xref: /linux/drivers/md/bcache/btree.c (revision 89713ce5518eda6b370c7a17edbcab4f97a39f68)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 static struct workqueue_struct *btree_io_wq;
103 
104 #define insert_lock(s, b)	((b)->level <= (s)->lock)
105 
106 
107 static inline struct bset *write_block(struct btree *b)
108 {
109 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110 }
111 
112 static void bch_btree_init_next(struct btree *b)
113 {
114 	/* If not a leaf node, always sort */
115 	if (b->level && b->keys.nsets)
116 		bch_btree_sort(&b->keys, &b->c->sort);
117 	else
118 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
119 
120 	if (b->written < btree_blocks(b))
121 		bch_bset_init_next(&b->keys, write_block(b),
122 				   bset_magic(&b->c->cache->sb));
123 
124 }
125 
126 /* Btree key manipulation */
127 
128 void bkey_put(struct cache_set *c, struct bkey *k)
129 {
130 	unsigned int i;
131 
132 	for (i = 0; i < KEY_PTRS(k); i++)
133 		if (ptr_available(c, k, i))
134 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135 }
136 
137 /* Btree IO */
138 
139 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140 {
141 	uint64_t crc = b->key.ptr[0];
142 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
143 
144 	crc = crc64_be(crc, data, end - data);
145 	return crc ^ 0xffffffffffffffffULL;
146 }
147 
148 void bch_btree_node_read_done(struct btree *b)
149 {
150 	const char *err = "bad btree header";
151 	struct bset *i = btree_bset_first(b);
152 	struct btree_iter iter;
153 
154 	/*
155 	 * c->fill_iter can allocate an iterator with more memory space
156 	 * than static MAX_BSETS.
157 	 * See the comment arount cache_set->fill_iter.
158 	 */
159 	iter.heap.data = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160 	iter.heap.size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 	iter.heap.nr = 0;
162 
163 #ifdef CONFIG_BCACHE_DEBUG
164 	iter.b = &b->keys;
165 #endif
166 
167 	if (!i->seq)
168 		goto err;
169 
170 	for (;
171 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 	     i = write_block(b)) {
173 		err = "unsupported bset version";
174 		if (i->version > BCACHE_BSET_VERSION)
175 			goto err;
176 
177 		err = "bad btree header";
178 		if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 		    btree_blocks(b))
180 			goto err;
181 
182 		err = "bad magic";
183 		if (i->magic != bset_magic(&b->c->cache->sb))
184 			goto err;
185 
186 		err = "bad checksum";
187 		switch (i->version) {
188 		case 0:
189 			if (i->csum != csum_set(i))
190 				goto err;
191 			break;
192 		case BCACHE_BSET_VERSION:
193 			if (i->csum != btree_csum_set(b, i))
194 				goto err;
195 			break;
196 		}
197 
198 		err = "empty set";
199 		if (i != b->keys.set[0].data && !i->keys)
200 			goto err;
201 
202 		bch_btree_iter_push(&iter, i->start, bset_bkey_last(i));
203 
204 		b->written += set_blocks(i, block_bytes(b->c->cache));
205 	}
206 
207 	err = "corrupted btree";
208 	for (i = write_block(b);
209 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210 	     i = ((void *) i) + block_bytes(b->c->cache))
211 		if (i->seq == b->keys.set[0].data->seq)
212 			goto err;
213 
214 	bch_btree_sort_and_fix_extents(&b->keys, &iter, &b->c->sort);
215 
216 	i = b->keys.set[0].data;
217 	err = "short btree key";
218 	if (b->keys.set[0].size &&
219 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220 		goto err;
221 
222 	if (b->written < btree_blocks(b))
223 		bch_bset_init_next(&b->keys, write_block(b),
224 				   bset_magic(&b->c->cache->sb));
225 out:
226 	mempool_free(iter.heap.data, &b->c->fill_iter);
227 	return;
228 err:
229 	set_btree_node_io_error(b);
230 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
232 			    bset_block_offset(b, i), i->keys);
233 	goto out;
234 }
235 
236 static void btree_node_read_endio(struct bio *bio)
237 {
238 	struct closure *cl = bio->bi_private;
239 
240 	closure_put(cl);
241 }
242 
243 static void bch_btree_node_read(struct btree *b)
244 {
245 	uint64_t start_time = local_clock();
246 	struct closure cl;
247 	struct bio *bio;
248 
249 	trace_bcache_btree_read(b);
250 
251 	closure_init_stack(&cl);
252 
253 	bio = bch_bbio_alloc(b->c);
254 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255 	bio->bi_end_io	= btree_node_read_endio;
256 	bio->bi_private	= &cl;
257 	bio->bi_opf = REQ_OP_READ | REQ_META;
258 
259 	bch_bio_map(bio, b->keys.set[0].data);
260 
261 	bch_submit_bbio(bio, b->c, &b->key, 0);
262 	closure_sync(&cl);
263 
264 	if (bio->bi_status)
265 		set_btree_node_io_error(b);
266 
267 	bch_bbio_free(bio, b->c);
268 
269 	if (btree_node_io_error(b))
270 		goto err;
271 
272 	bch_btree_node_read_done(b);
273 	bch_time_stats_update(&b->c->btree_read_time, start_time);
274 
275 	return;
276 err:
277 	bch_cache_set_error(b->c, "io error reading bucket %zu",
278 			    PTR_BUCKET_NR(b->c, &b->key, 0));
279 }
280 
281 static void btree_complete_write(struct btree *b, struct btree_write *w)
282 {
283 	if (w->prio_blocked &&
284 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285 		wake_up_allocators(b->c);
286 
287 	if (w->journal) {
288 		atomic_dec_bug(w->journal);
289 		__closure_wake_up(&b->c->journal.wait);
290 	}
291 
292 	w->prio_blocked	= 0;
293 	w->journal	= NULL;
294 }
295 
296 static CLOSURE_CALLBACK(btree_node_write_unlock)
297 {
298 	closure_type(b, struct btree, io);
299 
300 	up(&b->io_mutex);
301 }
302 
303 static CLOSURE_CALLBACK(__btree_node_write_done)
304 {
305 	closure_type(b, struct btree, io);
306 	struct btree_write *w = btree_prev_write(b);
307 
308 	bch_bbio_free(b->bio, b->c);
309 	b->bio = NULL;
310 	btree_complete_write(b, w);
311 
312 	if (btree_node_dirty(b))
313 		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314 
315 	closure_return_with_destructor(cl, btree_node_write_unlock);
316 }
317 
318 static CLOSURE_CALLBACK(btree_node_write_done)
319 {
320 	closure_type(b, struct btree, io);
321 
322 	bio_free_pages(b->bio);
323 	__btree_node_write_done(&cl->work);
324 }
325 
326 static void btree_node_write_endio(struct bio *bio)
327 {
328 	struct closure *cl = bio->bi_private;
329 	struct btree *b = container_of(cl, struct btree, io);
330 
331 	if (bio->bi_status)
332 		set_btree_node_io_error(b);
333 
334 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335 	closure_put(cl);
336 }
337 
338 static void do_btree_node_write(struct btree *b)
339 {
340 	struct closure *cl = &b->io;
341 	struct bset *i = btree_bset_last(b);
342 	BKEY_PADDED(key) k;
343 
344 	i->version	= BCACHE_BSET_VERSION;
345 	i->csum		= btree_csum_set(b, i);
346 
347 	BUG_ON(b->bio);
348 	b->bio = bch_bbio_alloc(b->c);
349 
350 	b->bio->bi_end_io	= btree_node_write_endio;
351 	b->bio->bi_private	= cl;
352 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c->cache));
353 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
354 	bch_bio_map(b->bio, i);
355 
356 	/*
357 	 * If we're appending to a leaf node, we don't technically need FUA -
358 	 * this write just needs to be persisted before the next journal write,
359 	 * which will be marked FLUSH|FUA.
360 	 *
361 	 * Similarly if we're writing a new btree root - the pointer is going to
362 	 * be in the next journal entry.
363 	 *
364 	 * But if we're writing a new btree node (that isn't a root) or
365 	 * appending to a non leaf btree node, we need either FUA or a flush
366 	 * when we write the parent with the new pointer. FUA is cheaper than a
367 	 * flush, and writes appending to leaf nodes aren't blocking anything so
368 	 * just make all btree node writes FUA to keep things sane.
369 	 */
370 
371 	bkey_copy(&k.key, &b->key);
372 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373 		       bset_sector_offset(&b->keys, i));
374 
375 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 		struct bio_vec *bv;
377 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 		struct bvec_iter_all iter_all;
379 
380 		bio_for_each_segment_all(bv, b->bio, iter_all) {
381 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 			addr += PAGE_SIZE;
383 		}
384 
385 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
386 
387 		continue_at(cl, btree_node_write_done, NULL);
388 	} else {
389 		/*
390 		 * No problem for multipage bvec since the bio is
391 		 * just allocated
392 		 */
393 		b->bio->bi_vcnt = 0;
394 		bch_bio_map(b->bio, i);
395 
396 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
397 
398 		closure_sync(cl);
399 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 	}
401 }
402 
403 void __bch_btree_node_write(struct btree *b, struct closure *parent)
404 {
405 	struct bset *i = btree_bset_last(b);
406 
407 	lockdep_assert_held(&b->write_lock);
408 
409 	trace_bcache_btree_write(b);
410 
411 	BUG_ON(current->bio_list);
412 	BUG_ON(b->written >= btree_blocks(b));
413 	BUG_ON(b->written && !i->keys);
414 	BUG_ON(btree_bset_first(b)->seq != i->seq);
415 	bch_check_keys(&b->keys, "writing");
416 
417 	cancel_delayed_work(&b->work);
418 
419 	/* If caller isn't waiting for write, parent refcount is cache set */
420 	down(&b->io_mutex);
421 	closure_init(&b->io, parent ?: &b->c->cl);
422 
423 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
424 	change_bit(BTREE_NODE_write_idx, &b->flags);
425 
426 	do_btree_node_write(b);
427 
428 	atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 			&b->c->cache->btree_sectors_written);
430 
431 	b->written += set_blocks(i, block_bytes(b->c->cache));
432 }
433 
434 void bch_btree_node_write(struct btree *b, struct closure *parent)
435 {
436 	unsigned int nsets = b->keys.nsets;
437 
438 	lockdep_assert_held(&b->lock);
439 
440 	__bch_btree_node_write(b, parent);
441 
442 	/*
443 	 * do verify if there was more than one set initially (i.e. we did a
444 	 * sort) and we sorted down to a single set:
445 	 */
446 	if (nsets && !b->keys.nsets)
447 		bch_btree_verify(b);
448 
449 	bch_btree_init_next(b);
450 }
451 
452 static void bch_btree_node_write_sync(struct btree *b)
453 {
454 	struct closure cl;
455 
456 	closure_init_stack(&cl);
457 
458 	mutex_lock(&b->write_lock);
459 	bch_btree_node_write(b, &cl);
460 	mutex_unlock(&b->write_lock);
461 
462 	closure_sync(&cl);
463 }
464 
465 static void btree_node_write_work(struct work_struct *w)
466 {
467 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468 
469 	mutex_lock(&b->write_lock);
470 	if (btree_node_dirty(b))
471 		__bch_btree_node_write(b, NULL);
472 	mutex_unlock(&b->write_lock);
473 }
474 
475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476 {
477 	struct bset *i = btree_bset_last(b);
478 	struct btree_write *w = btree_current_write(b);
479 
480 	lockdep_assert_held(&b->write_lock);
481 
482 	BUG_ON(!b->written);
483 	BUG_ON(!i->keys);
484 
485 	if (!btree_node_dirty(b))
486 		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487 
488 	set_btree_node_dirty(b);
489 
490 	/*
491 	 * w->journal is always the oldest journal pin of all bkeys
492 	 * in the leaf node, to make sure the oldest jset seq won't
493 	 * be increased before this btree node is flushed.
