xref: /linux/drivers/md/bcache/btree.c (revision 856e7c4b619af622d56b3b454f7bec32a170ac99)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 
94 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
95 
96 #define PTR_HASH(c, k)							\
97 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
98 
99 #define insert_lock(s, b)	((b)->level <= (s)->lock)
100 
101 /*
102  * These macros are for recursing down the btree - they handle the details of
103  * locking and looking up nodes in the cache for you. They're best treated as
104  * mere syntax when reading code that uses them.
105  *
106  * op->lock determines whether we take a read or a write lock at a given depth.
107  * If you've got a read lock and find that you need a write lock (i.e. you're
108  * going to have to split), set op->lock and return -EINTR; btree_root() will
109  * call you again and you'll have the correct lock.
110  */
111 
112 /**
113  * btree - recurse down the btree on a specified key
114  * @fn:		function to call, which will be passed the child node
115  * @key:	key to recurse on
116  * @b:		parent btree node
117  * @op:		pointer to struct btree_op
118  */
119 #define btree(fn, key, b, op, ...)					\
120 ({									\
121 	int _r, l = (b)->level - 1;					\
122 	bool _w = l <= (op)->lock;					\
123 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
124 						  _w, b);		\
125 	if (!IS_ERR(_child)) {						\
126 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
127 		rw_unlock(_w, _child);					\
128 	} else								\
129 		_r = PTR_ERR(_child);					\
130 	_r;								\
131 })
132 
133 /**
134  * btree_root - call a function on the root of the btree
135  * @fn:		function to call, which will be passed the child node
136  * @c:		cache set
137  * @op:		pointer to struct btree_op
138  */
139 #define btree_root(fn, c, op, ...)					\
140 ({									\
141 	int _r = -EINTR;						\
142 	do {								\
143 		struct btree *_b = (c)->root;				\
144 		bool _w = insert_lock(op, _b);				\
145 		rw_lock(_w, _b, _b->level);				\
146 		if (_b == (c)->root &&					\
147 		    _w == insert_lock(op, _b)) {			\
148 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
149 		}							\
150 		rw_unlock(_w, _b);					\
151 		bch_cannibalize_unlock(c);				\
152 		if (_r == -EINTR)					\
153 			schedule();					\
154 	} while (_r == -EINTR);						\
155 									\
156 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
157 	_r;								\
158 })
159 
160 static inline struct bset *write_block(struct btree *b)
161 {
162 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
163 }
164 
165 static void bch_btree_init_next(struct btree *b)
166 {
167 	/* If not a leaf node, always sort */
168 	if (b->level && b->keys.nsets)
169 		bch_btree_sort(&b->keys, &b->c->sort);
170 	else
171 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
172 
173 	if (b->written < btree_blocks(b))
174 		bch_bset_init_next(&b->keys, write_block(b),
175 				   bset_magic(&b->c->sb));
176 
177 }
178 
179 /* Btree key manipulation */
180 
181 void bkey_put(struct cache_set *c, struct bkey *k)
182 {
183 	unsigned i;
184 
185 	for (i = 0; i < KEY_PTRS(k); i++)
186 		if (ptr_available(c, k, i))
187 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
188 }
189 
190 /* Btree IO */
191 
192 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
193 {
194 	uint64_t crc = b->key.ptr[0];
195 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
196 
197 	crc = bch_crc64_update(crc, data, end - data);
198 	return crc ^ 0xffffffffffffffffULL;
199 }
200 
201 void bch_btree_node_read_done(struct btree *b)
202 {
203 	const char *err = "bad btree header";
204 	struct bset *i = btree_bset_first(b);
205 	struct btree_iter *iter;
206 
207 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
208 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
209 	iter->used = 0;
210 
211 #ifdef CONFIG_BCACHE_DEBUG
212 	iter->b = &b->keys;
213 #endif
214 
215 	if (!i->seq)
216 		goto err;
217 
218 	for (;
219 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
220 	     i = write_block(b)) {
221 		err = "unsupported bset version";
222 		if (i->version > BCACHE_BSET_VERSION)
223 			goto err;
224 
225 		err = "bad btree header";
226 		if (b->written + set_blocks(i, block_bytes(b->c)) >
227 		    btree_blocks(b))
228 			goto err;
229 
230 		err = "bad magic";
231 		if (i->magic != bset_magic(&b->c->sb))
232 			goto err;
233 
234 		err = "bad checksum";
235 		switch (i->version) {
236 		case 0:
237 			if (i->csum != csum_set(i))
238 				goto err;
239 			break;
240 		case BCACHE_BSET_VERSION:
