_block(b) != btree_bset_last(b) &&
2181 	    b->keys.last_set_unwritten)
2182 		bch_btree_init_next(b); /* just wrote a set */
2183 
2184 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2185 		mutex_unlock(&b->write_lock);
2186 		goto split;
2187 	}
2188 
2189 	BUG_ON(write_block(b) != btree_bset_last(b));
2190 
2191 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2192 		if (!b->level)
2193 			bch_btree_leaf_dirty(b, journal_ref);
2194 		else
2195 			bch_btree_node_write(b, &cl);
2196 	}
2197 
2198 	mutex_unlock(&b->write_lock);
2199 
2200 	/* wait for btree node write if necessary, after unlock */
2201 	closure_sync(&cl);
2202 
2203 	return 0;
2204 split:
2205 	if (current->bio_list) {
2206 		op->lock = b->c->root->level + 1;
2207 		return -EAGAIN;
2208 	} else if (op->lock <= b->c->root->level) {
2209 		op->lock = b->c->root->level + 1;
2210 		return -EINTR;
2211 	} else {
2212 		/* Invalidated all iterators */
2213 		int ret = btree_split(b, op, insert_keys, replace_key);
2214 
2215 		if (bch_keylist_empty(insert_keys))
2216 			return 0;
2217 		else if (!ret)
2218 			return -EINTR;
2219 		return ret;
2220 	}
2221 }
2222 
2223 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2224 			       struct bkey *check_key)
2225 {
2226 	int ret = -EINTR;
2227 	uint64_t btree_ptr = b->key.ptr[0];
2228 	unsigned long seq = b->seq;
2229 	struct keylist insert;
2230 	bool upgrade = op->lock == -1;
2231 
2232 	bch_keylist_init(&insert);
2233 
2234 	if (upgrade) {
2235 		rw_unlock(false, b);
2236 		rw_lock(true, b, b->level);
2237 
2238 		if (b->key.ptr[0] != btree_ptr ||
2239 		    b->seq != seq + 1) {
2240 			op->lock = b->level;
2241 			goto out;
2242 		}
2243 	}
2244 
2245 	SET_KEY_PTRS(check_key, 1);
2246 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2247 
2248 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2249 
2250 	bch_keylist_add(&insert, check_key);
2251 
2252 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2253 
2254 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2255 out:
2256 	if (upgrade)
2257 		downgrade_write(&b->lock);
2258 	return ret;
2259 }
2260 
2261 struct btree_insert_op {
2262 	struct btree_op	op;
2263 	struct keylist	*keys;
2264 	atomic_t	*journal_ref;
2265 	struct bkey	*replace_key;
2266 };
2267 
2268 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2269 {
2270 	struct btree_insert_op *op = container_of(b_op,
2271 					struct btree_insert_op, op);
2272 
2273 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2274 					op->journal_ref, op->replace_key);
2275 	if (ret && !bch_keylist_empty(op->keys))
2276 		return ret;
2277 	else
2278 		return MAP_DONE;
2279 }
2280 
2281 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2282 		     atomic_t *journal_ref, struct bkey *replace_key)
2283 {
2284 	struct btree_insert_op op;
2285 	int ret = 0;
2286 
2287 	BUG_ON(current->bio_list);
2288 	BUG_ON(bch_keylist_empty(keys));
2289 
2290 	bch_btree_op_init(&op.op, 0);
2291 	op.keys		= keys;
2292 	op.journal_ref	= journal_ref;
2293 	op.replace_key	= replace_key;
2294 
2295 	while (!ret && !bch_keylist_empty(keys)) {
2296 		op.op.lock = 0;
2297 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2298 					       &START_KEY(keys->keys),
2299 					       btree_insert_fn);
2300 	}
2301 
2302 	if (ret) {
2303 		struct bkey *k;
2304 
2305 		pr_err("error %i", ret);
2306 
2307 		while ((k = bch_keylist_pop(keys)))
2308 			bkey_put(c, k);
2309 	} else if (op.op.insert_collision)
2310 		ret = -ESRCH;
2311 
2312 	return ret;
2313 }
2314 
2315 void bch_btree_set_root(struct btree *b)
2316 {
2317 	unsigned int i;