494 	 */
495 	if (journal_ref) {
496 		if (w->journal &&
497 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 			atomic_dec_bug(w->journal);
499 			w->journal = NULL;
500 		}
501 
502 		if (!w->journal) {
503 			w->journal = journal_ref;
504 			atomic_inc(w->journal);
505 		}
506 	}
507 
508 	/* Force write if set is too big */
509 	if (set_bytes(i) > PAGE_SIZE - 48 &&
510 	    !current->bio_list)
511 		bch_btree_node_write(b, NULL);
512 }
513 
514 /*
515  * Btree in memory cache - allocation/freeing
516  * mca -> memory cache
517  */
518 
519 #define mca_reserve(c)	(((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 			  ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c)						\
522 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523 
524 static void mca_data_free(struct btree *b)
525 {
526 	BUG_ON(b->io_mutex.count != 1);
527 
528 	bch_btree_keys_free(&b->keys);
529 
530 	b->c->btree_cache_used--;
531 	list_move(&b->list, &b->c->btree_cache_freed);
532 }
533 
534 static void mca_bucket_free(struct btree *b)
535 {
536 	BUG_ON(btree_node_dirty(b));
537 
538 	b->key.ptr[0] = 0;
539 	hlist_del_init_rcu(&b->hash);
540 	list_move(&b->list, &b->c->btree_cache_freeable);
541 }
542 
543 static unsigned int btree_order(struct bkey *k)
544 {
545 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546 }
547 
548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549 {
550 	if (!bch_btree_keys_alloc(&b->keys,
551 				  max_t(unsigned int,
552 					ilog2(b->c->btree_pages),
553 					btree_order(k)),
554 				  gfp)) {
555 		b->c->btree_cache_used++;
556 		list_move(&b->list, &b->c->btree_cache);
557 	} else {
558 		list_move(&b->list, &b->c->btree_cache_freed);
559 	}
560 }
561 
562 #define cmp_int(l, r)		((l > r) - (l < r))
563 
564 #ifdef CONFIG_PROVE_LOCKING
565 static int btree_lock_cmp_fn(const struct lockdep_map *_a,
566 			     const struct lockdep_map *_b)
567 {
568 	const struct btree *a = container_of(_a, struct btree, lock.dep_map);
569 	const struct btree *b = container_of(_b, struct btree, lock.dep_map);
570 
571 	return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key);
572 }
573 
574 static void btree_lock_print_fn(const struct lockdep_map *map)
575 {
576 	const struct btree *b = container_of(map, struct btree, lock.dep_map);
577 
578 	printk(KERN_CONT " l=%u %llu:%llu", b->level,
579 	       KEY_INODE(&b->key), KEY_OFFSET(&b->key));
580 }
581 #endif
582 
583 static struct btree *mca_bucket_alloc(struct cache_set *c,
584 				      struct bkey *k, gfp_t gfp)
585 {
586 	/*
587 	 * kzalloc() is necessary here for initialization,
588 	 * see code comments in bch_btree_keys_init().
589 	 */
590 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
591 
592 	if (!b)
593 		return NULL;
594 
595 	init_rwsem(&b->lock);
596 	lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn);
597 	mutex_init(&b->write_lock);
598 	lockdep_set_novalidate_class(&b->write_lock);
599 	INIT_LIST_HEAD(&b->list);
600 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
601 	b->c = c;
602 	sema_init(&b->io_mutex, 1);
603 
604 	mca_data_alloc(b, k, gfp);
605 	return b;
606 }
607 
608 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
609 {
610 	struct closure cl;
611 
612 	closure_init_stack(&cl);
613 	lockdep_assert_held(&b->c->bucket_lock);
614 
615 	if (!down_write_trylock(&b->lock))
616 		return -ENOMEM;
617 
618 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
619 
620 	if (b->keys.page_order < min_order)
621 		goto out_unlock;
622 
623 	if (!flush) {
624 		if (btree_node_dirty(b))
625 			goto out_unlock;
626 
627 		if (down_trylock(&b->io_mutex))
628 			goto out_unlock;
629 		up(&b->io_mutex);
630 	}
631 
632 retry:
633 	/*
634 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
635 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
636 	 * b->write_lock before checking BTREE_NODE_dirty bit.
637 	 */
638 	mutex_lock(&b->write_lock);
639 	/*
640 	 * If this btree node is selected in btree_flush_write() by journal
641 	 * code, delay and retry until the node is flushed by journal code
642 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
643 	 */
644 	if (btree_node_journal_flush(b)) {
645 		pr_debug("bnode %p is flushing by journal, retry\n", b);
646 		mutex_unlock(&b->write_lock);
647 		udelay(1);
648 		goto retry;
649 	}
650 
651 	if (btree_node_dirty(b))
652 		__bch_btree_node_write(b, &cl);
653 	mutex_unlock(&b->write_lock);
654 
655 	closure_sync(&cl);
656 
657 	/* wait for any in flight btree write */
658 	down(&b->io_mutex);
659 	up(&b->io_mutex);
660 
661 	return 0;
662 out_unlock:
663 	rw_unlock(true, b);
664 	return -ENOMEM;
665 }
666 
667 static unsigned long bch_mca_scan(struct shrinker *shrink,
668 				  struct shrink_control *sc)
669 {
670 	struct cache_set *c = shrink->private_data;
671 	struct btree *b, *t;
672 	unsigned long i, nr = sc->nr_to_scan;
673 	unsigned long freed = 0;
674 	unsigned int btree_cache_used;
675 
676 	if (c->shrinker_disabled)
677 		return SHRINK_STOP;
678 
679 	if (c->btree_cache_alloc_lock)
680 		return SHRINK_STOP;
681 
682 	/* Return -1 if we can't do anything right now */
683 	if (sc->gfp_mask & __GFP_IO)
684 		mutex_lock(&c->bucket_lock);
685 	else if (!mutex_trylock(&c->bucket_lock))
686 		return -1;
687 
688 	/*
689 	 * It's _really_ critical that we don't free too many btree nodes - we
690 	 * have to always leave ourselves a reserve. The reserve is how we
691 	 * guarantee that allocating memory for a new btree node can always
692 	 * succeed, so that inserting keys into the btree can always succeed and
693 	 * IO can always make forward progress:
694 	 */
695 	nr /= c->btree_pages;
696 	if (nr == 0)
697 		nr = 1;
698 	nr = min_t(unsigned long, nr, mca_can_free(c));
699 
700 	i = 0;
701 	btree_cache_used = c->btree_cache_used;
702 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
703 		if (nr <= 0)
704 			goto out;
705 
706 		if (!mca_reap(b, 0, false)) {
707 			mca_data_free(b);
708 			rw_unlock(true, b);
709 			freed++;
710 		}
711 		nr--;
712 		i++;
713 	}
714 
715 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
716 		if (nr <= 0 || i >= btree_cache_used)
717 			goto out;
718 
719 		if (!mca_reap(b, 0, false)) {
720 			mca_bucket_free(b);
721 			mca_data_free(b);
722 			rw_unlock(true, b);
723 			freed++;
724 		}
725 
726 		nr--;
727 		i++;
728 	}
729 out:
730 	mutex_unlock(&c->bucket_lock);
731 	return freed * c->btree_pages;
732 }
733 
734 static unsigned long bch_mca_count(struct shrinker *shrink,
735 				   struct shrink_control *sc)
736 {
737 	struct cache_set *c = shrink->private_data;
738 
739 	if (c->shrinker_disabled)
740 		return 0;
741 
742 	if (c->btree_cache_alloc_lock)
743 		return 0;
744 
745 	return mca_can_free(c) * c->btree_pages;
746 }
747 
748 void bch_btree_cache_free(struct cache_set *c)
749 {
750 	struct btree *b;
751 	struct closure cl;
752 
753 	closure_init_stack(&cl);
754 
755 	if (c->shrink)
756 		shrinker_free(c->shrink);
757 
758 	mutex_lock(&c->bucket_lock);
759 
760 #ifdef CONFIG_BCACHE_DEBUG
761 	if (c->verify_data)
762 		list_move(&c->verify_data->list, &c->btree_cache);
763 
764 	free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
765 #endif
766 
767 	list_splice(&c->btree_cache_freeable,
768 		    &c->btree_cache);
769 
770 	while (!list_empty(&c->btree_cache)) {
771 		b = list_first_entry(&c->btree_cache, struct btree, list);
772 
773 		/*
774 		 * This function is called by cache_set_free(), no I/O
775 		 * request on cache now, it is unnecessary to acquire
776 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
777 		 */
778 		if (btree_node_dirty(b)) {
779 			btree_complete_write(b, btree_current_write(b));
780 			clear_bit(BTREE_NODE_dirty, &b->flags);
781 		}
782 		mca_data_free(b);
783 	}
784 
785 	while (!list_empty(&c->btree_cache_freed)) {
786 		b = list_first_entry(&c->btree_cache_freed,
787 				     struct btree, list);
788 		list_del(&b->list);
789 		cancel_delayed_work_sync(&b->work);
790 		kfree(b);
791 	}
792 
793 	mutex_unlock(&c->bucket_lock);
794 }
795 
796 int bch_btree_cache_alloc(struct cache_set *c)
797 {
798 	unsigned int i;
799 
800 	for (i = 0; i < mca_reserve(c); i++)
801 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
802 			return -ENOMEM;
803 
804 	list_splice_init(&c->btree_cache,
805 			 &c->btree_cache_freeable);
806 
807 #ifdef CONFIG_BCACHE_DEBUG
808 	mutex_init(&c->verify_lock);
809 
810 	c->verify_ondisk = (void *)
811 		__get_free_pages(GFP_KERNEL|__GFP_COMP,
812 				 ilog2(meta_bucket_pages(&c->cache->sb)));
813 	if (!c->verify_ondisk) {
814 		/*
815 		 * Don't worry about the mca_rereserve buckets
816 		 * allocated in previous for-loop, they will be
817 		 * handled properly in bch_cache_set_unregister().