241 			if (i->csum != btree_csum_set(b, i))
242 				goto err;
243 			break;
244 		}
245 
246 		err = "empty set";
247 		if (i != b->keys.set[0].data && !i->keys)
248 			goto err;
249 
250 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
251 
252 		b->written += set_blocks(i, block_bytes(b->c));
253 	}
254 
255 	err = "corrupted btree";
256 	for (i = write_block(b);
257 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
258 	     i = ((void *) i) + block_bytes(b->c))
259 		if (i->seq == b->keys.set[0].data->seq)
260 			goto err;
261 
262 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
263 
264 	i = b->keys.set[0].data;
265 	err = "short btree key";
266 	if (b->keys.set[0].size &&
267 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
268 		goto err;
269 
270 	if (b->written < btree_blocks(b))
271 		bch_bset_init_next(&b->keys, write_block(b),
272 				   bset_magic(&b->c->sb));
273 out:
274 	mempool_free(iter, &b->c->fill_iter);
275 	return;
276 err:
277 	set_btree_node_io_error(b);
278 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
279 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
280 			    bset_block_offset(b, i), i->keys);
281 	goto out;
282 }
283 
284 static void btree_node_read_endio(struct bio *bio)
285 {
286 	struct closure *cl = bio->bi_private;
287 	closure_put(cl);
288 }
289 
290 static void bch_btree_node_read(struct btree *b)
291 {
292 	uint64_t start_time = local_clock();
293 	struct closure cl;
294 	struct bio *bio;
295 
296 	trace_bcache_btree_read(b);
297 
298 	closure_init_stack(&cl);
299 
300 	bio = bch_bbio_alloc(b->c);
301 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
302 	bio->bi_end_io	= btree_node_read_endio;
303 	bio->bi_private	= &cl;
304 	bio->bi_opf = REQ_OP_READ | REQ_META;
305 
306 	bch_bio_map(bio, b->keys.set[0].data);
307 
308 	bch_submit_bbio(bio, b->c, &b->key, 0);
309 	closure_sync(&cl);
310 
311 	if (bio->bi_status)
312 		set_btree_node_io_error(b);
313 
314 	bch_bbio_free(bio, b->c);
315 
316 	if (btree_node_io_error(b))
317 		goto err;
318 
319 	bch_btree_node_read_done(b);
320 	bch_time_stats_update(&b->c->btree_read_time, start_time);
321 
322 	return;
323 err:
324 	bch_cache_set_error(b->c, "io error reading bucket %zu",
325 			    PTR_BUCKET_NR(b->c, &b->key, 0));
326 }
327 
328 static void btree_complete_write(struct btree *b, struct btree_write *w)
329 {
330 	if (w->prio_blocked &&
331 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
332 		wake_up_allocators(b->c);
333 
334 	if (w->journal) {
335 		atomic_dec_bug(w->journal);
336 		__closure_wake_up(&b->c->journal.wait);
337 	}
338 
339 	w->prio_blocked	= 0;
340 	w->journal	= NULL;
341 }
342 
343 static void btree_node_write_unlock(struct closure *cl)
344 {
345 	struct btree *b = container_of(cl, struct btree, io);
346 
347 	up(&b->io_mutex);
348 }
349 
350 static void __btree_node_write_done(struct closure *cl)
351 {
352 	struct btree *b = container_of(cl, struct btree, io);
353 	struct btree_write *w = btree_prev_write(b);
354 
355 	bch_bbio_free(b->bio, b->c);
356 	b->bio = NULL;
357 	btree_complete_write(b, w);
358 
359 	if (btree_node_dirty(b))
360 		schedule_delayed_work(&b->work, 30 * HZ);
361 
362 	closure_return_with_destructor(cl, btree_node_write_unlock);
363 }
364 
365 static void btree_node_write_done(struct closure *cl)
366 {
367 	struct btree *b = container_of(cl, struct btree, io);
368 
369 	bio_free_pages(b->bio);
370 	__btree_node_write_done(cl);
371 }
372 
373 static void btree_node_write_endio(struct bio *bio)
374 {
375 	struct closure *cl = bio->bi_private;
376 	struct btree *b = container_of(cl, struct btree, io);
377 
378 	if (bio->bi_status)
379 		set_btree_node_io_error(b);
380 
381 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
382 	closure_put(cl);
383 }
384 
385 static void do_btree_node_write(struct btree *b)
386 {
387 	struct closure *cl = &b->io;
388 	struct bset *i = btree_bset_last(b);
389 	BKEY_PADDED(key) k;
390 
391 	i->version	= BCACHE_BSET_VERSION;
392 	i->csum		= btree_csum_set(b, i);
393 
394 	BUG_ON(b->bio);
395 	b->bio = bch_bbio_alloc(b->c);
396 
397 	b->bio->bi_end_io	= btree_node_write_endio;
398 	b->bio->bi_private	= cl;
399 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
400 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
401 	bch_bio_map(b->bio, i);
402 
403 	/*
404 	 * If we're appending to a leaf node, we don't technically need FUA -
405 	 * this write just needs to be persisted before the next journal write,
406 	 * which will be marked FLUSH|FUA.
