1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <linux/sort.h> 40 #include <trace/events/bcache.h> 41 42 /* 43 * Todo: 44 * register_bcache: Return errors out to userspace correctly 45 * 46 * Writeback: don't undirty key until after a cache flush 47 * 48 * Create an iterator for key pointers 49 * 50 * On btree write error, mark bucket such that it won't be freed from the cache 51 * 52 * Journalling: 53 * Check for bad keys in replay 54 * Propagate barriers 55 * Refcount journal entries in journal_replay 56 * 57 * Garbage collection: 58 * Finish incremental gc 59 * Gc should free old UUIDs, data for invalid UUIDs 60 * 61 * Provide a way to list backing device UUIDs we have data cached for, and 62 * probably how long it's been since we've seen them, and a way to invalidate 63 * dirty data for devices that will never be attached again 64 * 65 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 66 * that based on that and how much dirty data we have we can keep writeback 67 * from being starved 68 * 69 * Add a tracepoint or somesuch to watch for writeback starvation 70 * 71 * When btree depth > 1 and splitting an interior node, we have to make sure 72 * alloc_bucket() cannot fail. This should be true but is not completely 73 * obvious. 74 * 75 * Plugging? 76 * 77 * If data write is less than hard sector size of ssd, round up offset in open 78 * bucket to the next whole sector 79 * 80 * Superblock needs to be fleshed out for multiple cache devices 81 * 82 * Add a sysfs tunable for the number of writeback IOs in flight 83 * 84 * Add a sysfs tunable for the number of open data buckets 85 * 86 * IO tracking: Can we track when one process is doing io on behalf of another? 87 * IO tracking: Don't use just an average, weigh more recent stuff higher 88 * 89 * Test module load/unload 90 */ 91 92 #define MAX_GC_TIMES 100 93 #define MIN_GC_NODES 100 94 #define GC_SLEEP_MS 100 95 96 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 97 98 #define PTR_HASH(c, k) \ 99 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 100 101 static struct workqueue_struct *btree_io_wq; 102 103 #define insert_lock(s, b) ((b)->level <= (s)->lock) 104 105 106 static inline struct bset *write_block(struct btree *b) 107 { 108 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 109 } 110 111 static void bch_btree_init_next(struct btree *b) 112 { 113 /* If not a leaf node, always sort */ 114 if (b->level && b->keys.nsets) 115 bch_btree_sort(&b->keys, &b->c->sort); 116 else 117 bch_btree_sort_lazy(&b->keys, &b->c->sort); 118 119 if (b->written < btree_blocks(b)) 120 bch_bset_init_next(&b->keys, write_block(b), 121 bset_magic(&b->c->cache->sb)); 122 123 } 124 125 /* Btree key manipulation */ 126 127 void bkey_put(struct cache_set *c, struct bkey *k) 128 { 129 unsigned int i; 130 131 for (i = 0; i < KEY_PTRS(k); i++) 132 if (ptr_available(c, k, i)) 133 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 134 } 135 136 /* Btree IO */ 137 138 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 139 { 140 uint64_t crc = b->key.ptr[0]; 141 void *data = (void *) i + 8, *end = bset_bkey_last(i); 142 143 crc = crc64_be(crc, data, end - data); 144 return crc ^ 0xffffffffffffffffULL; 145 } 146 147 void bch_btree_node_read_done(struct btree *b) 148 { 149 const char *err = "bad btree header"; 150 struct bset *i = btree_bset_first(b); 151 struct btree_iter *iter; 152 153 /* 154 * c->fill_iter can allocate an iterator with more memory space 155 * than static MAX_BSETS. 156 * See the comment arount cache_set->fill_iter. 157 */ 158 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 159 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 160 iter->used = 0; 161 162 #ifdef CONFIG_BCACHE_DEBUG 163 iter->b = &b->keys; 164 #endif 165 166 if (!i->seq) 167 goto err; 168 169 for (; 170 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 171 i = write_block(b)) { 172 err = "unsupported bset version"; 173 if (i->version > BCACHE_BSET_VERSION) 174 goto err; 175 176 err = "bad btree header"; 177 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 178 btree_blocks(b)) 179 goto err; 180 181 err = "bad magic"; 182 if (i->magic != bset_magic(&b->c->cache->sb)) 183 goto err; 184 185 err = "bad checksum"; 186 switch (i->version) { 187 case 0: 188 if (i->csum != csum_set(i)) 189 goto err; 190 break; 191 case BCACHE_BSET_VERSION: 192 if (i->csum != btree_csum_set(b, i)) 193 goto err; 194 break; 195 } 196 197 err = "empty set"; 198 if (i != b->keys.set[0].data && !i->keys) 199 goto err; 200 201 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 202 203 b->written += set_blocks(i, block_bytes(b->c->cache)); 204 } 205 206 err = "corrupted btree"; 207 for (i = write_block(b); 208 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 209 i = ((void *) i) + block_bytes(b->c->cache)) 210 if (i->seq == b->keys.set[0].data->seq) 211 goto err; 212 213 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 214 215 i = b->keys.set[0].data; 216 err = "short btree key"; 217 if (b->keys.set[0].size && 218 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 219 goto err; 220 221 if (b->written < btree_blocks(b)) 222 bch_bset_init_next(&b->keys, write_block(b), 223 bset_magic(&b->c->cache->sb)); 224 out: 225 mempool_free(iter, &b->c->fill_iter); 226 return; 227 err: 228 set_btree_node_io_error(b); 229 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 230 err, PTR_BUCKET_NR(b->c, &b->key, 0), 231 bset_block_offset(b, i), i->keys); 232 goto out; 233 } 234 235 static void btree_node_read_endio(struct bio *bio) 236 { 237 struct closure *cl = bio->bi_private; 238 239 closure_put(cl); 240 } 241 242 static void bch_btree_node_read(struct btree *b) 243 { 244 uint64_t start_time = local_clock(); 245 struct closure cl; 246 struct bio *bio; 247 248 trace_bcache_btree_read(b); 249 250 closure_init_stack(&cl); 251 252 bio = bch_bbio_alloc(b->c); 253 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 254 bio->bi_end_io = btree_node_read_endio; 255 bio->bi_private = &cl; 256 bio->bi_opf = REQ_OP_READ | REQ_META; 257 258 bch_bio_map(bio, b->keys.set[0].data); 259 260 bch_submit_bbio(bio, b->c, &b->key, 0); 261 closure_sync(&cl); 262 263 if (bio->bi_status) 264 set_btree_node_io_error(b); 265 266 bch_bbio_free(bio, b->c); 267 268 if (btree_node_io_error(b)) 269 goto err; 270 271 bch_btree_node_read_done(b); 272 bch_time_stats_update(&b->c->btree_read_time, start_time); 273 274 return; 275 err: 276 bch_cache_set_error(b->c, "io error reading bucket %zu", 277 PTR_BUCKET_NR(b->c, &b->key, 0)); 278 } 279 280 static void btree_complete_write(struct btree *b, struct btree_write *w) 281 { 282 if (w->prio_blocked && 283 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 284 wake_up_allocators(b->c); 285 286 if (w->journal) { 287 atomic_dec_bug(w->journal); 288 __closure_wake_up(&b->c->journal.wait); 289 } 290 291 w->prio_blocked = 0; 292 w->journal = NULL; 293 } 294 295 static CLOSURE_CALLBACK(btree_node_write_unlock) 296 { 297 closure_type(b, struct btree, io); 298 299 up(&b->io_mutex); 300 } 301 302 static CLOSURE_CALLBACK(__btree_node_write_done) 303 { 304 closure_type(b, struct btree, io); 305 struct btree_write *w = btree_prev_write(b); 306 307 bch_bbio_free(b->bio, b->c); 308 b->bio = NULL; 309 btree_complete_write(b, w); 310 311 if (btree_node_dirty(b)) 312 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 313 314 closure_return_with_destructor(cl, btree_node_write_unlock); 315 } 316 317 static CLOSURE_CALLBACK(btree_node_write_done) 318 { 319 closure_type(b, struct btree, io); 320 321 bio_free_pages(b->bio); 322 __btree_node_write_done(&cl->work); 323 } 324 325 static void btree_node_write_endio(struct bio *bio) 326 { 327 struct closure *cl = bio->bi_private; 328 struct btree *b = container_of(cl, struct btree, io); 329 330 if (bio->bi_status) 331 set_btree_node_io_error(b); 332 333 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 334 closure_put(cl); 335 } 336 337 static void do_btree_node_write(struct btree *b) 338 { 339 struct closure *cl = &b->io; 340 struct bset *i = btree_bset_last(b); 341 BKEY_PADDED(key) k; 342 343 i->version = BCACHE_BSET_VERSION; 344 i->csum = btree_csum_set(b, i); 345 346 BUG_ON(b->bio); 347 b->bio = bch_bbio_alloc(b->c); 348 349 b->bio->bi_end_io = btree_node_write_endio; 350 b->bio->bi_private = cl; 351 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 352 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 353 bch_bio_map(b->bio, i); 354 355 /* 356 * If we're appending to a leaf node, we don't technically need FUA - 357 * this write just needs to be persisted before the next journal write, 358 * which will be marked FLUSH|FUA. 359 * 360 * Similarly if we're writing a new btree root - the pointer is going to 361 * be in the next journal entry. 