818 		 */
819 		return -ENOMEM;
820 	}
821 
822 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
823 
824 	if (c->verify_data &&
825 	    c->verify_data->keys.set->data)
826 		list_del_init(&c->verify_data->list);
827 	else
828 		c->verify_data = NULL;
829 #endif
830 
831 	c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid);
832 	if (!c->shrink) {
833 		pr_warn("bcache: %s: could not allocate shrinker\n", __func__);
834 		return 0;
835 	}
836 
837 	c->shrink->count_objects = bch_mca_count;
838 	c->shrink->scan_objects = bch_mca_scan;
839 	c->shrink->seeks = 4;
840 	c->shrink->batch = c->btree_pages * 2;
841 	c->shrink->private_data = c;
842 
843 	shrinker_register(c->shrink);
844 
845 	return 0;
846 }
847 
848 /* Btree in memory cache - hash table */
849 
850 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
851 {
852 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
853 }
854 
855 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
856 {
857 	struct btree *b;
858 
859 	rcu_read_lock();
860 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
861 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
862 			goto out;
863 	b = NULL;
864 out:
865 	rcu_read_unlock();
866 	return b;
867 }
868 
869 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
870 {
871 	spin_lock(&c->btree_cannibalize_lock);
872 	if (likely(c->btree_cache_alloc_lock == NULL)) {
873 		c->btree_cache_alloc_lock = current;
874 	} else if (c->btree_cache_alloc_lock != current) {
875 		if (op)
876 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
877 					TASK_UNINTERRUPTIBLE);
878 		spin_unlock(&c->btree_cannibalize_lock);
879 		return -EINTR;
880 	}
881 	spin_unlock(&c->btree_cannibalize_lock);
882 
883 	return 0;
884 }
885 
886 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
887 				     struct bkey *k)
888 {
889 	struct btree *b;
890 
891 	trace_bcache_btree_cache_cannibalize(c);
892 
893 	if (mca_cannibalize_lock(c, op))
894 		return ERR_PTR(-EINTR);
895 
896 	list_for_each_entry_reverse(b, &c->btree_cache, list)
897 		if (!mca_reap(b, btree_order(k), false))
898 			return b;
899 
900 	list_for_each_entry_reverse(b, &c->btree_cache, list)
901 		if (!mca_reap(b, btree_order(k), true))
902 			return b;
903 
904 	WARN(1, "btree cache cannibalize failed\n");
905 	return ERR_PTR(-ENOMEM);
906 }
907 
908 /*
909  * We can only have one thread cannibalizing other cached btree nodes at a time,
910  * or we'll deadlock. We use an open coded mutex to ensure that, which a
911  * cannibalize_bucket() will take. This means every time we unlock the root of
912  * the btree, we need to release this lock if we have it held.
913  */
914 void bch_cannibalize_unlock(struct cache_set *c)
915 {
916 	spin_lock(&c->btree_cannibalize_lock);
917 	if (c->btree_cache_alloc_lock == current) {
918 		c->btree_cache_alloc_lock = NULL;
919 		wake_up(&c->btree_cache_wait);
920 	}
921 	spin_unlock(&c->btree_cannibalize_lock);
922 }
923 
924 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
925 			       struct bkey *k, int level)
926 {
927 	struct btree *b;
928 
929 	BUG_ON(current->bio_list);
930 
931 	lockdep_assert_held(&c->bucket_lock);
932 
933 	if (mca_find(c, k))
934 		return NULL;
935 
936 	/* btree_free() doesn't free memory; it sticks the node on the end of
937 	 * the list. Check if there's any freed nodes there:
938 	 */
939 	list_for_each_entry(b, &c->btree_cache_freeable, list)
940 		if (!mca_reap(b, btree_order(k), false))
941 			goto out;
942 
943 	/* We never free struct btree itself, just the memory that holds the on
944 	 * disk node. Check the freed list before allocating a new one:
945 	 */
946 	list_for_each_entry(b, &c->btree_cache_freed, list)
947 		if (!mca_reap(b, 0, false)) {
948 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
949 			if (!b->keys.set[0].data)
950 				goto err;
951 			else
952 				goto out;
953 		}
954 
955 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
956 	if (!b)
957 		goto err;
958 
959 	BUG_ON(!down_write_trylock(&b->lock));
960 	if (!b->keys.set->data)
961 		goto err;
962 out:
963 	BUG_ON(b->io_mutex.count != 1);
964 
965 	bkey_copy(&b->key, k);
966 	list_move(&b->list, &c->btree_cache);
967 	hlist_del_init_rcu(&b->hash);
968 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
969 
970 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
971 	b->parent	= (void *) ~0UL;
972 	b->flags	= 0;
973 	b->written	= 0;
974 	b->level	= level;
975 
976 	if (!b->level)
977 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
978 				    &b->c->expensive_debug_checks);
979 	else
980 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
981 				    &b->c->expensive_debug_checks);
982 
983 	return b;
984 err:
985 	if (b)
986 		rw_unlock(true, b);
987 
988 	b = mca_cannibalize(c, op, k);
989 	if (!IS_ERR(b))
990 		goto out;
991 
992 	return b;
993 }
994 
995 /*
996  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
997  * in from disk if necessary.
998  *
999  * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
1000  *
1001  * The btree node will have either a read or a write lock held, depending on
1002  * level and op->lock.
1003  *
1004  * Note: Only error code or btree pointer will be returned, it is unncessary
1005  *       for callers to check NULL pointer.
1006  */
1007 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1008 				 struct bkey *k, int level, bool write,
1009 				 struct btree *parent)
1010 {
1011 	int i = 0;
1012 	struct btree *b;
1013 
1014 	BUG_ON(level < 0);
1015 retry:
1016 	b = mca_find(c, k);
1017 
1018 	if (!b) {
1019 		if (current->bio_list)
1020 			return ERR_PTR(-EAGAIN);
1021 
1022 		mutex_lock(&c->bucket_lock);
1023 		b = mca_alloc(c, op, k, level);
1024 		mutex_unlock(&c->bucket_lock);
1025 
1026 		if (!b)
1027 			goto retry;
1028 		if (IS_ERR(b))
1029 			return b;
1030 
1031 		bch_btree_node_read(b);
1032 
1033 		if (!write)
1034 			downgrade_write(&b->lock);
1035 	} else {
1036 		rw_lock(write, b, level);
1037 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1038 			rw_unlock(write, b);
1039 			goto retry;
1040 		}
1041 		BUG_ON(b->level != level);
1042 	}
1043 
1044 	if (btree_node_io_error(b)) {
1045 		rw_unlock(write, b);
1046 		return ERR_PTR(-EIO);
1047 	}
1048 
1049 	BUG_ON(!b->written);
1050 
1051 	b->parent = parent;
1052 
1053 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1054 		prefetch(b->keys.set[i].tree);
1055 		prefetch(b->keys.set[i].data);
1056 	}
1057 
1058 	for (; i <= b->keys.nsets; i++)
1059 		prefetch(b->keys.set[i].data);
1060 
1061 	return b;
1062 }
1063 
1064 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1065 {
1066 	struct btree *b;
1067 
1068 	mutex_lock(&parent->c->bucket_lock);
1069 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1070 	mutex_unlock(&parent->c->bucket_lock);
1071 
1072 	if (!IS_ERR_OR_NULL(b)) {
1073 		b->parent = parent;
1074 		bch_btree_node_read(b);
1075 		rw_unlock(true, b);
1076 	}
1077 }
1078 
1079 /* Btree alloc */
1080 
1081 static void btree_node_free(struct btree *b)
1082 {
1083 	trace_bcache_btree_node_free(b);
1084 
1085 	BUG_ON(b == b->c->root);
1086 
1087 retry:
1088 	mutex_lock(&b->write_lock);
1089 	/*
1090 	 * If the btree node is selected and flushing in btree_flush_write(),
1091 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1092 	 * then it is safe to free the btree node here. Otherwise this btree
1093 	 * node will be in race condition.
1094 	 */
1095 	if (btree_node_journal_flush(b)) {
1096 		mutex_unlock(&b->write_lock);
1097 		pr_debug("bnode %p journal_flush set, retry\n", b);
1098 		udelay(1);
1099 		goto retry;
1100 	}
1101 
1102 	if (btree_node_dirty(b)) {
1103 		btree_complete_write(b, btree_current_write(b));
1104 		clear_bit(BTREE_NODE_dirty, &b->flags);
1105 	}
1106 
1107 	mutex_unlock(&b->write_lock);
1108 
1109 	cancel_delayed_work(&b->work);
1110 
1111 	mutex_lock(&b->c->bucket_lock);
1112 	bch_bucket_free(b->c, &b->key);
1113 	mca_bucket_free(b);
1114 	mutex_unlock(&b->c->bucket_lock);
1115 }
1116 
1117 /*
1118  * Only error code or btree pointer will be returned, it is unncessary for
1119  * callers to check NULL pointer.