407 	 *
408 	 * Similarly if we're writing a new btree root - the pointer is going to
409 	 * be in the next journal entry.
410 	 *
411 	 * But if we're writing a new btree node (that isn't a root) or
412 	 * appending to a non leaf btree node, we need either FUA or a flush
413 	 * when we write the parent with the new pointer. FUA is cheaper than a
414 	 * flush, and writes appending to leaf nodes aren't blocking anything so
415 	 * just make all btree node writes FUA to keep things sane.
416 	 */
417 
418 	bkey_copy(&k.key, &b->key);
419 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
420 		       bset_sector_offset(&b->keys, i));
421 
422 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
423 		int j;
424 		struct bio_vec *bv;
425 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
426 
427 		bio_for_each_segment_all(bv, b->bio, j)
428 			memcpy(page_address(bv->bv_page),
429 			       base + j * PAGE_SIZE, PAGE_SIZE);
430 
431 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
432 
433 		continue_at(cl, btree_node_write_done, NULL);
434 	} else {
435 		/* No problem for multipage bvec since the bio is just allocated */
436 		b->bio->bi_vcnt = 0;
437 		bch_bio_map(b->bio, i);
438 
439 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
440 
441 		closure_sync(cl);
442 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
443 	}
444 }
445 
446 void __bch_btree_node_write(struct btree *b, struct closure *parent)
447 {
448 	struct bset *i = btree_bset_last(b);
449 
450 	lockdep_assert_held(&b->write_lock);
451 
452 	trace_bcache_btree_write(b);
453 
454 	BUG_ON(current->bio_list);
455 	BUG_ON(b->written >= btree_blocks(b));
456 	BUG_ON(b->written && !i->keys);
457 	BUG_ON(btree_bset_first(b)->seq != i->seq);
458 	bch_check_keys(&b->keys, "writing");
459 
460 	cancel_delayed_work(&b->work);
461 
462 	/* If caller isn't waiting for write, parent refcount is cache set */
463 	down(&b->io_mutex);
464 	closure_init(&b->io, parent ?: &b->c->cl);
465 
466 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
467 	change_bit(BTREE_NODE_write_idx, &b->flags);
468 
469 	do_btree_node_write(b);
470 
471 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
472 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
473 
474 	b->written += set_blocks(i, block_bytes(b->c));
475 }
476 
477 void bch_btree_node_write(struct btree *b, struct closure *parent)
478 {
479 	unsigned nsets = b->keys.nsets;
480 
481 	lockdep_assert_held(&b->lock);
482 
483 	__bch_btree_node_write(b, parent);
484 
485 	/*
486 	 * do verify if there was more than one set initially (i.e. we did a
487 	 * sort) and we sorted down to a single set:
488 	 */
489 	if (nsets && !b->keys.nsets)
490 		bch_btree_verify(b);
491 
492 	bch_btree_init_next(b);
493 }
494 
495 static void bch_btree_node_write_sync(struct btree *b)
496 {
497 	struct closure cl;
498 
499 	closure_init_stack(&cl);
500 
501 	mutex_lock(&b->write_lock);
502 	bch_btree_node_write(b, &cl);
503 	mutex_unlock(&b->write_lock);
504 
505 	closure_sync(&cl);
506 }
507 
508 static void btree_node_write_work(struct work_struct *w)
509 {
510 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
511 
512 	mutex_lock(&b->write_lock);
513 	if (btree_node_dirty(b))
514 		__bch_btree_node_write(b, NULL);
515 	mutex_unlock(&b->write_lock);
516 }
517 
518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
519 {
520 	struct bset *i = btree_bset_last(b);
521 	struct btree_write *w = btree_current_write(b);
522 
523 	lockdep_assert_held(&b->write_lock);
524 
525 	BUG_ON(!b->written);
526 	BUG_ON(!i->keys);
527 
528 	if (!btree_node_dirty(b))
529 		schedule_delayed_work(&b->work, 30 * HZ);
530 
531 	set_btree_node_dirty(b);
532 
533 	if (journal_ref) {
534 		if (w->journal &&
535 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
536 			atomic_dec_bug(w->journal);
537 			w->journal = NULL;
538 		}
539 
540 		if (!w->journal) {
541 			w->journal = journal_ref;
542 			atomic_inc(w->journal);
543 		}
544 	}
545 
546 	/* Force write if set is too big */
547 	if (set_bytes(i) > PAGE_SIZE - 48 &&
548 	    !current->bio_list)
549 		bch_btree_node_write(b, NULL);
550 }
551 
552 /*
553  * Btree in memory cache - allocation/freeing
554  * mca -> memory cache
555  */
556 
557 #define mca_reserve(c)	(((c->root && c->root->level)		\