2318 	struct closure cl;
2319 
2320 	closure_init_stack(&cl);
2321 
2322 	trace_bcache_btree_set_root(b);
2323 
2324 	BUG_ON(!b->written);
2325 
2326 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2327 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2328 
2329 	mutex_lock(&b->c->bucket_lock);
2330 	list_del_init(&b->list);
2331 	mutex_unlock(&b->c->bucket_lock);
2332 
2333 	b->c->root = b;
2334 
2335 	bch_journal_meta(b->c, &cl);
2336 	closure_sync(&cl);
2337 }
2338 
2339 /* Map across nodes or keys */
2340 
2341 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2342 				       struct bkey *from,
2343 				       btree_map_nodes_fn *fn, int flags)
2344 {
2345 	int ret = MAP_CONTINUE;
2346 
2347 	if (b->level) {
2348 		struct bkey *k;
2349 		struct btree_iter iter;
2350 
2351 		bch_btree_iter_init(&b->keys, &iter, from);
2352 
2353 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2354 						       bch_ptr_bad))) {
2355 			ret = btree(map_nodes_recurse, k, b,
2356 				    op, from, fn, flags);
2357 			from = NULL;
2358 
2359 			if (ret != MAP_CONTINUE)
2360 				return ret;
2361 		}
2362 	}
2363 
2364 	if (!b->level || flags == MAP_ALL_NODES)
2365 		ret = fn(op, b);
2366 
2367 	return ret;
2368 }
2369 
2370 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2371 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2372 {
2373 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2374 }
2375 
2376 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2377 				      struct bkey *from, btree_map_keys_fn *fn,
2378 				      int flags)
2379 {
2380 	int ret = MAP_CONTINUE;
2381 	struct bkey *k;
2382 	struct btree_iter iter;
2383 
2384 	bch_btree_iter_init(&b->keys, &iter, from);
2385 
2386 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2387 		ret = !b->level
2388 			? fn(op, b, k)
2389 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2390 		from = NULL;
2391 
2392 		if (ret != MAP_CONTINUE)
2393 			return ret;
2394 	}
2395 
2396 	if (!b->level && (flags & MAP_END_KEY))
2397 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2398 				     KEY_OFFSET(&b->key), 0));
2399 
2400 	return ret;
2401 }
2402 
2403 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2404 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2405 {
2406 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2407 }
2408 
2409 /* Keybuf code */
2410 
2411 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2412 {
2413 	/* Overlapping keys compare equal */
2414 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2415 		return -1;
2416 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2417 		return 1;
2418 	return 0;
2419 }
2420 
2421 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2422 					    struct keybuf_key *r)
2423 {
2424 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2425 }
2426 
2427 struct refill {
2428 	struct btree_op	op;
2429 	unsigned int	nr_found;
2430 	struct keybuf	*buf;
2431 	struct bkey	*end;
2432 	keybuf_pred_fn	*pred;
2433 };
2434 
2435 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2436 			    struct bkey *k)
2437 {
2438 	struct refill *refill = container_of(op, struct refill, op);
2439 	struct keybuf *buf = refill->buf;
2440 	int ret = MAP_CONTINUE;
2441 
2442 	if (bkey_cmp(k, refill->end) > 0) {
2443 		ret = MAP_DONE;
2444 		goto out;
2445 	}
2446 
2447 	if (!KEY_SIZE(k)) /* end key */
2448 		goto out;
2449 
2450 	if (refill->pred(buf, k)) {
2451 		struct keybuf_key *w;
2452 
2453 		spin_lock(&buf->lock);
2454 
2455 		w = array_alloc(&buf->freelist);
2456 		if (!w) {
2457 			spin_unlock(&buf->lock);
2458 			return MAP_DONE;