1120  */
1121 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1122 				     int level, bool wait,
1123 				     struct btree *parent)
1124 {
1125 	BKEY_PADDED(key) k;
1126 	struct btree *b;
1127 
1128 	mutex_lock(&c->bucket_lock);
1129 retry:
1130 	/* return ERR_PTR(-EAGAIN) when it fails */
1131 	b = ERR_PTR(-EAGAIN);
1132 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1133 		goto err;
1134 
1135 	bkey_put(c, &k.key);
1136 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1137 
1138 	b = mca_alloc(c, op, &k.key, level);
1139 	if (IS_ERR(b))
1140 		goto err_free;
1141 
1142 	if (!b) {
1143 		cache_bug(c,
1144 			"Tried to allocate bucket that was in btree cache");
1145 		goto retry;
1146 	}
1147 
1148 	b->parent = parent;
1149 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1150 
1151 	mutex_unlock(&c->bucket_lock);
1152 
1153 	trace_bcache_btree_node_alloc(b);
1154 	return b;
1155 err_free:
1156 	bch_bucket_free(c, &k.key);
1157 err:
1158 	mutex_unlock(&c->bucket_lock);
1159 
1160 	trace_bcache_btree_node_alloc_fail(c);
1161 	return b;
1162 }
1163 
1164 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1165 					  struct btree_op *op, int level,
1166 					  struct btree *parent)
1167 {
1168 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1169 }
1170 
1171 static struct btree *btree_node_alloc_replacement(struct btree *b,
1172 						  struct btree_op *op)
1173 {
1174 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1175 
1176 	if (!IS_ERR(n)) {
1177 		mutex_lock(&n->write_lock);
1178 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1179 		bkey_copy_key(&n->key, &b->key);
1180 		mutex_unlock(&n->write_lock);
1181 	}
1182 
1183 	return n;
1184 }
1185 
1186 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1187 {
1188 	unsigned int i;
1189 
1190 	mutex_lock(&b->c->bucket_lock);
1191 
1192 	atomic_inc(&b->c->prio_blocked);
1193 
1194 	bkey_copy(k, &b->key);
1195 	bkey_copy_key(k, &ZERO_KEY);
1196 
1197 	for (i = 0; i < KEY_PTRS(k); i++)
1198 		SET_PTR_GEN(k, i,
1199 			    bch_inc_gen(b->c->cache,
1200 					PTR_BUCKET(b->c, &b->key, i)));
1201 
1202 	mutex_unlock(&b->c->bucket_lock);
1203 }
1204 
1205 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1206 {
1207 	struct cache_set *c = b->c;
1208 	struct cache *ca = c->cache;
1209 	unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1210 
1211 	mutex_lock(&c->bucket_lock);
1212 
1213 	if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1214 		if (op)
1215 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
1216 					TASK_UNINTERRUPTIBLE);
1217 		mutex_unlock(&c->bucket_lock);
1218 		return -EINTR;
1219 	}
1220 
1221 	mutex_unlock(&c->bucket_lock);
1222 
1223 	return mca_cannibalize_lock(b->c, op);
1224 }
1225 
1226 /* Garbage collection */
1227 
1228 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1229 				    struct bkey *k)
1230 {
1231 	uint8_t stale = 0;
1232 	unsigned int i;
1233 	struct bucket *g;
1234 
1235 	/*
1236 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1237 	 * freed, but since ptr_bad() returns true we'll never actually use them
1238 	 * for anything and thus we don't want mark their pointers here
1239 	 */
1240 	if (!bkey_cmp(k, &ZERO_KEY))
1241 		return stale;
1242 
1243 	for (i = 0; i < KEY_PTRS(k); i++) {
1244 		if (!ptr_available(c, k, i))
1245 			continue;
1246 
1247 		g = PTR_BUCKET(c, k, i);
1248 
1249 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1250 			g->last_gc = PTR_GEN(k, i);
1251 
1252 		if (ptr_stale(c, k, i)) {
1253 			stale = max(stale, ptr_stale(c, k, i));
1254 			continue;
1255 		}
1256 
1257 		cache_bug_on(GC_MARK(g) &&
1258 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1259 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1260 			     GC_MARK(g), level);
1261 
1262 		if (level)
1263 			SET_GC_MARK(g, GC_MARK_METADATA);
1264 		else if (KEY_DIRTY(k))
1265 			SET_GC_MARK(g, GC_MARK_DIRTY);
1266 		else if (!GC_MARK(g))
1267 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1268 
1269 		/* guard against overflow */
1270 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1271 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1272 					     MAX_GC_SECTORS_USED));
1273 
1274 		BUG_ON(!GC_SECTORS_USED(g));
1275 	}
1276 
1277 	return stale;
1278 }
1279 
1280 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1281 
1282 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1283 {
1284 	unsigned int i;
1285 
1286 	for (i = 0; i < KEY_PTRS(k); i++)
1287 		if (ptr_available(c, k, i) &&
1288 		    !ptr_stale(c, k, i)) {
1289 			struct bucket *b = PTR_BUCKET(c, k, i);
1290 
1291 			b->gen = PTR_GEN(k, i);
1292 
1293 			if (level && bkey_cmp(k, &ZERO_KEY))
1294 				b->prio = BTREE_PRIO;
1295 			else if (!level && b->prio == BTREE_PRIO)
1296 				b->prio = INITIAL_PRIO;
1297 		}
1298 
1299 	__bch_btree_mark_key(c, level, k);
1300 }
1301 
1302 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1303 {
1304 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1305 }
1306 
1307 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1308 {
1309 	uint8_t stale = 0;
1310 	unsigned int keys = 0, good_keys = 0;
1311 	struct bkey *k;
1312 	struct btree_iter iter;
1313 	struct bset_tree *t;
1314 
1315 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
1316 
1317 	gc->nodes++;
1318 
1319 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1320 		stale = max(stale, btree_mark_key(b, k));
1321 		keys++;
1322 
1323 		if (bch_ptr_bad(&b->keys, k))
1324 			continue;
1325 
1326 		gc->key_bytes += bkey_u64s(k);
1327 		gc->nkeys++;
1328 		good_keys++;
1329 
1330 		gc->data += KEY_SIZE(k);
1331 	}
1332 
1333 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1334 		btree_bug_on(t->size &&
1335 			     bset_written(&b->keys, t) &&
1336 			     bkey_cmp(&b->key, &t->end) < 0,
1337 			     b, "found short btree key in gc");
1338 
1339 	if (b->c->gc_always_rewrite)
1340 		return true;
1341 
1342 	if (stale > 10)
1343 		return true;
1344 
1345 	if ((keys - good_keys) * 2 > keys)
1346 		return true;
1347 
1348 	return false;
1349 }
1350 
1351 #define GC_MERGE_NODES	4U
1352 
1353 struct gc_merge_info {
1354 	struct btree	*b;
1355 	unsigned int	keys;
1356 };
1357 
1358 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1359 				 struct keylist *insert_keys,
1360 				 atomic_t *journal_ref,
1361 				 struct bkey *replace_key);
1362 
1363 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1364 			     struct gc_stat *gc, struct gc_merge_info *r)
1365 {
1366 	unsigned int i, nodes = 0, keys = 0, blocks;
1367 	struct btree *new_nodes[GC_MERGE_NODES];
1368 	struct keylist keylist;
1369 	struct closure cl;
1370 	struct bkey *k;
1371 
1372 	bch_keylist_init(&keylist);
1373 
1374 	if (btree_check_reserve(b, NULL))
1375 		return 0;
1376 
1377 	memset(new_nodes, 0, sizeof(new_nodes));
1378 	closure_init_stack(&cl);
1379 
1380 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1381 		keys += r[nodes++].keys;
1382 
1383 	blocks = btree_default_blocks(b->c) * 2 / 3;
1384 
1385 	if (nodes < 2 ||
1386 	    __set_blocks(b->keys.set[0].data, keys,
1387 			 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1388 		return 0;
1389 
1390 	for (i = 0; i < nodes; i++) {
1391 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1392 		if (IS_ERR(new_nodes[i]))
1393 			goto out_nocoalesce;
1394 	}
1395 
1396 	/*
1397 	 * We have to check the reserve here, after we've allocated our new
1398 	 * nodes, to make sure the insert below will succeed - we also check
1399 	 * before as an optimization to potentially avoid a bunch of expensive
1400 	 * allocs/sorts
1401 	 */
1402 	if (btree_check_reserve(b, NULL))
1403 		goto out_nocoalesce;
1404 
1405 	for (i = 0; i < nodes; i++)
1406 		mutex_lock(&new_nodes[i]->write_lock);
1407 
1408 	for (i = nodes - 1; i > 0; --i) {
1409 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1410 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1411 		struct bkey *k, *last = NULL;
1412 
1413 		keys = 0;
1414 
1415 		if (i > 1) {
1416 			for (k = n2->start;
1417 			     k < bset_bkey_last(n2);
1418 			     k = bkey_next(k)) {
1419 				if (__set_blocks(n1, n1->keys + keys +
1420 						 bkey_u64s(k),
1421 						 block_bytes(b->c->cache)) > blocks)
1422 					break;
1423 
1424 				last = k;
1425 				keys += bkey_u64s(k);
1426 			}
1427 		} else {
1428 			/*
1429 			 * Last node we're not getting rid of - we're getting
1430 			 * rid of the node at r[0]. Have to try and fit all of
1431 			 * the remaining keys into this node; we can't ensure
1432 			 * they will always fit due to rounding and variable
1433 			 * length keys (shouldn't be possible in practice,
1434 			 * though)
1435 			 */
1436 			if (__set_blocks(n1, n1->keys + n2->keys,
1437 					 block_bytes(b->c->cache)) >
1438 			    btree_blocks(new_nodes[i]))
1439 				goto out_unlock_nocoalesce;
1440 
1441 			keys = n2->keys;
1442 			/* Take the key of the node we're getting rid of */
1443 			last = &r->b->key;
1444 		}
1445 
1446 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1447 		       btree_blocks(new_nodes[i]));
1448 
1449 		if (last)
1450 			bkey_copy_key(&new_nodes[i]->key, last);
1451 
1452 		memcpy(bset_bkey_last(n1),