558 			  ? c->root->level : 1) * 8 + 16)
559 #define mca_can_free(c)						\
560 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
561 
562 static void mca_data_free(struct btree *b)
563 {
564 	BUG_ON(b->io_mutex.count != 1);
565 
566 	bch_btree_keys_free(&b->keys);
567 
568 	b->c->btree_cache_used--;
569 	list_move(&b->list, &b->c->btree_cache_freed);
570 }
571 
572 static void mca_bucket_free(struct btree *b)
573 {
574 	BUG_ON(btree_node_dirty(b));
575 
576 	b->key.ptr[0] = 0;
577 	hlist_del_init_rcu(&b->hash);
578 	list_move(&b->list, &b->c->btree_cache_freeable);
579 }
580 
581 static unsigned btree_order(struct bkey *k)
582 {
583 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
584 }
585 
586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
587 {
588 	if (!bch_btree_keys_alloc(&b->keys,
589 				  max_t(unsigned,
590 					ilog2(b->c->btree_pages),
591 					btree_order(k)),
592 				  gfp)) {
593 		b->c->btree_cache_used++;
594 		list_move(&b->list, &b->c->btree_cache);
595 	} else {
596 		list_move(&b->list, &b->c->btree_cache_freed);
597 	}
598 }
599 
600 static struct btree *mca_bucket_alloc(struct cache_set *c,
601 				      struct bkey *k, gfp_t gfp)
602 {
603 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
604 	if (!b)
605 		return NULL;
606 
607 	init_rwsem(&b->lock);
608 	lockdep_set_novalidate_class(&b->lock);
609 	mutex_init(&b->write_lock);
610 	lockdep_set_novalidate_class(&b->write_lock);
611 	INIT_LIST_HEAD(&b->list);
612 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
613 	b->c = c;
614 	sema_init(&b->io_mutex, 1);
615 
616 	mca_data_alloc(b, k, gfp);
617 	return b;
618 }
619 
620 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
621 {
622 	struct closure cl;
623 
624 	closure_init_stack(&cl);
625 	lockdep_assert_held(&b->c->bucket_lock);
626 
627 	if (!down_write_trylock(&b->lock))
628 		return -ENOMEM;
629 
630 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
631 
632 	if (b->keys.page_order < min_order)
633 		goto out_unlock;
634 
635 	if (!flush) {
636 		if (btree_node_dirty(b))
637 			goto out_unlock;
638 
639 		if (down_trylock(&b->io_mutex))
640 			goto out_unlock;
641 		up(&b->io_mutex);
642 	}
643 
644 	mutex_lock(&b->write_lock);
645 	if (btree_node_dirty(b))
646 		__bch_btree_node_write(b, &cl);
647 	mutex_unlock(&b->write_lock);
648 
649 	closure_sync(&cl);
650 
651 	/* wait for any in flight btree write */
652 	down(&b->io_mutex);
653 	up(&b->io_mutex);
654 
655 	return 0;
656 out_unlock:
657 	rw_unlock(true, b);
658 	return -ENOMEM;
659 }
660 
661 static unsigned long bch_mca_scan(struct shrinker *shrink,
662 				  struct shrink_control *sc)
663 {
664 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
665 	struct btree *b, *t;
666 	unsigned long i, nr = sc->nr_to_scan;
667 	unsigned long freed = 0;
668 	unsigned int btree_cache_used;
669 
670 	if (c->shrinker_disabled)
671 		return SHRINK_STOP;
672 
673 	if (c->btree_cache_alloc_lock)
674 		return SHRINK_STOP;
675 
676 	/* Return -1 if we can't do anything right now */
677 	if (sc->gfp_mask & __GFP_IO)
678 		mutex_lock(&c->bucket_lock);
679 	else if (!mutex_trylock(&c->bucket_lock))
680 		return -1;
681 
682 	/*
683 	 * It's _really_ critical that we don't free too many btree nodes - we
684 	 * have to always leave ourselves a reserve. The reserve is how we
685 	 * guarantee that allocating memory for a new btree node can always
686 	 * succeed, so that inserting keys into the btree can always succeed and
687 	 * IO can always make forward progress:
688 	 */
689 	nr /= c->btree_pages;
690 	nr = min_t(unsigned long, nr, mca_can_free(c));
691 
692 	i = 0;
693 	btree_cache_used = c->btree_cache_used;
694 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
695 		if (nr <= 0)
696 			goto out;
697 
698 		if (++i > 3 &&
699 		    !mca_reap(b, 0, false)) {
700 			mca_data_free(b);
701 			rw_unlock(true, b);
702 			freed++;
703 		}
704 		nr--;
705 	}
706 
707 	for (;  (nr--) && i < btree_cache_used; i++) {
708 		if (list_empty(&c->btree_cache))
709 			goto out;
710 
711 		b = list_first_entry(&c->btree_cache, struct btree, list);
712 		list_rotate_left(&c->btree_cache);
713 
714 		if (!b->accessed &&
715 		    !mca_reap(b, 0, false)) {
716 			mca_bucket_free(b);
717 			mca_data_free(b);
718 			rw_unlock(true, b);
719 			freed++;