362 * 363 * But if we're writing a new btree node (that isn't a root) or 364 * appending to a non leaf btree node, we need either FUA or a flush 365 * when we write the parent with the new pointer. FUA is cheaper than a 366 * flush, and writes appending to leaf nodes aren't blocking anything so 367 * just make all btree node writes FUA to keep things sane. 368 */ 369 370 bkey_copy(&k.key, &b->key); 371 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 372 bset_sector_offset(&b->keys, i)); 373 374 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 375 struct bio_vec *bv; 376 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 377 struct bvec_iter_all iter_all; 378 379 bio_for_each_segment_all(bv, b->bio, iter_all) { 380 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 381 addr += PAGE_SIZE; 382 } 383 384 bch_submit_bbio(b->bio, b->c, &k.key, 0); 385 386 continue_at(cl, btree_node_write_done, NULL); 387 } else { 388 /* 389 * No problem for multipage bvec since the bio is 390 * just allocated 391 */ 392 b->bio->bi_vcnt = 0; 393 bch_bio_map(b->bio, i); 394 395 bch_submit_bbio(b->bio, b->c, &k.key, 0); 396 397 closure_sync(cl); 398 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 399 } 400 } 401 402 void __bch_btree_node_write(struct btree *b, struct closure *parent) 403 { 404 struct bset *i = btree_bset_last(b); 405 406 lockdep_assert_held(&b->write_lock); 407 408 trace_bcache_btree_write(b); 409 410 BUG_ON(current->bio_list); 411 BUG_ON(b->written >= btree_blocks(b)); 412 BUG_ON(b->written && !i->keys); 413 BUG_ON(btree_bset_first(b)->seq != i->seq); 414 bch_check_keys(&b->keys, "writing"); 415 416 cancel_delayed_work(&b->work); 417 418 /* If caller isn't waiting for write, parent refcount is cache set */ 419 down(&b->io_mutex); 420 closure_init(&b->io, parent ?: &b->c->cl); 421 422 clear_bit(BTREE_NODE_dirty, &b->flags); 423 change_bit(BTREE_NODE_write_idx, &b->flags); 424 425 do_btree_node_write(b); 426 427 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 428 &b->c->cache->btree_sectors_written); 429 430 b->written += set_blocks(i, block_bytes(b->c->cache)); 431 } 432 433 void bch_btree_node_write(struct btree *b, struct closure *parent) 434 { 435 unsigned int nsets = b->keys.nsets; 436 437 lockdep_assert_held(&b->lock); 438 439 __bch_btree_node_write(b, parent); 440 441 /* 442 * do verify if there was more than one set initially (i.e. we did a 443 * sort) and we sorted down to a single set: 444 */ 445 if (nsets && !b->keys.nsets) 446 bch_btree_verify(b); 447 448 bch_btree_init_next(b); 449 } 450 451 static void bch_btree_node_write_sync(struct btree *b) 452 { 453 struct closure cl; 454 455 closure_init_stack(&cl); 456 457 mutex_lock(&b->write_lock); 458 bch_btree_node_write(b, &cl); 459 mutex_unlock(&b->write_lock); 460 461 closure_sync(&cl); 462 } 463 464 static void btree_node_write_work(struct work_struct *w) 465 { 466 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 467 468 mutex_lock(&b->write_lock); 469 if (btree_node_dirty(b)) 470 __bch_btree_node_write(b, NULL); 471 mutex_unlock(&b->write_lock); 472 } 473 474 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 475 { 476 struct bset *i = btree_bset_last(b); 477 struct btree_write *w = btree_current_write(b); 478 479 lockdep_assert_held(&b->write_lock); 480 481 BUG_ON(!b->written); 482 BUG_ON(!i->keys); 483 484 if (!btree_node_dirty(b)) 485 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 486 487 set_btree_node_dirty(b); 488 489 /* 490 * w->journal is always the oldest journal pin of all bkeys 491 * in the leaf node, to make sure the oldest jset seq won't 492 * be increased before this btree node is flushed. 493 */ 494 if (journal_ref) { 495 if (w->journal && 496 journal_pin_cmp(b->c, w->journal, journal_ref)) { 497 atomic_dec_bug(w->journal); 498 w->journal = NULL; 499 } 500 501 if (!w->journal) { 502 w->journal = journal_ref; 503 atomic_inc(w->journal); 504 } 505 } 506 507 /* Force write if set is too big */ 508 if (set_bytes(i) > PAGE_SIZE - 48 && 509 !current->bio_list) 510 bch_btree_node_write(b, NULL); 511 } 512 513 /* 514 * Btree in memory cache - allocation/freeing 515 * mca -> memory cache 516 */ 517 518 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 519 ? c->root->level : 1) * 8 + 16) 520 #define mca_can_free(c) \ 521 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 522 523 static void mca_data_free(struct btree *b) 524 { 525 BUG_ON(b->io_mutex.count != 1); 526 527 bch_btree_keys_free(&b->keys); 528 529 b->c->btree_cache_used--; 530 list_move(&b->list, &b->c->btree_cache_freed); 531 } 532 533 static void mca_bucket_free(struct btree *b) 534 { 535 BUG_ON(btree_node_dirty(b)); 536 537 b->key.ptr[0] = 0; 538 hlist_del_init_rcu(&b->hash); 539 list_move(&b->list, &b->c->btree_cache_freeable); 540 } 541 542 static unsigned int btree_order(struct bkey *k) 543 { 544 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 545 } 546 547 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 548 { 549 if (!bch_btree_keys_alloc(&b->keys, 550 max_t(unsigned int, 551 ilog2(b->c->btree_pages), 552 btree_order(k)), 553 gfp)) { 554 b->c->btree_cache_used++; 555 list_move(&b->list, &b->c->btree_cache); 556 } else { 557 list_move(&b->list, &b->c->btree_cache_freed); 558 } 559 } 560 561 #ifdef CONFIG_PROVE_LOCKING 562 static int btree_lock_cmp_fn(const struct lockdep_map *_a, 563 const struct lockdep_map *_b) 564 { 565 const struct btree *a = container_of(_a, struct btree, lock.dep_map); 566 const struct btree *b = container_of(_b, struct btree, lock.dep_map); 567 568 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key); 569 } 570 571 static void btree_lock_print_fn(const struct lockdep_map *map) 572 { 573 const struct btree *b = container_of(map, struct btree, lock.dep_map); 574 575 printk(KERN_CONT " l=%u %llu:%llu", b->level, 576 KEY_INODE(&b->key), KEY_OFFSET(&b->key)); 577 } 578 #endif 579 580 static struct btree *mca_bucket_alloc(struct cache_set *c, 581 struct bkey *k, gfp_t gfp) 582 { 583 /* 584 * kzalloc() is necessary here for initialization, 585 * see code comments in bch_btree_keys_init(). 586 */ 587 struct btree *b = kzalloc(sizeof(struct btree), gfp); 588 589 if (!b) 590 return NULL; 591 592 init_rwsem(&b->lock); 593 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn); 594 mutex_init(&b->write_lock); 595 lockdep_set_novalidate_class(&b->write_lock); 596 INIT_LIST_HEAD(&b->list); 597 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 598 b->c = c; 599 sema_init(&b->io_mutex, 1); 600 601 mca_data_alloc(b, k, gfp); 602 return b; 603 } 604 605 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 606 { 607 struct closure cl; 608 609 closure_init_stack(&cl); 610 lockdep_assert_held(&b->c->bucket_lock); 611 612 if (!down_write_trylock(&b->lock)) 613 return -ENOMEM; 614 615 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 616 617 if (b->keys.page_order < min_order) 618 goto out_unlock; 619 620 if (!flush) { 621 if (btree_node_dirty(b)) 622 goto out_unlock; 623 624 if (down_trylock(&b->io_mutex)) 625 goto out_unlock; 626 up(&b->io_mutex); 627 } 628 629 retry: 630 /* 631 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 632 * __bch_btree_node_write(). To avoid an extra flush, acquire 633 * b->write_lock before checking BTREE_NODE_dirty bit. 634 */ 635 mutex_lock(&b->write_lock); 636 /* 637 * If this btree node is selected in btree_flush_write() by journal 638 * code, delay and retry until the node is flushed by journal code 639 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 640 */ 641 if (btree_node_journal_flush(b)) { 642 pr_debug("bnode %p is flushing by journal, retry\n", b); 643 mutex_unlock(&b->write_lock); 644 udelay(1); 645 goto retry; 646 } 647 648 if (btree_node_dirty(b)) 649 __bch_btree_node_write(b, &cl); 650 mutex_unlock(&b->write_lock); 651 652 closure_sync(&cl); 653 654 /* wait for any in flight btree write */ 655 down(&b->io_mutex); 656 up(&b->io_mutex); 657 658 return 0; 659 out_unlock: 660 rw_unlock(true, b); 661 return -ENOMEM; 662 } 663 664 static unsigned long bch_mca_scan(struct shrinker *shrink, 665 struct shrink_control *sc) 666 { 667 struct cache_set *c = shrink->private_data; 668 struct btree *b, *t; 669 unsigned long i, nr = sc->nr_to_scan; 670 unsigned long freed = 0; 671 unsigned int btree_cache_used; 672 673 if (c->shrinker_disabled) 674 return SHRINK_STOP; 675 676 if (c->btree_cache_alloc_lock) 677 return SHRINK_STOP; 678 679 /* Return -1 if we can't do anything right now */ 680 if (sc->gfp_mask & __GFP_IO) 681 mutex_lock(&c->bucket_lock); 682 else if (!mutex_trylock(&c->bucket_lock)) 683 return -1; 684 685 /* 686 * It's _really_ critical that we don't free too many btree nodes - we 687 * have to always leave ourselves a reserve. The reserve is how we 688 * guarantee that allocating memory for a new btree node can always 689 * succeed, so that inserting keys into the btree can always succeed and 690 * IO can always make forward progress: 691 */ 692 nr /= c->btree_pages; 693 if (nr == 0) 694 nr = 1; 695 nr = min_t(unsigned long, nr, mca_can_free(c)); 696 697 i = 0; 698 btree_cache_used = c->btree_cache_used; 699 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 