2459 		}
2460 
2461 		w->private = NULL;
2462 		bkey_copy(&w->key, k);
2463 
2464 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2465 			array_free(&buf->freelist, w);
2466 		else
2467 			refill->nr_found++;
2468 
2469 		if (array_freelist_empty(&buf->freelist))
2470 			ret = MAP_DONE;
2471 
2472 		spin_unlock(&buf->lock);
2473 	}
2474 out:
2475 	buf->last_scanned = *k;
2476 	return ret;
2477 }
2478 
2479 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2480 		       struct bkey *end, keybuf_pred_fn *pred)
2481 {
2482 	struct bkey start = buf->last_scanned;
2483 	struct refill refill;
2484 
2485 	cond_resched();
2486 
2487 	bch_btree_op_init(&refill.op, -1);
2488 	refill.nr_found	= 0;
2489 	refill.buf	= buf;
2490 	refill.end	= end;
2491 	refill.pred	= pred;
2492 
2493 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2494 			   refill_keybuf_fn, MAP_END_KEY);
2495 
2496 	trace_bcache_keyscan(refill.nr_found,
2497 			     KEY_INODE(&start), KEY_OFFSET(&start),
2498 			     KEY_INODE(&buf->last_scanned),
2499 			     KEY_OFFSET(&buf->last_scanned));
2500 
2501 	spin_lock(&buf->lock);
2502 
2503 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2504 		struct keybuf_key *w;
2505 
2506 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2507 		buf->start	= START_KEY(&w->key);
2508 
2509 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2510 		buf->end	= w->key;
2511 	} else {
2512 		buf->start	= MAX_KEY;
2513 		buf->end	= MAX_KEY;
2514 	}
2515 
2516 	spin_unlock(&buf->lock);
2517 }
2518 
2519 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2520 {
2521 	rb_erase(&w->node, &buf->keys);
2522 	array_free(&buf->freelist, w);
2523 }
2524 
2525 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2526 {
2527 	spin_lock(&buf->lock);
2528 	__bch_keybuf_del(buf, w);
2529 	spin_unlock(&buf->lock);
2530 }
2531 
2532 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2533 				  struct bkey *end)
2534 {
2535 	bool ret = false;
2536 	struct keybuf_key *p, *w, s;
2537 
2538 	s.key = *start;
2539 
2540 	if (bkey_cmp(end, &buf->start) <= 0 ||
2541 	    bkey_cmp(start, &buf->end) >= 0)
2542 		return false;
2543 
2544 	spin_lock(&buf->lock);
2545 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2546 
2547 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2548 		p = w;
2549 		w = RB_NEXT(w, node);
2550 
2551 		if (p->private)
2552 			ret = true;
2553 		else
2554 			__bch_keybuf_del(buf, p);
2555 	}
2556 
2557 	spin_unlock(&buf->lock);
2558 	return ret;
2559 }
2560 
2561 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2562 {
2563 	struct keybuf_key *w;
2564 
2565 	spin_lock(&buf->lock);
2566 
2567 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2568 
2569 	while (w && w->private)
2570 		w = RB_NEXT(w, node);
2571 
2572 	if (w)
2573 		w->private = ERR_PTR(-EINTR);
2574 
2575 	spin_unlock(&buf->lock);
2576 	return w;
2577 }
2578 
2579 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2580 					  struct keybuf *buf,
2581 					  struct bkey *end,
2582 					  keybuf_pred_fn *pred)
2583 {
2584 	struct keybuf_key *ret;
2585 
2586 	while (1) {
2587 		ret = bch_keybuf_next(buf);
2588 		if (ret)
2589 			break;
2590 
2591 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2592 			pr_debug("scan finished");
2593 			break;
2594 		}
2595 
2596 		bch_refill_keybuf(c, buf, end, pred);
2597 	}
2598 
2599 	return ret;
2600 }
2601 
2602 void bch_keybuf_init(struct keybuf *buf)
2603 {
2604 	buf->last_scanned	= MAX_KEY;
2605 	buf->keys		= RB_ROOT;
2606 
2607 	spin_lock_init(&buf->lock);
2608 	array_allocator_init(&buf->freelist);
2609 }
2610