720 		} else
721 			b->accessed = 0;
722 	}
723 out:
724 	mutex_unlock(&c->bucket_lock);
725 	return freed * c->btree_pages;
726 }
727 
728 static unsigned long bch_mca_count(struct shrinker *shrink,
729 				   struct shrink_control *sc)
730 {
731 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
732 
733 	if (c->shrinker_disabled)
734 		return 0;
735 
736 	if (c->btree_cache_alloc_lock)
737 		return 0;
738 
739 	return mca_can_free(c) * c->btree_pages;
740 }
741 
742 void bch_btree_cache_free(struct cache_set *c)
743 {
744 	struct btree *b;
745 	struct closure cl;
746 	closure_init_stack(&cl);
747 
748 	if (c->shrink.list.next)
749 		unregister_shrinker(&c->shrink);
750 
751 	mutex_lock(&c->bucket_lock);
752 
753 #ifdef CONFIG_BCACHE_DEBUG
754 	if (c->verify_data)
755 		list_move(&c->verify_data->list, &c->btree_cache);
756 
757 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
758 #endif
759 
760 	list_splice(&c->btree_cache_freeable,
761 		    &c->btree_cache);
762 
763 	while (!list_empty(&c->btree_cache)) {
764 		b = list_first_entry(&c->btree_cache, struct btree, list);
765 
766 		if (btree_node_dirty(b))
767 			btree_complete_write(b, btree_current_write(b));
768 		clear_bit(BTREE_NODE_dirty, &b->flags);
769 
770 		mca_data_free(b);
771 	}
772 
773 	while (!list_empty(&c->btree_cache_freed)) {
774 		b = list_first_entry(&c->btree_cache_freed,
775 				     struct btree, list);
776 		list_del(&b->list);
777 		cancel_delayed_work_sync(&b->work);
778 		kfree(b);
779 	}
780 
781 	mutex_unlock(&c->bucket_lock);
782 }
783 
784 int bch_btree_cache_alloc(struct cache_set *c)
785 {
786 	unsigned i;
787 
788 	for (i = 0; i < mca_reserve(c); i++)
789 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
790 			return -ENOMEM;
791 
792 	list_splice_init(&c->btree_cache,
793 			 &c->btree_cache_freeable);
794 
795 #ifdef CONFIG_BCACHE_DEBUG
796 	mutex_init(&c->verify_lock);
797 
798 	c->verify_ondisk = (void *)
799 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
800 
801 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
802 
803 	if (c->verify_data &&
804 	    c->verify_data->keys.set->data)
805 		list_del_init(&c->verify_data->list);
806 	else
807 		c->verify_data = NULL;
808 #endif
809 
810 	c->shrink.count_objects = bch_mca_count;
811 	c->shrink.scan_objects = bch_mca_scan;
812 	c->shrink.seeks = 4;
813 	c->shrink.batch = c->btree_pages * 2;
814 
815 	if (register_shrinker(&c->shrink))
816 		pr_warn("bcache: %s: could not register shrinker",
817 				__func__);
818 
819 	return 0;
820 }
821 
822 /* Btree in memory cache - hash table */
823 
824 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
825 {
826 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
827 }
828 
829 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
830 {
831 	struct btree *b;
832 
833 	rcu_read_lock();
834 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
835 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
836 			goto out;
837 	b = NULL;
838 out:
839 	rcu_read_unlock();
840 	return b;
841 }
842 
843 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
844 {
845 	struct task_struct *old;
846 
847 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
848 	if (old && old != current) {
849 		if (op)
850 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
851 					TASK_UNINTERRUPTIBLE);
852 		return -EINTR;
853 	}
854 
855 	return 0;
856 }
857 
858 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
859 				     struct bkey *k)
860 {
861 	struct btree *b;
862 
863 	trace_bcache_btree_cache_cannibalize(c);
864 
865 	if (mca_cannibalize_lock(c, op))
866 		return ERR_PTR(-EINTR);
867 
868 	list_for_each_entry_reverse(b, &c->btree_cache, list)
869 		if (!mca_reap(b, btree_order(k), false))
870 			return b;
871 
872 	list_for_each_entry_reverse(b, &c->btree_cache, list)
873 		if (!mca_reap(b, btree_order(k), true))
874 			return b;
875 
876 	WARN(1, "btree cache cannibalize failed\n");
877 	return ERR_PTR(-ENOMEM);
878 }
879 
880 /*
881  * We can only have one thread cannibalizing other cached btree nodes at a time,
882  * or we'll deadlock. We use an open coded mutex to ensure that, which a
883  * cannibalize_bucket() will take. This means every time we unlock the root of
884  * the btree, we need to release this lock if we have it held.