700 if (nr <= 0) 701 goto out; 702 703 if (!mca_reap(b, 0, false)) { 704 mca_data_free(b); 705 rw_unlock(true, b); 706 freed++; 707 } 708 nr--; 709 i++; 710 } 711 712 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 713 if (nr <= 0 || i >= btree_cache_used) 714 goto out; 715 716 if (!mca_reap(b, 0, false)) { 717 mca_bucket_free(b); 718 mca_data_free(b); 719 rw_unlock(true, b); 720 freed++; 721 } 722 723 nr--; 724 i++; 725 } 726 out: 727 mutex_unlock(&c->bucket_lock); 728 return freed * c->btree_pages; 729 } 730 731 static unsigned long bch_mca_count(struct shrinker *shrink, 732 struct shrink_control *sc) 733 { 734 struct cache_set *c = shrink->private_data; 735 736 if (c->shrinker_disabled) 737 return 0; 738 739 if (c->btree_cache_alloc_lock) 740 return 0; 741 742 return mca_can_free(c) * c->btree_pages; 743 } 744 745 void bch_btree_cache_free(struct cache_set *c) 746 { 747 struct btree *b; 748 struct closure cl; 749 750 closure_init_stack(&cl); 751 752 if (c->shrink) 753 shrinker_free(c->shrink); 754 755 mutex_lock(&c->bucket_lock); 756 757 #ifdef CONFIG_BCACHE_DEBUG 758 if (c->verify_data) 759 list_move(&c->verify_data->list, &c->btree_cache); 760 761 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 762 #endif 763 764 list_splice(&c->btree_cache_freeable, 765 &c->btree_cache); 766 767 while (!list_empty(&c->btree_cache)) { 768 b = list_first_entry(&c->btree_cache, struct btree, list); 769 770 /* 771 * This function is called by cache_set_free(), no I/O 772 * request on cache now, it is unnecessary to acquire 773 * b->write_lock before clearing BTREE_NODE_dirty anymore. 774 */ 775 if (btree_node_dirty(b)) { 776 btree_complete_write(b, btree_current_write(b)); 777 clear_bit(BTREE_NODE_dirty, &b->flags); 778 } 779 mca_data_free(b); 780 } 781 782 while (!list_empty(&c->btree_cache_freed)) { 783 b = list_first_entry(&c->btree_cache_freed, 784 struct btree, list); 785 list_del(&b->list); 786 cancel_delayed_work_sync(&b->work); 787 kfree(b); 788 } 789 790 mutex_unlock(&c->bucket_lock); 791 } 792 793 int bch_btree_cache_alloc(struct cache_set *c) 794 { 795 unsigned int i; 796 797 for (i = 0; i < mca_reserve(c); i++) 798 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 799 return -ENOMEM; 800 801 list_splice_init(&c->btree_cache, 802 &c->btree_cache_freeable); 803 804 #ifdef CONFIG_BCACHE_DEBUG 805 mutex_init(&c->verify_lock); 806 807 c->verify_ondisk = (void *) 808 __get_free_pages(GFP_KERNEL|__GFP_COMP, 809 ilog2(meta_bucket_pages(&c->cache->sb))); 810 if (!c->verify_ondisk) { 811 /* 812 * Don't worry about the mca_rereserve buckets 813 * allocated in previous for-loop, they will be 814 * handled properly in bch_cache_set_unregister(). 815 */ 816 return -ENOMEM; 817 } 818 819 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 820 821 if (c->verify_data && 822 c->verify_data->keys.set->data) 823 list_del_init(&c->verify_data->list); 824 else 825 c->verify_data = NULL; 826 #endif 827 828 c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid); 829 if (!c->shrink) { 830 pr_warn("bcache: %s: could not allocate shrinker\n", __func__); 831 return 0; 832 } 833 834 c->shrink->count_objects = bch_mca_count; 835 c->shrink->scan_objects = bch_mca_scan; 836 c->shrink->seeks = 4; 837 c->shrink->batch = c->btree_pages * 2; 838 c->shrink->private_data = c; 839 840 shrinker_register(c->shrink); 841 842 return 0; 843 } 844 845 /* Btree in memory cache - hash table */ 846 847 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 848 { 849 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 850 } 851 852 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 853 { 854 struct btree *b; 855 856 rcu_read_lock(); 857 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 858 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 859 goto out; 860 b = NULL; 861 out: 862 rcu_read_unlock(); 863 return b; 864 } 865 866 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 867 { 868 spin_lock(&c->btree_cannibalize_lock); 869 if (likely(c->btree_cache_alloc_lock == NULL)) { 870 c->btree_cache_alloc_lock = current; 871 } else if (c->btree_cache_alloc_lock != current) { 872 if (op) 873 prepare_to_wait(&c->btree_cache_wait, &op->wait, 874 TASK_UNINTERRUPTIBLE); 875 spin_unlock(&c->btree_cannibalize_lock); 876 return -EINTR; 877 } 878 spin_unlock(&c->btree_cannibalize_lock); 879 880 return 0; 881 } 882 883 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 884 struct bkey *k) 885 { 886 struct btree *b; 887 888 trace_bcache_btree_cache_cannibalize(c); 889 890 if (mca_cannibalize_lock(c, op)) 891 return ERR_PTR(-EINTR); 892 893 list_for_each_entry_reverse(b, &c->btree_cache, list) 894 if (!mca_reap(b, btree_order(k), false)) 895 return b; 896 897 list_for_each_entry_reverse(b, &c->btree_cache, list) 898 if (!mca_reap(b, btree_order(k), true)) 899 return b; 900 901 WARN(1, "btree cache cannibalize failed\n"); 902 return ERR_PTR(-ENOMEM); 903 } 904 905 /* 906 * We can only have one thread cannibalizing other cached btree nodes at a time, 907 * or we'll deadlock. We use an open coded mutex to ensure that, which a 908 * cannibalize_bucket() will take. This means every time we unlock the root of 909 * the btree, we need to release this lock if we have it held. 910 */ 911 void bch_cannibalize_unlock(struct cache_set *c) 912 { 913 spin_lock(&c->btree_cannibalize_lock); 914 if (c->btree_cache_alloc_lock == current) { 915 c->btree_cache_alloc_lock = NULL; 916 wake_up(&c->btree_cache_wait); 917 } 918 spin_unlock(&c->btree_cannibalize_lock); 919 } 920 921 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 922 struct bkey *k, int level) 923 { 924 struct btree *b; 925 926 BUG_ON(current->bio_list); 927 928 lockdep_assert_held(&c->bucket_lock); 929 930 if (mca_find(c, k)) 931 return NULL; 932 933 /* btree_free() doesn't free memory; it sticks the node on the end of 934 * the list. Check if there's any freed nodes there: 935 */ 936 list_for_each_entry(b, &c->btree_cache_freeable, list) 937 if (!mca_reap(b, btree_order(k), false)) 938 goto out; 939 940 /* We never free struct btree itself, just the memory that holds the on 941 * disk node. Check the freed list before allocating a new one: 942 */ 943 list_for_each_entry(b, &c->btree_cache_freed, list) 944 if (!mca_reap(b, 0, false)) { 945 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 946 if (!b->keys.set[0].data) 947 goto err; 948 else 949 goto out; 950 } 951 952 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 953 if (!b) 954 goto err; 955 956 BUG_ON(!down_write_trylock(&b->lock)); 957 if (!b->keys.set->data) 958 goto err; 959 out: 960 BUG_ON(b->io_mutex.count != 1); 961 962 bkey_copy(&b->key, k); 963 list_move(&b->list, &c->btree_cache); 964 hlist_del_init_rcu(&b->hash); 965 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 966 967 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 968 b->parent = (void *) ~0UL; 969 b->flags = 0; 970 b->written = 0; 971 b->level = level; 972 973 if (!b->level) 974 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 975 &b->c->expensive_debug_checks); 976 else 977 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 978 &b->c->expensive_debug_checks); 979 980 return b; 981 err: 982 if (b) 983 rw_unlock(true, b); 984 985 b = mca_cannibalize(c, op, k); 986 if (!IS_ERR(b)) 987 goto out; 988 989 return b; 990 } 991 992 /* 993 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 994 * in from disk if necessary. 995 * 996 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 997 * 998 * The btree node will have either a read or a write lock held, depending on 999 * level and op->lock. 1000 * 1001 * Note: Only error code or btree pointer will be returned, it is unncessary 1002 * for callers to check NULL pointer. 1003 */ 1004 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1005 struct bkey *k, int level, bool write, 1006 struct btree *parent) 1007 { 1008 int i = 0; 1009 struct btree *b; 1010 1011 BUG_ON(level < 0); 1012 retry: 1013 b = mca_find(c, k); 1014 1015 if (!b) { 1016 if (current->bio_list) 1017 return ERR_PTR(-EAGAIN); 1018 1019 mutex_lock(&c->bucket_lock); 1020 b = mca_alloc(c, op, k, level); 1021 mutex_unlock(&c->bucket_lock); 1022 1023 if (!b) 1024 goto retry; 1025 if (IS_ERR(b)) 1026 return b; 1027 1028 bch_btree_node_read(b); 1029 1030 if (!write) 1031 downgrade_write(&b->lock); 1032 } else { 1033 rw_lock(write, b, level); 1034 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1035 rw_unlock(write, b); 1036 goto retry; 1037 } 1038 BUG_ON(b->level != level); 1039 } 1040 1041 if (btree_node_io_error(b)) { 1042 rw_unlock(write, b); 1043 return ERR_PTR(-EIO); 1044 } 1045 1046 BUG_ON(!b->written); 1047 1048 b->parent = parent; 1049 1050 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1051 prefetch(b->keys.set[i].tree); 1052 prefetch(b->keys.set[i].data); 1053 } 1054 1055 for (; i <= b->keys.nsets; i++) 1056 prefetch(b->keys.set[i].data); 1057 1058 return b; 1059 } 1060 1061 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1062 { 1063 struct btree *b; 1064 1065 mutex_lock(&parent->c->bucket_lock); 1066 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1067 mutex_unlock(&parent->c->bucket_lock); 1068 1069 if (!IS_ERR_OR_NULL(b)) { 1070 b->parent = parent; 1071 bch_btree_node_read(b); 1072 rw_unlock(true, b); 1073 } 1074 } 1075 1076 /* Btree alloc */ 1077 1078 static void btree_node_free(struct btree *b) 1079 { 1080 trace_bcache_btree_node_free(b); 1081 1082 BUG_ON(b == b->c->root); 1083 1084 retry: 1085 mutex_lock(&b->write_lock); 1086 /* 1087 * If the btree node is selected and flushing in btree_flush_write(), 1088 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1089 * then it is safe to free the btree node here. Otherwise this btree 1090 * node will be in race condition. 