1453 		       n2->start,
1454 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1455 
1456 		n1->keys += keys;
1457 		r[i].keys = n1->keys;
1458 
1459 		memmove(n2->start,
1460 			bset_bkey_idx(n2, keys),
1461 			(void *) bset_bkey_last(n2) -
1462 			(void *) bset_bkey_idx(n2, keys));
1463 
1464 		n2->keys -= keys;
1465 
1466 		if (__bch_keylist_realloc(&keylist,
1467 					  bkey_u64s(&new_nodes[i]->key)))
1468 			goto out_unlock_nocoalesce;
1469 
1470 		bch_btree_node_write(new_nodes[i], &cl);
1471 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1472 	}
1473 
1474 	for (i = 0; i < nodes; i++)
1475 		mutex_unlock(&new_nodes[i]->write_lock);
1476 
1477 	closure_sync(&cl);
1478 
1479 	/* We emptied out this node */
1480 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1481 	btree_node_free(new_nodes[0]);
1482 	rw_unlock(true, new_nodes[0]);
1483 	new_nodes[0] = NULL;
1484 
1485 	for (i = 0; i < nodes; i++) {
1486 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1487 			goto out_nocoalesce;
1488 
1489 		make_btree_freeing_key(r[i].b, keylist.top);
1490 		bch_keylist_push(&keylist);
1491 	}
1492 
1493 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1494 	BUG_ON(!bch_keylist_empty(&keylist));
1495 
1496 	for (i = 0; i < nodes; i++) {
1497 		btree_node_free(r[i].b);
1498 		rw_unlock(true, r[i].b);
1499 
1500 		r[i].b = new_nodes[i];
1501 	}
1502 
1503 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1504 	r[nodes - 1].b = ERR_PTR(-EINTR);
1505 
1506 	trace_bcache_btree_gc_coalesce(nodes);
1507 	gc->nodes--;
1508 
1509 	bch_keylist_free(&keylist);
1510 
1511 	/* Invalidated our iterator */
1512 	return -EINTR;
1513 
1514 out_unlock_nocoalesce:
1515 	for (i = 0; i < nodes; i++)
1516 		mutex_unlock(&new_nodes[i]->write_lock);
1517 
1518 out_nocoalesce:
1519 	closure_sync(&cl);
1520 
1521 	while ((k = bch_keylist_pop(&keylist)))
1522 		if (!bkey_cmp(k, &ZERO_KEY))
1523 			atomic_dec(&b->c->prio_blocked);
1524 	bch_keylist_free(&keylist);
1525 
1526 	for (i = 0; i < nodes; i++)
1527 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1528 			btree_node_free(new_nodes[i]);
1529 			rw_unlock(true, new_nodes[i]);
1530 		}
1531 	return 0;
1532 }
1533 
1534 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1535 				 struct btree *replace)
1536 {
1537 	struct keylist keys;
1538 	struct btree *n;
1539 
1540 	if (btree_check_reserve(b, NULL))
1541 		return 0;
1542 
1543 	n = btree_node_alloc_replacement(replace, NULL);
1544 	if (IS_ERR(n))
1545 		return 0;
1546 
1547 	/* recheck reserve after allocating replacement node */
1548 	if (btree_check_reserve(b, NULL)) {
1549 		btree_node_free(n);
1550 		rw_unlock(true, n);
1551 		return 0;
1552 	}
1553 
1554 	bch_btree_node_write_sync(n);
1555 
1556 	bch_keylist_init(&keys);
1557 	bch_keylist_add(&keys, &n->key);
1558 
1559 	make_btree_freeing_key(replace, keys.top);
1560 	bch_keylist_push(&keys);
1561 
1562 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1563 	BUG_ON(!bch_keylist_empty(&keys));
1564 
1565 	btree_node_free(replace);
1566 	rw_unlock(true, n);
1567 
1568 	/* Invalidated our iterator */
1569 	return -EINTR;
1570 }
1571 
1572 static unsigned int btree_gc_count_keys(struct btree *b)
1573 {
1574 	struct bkey *k;
1575 	struct btree_iter iter;
1576 	unsigned int ret = 0;
1577 
1578 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
1579 
1580 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1581 		ret += bkey_u64s(k);
1582 
1583 	return ret;
1584 }
1585 
1586 static size_t btree_gc_min_nodes(struct cache_set *c)
1587 {
1588 	size_t min_nodes;
1589 
1590 	/*
1591 	 * Since incremental GC would stop 100ms when front
1592 	 * side I/O comes, so when there are many btree nodes,
1593 	 * if GC only processes constant (100) nodes each time,
1594 	 * GC would last a long time, and the front side I/Os
1595 	 * would run out of the buckets (since no new bucket
1596 	 * can be allocated during GC), and be blocked again.
1597 	 * So GC should not process constant nodes, but varied
1598 	 * nodes according to the number of btree nodes, which
1599 	 * realized by dividing GC into constant(100) times,
1600 	 * so when there are many btree nodes, GC can process
1601 	 * more nodes each time, otherwise, GC will process less
1602 	 * nodes each time (but no less than MIN_GC_NODES)
1603 	 */
1604 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1605 	if (min_nodes < MIN_GC_NODES)
1606 		min_nodes = MIN_GC_NODES;
1607 
1608 	return min_nodes;
1609 }
1610 
1611 
1612 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1613 			    struct closure *writes, struct gc_stat *gc)
1614 {
1615 	int ret = 0;
1616 	bool should_rewrite;
1617 	struct bkey *k;
1618 	struct btree_iter iter;
1619 	struct gc_merge_info r[GC_MERGE_NODES];
1620 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1621 
1622 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
1623 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1624 
1625 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1626 		i->b = ERR_PTR(-EINTR);
1627 
1628 	while (1) {
1629 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1630 		if (k) {
1631 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1632 						  true, b);
1633 			if (IS_ERR(r->b)) {
1634 				ret = PTR_ERR(r->b);
1635 				break;
1636 			}
1637 
1638 			r->keys = btree_gc_count_keys(r->b);
1639 
1640 			ret = btree_gc_coalesce(b, op, gc, r);
1641 			if (ret)
1642 				break;
1643 		}
1644 
1645 		if (!last->b)
1646 			break;
1647 
1648 		if (!IS_ERR(last->b)) {
1649 			should_rewrite = btree_gc_mark_node(last->b, gc);
1650 			if (should_rewrite) {
1651 				ret = btree_gc_rewrite_node(b, op, last->b);
1652 				if (ret)
1653 					break;
1654 			}
1655 
1656 			if (last->b->level) {
1657 				ret = btree_gc_recurse(last->b, op, writes, gc);
1658 				if (ret)
1659 					break;
1660 			}
1661 
1662 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1663 
1664 			/*
1665 			 * Must flush leaf nodes before gc ends, since replace
1666 			 * operations aren't journalled
1667 			 */
1668 			mutex_lock(&last->b->write_lock);
1669 			if (btree_node_dirty(last->b))
1670 				bch_btree_node_write(last->b, writes);
1671 			mutex_unlock(&last->b->write_lock);
1672 			rw_unlock(true, last->b);
1673 		}
1674 
1675 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1676 		r->b = NULL;
1677 
1678 		if (atomic_read(&b->c->search_inflight) &&
1679 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1680 			gc->nodes_pre =  gc->nodes;
1681 			ret = -EAGAIN;
1682 			break;
1683 		}
1684 
1685 		if (need_resched()) {
1686 			ret = -EAGAIN;
1687 			break;
1688 		}
1689 	}
1690 
1691 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1692 		if (!IS_ERR_OR_NULL(i->b)) {
1693 			mutex_lock(&i->b->write_lock);
1694 			if (btree_node_dirty(i->b))
1695 				bch_btree_node_write(i->b, writes);
1696 			mutex_unlock(&i->b->write_lock);
1697 			rw_unlock(true, i->b);
1698 		}
1699 
1700 	return ret;
1701 }
1702 
1703 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1704 			     struct closure *writes, struct gc_stat *gc)
1705 {
1706 	struct btree *n = NULL;
1707 	int ret = 0;
1708 	bool should_rewrite;
1709 
1710 	should_rewrite = btree_gc_mark_node(b, gc);
1711 	if (should_rewrite) {
1712 		n = btree_node_alloc_replacement(b, NULL);
1713 
1714 		if (!IS_ERR(n)) {
1715 			bch_btree_node_write_sync(n);
1716 
1717 			bch_btree_set_root(n);
1718 			btree_node_free(b);
1719 			rw_unlock(true, n);
1720 
1721 			return -EINTR;
1722 		}
1723 	}
1724 
1725 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1726 
1727 	if (b->level) {
1728 		ret = btree_gc_recurse(b, op, writes, gc);
1729 		if (ret)
1730 			return ret;
1731 	}
1732 
1733 	bkey_copy_key(&b->c->gc_done, &b->key);
1734 
1735 	return ret;
1736 }
1737 
1738 static void btree_gc_start(struct cache_set *c)
1739 {
1740 	struct cache *ca;
1741 	struct bucket *b;
1742 
1743 	if (!c->gc_mark_valid)
1744 		return;
1745 
1746 	mutex_lock(&c->bucket_lock);
1747 
1748 	c->gc_done = ZERO_KEY;
1749 
1750 	ca = c->cache;
1751 	for_each_bucket(b, ca) {
1752 		b->last_gc = b->gen;
1753 		if (bch_can_invalidate_bucket(ca, b))
1754 			b->reclaimable_in_gc = 1;
1755 		if (!atomic_read(&b->pin)) {
1756 			SET_GC_MARK(b, 0);
1757 			SET_GC_SECTORS_USED(b, 0);
1758 		}
1759 	}
1760 
1761 	c->gc_mark_valid = 0;
1762 	mutex_unlock(&c->bucket_lock);
1763 }
1764 
1765 static void bch_btree_gc_finish(struct cache_set *c)
1766 {
1767 	struct bucket *b;
1768 	struct cache *ca;
1769 	unsigned int i, j;
1770 	uint64_t *k;
1771 
1772 	mutex_lock(&c->bucket_lock);
1773 
1774 	set_gc_sectors(c);
1775 	c->gc_mark_valid = 1;
1776 	c->need_gc	= 0;
1777 
1778 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1779 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1780 			    GC_MARK_METADATA);
1781 
1782 	/* don't reclaim buckets to which writeback keys point */
1783 	rcu_read_lock();
1784 	for (i = 0; i < c->devices_max_used; i++) {
1785 		struct bcache_device *d = c->devices[i];
1786 		struct cached_dev *dc;
1787 		struct keybuf_key *w, *n;
1788 
1789 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1790 			continue;
1791 		dc = container_of(d, struct cached_dev, disk);