885  */
886 static void bch_cannibalize_unlock(struct cache_set *c)
887 {
888 	if (c->btree_cache_alloc_lock == current) {
889 		c->btree_cache_alloc_lock = NULL;
890 		wake_up(&c->btree_cache_wait);
891 	}
892 }
893 
894 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
895 			       struct bkey *k, int level)
896 {
897 	struct btree *b;
898 
899 	BUG_ON(current->bio_list);
900 
901 	lockdep_assert_held(&c->bucket_lock);
902 
903 	if (mca_find(c, k))
904 		return NULL;
905 
906 	/* btree_free() doesn't free memory; it sticks the node on the end of
907 	 * the list. Check if there's any freed nodes there:
908 	 */
909 	list_for_each_entry(b, &c->btree_cache_freeable, list)
910 		if (!mca_reap(b, btree_order(k), false))
911 			goto out;
912 
913 	/* We never free struct btree itself, just the memory that holds the on
914 	 * disk node. Check the freed list before allocating a new one:
915 	 */
916 	list_for_each_entry(b, &c->btree_cache_freed, list)
917 		if (!mca_reap(b, 0, false)) {
918 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
919 			if (!b->keys.set[0].data)
920 				goto err;
921 			else
922 				goto out;
923 		}
924 
925 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
926 	if (!b)
927 		goto err;
928 
929 	BUG_ON(!down_write_trylock(&b->lock));
930 	if (!b->keys.set->data)
931 		goto err;
932 out:
933 	BUG_ON(b->io_mutex.count != 1);
934 
935 	bkey_copy(&b->key, k);
936 	list_move(&b->list, &c->btree_cache);
937 	hlist_del_init_rcu(&b->hash);
938 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
939 
940 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
941 	b->parent	= (void *) ~0UL;
942 	b->flags	= 0;
943 	b->written	= 0;
944 	b->level	= level;
945 
946 	if (!b->level)
947 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
948 				    &b->c->expensive_debug_checks);
949 	else
950 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
951 				    &b->c->expensive_debug_checks);
952 
953 	return b;
954 err:
955 	if (b)
956 		rw_unlock(true, b);
957 
958 	b = mca_cannibalize(c, op, k);
959 	if (!IS_ERR(b))
960 		goto out;
961 
962 	return b;
963 }
964 
965 /*
966  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
967  * in from disk if necessary.
968  *
969  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
970  *
971  * The btree node will have either a read or a write lock held, depending on
972  * level and op->lock.
973  */
974 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
975 				 struct bkey *k, int level, bool write,
976 				 struct btree *parent)
977 {
978 	int i = 0;
979 	struct btree *b;
980 
981 	BUG_ON(level < 0);
982 retry:
983 	b = mca_find(c, k);
984 
985 	if (!b) {
986 		if (current->bio_list)
987 			return ERR_PTR(-EAGAIN);
988 
989 		mutex_lock(&c->bucket_lock);
990 		b = mca_alloc(c, op, k, level);
991 		mutex_unlock(&c->bucket_lock);
992 
993 		if (!b)
994 			goto retry;
995 		if (IS_ERR(b))
996 			return b;
997 
998 		bch_btree_node_read(b);
999 
1000 		if (!write)
1001 			downgrade_write(&b->lock);
1002 	} else {
1003 		rw_lock(write, b, level);
1004 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1005 			rw_unlock(write, b);
1006 			goto retry;
1007 		}
1008 		BUG_ON(b->level != level);
1009 	}
1010 
1011 	b->parent = parent;
1012 	b->accessed = 1;
1013 
1014 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1015 		prefetch(b->keys.set[i].tree);
1016 		prefetch(b->keys.set[i].data);
1017 	}
1018 
1019 	for (; i <= b->keys.nsets; i++)
1020 		prefetch(b->keys.set[i].data);
1021 
1022 	if (btree_node_io_error(b)) {
1023 		rw_unlock(write, b);
1024 		return ERR_PTR(-EIO);
1025 	}
1026 
1027 	BUG_ON(!b->written);
1028 
1029 	return b;
1030 }
1031 
1032 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1033 {
1034 	struct btree *b;
1035 
1036 	mutex_lock(&parent->c->bucket_lock);
1037 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1038 	mutex_unlock(&parent->c->bucket_lock);