1091 */ 1092 if (btree_node_journal_flush(b)) { 1093 mutex_unlock(&b->write_lock); 1094 pr_debug("bnode %p journal_flush set, retry\n", b); 1095 udelay(1); 1096 goto retry; 1097 } 1098 1099 if (btree_node_dirty(b)) { 1100 btree_complete_write(b, btree_current_write(b)); 1101 clear_bit(BTREE_NODE_dirty, &b->flags); 1102 } 1103 1104 mutex_unlock(&b->write_lock); 1105 1106 cancel_delayed_work(&b->work); 1107 1108 mutex_lock(&b->c->bucket_lock); 1109 bch_bucket_free(b->c, &b->key); 1110 mca_bucket_free(b); 1111 mutex_unlock(&b->c->bucket_lock); 1112 } 1113 1114 /* 1115 * Only error code or btree pointer will be returned, it is unncessary for 1116 * callers to check NULL pointer. 1117 */ 1118 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1119 int level, bool wait, 1120 struct btree *parent) 1121 { 1122 BKEY_PADDED(key) k; 1123 struct btree *b; 1124 1125 mutex_lock(&c->bucket_lock); 1126 retry: 1127 /* return ERR_PTR(-EAGAIN) when it fails */ 1128 b = ERR_PTR(-EAGAIN); 1129 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1130 goto err; 1131 1132 bkey_put(c, &k.key); 1133 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1134 1135 b = mca_alloc(c, op, &k.key, level); 1136 if (IS_ERR(b)) 1137 goto err_free; 1138 1139 if (!b) { 1140 cache_bug(c, 1141 "Tried to allocate bucket that was in btree cache"); 1142 goto retry; 1143 } 1144 1145 b->parent = parent; 1146 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1147 1148 mutex_unlock(&c->bucket_lock); 1149 1150 trace_bcache_btree_node_alloc(b); 1151 return b; 1152 err_free: 1153 bch_bucket_free(c, &k.key); 1154 err: 1155 mutex_unlock(&c->bucket_lock); 1156 1157 trace_bcache_btree_node_alloc_fail(c); 1158 return b; 1159 } 1160 1161 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1162 struct btree_op *op, int level, 1163 struct btree *parent) 1164 { 1165 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1166 } 1167 1168 static struct btree *btree_node_alloc_replacement(struct btree *b, 1169 struct btree_op *op) 1170 { 1171 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1172 1173 if (!IS_ERR(n)) { 1174 mutex_lock(&n->write_lock); 1175 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1176 bkey_copy_key(&n->key, &b->key); 1177 mutex_unlock(&n->write_lock); 1178 } 1179 1180 return n; 1181 } 1182 1183 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1184 { 1185 unsigned int i; 1186 1187 mutex_lock(&b->c->bucket_lock); 1188 1189 atomic_inc(&b->c->prio_blocked); 1190 1191 bkey_copy(k, &b->key); 1192 bkey_copy_key(k, &ZERO_KEY); 1193 1194 for (i = 0; i < KEY_PTRS(k); i++) 1195 SET_PTR_GEN(k, i, 1196 bch_inc_gen(b->c->cache, 1197 PTR_BUCKET(b->c, &b->key, i))); 1198 1199 mutex_unlock(&b->c->bucket_lock); 1200 } 1201 1202 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1203 { 1204 struct cache_set *c = b->c; 1205 struct cache *ca = c->cache; 1206 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1207 1208 mutex_lock(&c->bucket_lock); 1209 1210 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1211 if (op) 1212 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1213 TASK_UNINTERRUPTIBLE); 1214 mutex_unlock(&c->bucket_lock); 1215 return -EINTR; 1216 } 1217 1218 mutex_unlock(&c->bucket_lock); 1219 1220 return mca_cannibalize_lock(b->c, op); 1221 } 1222 1223 /* Garbage collection */ 1224 1225 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1226 struct bkey *k) 1227 { 1228 uint8_t stale = 0; 1229 unsigned int i; 1230 struct bucket *g; 1231 1232 /* 1233 * ptr_invalid() can't return true for the keys that mark btree nodes as 1234 * freed, but since ptr_bad() returns true we'll never actually use them 1235 * for anything and thus we don't want mark their pointers here 1236 */ 1237 if (!bkey_cmp(k, &ZERO_KEY)) 1238 return stale; 1239 1240 for (i = 0; i < KEY_PTRS(k); i++) { 1241 if (!ptr_available(c, k, i)) 1242 continue; 1243 1244 g = PTR_BUCKET(c, k, i); 1245 1246 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1247 g->last_gc = PTR_GEN(k, i); 1248 1249 if (ptr_stale(c, k, i)) { 1250 stale = max(stale, ptr_stale(c, k, i)); 1251 continue; 1252 } 1253 1254 cache_bug_on(GC_MARK(g) && 1255 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1256 c, "inconsistent ptrs: mark = %llu, level = %i", 1257 GC_MARK(g), level); 1258 1259 if (level) 1260 SET_GC_MARK(g, GC_MARK_METADATA); 1261 else if (KEY_DIRTY(k)) 1262 SET_GC_MARK(g, GC_MARK_DIRTY); 1263 else if (!GC_MARK(g)) 1264 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1265 1266 /* guard against overflow */ 1267 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1268 GC_SECTORS_USED(g) + KEY_SIZE(k), 1269 MAX_GC_SECTORS_USED)); 1270 1271 BUG_ON(!GC_SECTORS_USED(g)); 1272 } 1273 1274 return stale; 1275 } 1276 1277 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1278 1279 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1280 { 1281 unsigned int i; 1282 1283 for (i = 0; i < KEY_PTRS(k); i++) 1284 if (ptr_available(c, k, i) && 1285 !ptr_stale(c, k, i)) { 1286 struct bucket *b = PTR_BUCKET(c, k, i); 1287 1288 b->gen = PTR_GEN(k, i); 1289 1290 if (level && bkey_cmp(k, &ZERO_KEY)) 1291 b->prio = BTREE_PRIO; 1292 else if (!level && b->prio == BTREE_PRIO) 1293 b->prio = INITIAL_PRIO; 1294 } 1295 1296 __bch_btree_mark_key(c, level, k); 1297 } 1298 1299 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1300 { 1301 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1302 } 1303 1304 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1305 { 1306 uint8_t stale = 0; 1307 unsigned int keys = 0, good_keys = 0; 1308 struct bkey *k; 1309 struct btree_iter_stack iter; 1310 struct bset_tree *t; 1311 1312 gc->nodes++; 1313 1314 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1315 stale = max(stale, btree_mark_key(b, k)); 1316 keys++; 1317 1318 if (bch_ptr_bad(&b->keys, k)) 1319 continue; 1320 1321 gc->key_bytes += bkey_u64s(k); 1322 gc->nkeys++; 1323 good_keys++; 1324 1325 gc->data += KEY_SIZE(k); 1326 } 1327 1328 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1329 btree_bug_on(t->size && 1330 bset_written(&b->keys, t) && 1331 bkey_cmp(&b->key, &t->end) < 0, 1332 b, "found short btree key in gc"); 1333 1334 if (b->c->gc_always_rewrite) 1335 return true; 1336 1337 if (stale > 10) 1338 return true; 1339 1340 if ((keys - good_keys) * 2 > keys) 1341 return true; 1342 1343 return false; 1344 } 1345 1346 #define GC_MERGE_NODES 4U 1347 1348 struct gc_merge_info { 1349 struct btree *b; 1350 unsigned int keys; 1351 }; 1352 1353 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1354 struct keylist *insert_keys, 1355 atomic_t *journal_ref, 1356 struct bkey *replace_key); 1357 1358 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1359 struct gc_stat *gc, struct gc_merge_info *r) 1360 { 1361 unsigned int i, nodes = 0, keys = 0, blocks; 1362 struct btree *new_nodes[GC_MERGE_NODES]; 1363 struct keylist keylist; 1364 struct closure cl; 1365 struct bkey *k; 1366 1367 bch_keylist_init(&keylist); 1368 1369 if (btree_check_reserve(b, NULL)) 1370 return 0; 1371 1372 memset(new_nodes, 0, sizeof(new_nodes)); 1373 closure_init_stack(&cl); 1374 1375 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1376 keys += r[nodes++].keys; 1377 1378 blocks = btree_default_blocks(b->c) * 2 / 3; 1379 1380 if (nodes < 2 || 1381 __set_blocks(b->keys.set[0].data, keys, 1382 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1383 return 0; 1384 1385 for (i = 0; i < nodes; i++) { 1386 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1387 if (IS_ERR(new_nodes[i])) 1388 goto out_nocoalesce; 1389 } 1390 1391 /* 1392 * We have to check the reserve here, after we've allocated our new 1393 * nodes, to make sure the insert below will succeed - we also check 1394 * before as an optimization to potentially avoid a bunch of expensive 1395 * allocs/sorts 1396 */ 1397 if (btree_check_reserve(b, NULL)) 1398 goto out_nocoalesce; 1399 1400 for (i = 0; i < nodes; i++) 1401 mutex_lock(&new_nodes[i]->write_lock); 1402 1403 for (i = nodes - 1; i > 0; --i) { 1404 struct bset *n1 = btree_bset_first(new_nodes[i]); 1405 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1406 struct bkey *k, *last = NULL; 1407 1408 keys = 0; 1409 1410 