1792 
1793 		spin_lock(&dc->writeback_keys.lock);
1794 		rbtree_postorder_for_each_entry_safe(w, n,
1795 					&dc->writeback_keys.keys, node)
1796 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1797 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1798 					    GC_MARK_DIRTY);
1799 		spin_unlock(&dc->writeback_keys.lock);
1800 	}
1801 	rcu_read_unlock();
1802 
1803 	c->avail_nbuckets = 0;
1804 
1805 	ca = c->cache;
1806 	ca->invalidate_needs_gc = 0;
1807 
1808 	for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1809 		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1810 
1811 	for (k = ca->prio_buckets;
1812 	     k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1813 		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1814 
1815 	for_each_bucket(b, ca) {
1816 		c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1817 
1818 		if (b->reclaimable_in_gc)
1819 			b->reclaimable_in_gc = 0;
1820 
1821 		if (atomic_read(&b->pin))
1822 			continue;
1823 
1824 		BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1825 
1826 		if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1827 			c->avail_nbuckets++;
1828 	}
1829 
1830 	mutex_unlock(&c->bucket_lock);
1831 }
1832 
1833 static void bch_btree_gc(struct cache_set *c)
1834 {
1835 	int ret;
1836 	struct gc_stat stats;
1837 	struct closure writes;
1838 	struct btree_op op;
1839 	uint64_t start_time = local_clock();
1840 
1841 	trace_bcache_gc_start(c);
1842 
1843 	memset(&stats, 0, sizeof(struct gc_stat));
1844 	closure_init_stack(&writes);
1845 	bch_btree_op_init(&op, SHRT_MAX);
1846 
1847 	btree_gc_start(c);
1848 
1849 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1850 	do {
1851 		ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1852 		closure_sync(&writes);
1853 		cond_resched();
1854 
1855 		if (ret == -EAGAIN)
1856 			schedule_timeout_interruptible(msecs_to_jiffies
1857 						       (GC_SLEEP_MS));
1858 		else if (ret)
1859 			pr_warn("gc failed!\n");
1860 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1861 
1862 	bch_btree_gc_finish(c);
1863 	wake_up_allocators(c);
1864 
1865 	bch_time_stats_update(&c->btree_gc_time, start_time);
1866 
1867 	stats.key_bytes *= sizeof(uint64_t);
1868 	stats.data	<<= 9;
1869 	bch_update_bucket_in_use(c, &stats);
1870 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1871 
1872 	trace_bcache_gc_end(c);
1873 
1874 	bch_moving_gc(c);
1875 }
1876 
1877 static bool gc_should_run(struct cache_set *c)
1878 {
1879 	struct cache *ca = c->cache;
1880 
1881 	if (ca->invalidate_needs_gc)
1882 		return true;
1883 
1884 	if (atomic_read(&c->sectors_to_gc) < 0)
1885 		return true;
1886 
1887 	return false;
1888 }
1889 
1890 static int bch_gc_thread(void *arg)
1891 {
1892 	struct cache_set *c = arg;
1893 
1894 	while (1) {
1895 		wait_event_interruptible(c->gc_wait,
1896 			   kthread_should_stop() ||
1897 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1898 			   gc_should_run(c));
1899 
1900 		if (kthread_should_stop() ||
1901 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1902 			break;
1903 
1904 		set_gc_sectors(c);
1905 		bch_btree_gc(c);
1906 	}
1907 
1908 	wait_for_kthread_stop();
1909 	return 0;
1910 }
1911 
1912 int bch_gc_thread_start(struct cache_set *c)
1913 {
1914 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1915 	return PTR_ERR_OR_ZERO(c->gc_thread);
1916 }
1917 
1918 /* Initial partial gc */
1919 
1920 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1921 {
1922 	int ret = 0;
1923 	struct bkey *k, *p = NULL;
1924 	struct btree_iter iter;
1925 
1926 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
1927 
1928 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1929 		bch_initial_mark_key(b->c, b->level, k);
1930 
1931 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1932 
1933 	if (b->level) {
1934 		bch_btree_iter_init(&b->keys, &iter, NULL);
1935 
1936 		do {
1937 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1938 						       bch_ptr_bad);
1939 			if (k) {
1940 				btree_node_prefetch(b, k);
1941 				/*
1942 				 * initiallize c->gc_stats.nodes
1943 				 * for incremental GC
1944 				 */
1945 				b->c->gc_stats.nodes++;
1946 			}
1947 
1948 			if (p)
1949 				ret = bcache_btree(check_recurse, p, b, op);
1950 
1951 			p = k;
1952 		} while (p && !ret);
1953 	}
1954 
1955 	return ret;
1956 }
1957 
1958 
1959 static int bch_btree_check_thread(void *arg)
1960 {
1961 	int ret;
1962 	struct btree_check_info *info = arg;
1963 	struct btree_check_state *check_state = info->state;
1964 	struct cache_set *c = check_state->c;
1965 	struct btree_iter iter;
1966 	struct bkey *k, *p;
1967 	int cur_idx, prev_idx, skip_nr;
1968 
1969 	k = p = NULL;
1970 	cur_idx = prev_idx = 0;
1971 	ret = 0;
1972 
1973 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
1974 
1975 	/* root node keys are checked before thread created */
1976 	bch_btree_iter_init(&c->root->keys, &iter, NULL);
1977 	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1978 	BUG_ON(!k);
1979 
1980 	p = k;
1981 	while (k) {
1982 		/*
1983 		 * Fetch a root node key index, skip the keys which
1984 		 * should be fetched by other threads, then check the
1985 		 * sub-tree indexed by the fetched key.
1986 		 */
1987 		spin_lock(&check_state->idx_lock);
1988 		cur_idx = check_state->key_idx;
1989 		check_state->key_idx++;
1990 		spin_unlock(&check_state->idx_lock);
1991 
1992 		skip_nr = cur_idx - prev_idx;
1993 
1994 		while (skip_nr) {
1995 			k = bch_btree_iter_next_filter(&iter,
1996 						       &c->root->keys,
1997 						       bch_ptr_bad);
1998 			if (k)
1999 				p = k;
2000 			else {
2001 				/*
2002 				 * No more keys to check in root node,
2003 				 * current checking threads are enough,
2004 				 * stop creating more.
2005 				 */
2006 				atomic_set(&check_state->enough, 1);
2007 				/* Update check_state->enough earlier */
2008 				smp_mb__after_atomic();
2009 				goto out;
2010 			}
2011 			skip_nr--;
2012 			cond_resched();
2013 		}
2014 
2015 		if (p) {
2016 			struct btree_op op;
2017 
2018 			btree_node_prefetch(c->root, p);
2019 			c->gc_stats.nodes++;
2020 			bch_btree_op_init(&op, 0);
2021 			ret = bcache_btree(check_recurse, p, c->root, &op);
2022 			/*
2023 			 * The op may be added to cache_set's btree_cache_wait
2024 			 * in mca_cannibalize(), must ensure it is removed from
2025 			 * the list and release btree_cache_alloc_lock before
2026 			 * free op memory.
2027 			 * Otherwise, the btree_cache_wait will be damaged.
2028 			 */
2029 			bch_cannibalize_unlock(c);
2030 			finish_wait(&c->btree_cache_wait, &(&op)->wait);
2031 			if (ret)
2032 				goto out;
2033 		}
2034 		p = NULL;
2035 		prev_idx = cur_idx;
2036 		cond_resched();
2037 	}
2038 
2039 out:
2040 	info->result = ret;
2041 	/* update check_state->started among all CPUs */
2042 	smp_mb__before_atomic();
2043 	if (atomic_dec_and_test(&check_state->started))
2044 		wake_up(&check_state->wait);
2045 
2046 	return ret;
2047 }
2048 
2049 
2050 
2051 static int bch_btree_chkthread_nr(void)
2052 {
2053 	int n = num_online_cpus()/2;
2054 
2055 	if (n == 0)
2056 		n = 1;
2057 	else if (n > BCH_BTR_CHKTHREAD_MAX)
2058 		n = BCH_BTR_CHKTHREAD_MAX;
2059 
2060 	return n;
2061 }
2062 
2063 int bch_btree_check(struct cache_set *c)
2064 {
2065 	int ret = 0;
2066 	int i;
2067 	struct bkey *k = NULL;
2068 	struct btree_iter iter;
2069 	struct btree_check_state check_state;
2070 
2071 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
2072 
2073 	/* check and mark root node keys */
2074 	for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2075 		bch_initial_mark_key(c, c->root->level, k);
2076 
2077 	bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2078 
2079 	if (c->root->level == 0)
2080 		return 0;
2081 
2082 	memset(&check_state, 0, sizeof(struct btree_check_state));
2083 	check_state.c = c;
2084 	check_state.total_threads = bch_btree_chkthread_nr();
2085 	check_state.key_idx = 0;
2086 	spin_lock_init(&check_state.idx_lock);
2087 	atomic_set(&check_state.started, 0);
2088 	atomic_set(&check_state.enough, 0);
2089 	init_waitqueue_head(&check_state.wait);
2090 
2091 	rw_lock(0, c->root, c->root->level);
2092 	/*
2093 	 * Run multiple threads to check btree nodes in parallel,
2094 	 * if check_state.enough is non-zero, it means current
2095 	 * running check threads are enough, unncessary to create
2096 	 * more.
2097 	 */
2098 	for (i = 0; i < check_state.total_threads; i++) {
2099 		/* fetch latest check_state.enough earlier */
2100 		smp_mb__before_atomic();
2101 		if (atomic_read(&check_state.enough))
2102 			break;
2103 
2104 		check_state.infos[i].result = 0;
2105 		check_state.infos[i].state = &check_state;
2106 
2107 		check_state.infos[i].thread =
2108 			kthread_run(bch_btree_check_thread,
2109 				    &check_state.infos[i],
2110 				    "bch_btrchk[%d]", i);
2111 		if (IS_ERR(check_state.infos[i].thread)) {
2112 			pr_err("fails to run thread bch_btrchk[%d]\n", i);
2113 			for (--i; i >= 0; i--)
2114 				kthread_stop(check_state.infos[i].thread);
2115 			ret = -ENOMEM;
2116 			goto out;
2117 		}
2118 		atomic_inc(&check_state.started);
2119 	}
2120 
2121 	/*
2122 	 * Must wait for all threads to stop.