1039 
1040 	if (!IS_ERR_OR_NULL(b)) {
1041 		b->parent = parent;
1042 		bch_btree_node_read(b);
1043 		rw_unlock(true, b);
1044 	}
1045 }
1046 
1047 /* Btree alloc */
1048 
1049 static void btree_node_free(struct btree *b)
1050 {
1051 	trace_bcache_btree_node_free(b);
1052 
1053 	BUG_ON(b == b->c->root);
1054 
1055 	mutex_lock(&b->write_lock);
1056 
1057 	if (btree_node_dirty(b))
1058 		btree_complete_write(b, btree_current_write(b));
1059 	clear_bit(BTREE_NODE_dirty, &b->flags);
1060 
1061 	mutex_unlock(&b->write_lock);
1062 
1063 	cancel_delayed_work(&b->work);
1064 
1065 	mutex_lock(&b->c->bucket_lock);
1066 	bch_bucket_free(b->c, &b->key);
1067 	mca_bucket_free(b);
1068 	mutex_unlock(&b->c->bucket_lock);
1069 }
1070 
1071 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1072 				     int level, bool wait,
1073 				     struct btree *parent)
1074 {
1075 	BKEY_PADDED(key) k;
1076 	struct btree *b = ERR_PTR(-EAGAIN);
1077 
1078 	mutex_lock(&c->bucket_lock);
1079 retry:
1080 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1081 		goto err;
1082 
1083 	bkey_put(c, &k.key);
1084 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1085 
1086 	b = mca_alloc(c, op, &k.key, level);
1087 	if (IS_ERR(b))
1088 		goto err_free;
1089 
1090 	if (!b) {
1091 		cache_bug(c,
1092 			"Tried to allocate bucket that was in btree cache");
1093 		goto retry;
1094 	}
1095 
1096 	b->accessed = 1;
1097 	b->parent = parent;
1098 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1099 
1100 	mutex_unlock(&c->bucket_lock);
1101 
1102 	trace_bcache_btree_node_alloc(b);
1103 	return b;
1104 err_free:
1105 	bch_bucket_free(c, &k.key);
1106 err:
1107 	mutex_unlock(&c->bucket_lock);
1108 
1109 	trace_bcache_btree_node_alloc_fail(c);
1110 	return b;
1111 }
1112 
1113 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1114 					  struct btree_op *op, int level,
1115 					  struct btree *parent)
1116 {
1117 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1118 }
1119 
1120 static struct btree *btree_node_alloc_replacement(struct btree *b,
1121 						  struct btree_op *op)
1122 {
1123 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1124 	if (!IS_ERR_OR_NULL(n)) {
1125 		mutex_lock(&n->write_lock);
1126 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1127 		bkey_copy_key(&n->key, &b->key);
1128 		mutex_unlock(&n->write_lock);
1129 	}
1130 
1131 	return n;
1132 }
1133 
1134 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1135 {
1136 	unsigned i;
1137 
1138 	mutex_lock(&b->c->bucket_lock);
1139 
1140 	atomic_inc(&b->c->prio_blocked);
1141 
1142 	bkey_copy(k, &b->key);
1143 	bkey_copy_key(k, &ZERO_KEY);
1144 
1145 	for (i = 0; i < KEY_PTRS(k); i++)
1146 		SET_PTR_GEN(k, i,
1147 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1148 					PTR_BUCKET(b->c, &b->key, i)));
1149 
1150 	mutex_unlock(&b->c->bucket_lock);
1151 }
1152 
1153 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1154 {
1155 	struct cache_set *c = b->c;
1156 	struct cache *ca;
1157 	unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1158 
1159 	mutex_lock(&c->bucket_lock);
1160 
1161 	for_each_cache(ca, c, i)
1162 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1163 			if (op)
1164 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1165 						TASK_UNINTERRUPTIBLE);
1166 			mutex_unlock(&c->bucket_lock);
1167 			return -EINTR;
1168 		}
1169 
1170 	mutex_unlock(&c->bucket_lock);
1171 
1172 	return mca_cannibalize_lock(b->c, op);
1173 }
1174 
1175 /* Garbage collection */
1176 
1177 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1178 				    struct bkey *k)
1179 {
1180 	uint8_t stale = 0;
1181 	unsigned i;
1182 	struct bucket *g;
1183 
1184 	/*
1185 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1186 	 * freed, but since ptr_bad() returns true we'll never actually use them