if (i > 1) { 1411 for (k = n2->start; 1412 k < bset_bkey_last(n2); 1413 k = bkey_next(k)) { 1414 if (__set_blocks(n1, n1->keys + keys + 1415 bkey_u64s(k), 1416 block_bytes(b->c->cache)) > blocks) 1417 break; 1418 1419 last = k; 1420 keys += bkey_u64s(k); 1421 } 1422 } else { 1423 /* 1424 * Last node we're not getting rid of - we're getting 1425 * rid of the node at r[0]. Have to try and fit all of 1426 * the remaining keys into this node; we can't ensure 1427 * they will always fit due to rounding and variable 1428 * length keys (shouldn't be possible in practice, 1429 * though) 1430 */ 1431 if (__set_blocks(n1, n1->keys + n2->keys, 1432 block_bytes(b->c->cache)) > 1433 btree_blocks(new_nodes[i])) 1434 goto out_unlock_nocoalesce; 1435 1436 keys = n2->keys; 1437 /* Take the key of the node we're getting rid of */ 1438 last = &r->b->key; 1439 } 1440 1441 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1442 btree_blocks(new_nodes[i])); 1443 1444 if (last) 1445 bkey_copy_key(&new_nodes[i]->key, last); 1446 1447 memcpy(bset_bkey_last(n1), 1448 n2->start, 1449 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1450 1451 n1->keys += keys; 1452 r[i].keys = n1->keys; 1453 1454 memmove(n2->start, 1455 bset_bkey_idx(n2, keys), 1456 (void *) bset_bkey_last(n2) - 1457 (void *) bset_bkey_idx(n2, keys)); 1458 1459 n2->keys -= keys; 1460 1461 if (__bch_keylist_realloc(&keylist, 1462 bkey_u64s(&new_nodes[i]->key))) 1463 goto out_unlock_nocoalesce; 1464 1465 bch_btree_node_write(new_nodes[i], &cl); 1466 bch_keylist_add(&keylist, &new_nodes[i]->key); 1467 } 1468 1469 for (i = 0; i < nodes; i++) 1470 mutex_unlock(&new_nodes[i]->write_lock); 1471 1472 closure_sync(&cl); 1473 1474 /* We emptied out this node */ 1475 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1476 btree_node_free(new_nodes[0]); 1477 rw_unlock(true, new_nodes[0]); 1478 new_nodes[0] = NULL; 1479 1480 for (i = 0; i < nodes; i++) { 1481 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1482 goto out_nocoalesce; 1483 1484 make_btree_freeing_key(r[i].b, keylist.top); 1485 bch_keylist_push(&keylist); 1486 } 1487 1488 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1489 BUG_ON(!bch_keylist_empty(&keylist)); 1490 1491 for (i = 0; i < nodes; i++) { 1492 btree_node_free(r[i].b); 1493 rw_unlock(true, r[i].b); 1494 1495 r[i].b = new_nodes[i]; 1496 } 1497 1498 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1499 r[nodes - 1].b = ERR_PTR(-EINTR); 1500 1501 trace_bcache_btree_gc_coalesce(nodes); 1502 gc->nodes--; 1503 1504 bch_keylist_free(&keylist); 1505 1506 /* Invalidated our iterator */ 1507 return -EINTR; 1508 1509 out_unlock_nocoalesce: 1510 for (i = 0; i < nodes; i++) 1511 mutex_unlock(&new_nodes[i]->write_lock); 1512 1513 out_nocoalesce: 1514 closure_sync(&cl); 1515 1516 while ((k = bch_keylist_pop(&keylist))) 1517 if (!bkey_cmp(k, &ZERO_KEY)) 1518 atomic_dec(&b->c->prio_blocked); 1519 bch_keylist_free(&keylist); 1520 1521 for (i = 0; i < nodes; i++) 1522 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1523 btree_node_free(new_nodes[i]); 1524 rw_unlock(true, new_nodes[i]); 1525 } 1526 return 0; 1527 } 1528 1529 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1530 struct btree *replace) 1531 { 1532 struct keylist keys; 1533 struct btree *n; 1534 1535 if (btree_check_reserve(b, NULL)) 1536 return 0; 1537 1538 n = btree_node_alloc_replacement(replace, NULL); 1539 if (IS_ERR(n)) 1540 return 0; 1541 1542 /* recheck reserve after allocating replacement node */ 1543 if (btree_check_reserve(b, NULL)) { 1544 btree_node_free(n); 1545 rw_unlock(true, n); 1546 return 0; 1547 } 1548 1549 bch_btree_node_write_sync(n); 1550 1551 bch_keylist_init(&keys); 1552 bch_keylist_add(&keys, &n->key); 1553 1554 make_btree_freeing_key(replace, keys.top); 1555 bch_keylist_push(&keys); 1556 1557 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1558 BUG_ON(!bch_keylist_empty(&keys)); 1559 1560 btree_node_free(replace); 1561 rw_unlock(true, n); 1562 1563 /* Invalidated our iterator */ 1564 return -EINTR; 1565 } 1566 1567 static unsigned int btree_gc_count_keys(struct btree *b) 1568 { 1569 struct bkey *k; 1570 struct btree_iter_stack iter; 1571 unsigned int ret = 0; 1572 1573 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1574 ret += bkey_u64s(k); 1575 1576 return ret; 1577 } 1578 1579 static size_t btree_gc_min_nodes(struct cache_set *c) 1580 { 1581 size_t min_nodes; 1582 1583 /* 1584 * Since incremental GC would stop 100ms when front 1585 * side I/O comes, so when there are many btree nodes, 1586 * if GC only processes constant (100) nodes each time, 1587 * GC would last a long time, and the front side I/Os 1588 * would run out of the buckets (since no new bucket 1589 * can be allocated during GC), and be blocked again. 1590 * So GC should not process constant nodes, but varied 1591 * nodes according to the number of btree nodes, which 1592 * realized by dividing GC into constant(100) times, 1593 * so when there are many btree nodes, GC can process 1594 * more nodes each time, otherwise, GC will process less 1595 * nodes each time (but no less than MIN_GC_NODES) 1596 */ 1597 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1598 if (min_nodes < MIN_GC_NODES) 1599 min_nodes = MIN_GC_NODES; 1600 1601 return min_nodes; 1602 } 1603 1604 1605 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1606 struct closure *writes, struct gc_stat *gc) 1607 { 1608 int ret = 0; 1609 bool should_rewrite; 1610 struct bkey *k; 1611 struct btree_iter_stack iter; 1612 struct gc_merge_info r[GC_MERGE_NODES]; 1613 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1614 1615 bch_btree_iter_stack_init(&b->keys, &iter, &b->c->gc_done); 1616 1617 for (i = r; i < r + ARRAY_SIZE(r); i++) 1618 i->b = ERR_PTR(-EINTR); 1619 1620 while (1) { 1621 k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 1622 bch_ptr_bad); 1623 if (k) { 1624 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1625 true, b); 1626 if (IS_ERR(r->b)) { 1627 ret = PTR_ERR(r->b); 1628 break; 1629 } 1630 1631 r->keys = btree_gc_count_keys(r->b); 1632 1633 ret = btree_gc_coalesce(b, op, gc, r); 1634 if (ret) 1635 break; 1636 } 1637 1638 if (!last->b) 1639 break; 1640 1641 if (!IS_ERR(last->b)) { 1642 should_rewrite = btree_gc_mark_node(last->b, gc); 1643 if (should_rewrite) { 1644 ret = btree_gc_rewrite_node(b, op, last->b); 1645 if (ret) 1646 break; 1647 } 1648 1649 if (last->b->level) { 1650 ret = btree_gc_recurse(last->b, op, writes, gc); 1651 if (ret) 1652 break; 1653 } 1654 1655 bkey_copy_key(&b->c->gc_done, &last->b->key); 1656 1657 /* 1658 * Must flush leaf nodes before gc ends, since replace 1659 * operations aren't journalled 1660 */ 1661 mutex_lock(&last->b->write_lock); 1662 if (btree_node_dirty(last->b)) 1663 bch_btree_node_write(last->b, writes); 1664 mutex_unlock(&last->b->write_lock); 1665 rw_unlock(true, last->b); 1666 } 1667 1668 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1669 r->b = NULL; 1670 1671 if (atomic_read(&b->c->search_inflight) && 1672 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1673 gc->nodes_pre = gc->nodes; 1674 ret = -EAGAIN; 1675 break; 1676 } 1677 1678 if (need_resched()) { 1679 ret = -EAGAIN; 1680 break; 1681 } 1682 } 1683 1684 for (i = r; i < r + ARRAY_SIZE(r); i++) 1685 if (!IS_ERR_OR_NULL(i->b)) { 1686 mutex_lock(&i->b->write_lock); 1687 if (btree_node_dirty(i->b)) 1688 bch_btree_node_write(i->b, writes); 1689 mutex_unlock(&i->b->write_lock); 1690 rw_unlock(true, i->b); 1691 } 1692 1693 return ret; 1694 } 1695 1696 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1697 struct closure *writes, struct gc_stat *gc) 1698 { 1699 struct btree *n = NULL; 1700 int ret = 0; 1701 bool should_rewrite; 1702 1703 should_rewrite = btree_gc_mark_node(b, gc); 1704 if (should_rewrite) { 1705 n = btree_node_alloc_replacement(b, NULL); 1706 1707 if (!IS_ERR(n)) { 1708 bch_btree_node_write_sync(n); 1709 1710 bch_btree_set_root(n); 1711 btree_node_free(b); 1712 rw_unlock(true, n); 1713 1714 return -EINTR; 1715 } 1716 } 1717 1718 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1719 1720 if (b->level) { 1721 ret = btree_gc_recurse(b, op, writes, gc); 1722 if (ret) 1723 return ret; 1724 } 1725 1726 bkey_copy_key(&b->c->gc_done, &b->key); 1727 1728 return ret; 1729 } 1730 1731 static void btree_gc_start(struct cache_set *c) 1732 { 1733 struct cache *ca; 1734 struct bucket *b; 1735 1736 if (!c->gc_mark_valid) 1737 return; 1738 1739 mutex_lock(&c->bucket_lock); 1740 1741 c->gc_done = ZERO_KEY; 1742 1743 ca = c->cache; 1744 for_each_bucket(b, ca) { 1745 b->last_gc = b->gen; 1746 if (bch_can_invalidate_bucket(ca, b)) 1747 b->reclaimable_in_gc = 1; 1748 if (!atomic_read(&b->pin)) { 1749 SET_GC_MARK(b, 0); 1750 SET_GC_SECTORS_USED(b, 0); 1751 } 1752 } 1753 1754 c->gc_mark_valid = 0; 1755 mutex_unlock(&c->bucket_lock); 1756 } 1757 1758 static void bch_btree_gc_finish(struct cache_set *c) 1759 { 1760 struct bucket *b; 1761 struct cache *ca; 1762 unsigned int i, j; 1763 uint64_t *k; 1764 1765 mutex_lock(&c->bucket_lock); 1766 1767 set_gc_sectors(c); 1768 c->gc_mark_valid = 1; 1769 c->need_gc = 0; 1770 1771 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1772 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1773 GC_MARK_METADATA); 1774 1775 /* don't reclaim buckets to which writeback keys point */ 1776 rcu_read_lock(); 1777 for (i = 0; i < c->devices_max_used; i++) { 1778 struct bcache_device *d = c->devices[i]; 1779 struct cached_dev *dc; 1780 struct keybuf_key *w, *n; 1781 1782 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1783 continue; 1784 dc = container_of(d, struct cached_dev, disk); 1785 1786 spin_lock(&dc->writeback_keys.lock); 1787 rbtree_postorder_for_each_entry_safe(w, n, 1788 &dc->writeback_keys.keys, node) 1789 for (j = 0; j < KEY_PTRS(&w->key); j++) 1790 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1791 GC_MARK_DIRTY); 1792 spin_unlock(&dc->writeback_keys.lock); 1793 } 1794 rcu_read_unlock(); 1795 1796 c->avail_nbuckets = 0; 1797 1798 ca = c->cache; 1799 ca->invalidate_needs_gc = 0; 1800 1801 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1802 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1803 1804 for (k = ca->prio_buckets; 1805 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1806 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1807 1808 for_each_bucket(b, ca) { 1809 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1810 1811 if (b->reclaimable_in_gc) 1812 b->reclaimable_in_gc = 0; 1813 1814 if (atomic_read(&b->pin)) 1815 continue; 1816 1817 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1818 1819 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1820 c->avail_nbuckets++; 1821 } 1822 1823 mutex_unlock(&c->bucket_lock); 1824 } 1825 1826 static void bch_btree_gc(struct cache_set *c) 1827 { 1828 int ret; 1829 struct gc_stat stats; 1830 struct closure writes; 1831 struct btree_op op; 1832 uint64_t start_time = local_clock(); 1833 1834 trace_bcache_gc_start(c); 1835 1836 memset(&stats, 0, sizeof(struct gc_stat)); 1837 closure_init_stack(&writes); 1838 bch_btree_op_init(&op, SHRT_MAX); 1839 1840 btree_gc_start(c); 1841 1842 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1843 do { 1844 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1845 closure_sync(&writes); 1846 cond_resched(); 1847 1848 if (ret == -EAGAIN) 1849 schedule_timeout_interruptible(msecs_to_jiffies 1850 (GC_SLEEP_MS)); 1851 else if (ret) 1852 pr_warn("gc failed!\n"); 1853 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1854 1855 bch_btree_gc_finish(c); 1856 wake_up_allocators(c); 1857 1858 bch_time_stats_update(&c->btree_gc_time, start_time); 1859 1860 stats.key_bytes *= sizeof(uint64_t); 1861 stats.data <<= 9; 1862 bch_update_bucket_in_use(c, &stats); 1863 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1864 1865 trace_bcache_gc_end(c); 1866 1867 bch_moving_gc(c); 1868 } 1869 1870 static bool gc_should_run(struct cache_set *c) 1871 { 1872 struct cache *ca = c->cache; 1873 1874 if (ca->invalidate_needs_gc) 1875 return true; 1876 1877 if (atomic_read(&c->sectors_to_gc) < 0) 1878 return true; 1879 1880 return false; 1881 } 1882 1883 static int bch_gc_thread(void *arg) 1884 { 1885 struct cache_set *c = arg; 1886 1887 while (1) { 1888 wait_event_interruptible(c->gc_wait, 1889 kthread_should_stop() || 1890 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1891 gc_should_run(c)); 1892 1893 if (kthread_should_stop() || 1894 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1895 break; 1896 1897 set_gc_sectors(c); 1898 bch_btree_gc(c); 1899 } 1900 1901 wait_for_kthread_stop(); 1902 return 0; 1903 } 1904 1905 int bch_gc_thread_start(struct cache_set *c) 1906 { 1907 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1908 return PTR_ERR_OR_ZERO(c->gc_thread); 1909 } 1910 1911 /* Initial partial gc */ 1912 1913 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1914 { 1915 int ret = 0; 1916 struct bkey *k, *p = NULL; 1917 struct btree_iter_stack iter; 1918 1919 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1920 bch_initial_mark_key(b->c, b->level, k); 1921 1922 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1923 1924 if (b->level) { 1925 bch_btree_iter_stack_init(&b->keys, &iter, NULL); 1926 1927 do { 1928 k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 1929 bch_ptr_bad); 1930 if (k) { 1931 btree_node_prefetch(b, k); 1932 /* 1933 * initiallize c->gc_stats.nodes 1934 * for incremental GC 1935 */ 1936 b->c->gc_stats.nodes++; 1937 } 1938 1939 if (p) 1940 ret = bcache_btree(check_recurse, p, b, op); 1941 1942 p = k; 1943 } while (p && !ret); 1944 } 1945 1946 return ret; 1947 } 1948 1949 1950 static int bch_btree_check_thread(void *arg) 1951 { 1952 int ret; 1953 struct btree_check_info *info = arg; 1954 struct btree_check_state *check_state = info->state; 1955 struct cache_set *c = check_state->c; 1956 struct btree_iter_stack iter; 1957 struct bkey *k, *p; 1958 int cur_idx, prev_idx, skip_nr; 1959 1960 k = p = NULL; 1961 cur_idx = prev_idx = 0; 1962 ret = 0; 1963 1964 /* root node keys are checked before thread created */ 1965 bch_btree_iter_stack_init(&c->root->keys, &iter, NULL); 1966 k = bch_btree_iter_next_filter(&iter.iter, &c->root->keys, bch_ptr_bad); 1967 BUG_ON(!k); 1968 1969 p = k; 1970 while (k) { 1971 /* 1972 * Fetch a root node key index, skip the keys which 1973 * should be fetched by other threads, then check the 1974 * sub-tree indexed by the fetched key. 1975 */ 1976 spin_lock(&check_state->idx_lock); 1977 cur_idx = check_state->key_idx; 1978 check_state->key_idx++; 1979 spin_unlock(&check_state->idx_lock); 1980 1981 skip_nr = cur_idx - prev_idx; 1982 1983 while (skip_nr) { 1984 k = bch_btree_iter_next_filter(&iter.iter, 1985 &c->root->keys, 1986 bch_ptr_bad); 1987 if (k) 1988 p = k; 1989 else { 1990 /* 1991 * No more keys to check in root node, 1992 * current checking threads are enough, 1993 * stop creating more. 1994 */ 1995 atomic_set(&check_state->enough, 1); 1996 /* Update check_state->enough earlier */ 1997 smp_mb__after_atomic(); 1998 goto out; 1999 } 2000 skip_nr--; 2001 cond_resched(); 2002 } 2003 2004 if (p) { 2005 struct btree_op op; 2006 2007 btree_node_prefetch(c->root, p); 2008 c->gc_stats.nodes++; 2009 bch_btree_op_init(&op, 0); 2010 ret = bcache_btree(check_recurse, p, c->root, &op); 2011 /* 2012 * The op may be added to cache_set's btree_cache_wait 2013 * in mca_cannibalize(), must ensure it is removed from 2014 * the list and release btree_cache_alloc_lock before 2015 * free op memory. 2016 * Otherwise, the btree_cache_wait will be damaged. 2017 */ 2018 bch_cannibalize_unlock(c); 2019 finish_wait(&c->btree_cache_wait, &(&op)->wait); 2020 if (ret) 2021 goto out; 2022 } 2023 p = NULL; 2024 prev_idx = cur_idx; 2025 cond_resched(); 2026 } 2027 2028 out: 2029 info->result = ret; 2030 /* update check_state->started among all CPUs */ 2031 smp_mb__before_atomic(); 2032 if (atomic_dec_and_test(&check_state->started)) 2033 wake_up(&check_state->wait); 2034 2035 return ret; 2036 } 2037 2038 2039 2040 static int bch_btree_chkthread_nr(void) 2041 { 2042 int n = num_online_cpus()/2; 2043 2044 if (n == 0) 2045 n = 1; 2046 else if (n > BCH_BTR_CHKTHREAD_MAX) 2047 n = BCH_BTR_CHKTHREAD_MAX; 2048 2049 return n; 2050 } 2051 2052 int bch_btree_check(struct cache_set *c) 2053 { 2054 int ret = 0; 2055 int i; 2056 struct bkey *k = NULL; 2057 struct btree_iter_stack iter; 2058 struct btree_check_state check_state; 2059 2060 /* check and mark root node keys */ 2061 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2062 bch_initial_mark_key(c, c->root->level, k); 2063 2064 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2065 2066 if (c->root->level == 0) 2067 return 0; 2068 2069 memset(&check_state, 0, sizeof(struct btree_check_state)); 2070 check_state.c = c; 2071 check_state.total_threads = bch_btree_chkthread_nr(); 2072 check_state.key_idx = 0; 2073 spin_lock_init(&check_state.idx_lock); 2074 atomic_set(&check_state.started, 0); 2075 atomic_set(&check_state.enough, 0); 2076 init_waitqueue_head(&check_state.wait); 2077 2078 rw_lock(0, c->root, c->root->level); 2079 /* 2080 * Run multiple threads to check btree nodes in parallel, 2081 * if check_state.enough is non-zero, it means current 2082 * running check threads are enough, unncessary to create 2083 * more. 2084 */ 2085 for (i = 0; i < check_state.total_threads; i++) { 2086 /* fetch latest check_state.enough earlier */ 2087 smp_mb__before_atomic(); 2088 if (atomic_read(&check_state.enough)) 2089 break; 2090 2091 check_state.infos[i].result = 0; 2092 check_state.infos[i].state = &check_state; 2093 2094 check_state.infos[i].thread = 2095 kthread_run(bch_btree_check_thread, 2096 &check_state.infos[i], 2097 "bch_btrchk[%d]", i); 2098 if (IS_ERR(check_state.infos[i].thread)) { 2099 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2100 for (--i; i >= 0; i--) 2101 kthread_stop(check_state.infos[i].thread); 2102 ret = -ENOMEM; 2103 goto out; 2104 } 2105 atomic_inc(&check_state.started); 2106 } 2107 2108 /* 2109 * Must wait for all threads to stop. 2110 */ 2111 wait_event(check_state.wait, atomic_read(&check_state.started) == 0); 2112 2113 for (i = 0; i < check_state.total_threads; i++) { 2114 if (check_state.infos[i].result) { 2115 ret = check_state.infos[i].result; 2116 goto out; 2117 } 2118 } 2119 2120 out: 2121 rw_unlock(0, c->root); 2122 return ret; 2123 } 2124 2125 void bch_initial_gc_finish(struct cache_set *c) 2126 { 2127 struct cache *ca = c->cache; 2128 struct bucket *b; 2129 2130 bch_btree_gc_finish(c); 2131 2132 mutex_lock(&c->bucket_lock); 2133 2134 /* 2135 * We need to put some unused buckets directly on the prio freelist in 2136 * order to get the allocator thread started - it needs freed buckets in 2137 * order to rewrite the prios and gens, and it needs to rewrite prios 2138 * and gens in order to free buckets. 