2123 	 */
2124 	wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2125 
2126 	for (i = 0; i < check_state.total_threads; i++) {
2127 		if (check_state.infos[i].result) {
2128 			ret = check_state.infos[i].result;
2129 			goto out;
2130 		}
2131 	}
2132 
2133 out:
2134 	rw_unlock(0, c->root);
2135 	return ret;
2136 }
2137 
2138 void bch_initial_gc_finish(struct cache_set *c)
2139 {
2140 	struct cache *ca = c->cache;
2141 	struct bucket *b;
2142 
2143 	bch_btree_gc_finish(c);
2144 
2145 	mutex_lock(&c->bucket_lock);
2146 
2147 	/*
2148 	 * We need to put some unused buckets directly on the prio freelist in
2149 	 * order to get the allocator thread started - it needs freed buckets in
2150 	 * order to rewrite the prios and gens, and it needs to rewrite prios
2151 	 * and gens in order to free buckets.
2152 	 *
2153 	 * This is only safe for buckets that have no live data in them, which
2154 	 * there should always be some of.
2155 	 */
2156 	for_each_bucket(b, ca) {
2157 		if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2158 		    fifo_full(&ca->free[RESERVE_BTREE]))
2159 			break;
2160 
2161 		if (bch_can_invalidate_bucket(ca, b) &&
2162 		    !GC_MARK(b)) {
2163 			__bch_invalidate_one_bucket(ca, b);
2164 			if (!fifo_push(&ca->free[RESERVE_PRIO],
2165 			   b - ca->buckets))
2166 				fifo_push(&ca->free[RESERVE_BTREE],
2167 					  b - ca->buckets);
2168 		}
2169 	}
2170 
2171 	mutex_unlock(&c->bucket_lock);
2172 }
2173 
2174 /* Btree insertion */
2175 
2176 static bool btree_insert_key(struct btree *b, struct bkey *k,
2177 			     struct bkey *replace_key)
2178 {
2179 	unsigned int status;
2180 
2181 	BUG_ON(bkey_cmp(k, &b->key) > 0);
2182 
2183 	status = bch_btree_insert_key(&b->keys, k, replace_key);
2184 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2185 		bch_check_keys(&b->keys, "%u for %s", status,
2186 			       replace_key ? "replace" : "insert");
2187 
2188 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2189 					      status);
2190 		return true;
2191 	} else
2192 		return false;
2193 }
2194 
2195 static size_t insert_u64s_remaining(struct btree *b)
2196 {
2197 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2198 
2199 	/*
2200 	 * Might land in the middle of an existing extent and have to split it
2201 	 */
2202 	if (b->keys.ops->is_extents)
2203 		ret -= KEY_MAX_U64S;
2204 
2205 	return max(ret, 0L);
2206 }
2207 
2208 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2209 				  struct keylist *insert_keys,
2210 				  struct bkey *replace_key)
2211 {
2212 	bool ret = false;
2213 	int oldsize = bch_count_data(&b->keys);
2214 
2215 	while (!bch_keylist_empty(insert_keys)) {
2216 		struct bkey *k = insert_keys->keys;
2217 
2218 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2219 			break;
2220 
2221 		if (bkey_cmp(k, &b->key) <= 0) {
2222 			if (!b->level)
2223 				bkey_put(b->c, k);
2224 
2225 			ret |= btree_insert_key(b, k, replace_key);
2226 			bch_keylist_pop_front(insert_keys);
2227 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2228 			BKEY_PADDED(key) temp;
2229 			bkey_copy(&temp.key, insert_keys->keys);
2230 
2231 			bch_cut_back(&b->key, &temp.key);
2232 			bch_cut_front(&b->key, insert_keys->keys);
2233 
2234 			ret |= btree_insert_key(b, &temp.key, replace_key);
2235 			break;
2236 		} else {
2237 			break;
2238 		}
2239 	}
2240 
2241 	if (!ret)
2242 		op->insert_collision = true;
2243 
2244 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2245 
2246 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2247 	return ret;
2248 }
2249 
2250 static int btree_split(struct btree *b, struct btree_op *op,
2251 		       struct keylist *insert_keys,
2252 		       struct bkey *replace_key)
2253 {
2254 	bool split;
2255 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2256 	uint64_t start_time = local_clock();
2257 	struct closure cl;
2258 	struct keylist parent_keys;
2259 
2260 	closure_init_stack(&cl);
2261 	bch_keylist_init(&parent_keys);
2262 
2263 	if (btree_check_reserve(b, op)) {
2264 		if (!b->level)
2265 			return -EINTR;
2266 		else
2267 			WARN(1, "insufficient reserve for split\n");
2268 	}
2269 
2270 	n1 = btree_node_alloc_replacement(b, op);
2271 	if (IS_ERR(n1))
2272 		goto err;
2273 
2274 	split = set_blocks(btree_bset_first(n1),
2275 			   block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2276 
2277 	if (split) {
2278 		unsigned int keys = 0;
2279 
2280 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2281 
2282 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2283 		if (IS_ERR(n2))
2284 			goto err_free1;
2285 
2286 		if (!b->parent) {
2287 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2288 			if (IS_ERR(n3))
2289 				goto err_free2;
2290 		}
2291 
2292 		mutex_lock(&n1->write_lock);
2293 		mutex_lock(&n2->write_lock);
2294 
2295 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2296 
2297 		/*
2298 		 * Has to be a linear search because we don't have an auxiliary
2299 		 * search tree yet
2300 		 */
2301 
2302 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2303 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2304 							keys));
2305 
2306 		bkey_copy_key(&n1->key,
2307 			      bset_bkey_idx(btree_bset_first(n1), keys));
2308 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2309 
2310 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2311 		btree_bset_first(n1)->keys = keys;
2312 
2313 		memcpy(btree_bset_first(n2)->start,
2314 		       bset_bkey_last(btree_bset_first(n1)),
2315 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2316 
2317 		bkey_copy_key(&n2->key, &b->key);
2318 
2319 		bch_keylist_add(&parent_keys, &n2->key);
2320 		bch_btree_node_write(n2, &cl);
2321 		mutex_unlock(&n2->write_lock);
2322 		rw_unlock(true, n2);
2323 	} else {
2324 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2325 
2326 		mutex_lock(&n1->write_lock);
2327 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2328 	}
2329 
2330 	bch_keylist_add(&parent_keys, &n1->key);
2331 	bch_btree_node_write(n1, &cl);
2332 	mutex_unlock(&n1->write_lock);
2333 
2334 	if (n3) {
2335 		/* Depth increases, make a new root */
2336 		mutex_lock(&n3->write_lock);
2337 		bkey_copy_key(&n3->key, &MAX_KEY);
2338 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2339 		bch_btree_node_write(n3, &cl);
2340 		mutex_unlock(&n3->write_lock);
2341 
2342 		closure_sync(&cl);
2343 		bch_btree_set_root(n3);
2344 		rw_unlock(true, n3);
2345 	} else if (!b->parent) {
2346 		/* Root filled up but didn't need to be split */
2347 		closure_sync(&cl);
2348 		bch_btree_set_root(n1);
2349 	} else {
2350 		/* Split a non root node */
2351 		closure_sync(&cl);
2352 		make_btree_freeing_key(b, parent_keys.top);
2353 		bch_keylist_push(&parent_keys);
2354 
2355 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2356 		BUG_ON(!bch_keylist_empty(&parent_keys));
2357 	}
2358 
2359 	btree_node_free(b);
2360 	rw_unlock(true, n1);
2361 
2362 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2363 
2364 	return 0;
2365 err_free2:
2366 	bkey_put(b->c, &n2->key);
2367 	btree_node_free(n2);
2368 	rw_unlock(true, n2);
2369 err_free1:
2370 	bkey_put(b->c, &n1->key);
2371 	btree_node_free(n1);
2372 	rw_unlock(true, n1);
2373 err:
2374 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2375 
2376 	if (n3 == ERR_PTR(-EAGAIN) ||
2377 	    n2 == ERR_PTR(-EAGAIN) ||
2378 	    n1 == ERR_PTR(-EAGAIN))
2379 		return -EAGAIN;
2380 
2381 	return -ENOMEM;
2382 }
2383 
2384 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2385 				 struct keylist *insert_keys,
2386 				 atomic_t *journal_ref,
2387 				 struct bkey *replace_key)
2388 {
2389 	struct closure cl;
2390 
2391 	BUG_ON(b->level && replace_key);
2392 
2393 	closure_init_stack(&cl);
2394 
2395 	mutex_lock(&b->write_lock);
2396 
2397 	if (write_block(b) != btree_bset_last(b) &&
2398 	    b->keys.last_set_unwritten)
2399 		bch_btree_init_next(b); /* just wrote a set */
2400 
2401 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2402 		mutex_unlock(&b->write_lock);
2403 		goto split;
2404 	}
2405 
2406 	BUG_ON(write_block(b) != btree_bset_last(b));
2407 
2408 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2409 		if (!b->level)
2410 			bch_btree_leaf_dirty(b, journal_ref);
2411 		else
2412 			bch_btree_node_write(b, &cl);
2413 	}
2414 
2415 	mutex_unlock(&b->write_lock);
2416 
2417 	/* wait for btree node write if necessary, after unlock */
2418 	closure_sync(&cl);
2419 
2420 	return 0;
2421 split:
2422 	if (current->bio_list) {
2423 		op->lock = b->c->root->level + 1;
2424 		return -EAGAIN;
2425 	} else if (op->lock <= b->c->root->level) {
2426 		op->lock = b->c->root->level + 1;
2427 		return -EINTR;
2428 	} else {
2429 		/* Invalidated all iterators */
2430 		int ret = btree_split(b, op, insert_keys, replace_key);
2431 
2432 		if (bch_keylist_empty(insert_keys))
2433 			return 0;
2434 		else if (!ret)
2435 			return -EINTR;
2436 		return ret;
2437 	}
2438 }
2439 
2440 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2441 			       struct bkey *check_key)
2442 {
2443 	int ret = -EINTR;
2444 	uint64_t btree_ptr = b->key.ptr[0];
2445 	unsigned long seq = b->seq;
2446 	struct keylist insert;
2447 	bool upgrade = op->lock == -1;
2448 
2449 	bch_keylist_init(&insert);
2450 
2451 	if (upgrade) {
2452 		rw_unlock(false, b);
2453 		rw_lock(true, b, b->level);
2454 
2455 		if (b->key.ptr[0] != btree_ptr ||
2456 		    b->seq != seq + 1) {
2457 			op->lock = b->level;
2458 			goto out;
2459 		}
2460 	}
2461 
2462 	SET_KEY_PTRS(check_key, 1);