2139 * 2140 * This is only safe for buckets that have no live data in them, which 2141 * there should always be some of. 2142 */ 2143 for_each_bucket(b, ca) { 2144 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2145 fifo_full(&ca->free[RESERVE_BTREE])) 2146 break; 2147 2148 if (bch_can_invalidate_bucket(ca, b) && 2149 !GC_MARK(b)) { 2150 __bch_invalidate_one_bucket(ca, b); 2151 if (!fifo_push(&ca->free[RESERVE_PRIO], 2152 b - ca->buckets)) 2153 fifo_push(&ca->free[RESERVE_BTREE], 2154 b - ca->buckets); 2155 } 2156 } 2157 2158 mutex_unlock(&c->bucket_lock); 2159 } 2160 2161 /* Btree insertion */ 2162 2163 static bool btree_insert_key(struct btree *b, struct bkey *k, 2164 struct bkey *replace_key) 2165 { 2166 unsigned int status; 2167 2168 BUG_ON(bkey_cmp(k, &b->key) > 0); 2169 2170 status = bch_btree_insert_key(&b->keys, k, replace_key); 2171 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2172 bch_check_keys(&b->keys, "%u for %s", status, 2173 replace_key ? "replace" : "insert"); 2174 2175 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2176 status); 2177 return true; 2178 } else 2179 return false; 2180 } 2181 2182 static size_t insert_u64s_remaining(struct btree *b) 2183 { 2184 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2185 2186 /* 2187 * Might land in the middle of an existing extent and have to split it 2188 */ 2189 if (b->keys.ops->is_extents) 2190 ret -= KEY_MAX_U64S; 2191 2192 return max(ret, 0L); 2193 } 2194 2195 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2196 struct keylist *insert_keys, 2197 struct bkey *replace_key) 2198 { 2199 bool ret = false; 2200 int oldsize = bch_count_data(&b->keys); 2201 2202 while (!bch_keylist_empty(insert_keys)) { 2203 struct bkey *k = insert_keys->keys; 2204 2205 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2206 break; 2207 2208 if (bkey_cmp(k, &b->key) <= 0) { 2209 if (!b->level) 2210 bkey_put(b->c, k); 2211 2212 ret |= btree_insert_key(b, k, replace_key); 2213 bch_keylist_pop_front(insert_keys); 2214 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2215 BKEY_PADDED(key) temp; 2216 bkey_copy(&temp.key, insert_keys->keys); 2217 2218 bch_cut_back(&b->key, &temp.key); 2219 bch_cut_front(&b->key, insert_keys->keys); 2220 2221 ret |= btree_insert_key(b, &temp.key, replace_key); 2222 break; 2223 } else { 2224 break; 2225 } 2226 } 2227 2228 if (!ret) 2229 op->insert_collision = true; 2230 2231 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2232 2233 BUG_ON(bch_count_data(&b->keys) < oldsize); 2234 return ret; 2235 } 2236 2237 static int btree_split(struct btree *b, struct btree_op *op, 2238 struct keylist *insert_keys, 2239 struct bkey *replace_key) 2240 { 2241 bool split; 2242 struct btree *n1, *n2 = NULL, *n3 = NULL; 2243 uint64_t start_time = local_clock(); 2244 struct closure cl; 2245 struct keylist parent_keys; 2246 2247 closure_init_stack(&cl); 2248 bch_keylist_init(&parent_keys); 2249 2250 if (btree_check_reserve(b, op)) { 2251 if (!b->level) 2252 return -EINTR; 2253 else 2254 WARN(1, "insufficient reserve for split\n"); 2255 } 2256 2257 n1 = btree_node_alloc_replacement(b, op); 2258 if (IS_ERR(n1)) 2259 goto err; 2260 2261 split = set_blocks(btree_bset_first(n1), 2262 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2263 2264 if (split) { 2265 unsigned int keys = 0; 2266 2267 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2268 2269 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2270 if (IS_ERR(n2)) 2271 goto err_free1; 2272 2273 if (!b->parent) { 2274 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2275 if (IS_ERR(n3)) 2276 goto err_free2; 2277 } 2278 2279 mutex_lock(&n1->write_lock); 2280 mutex_lock(&n2->write_lock); 2281 2282 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2283 2284 /* 2285 * Has to be a linear search because we don't have an auxiliary 2286 * search tree yet 2287 */ 2288 2289 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2290 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2291 keys)); 2292 2293 bkey_copy_key(&n1->key, 2294 bset_bkey_idx(btree_bset_first(n1), keys)); 2295 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2296 2297 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2298 btree_bset_first(n1)->keys = keys; 2299 2300 memcpy(btree_bset_first(n2)->start, 2301 bset_bkey_last(btree_bset_first(n1)), 2302 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2303 2304 bkey_copy_key(&n2->key, &b->key); 2305 2306 bch_keylist_add(&parent_keys, &n2->key); 2307 bch_btree_node_write(n2, &cl); 2308 mutex_unlock(&n2->write_lock); 2309 rw_unlock(true, n2); 2310 } else { 2311 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2312 2313 mutex_lock(&n1->write_lock); 2314 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2315 } 2316 2317 bch_keylist_add(&parent_keys, &n1->key); 2318 bch_btree_node_write(n1, &cl); 2319 mutex_unlock(&n1->write_lock); 2320 2321 if (n3) { 2322 /* Depth increases, make a new root */ 2323 mutex_lock(&n3->write_lock); 2324 bkey_copy_key(&n3->key, &MAX_KEY); 2325 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2326 bch_btree_node_write(n3, &cl); 2327 mutex_unlock(&n3->write_lock); 2328 2329 closure_sync(&cl); 2330 bch_btree_set_root(n3); 2331 rw_unlock(true, n3); 2332 } else if (!b->parent) { 2333 /* Root filled up but didn't need to be split */ 2334 closure_sync(&cl); 2335 bch_btree_set_root(n1); 2336 } else { 2337 /* Split a non root node */ 2338 closure_sync(&cl); 2339 make_btree_freeing_key(b, parent_keys.top); 2340 bch_keylist_push(&parent_keys); 2341 2342 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2343 BUG_ON(!bch_keylist_empty(&parent_keys)); 2344 } 2345 2346 btree_node_free(b); 2347 rw_unlock(true, n1); 2348 2349 bch_time_stats_update(&b->c->btree_split_time, start_time); 2350 2351 return 0; 2352 err_free2: 2353 bkey_put(b->c, &n2->key); 2354 btree_node_free(n2); 2355 rw_unlock(true, n2); 2356 err_free1: 2357 bkey_put(b->c, &n1->key); 2358 btree_node_free(n1); 2359 rw_unlock(true, n1); 2360 err: 2361 WARN(1, "bcache: btree split failed (level %u)", b->level); 2362 2363 if (n3 == ERR_PTR(-EAGAIN) || 2364 n2 == ERR_PTR(-EAGAIN) || 2365 n1 == ERR_PTR(-EAGAIN)) 2366 return -EAGAIN; 2367 2368 return -ENOMEM; 2369 } 2370 2371 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2372 struct keylist *insert_keys, 2373 atomic_t *journal_ref, 2374 struct bkey *replace_key) 2375 { 2376 struct closure cl; 2377 2378 BUG_ON(b->level && replace_key); 2379 2380 closure_init_stack(&cl); 2381 2382 mutex_lock(&b->write_lock); 2383 2384 if (write_block(b) != btree_bset_last(b) && 2385 b->keys.last_set_unwritten) 2386 bch_btree_init_next(b); /* just wrote a set */ 2387 2388 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2389 mutex_unlock(&b->write_lock); 2390 goto split; 2391 } 2392 2393 BUG_ON(write_block(b) != btree_bset_last(b)); 2394 2395 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2396 if (!b->level) 2397 bch_btree_leaf_dirty(b, journal_ref); 2398 else 2399 bch_btree_node_write(b, &cl); 2400 } 2401 2402 mutex_unlock(&b->write_lock); 2403 2404 /* wait for btree node write if necessary, after unlock */ 2405 closure_sync(&cl); 2406 2407 return 0; 2408 split: 2409 if (current->bio_list) { 2410 op->lock = b->c->root->level + 1; 2411 return -EAGAIN; 2412 } else if (op->lock <= b->c->root->level) { 2413 op->lock = b->c->root->level + 1; 2414 return -EINTR; 2415 } else { 2416 /* Invalidated all iterators */ 2417 int ret = btree_split(b, op, insert_keys, replace_key); 2418 2419 if (bch_keylist_empty(insert_keys)) 2420 return 0; 2421 else if (!ret) 2422 return -EINTR; 2423 return ret; 2424 } 2425 } 2426 2427 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2428 struct bkey *check_key) 2429 { 2430 int ret = -EINTR; 2431 uint64_t btree_ptr = b->key.ptr[0]; 2432 unsigned long seq = b->seq; 2433 struct keylist insert; 2434 bool upgrade = op->lock == -1; 2435 2436 bch_keylist_init(&insert); 2437 2438 if (upgrade) { 2439 rw_unlock(false, b); 2440 rw_lock(true, b, b->level); 2441 2442 if (b->key.ptr[0] != btree_ptr || 2443 b->seq != seq + 1) { 2444 op->lock = b->level; 2445 goto out; 2446 } 2447 } 2448 2449 SET_KEY_PTRS(check_key, 1); 2450 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2451 2452 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2453 2454 bch_keylist_add(&insert, check_key); 2455 2456 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2457 2458 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2459 out: 2460 if (upgrade) 2461 downgrade_write(&b->lock); 2462 return ret; 2463 } 2464 2465 struct btree_insert_op { 2466 struct btree_op op; 2467 struct keylist *keys; 2468 atomic_t *journal_ref; 2469 struct bkey *replace_key; 2470 }; 2471 2472 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2473 { 2474 struct btree_insert_op *op = container_of(b_op, 2475 struct btree_insert_op, op); 2476 2477 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2478 op->journal_ref, op->replace_key); 2479 if (ret && !bch_keylist_empty(op->keys)) 2480 return ret; 2481 else 2482 return MAP_DONE; 2483 } 2484 2485 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2486 atomic_t *journal_ref, struct bkey *replace_key) 2487 { 2488 struct btree_insert_op op; 2489 int ret = 0; 2490 2491 BUG_ON(current->bio_list); 2492 BUG_ON(bch_keylist_empty(keys)); 2493 2494 bch_btree_op_init(&op.op, 0); 2495 op.keys = keys; 2496 op.journal_ref = journal_ref; 2497 op.replace_key = replace_key; 2498 2499 while (!ret && !bch_keylist_empty(keys)) { 2500 op.op.lock = 0; 2501 ret = bch_btree_map_leaf_nodes(&op.op, c, 2502 &START_KEY(keys->keys), 2503 btree_insert_fn); 2504 } 2505 2506 if (ret) { 2507 struct bkey *k; 2508 2509 pr_err("error %i\n", ret); 2510 2511 while ((k = bch_keylist_pop(keys))) 2512 bkey_put(c, k); 2513 } else if (op.op.insert_collision) 2514 ret = -ESRCH; 2515 2516 return ret; 2517 } 2518 2519 void bch_btree_set_root(struct btree *b) 2520 { 2521 unsigned int i; 2522 struct closure cl; 2523 2524 closure_init_stack(&cl); 2525 2526 trace_bcache_btree_set_root(b); 2527 2528 BUG_ON(!b->written); 2529 2530 for (i = 0; i < KEY_PTRS(&b->key); i++) 2531 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2532 2533 mutex_lock(&b->c->bucket_lock); 2534 list_del_init(&b->list); 2535 mutex_unlock(&b->c->bucket_lock); 2536 2537 b->c->root = b; 2538 2539 bch_journal_meta(b->c, &cl); 2540 closure_sync(&cl); 2541 } 2542 2543 /* Map across nodes or keys */ 2544 2545 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2546 struct bkey *from, 2547 btree_map_nodes_fn *fn, int flags) 2548 { 2549 int ret = MAP_CONTINUE; 2550 2551 if (b->level) { 2552 struct bkey *k; 2553 struct btree_iter_stack iter; 2554 2555 bch_btree_iter_stack_init(&b->keys, &iter, from); 2556 2557 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 2558 bch_ptr_bad))) { 2559 ret = bcache_btree(map_nodes_recurse, k, b, 2560 op, from, fn, flags); 2561 from = NULL; 2562 2563 if (ret != MAP_CONTINUE) 2564 return ret; 2565 } 2566 } 2567 2568 if (!b->level || flags == MAP_ALL_NODES) 2569 ret = fn(op, b); 2570 2571 return ret; 2572 } 2573 2574 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2575 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2576 { 2577 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2578 } 2579 2580 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2581 struct bkey *from, btree_map_keys_fn *fn, 2582 int flags) 2583 { 2584 int ret = MAP_CONTINUE; 2585 struct bkey *k; 2586 struct btree_iter_stack iter; 2587 2588 bch_btree_iter_stack_init(&b->keys, &iter, from); 2589 2590 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 2591 bch_ptr_bad))) { 2592 ret = !b->level 2593 ? fn(op, b, k) 2594 : bcache_btree(map_keys_recurse, k, 2595 b, op, from, fn, flags); 2596 from = NULL; 2597 2598 if (ret != MAP_CONTINUE) 2599 return ret; 2600 } 2601 2602 if (!b->level && (flags & MAP_END_KEY)) 2603 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2604 KEY_OFFSET(&b->key), 0)); 2605 2606 return ret; 2607 } 2608 2609 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2610 struct bkey *from, btree_map_keys_fn *fn, int flags) 2611 { 2612 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2613 } 2614 2615 /* Keybuf code */ 2616 2617 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2618 { 2619 /* Overlapping keys compare equal */ 2620 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2621 return -1; 2622 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2623 return 1; 2624 return 0; 2625 } 2626 2627 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2628 struct keybuf_key *r) 2629 { 2630 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2631 } 2632 2633 struct refill { 2634 struct btree_op op; 2635 unsigned int nr_found; 2636 struct keybuf *buf; 2637 struct bkey *end; 2638 keybuf_pred_fn *pred; 2639 }; 2640 2641 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2642 struct bkey *k) 2643 { 2644 struct refill *refill = container_of(op, struct refill, op); 2645 struct keybuf *buf = refill->buf; 2646 int ret = MAP_CONTINUE; 2647 2648 if (bkey_cmp(k, refill->end) > 0) { 2649 ret = MAP_DONE; 2650 goto out; 2651 } 2652 2653 if (!KEY_SIZE(k)) /* end key */ 2654 goto out; 2655 2656 if (refill->pred(buf, k)) { 2657 struct keybuf_key *w; 2658 2659 spin_lock(&buf->lock); 2660 2661 w = array_alloc(&buf->freelist); 2662 if (!w) { 2663 spin_unlock(&buf->lock); 2664 return MAP_DONE; 2665 } 2666 2667 w->private = NULL; 2668 bkey_copy(&w->key, k); 2669 2670 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2671 array_free(&buf->freelist, w); 2672 else 2673 refill->nr_found++; 2674 2675 if (array_freelist_empty(&buf->freelist)) 2676 ret = MAP_DONE; 2677 2678 spin_unlock(&buf->lock); 2679 } 2680 out: 2681 buf->last_scanned = *k; 2682 return ret; 2683 } 2684 2685 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2686 struct bkey *end, keybuf_pred_fn *pred) 2687 { 2688 struct bkey start = buf->last_scanned; 2689 struct refill refill; 2690 2691 cond_resched(); 2692 2693 bch_btree_op_init(&refill.op, -1); 2694 refill.nr_found = 0; 2695 refill.buf = buf; 2696 refill.end = end; 2697 refill.pred = pred; 2698 2699 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2700 refill_keybuf_fn, MAP_END_KEY); 2701 2702 trace_bcache_keyscan(refill.nr_found, 2703 KEY_INODE(&start), KEY_OFFSET(&start), 2704 KEY_INODE(&buf->last_scanned), 2705 KEY_OFFSET(&buf->last_scanned)); 2706 2707 spin_lock(&buf->lock); 2708 2709 if (!RB_EMPTY_ROOT(&buf->keys)) { 2710 struct keybuf_key *w; 2711 2712 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2713 buf->start = START_KEY(&w->key); 2714 2715 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2716 buf->end = w->key; 2717 } else { 2718 buf->start = MAX_KEY; 2719 buf->end = MAX_KEY; 2720 } 2721 2722 spin_unlock(&buf->lock); 2723 } 2724 2725 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2726 { 2727 rb_erase(&w->node, &buf->keys); 2728 array_free(&buf->freelist, w); 2729 } 2730 2731 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2732 { 2733 spin_lock(&buf->lock); 2734 __bch_keybuf_del(buf, w); 2735 spin_unlock(&buf->lock); 2736 } 2737 2738 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2739 struct bkey *end) 2740 { 2741 bool ret = false; 2742 struct keybuf_key *p, *w, s; 2743 2744 s.key = *start; 2745 2746 if (bkey_cmp(end, &buf->start) <= 0 || 2747 bkey_cmp(start, &buf->end) >= 0) 2748 return false; 2749 2750 spin_lock(&buf->lock); 2751 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2752 2753 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2754 p = w; 2755 w = RB_NEXT(w, node); 2756 2757 if (p->private) 2758 ret = true; 2759 else 2760 __bch_keybuf_del(buf, p); 2761 } 2762 2763 spin_unlock(&buf->lock); 2764 return ret; 2765 } 2766 2767 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2768 { 2769 struct keybuf_key *w; 2770 2771 spin_lock(&buf->lock); 2772 2773 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2774 2775 while (w && w->private) 2776 w = RB_NEXT(w, node); 2777 2778 if (w) 2779 w->private = ERR_PTR(-EINTR); 2780 2781 spin_unlock(&buf->lock); 2782 return w; 2783 } 2784 2785 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2786 struct keybuf *buf, 2787 struct bkey *end, 2788 keybuf_pred_fn *pred) 2789 { 2790 struct keybuf_key *ret; 2791 2792 while (1) { 2793 ret = bch_keybuf_next(buf); 2794 if (ret) 2795 break; 2796 2797 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2798 pr_debug("scan finished\n"); 2799 break; 2800 } 2801 2802 bch_refill_keybuf(c, buf, end, pred); 2803 } 2804 2805 return ret; 2806 } 2807 2808 void bch_keybuf_init(struct keybuf *buf) 2809 { 2810 buf->last_scanned = MAX_KEY; 2811 buf->keys = RB_ROOT; 2812 2813 spin_lock_init(&buf->lock); 2814 array_allocator_init(&buf->freelist); 2815 } 2816 2817 void bch_btree_exit(void) 2818 { 2819 if (btree_io_wq) 2820 destroy_workqueue(btree_io_wq); 2821 } 2822 2823 int __init bch_btree_init(void) 2824 { 2825 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0); 2826 if (!btree_io_wq) 2827 return -ENOMEM; 2828 2829 return 0; 2830 } 2831