2463 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2464 
2465 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2466 
2467 	bch_keylist_add(&insert, check_key);
2468 
2469 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2470 
2471 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2472 out:
2473 	if (upgrade)
2474 		downgrade_write(&b->lock);
2475 	return ret;
2476 }
2477 
2478 struct btree_insert_op {
2479 	struct btree_op	op;
2480 	struct keylist	*keys;
2481 	atomic_t	*journal_ref;
2482 	struct bkey	*replace_key;
2483 };
2484 
2485 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2486 {
2487 	struct btree_insert_op *op = container_of(b_op,
2488 					struct btree_insert_op, op);
2489 
2490 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2491 					op->journal_ref, op->replace_key);
2492 	if (ret && !bch_keylist_empty(op->keys))
2493 		return ret;
2494 	else
2495 		return MAP_DONE;
2496 }
2497 
2498 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2499 		     atomic_t *journal_ref, struct bkey *replace_key)
2500 {
2501 	struct btree_insert_op op;
2502 	int ret = 0;
2503 
2504 	BUG_ON(current->bio_list);
2505 	BUG_ON(bch_keylist_empty(keys));
2506 
2507 	bch_btree_op_init(&op.op, 0);
2508 	op.keys		= keys;
2509 	op.journal_ref	= journal_ref;
2510 	op.replace_key	= replace_key;
2511 
2512 	while (!ret && !bch_keylist_empty(keys)) {
2513 		op.op.lock = 0;
2514 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2515 					       &START_KEY(keys->keys),
2516 					       btree_insert_fn);
2517 	}
2518 
2519 	if (ret) {
2520 		struct bkey *k;
2521 
2522 		pr_err("error %i\n", ret);
2523 
2524 		while ((k = bch_keylist_pop(keys)))
2525 			bkey_put(c, k);
2526 	} else if (op.op.insert_collision)
2527 		ret = -ESRCH;
2528 
2529 	return ret;
2530 }
2531 
2532 void bch_btree_set_root(struct btree *b)
2533 {
2534 	unsigned int i;
2535 	struct closure cl;
2536 
2537 	closure_init_stack(&cl);
2538 
2539 	trace_bcache_btree_set_root(b);
2540 
2541 	BUG_ON(!b->written);
2542 
2543 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2544 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2545 
2546 	mutex_lock(&b->c->bucket_lock);
2547 	list_del_init(&b->list);
2548 	mutex_unlock(&b->c->bucket_lock);
2549 
2550 	b->c->root = b;
2551 
2552 	bch_journal_meta(b->c, &cl);
2553 	closure_sync(&cl);
2554 }
2555 
2556 /* Map across nodes or keys */
2557 
2558 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2559 				       struct bkey *from,
2560 				       btree_map_nodes_fn *fn, int flags)
2561 {
2562 	int ret = MAP_CONTINUE;
2563 
2564 	if (b->level) {
2565 		struct bkey *k;
2566 		struct btree_iter iter;
2567 
2568 		min_heap_init(&iter.heap, NULL, MAX_BSETS);
2569 		bch_btree_iter_init(&b->keys, &iter, from);
2570 
2571 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2572 						       bch_ptr_bad))) {
2573 			ret = bcache_btree(map_nodes_recurse, k, b,
2574 				    op, from, fn, flags);
2575 			from = NULL;
2576 
2577 			if (ret != MAP_CONTINUE)
2578 				return ret;
2579 		}
2580 	}
2581 
2582 	if (!b->level || flags == MAP_ALL_NODES)
2583 		ret = fn(op, b);
2584 
2585 	return ret;
2586 }
2587 
2588 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2589 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2590 {
2591 	return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2592 }
2593 
2594 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2595 				      struct bkey *from, btree_map_keys_fn *fn,
2596 				      int flags)
2597 {
2598 	int ret = MAP_CONTINUE;
2599 	struct bkey *k;
2600 	struct btree_iter iter;
2601 
2602 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
2603 	bch_btree_iter_init(&b->keys, &iter, from);
2604 
2605 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2606 		ret = !b->level
2607 			? fn(op, b, k)
2608 			: bcache_btree(map_keys_recurse, k,
2609 				       b, op, from, fn, flags);
2610 		from = NULL;
2611 
2612 		if (ret != MAP_CONTINUE)
2613 			return ret;
2614 	}
2615 
2616 	if (!b->level && (flags & MAP_END_KEY))
2617 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2618 				     KEY_OFFSET(&b->key), 0));
2619 
2620 	return ret;
2621 }
2622 
2623 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2624 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2625 {
2626 	return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2627 }
2628 
2629 /* Keybuf code */
2630 
2631 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2632 {
2633 	/* Overlapping keys compare equal */
2634 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2635 		return -1;
2636 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2637 		return 1;
2638 	return 0;
2639 }
2640 
2641 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2642 					    struct keybuf_key *r)
2643 {
2644 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2645 }
2646 
2647 struct refill {
2648 	struct btree_op	op;
2649 	unsigned int	nr_found;
2650 	struct keybuf	*buf;
2651 	struct bkey	*end;
2652 	keybuf_pred_fn	*pred;
2653 };
2654 
2655 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2656 			    struct bkey *k)
2657 {
2658 	struct refill *refill = container_of(op, struct refill, op);
2659 	struct keybuf *buf = refill->buf;
2660 	int ret = MAP_CONTINUE;
2661 
2662 	if (bkey_cmp(k, refill->end) > 0) {
2663 		ret = MAP_DONE;
2664 		goto out;
2665 	}
2666 
2667 	if (!KEY_SIZE(k)) /* end key */
2668 		goto out;
2669 
2670 	if (refill->pred(buf, k)) {
2671 		struct keybuf_key *w;
2672 
2673 		spin_lock(&buf->lock);
2674 
2675 		w = array_alloc(&buf->freelist);
2676 		if (!w) {
2677 			spin_unlock(&buf->lock);
2678 			return MAP_DONE;
2679 		}
2680 
2681 		w->private = NULL;
2682 		bkey_copy(&w->key, k);
2683 
2684 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2685 			array_free(&buf->freelist, w);
2686 		else
2687 			refill->nr_found++;
2688 
2689 		if (array_freelist_empty(&buf->freelist))
2690 			ret = MAP_DONE;
2691 
2692 		spin_unlock(&buf->lock);
2693 	}
2694 out:
2695 	buf->last_scanned = *k;
2696 	return ret;
2697 }
2698 
2699 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2700 		       struct bkey *end, keybuf_pred_fn *pred)
2701 {
2702 	struct bkey start = buf->last_scanned;
2703 	struct refill refill;
2704 
2705 	cond_resched();
2706 
2707 	bch_btree_op_init(&refill.op, -1);
2708 	refill.nr_found	= 0;
2709 	refill.buf	= buf;
2710 	refill.end	= end;
2711 	refill.pred	= pred;
2712 
2713 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2714 			   refill_keybuf_fn, MAP_END_KEY);
2715 
2716 	trace_bcache_keyscan(refill.nr_found,
2717 			     KEY_INODE(&start), KEY_OFFSET(&start),
2718 			     KEY_INODE(&buf->last_scanned),
2719 			     KEY_OFFSET(&buf->last_scanned));
2720 
2721 	spin_lock(&buf->lock);
2722 
2723 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2724 		struct keybuf_key *w;
2725 
2726 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2727 		buf->start	= START_KEY(&w->key);
2728 
2729 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2730 		buf->end	= w->key;
2731 	} else {
2732 		buf->start	= MAX_KEY;
2733 		buf->end	= MAX_KEY;
2734 	}
2735 
2736 	spin_unlock(&buf->lock);
2737 }
2738 
2739 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2740 {
2741 	rb_erase(&w->node, &buf->keys);
2742 	array_free(&buf->freelist, w);
2743 }
2744 
2745 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2746 {
2747 	spin_lock(&buf->lock);
2748 	__bch_keybuf_del(buf, w);
2749 	spin_unlock(&buf->lock);
2750 }
2751 
2752 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2753 				  struct bkey *end)
2754 {
2755 	bool ret = false;
2756 	struct keybuf_key *p, *w, s;
2757 
2758 	s.key = *start;
2759 
2760 	if (bkey_cmp(end, &buf->start) <= 0 ||
2761 	    bkey_cmp(start, &buf->end) >= 0)
2762 		return false;
2763 
2764 	spin_lock(&buf->lock);
2765 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2766 
2767 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2768 		p = w;
2769 		w = RB_NEXT(w, node);
2770 
2771 		if (p->private)
2772 			ret = true;
2773 		else
2774 			__bch_keybuf_del(buf, p);
2775 	}
2776 
2777 	spin_unlock(&buf->lock);
2778 	return ret;
2779 }
2780 
2781 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2782 {
2783 	struct keybuf_key *w;
2784 
2785 	spin_lock(&buf->lock);
2786 
2787 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2788 
2789 	while (w && w->private)
2790 		w = RB_NEXT(w, node);
2791 
2792 	if (w)
2793 		w->private = ERR_PTR(-EINTR);
2794 
2795 	spin_unlock(&buf->lock);
2796 	return w;
2797 }
2798 
2799 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2800 					  struct keybuf *buf,
2801 					  struct bkey *end,
2802 					  keybuf_pred_fn *pred)
2803 {
2804 	struct keybuf_key *ret;
2805 
2806 	while (1) {
2807 		ret = bch_keybuf_next(buf);
2808 		if (ret)
2809 			break;
2810 
2811 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2812 			pr_debug("scan finished\n");
2813 			break;
2814 		}
2815 
2816 		bch_refill_keybuf(c, buf, end, pred);
2817 	}
2818 
2819 	return ret;
2820 }
2821 
2822 void bch_keybuf_init(struct keybuf *buf)
2823 {
2824 	buf->last_scanned	= MAX_KEY;
2825 	buf->keys		= RB_ROOT;
2826 
2827 	spin_lock_init(&buf->lock);
2828 	array_allocator_init(&buf->freelist);
2829 }
2830 
2831 void bch_btree_exit(void)
2832 {
2833 	if (btree_io_wq)
2834 		destroy_workqueue(btree_io_wq);
2835 }
2836 
2837 int __init bch_btree_init(void)
2838 {
2839 	btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2840 	if (!btree_io_wq)
2841 		return -ENOMEM;
2842 
2843 	return 0;
2844 }
2845