1187 	 * for anything and thus we don't want mark their pointers here
1188 	 */
1189 	if (!bkey_cmp(k, &ZERO_KEY))
1190 		return stale;
1191 
1192 	for (i = 0; i < KEY_PTRS(k); i++) {
1193 		if (!ptr_available(c, k, i))
1194 			continue;
1195 
1196 		g = PTR_BUCKET(c, k, i);
1197 
1198 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1199 			g->last_gc = PTR_GEN(k, i);
1200 
1201 		if (ptr_stale(c, k, i)) {
1202 			stale = max(stale, ptr_stale(c, k, i));
1203 			continue;
1204 		}
1205 
1206 		cache_bug_on(GC_MARK(g) &&
1207 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1208 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1209 			     GC_MARK(g), level);
1210 
1211 		if (level)
1212 			SET_GC_MARK(g, GC_MARK_METADATA);
1213 		else if (KEY_DIRTY(k))
1214 			SET_GC_MARK(g, GC_MARK_DIRTY);
1215 		else if (!GC_MARK(g))
1216 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1217 
1218 		/* guard against overflow */
1219 		SET_GC_SECTORS_USED(g, min_t(unsigned,
1220 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1221 					     MAX_GC_SECTORS_USED));
1222 
1223 		BUG_ON(!GC_SECTORS_USED(g));
1224 	}
1225 
1226 	return stale;
1227 }
1228 
1229 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1230 
1231 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1232 {
1233 	unsigned i;
1234 
1235 	for (i = 0; i < KEY_PTRS(k); i++)
1236 		if (ptr_available(c, k, i) &&
1237 		    !ptr_stale(c, k, i)) {
1238 			struct bucket *b = PTR_BUCKET(c, k, i);
1239 
1240 			b->gen = PTR_GEN(k, i);
1241 
1242 			if (level && bkey_cmp(k, &ZERO_KEY))
1243 				b->prio = BTREE_PRIO;
1244 			else if (!level && b->prio == BTREE_PRIO)
1245 				b->prio = INITIAL_PRIO;
1246 		}
1247 
1248 	__bch_btree_mark_key(c, level, k);
1249 }
1250 
1251 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1252 {
1253 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1254 }
1255 
1256 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1257 {
1258 	uint8_t stale = 0;
1259 	unsigned keys = 0, good_keys = 0;
1260 	struct bkey *k;
1261 	struct btree_iter iter;
1262 	struct bset_tree *t;
1263 
1264 	gc->nodes++;
1265 
1266 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1267 		stale = max(stale, btree_mark_key(b, k));
1268 		keys++;
1269 
1270 		if (bch_ptr_bad(&b->keys, k))
1271 			continue;
1272 
1273 		gc->key_bytes += bkey_u64s(k);
1274 		gc->nkeys++;
1275 		good_keys++;
1276 
1277 		gc->data += KEY_SIZE(k);
1278 	}
1279 
1280 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1281 		btree_bug_on(t->size &&
1282 			     bset_written(&b->keys, t) &&
1283 			     bkey_cmp(&b->key, &t->end) < 0,
1284 			     b, "found short btree key in gc");
1285 
1286 	if (b->c->gc_always_rewrite)
1287 		return true;
1288 
1289 	if (stale > 10)
1290 		return true;
1291 
1292 	if ((keys - good_keys) * 2 > keys)
1293 		return true;
1294 
1295 	return false;
1296 }
1297 
1298 #define GC_MERGE_NODES	4U
1299 
1300 struct gc_merge_info {
1301 	struct btree	*b;
1302 	unsigned	keys;
1303 };
1304 
1305 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1306 				 struct keylist *, atomic_t *, struct bkey *);
1307 
1308 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1309 			     struct gc_stat *gc, struct gc_merge_info *r)
1310 {
1311 	unsigned i, nodes = 0, keys = 0, blocks;
1312 	struct btree *new_nodes[GC_MERGE_NODES];
1313 	struct keylist keylist;
1314 	struct closure cl;
1315 	struct bkey *k;
1316 
1317 	bch_keylist_init(&keylist);
1318 
1319 	if (btree_check_reserve(b, NULL))
1320 		return 0;
1321 
1322 	memset(new_nodes, 0, sizeof(new_nodes));
1323 	closure_init_stack(&cl);
1324 
1325 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1326 		keys += r[nodes++].keys;
1327 
1328 	blocks = btree_default_blocks(b->c) * 2 / 3;
1329 
1330 	if (nodes < 2 ||
1331 	    __set_blocks(b->keys.set[0].data, keys,
1332 			 block_bytes(b->c)) > blocks * (nodes - 1))
1333 		return 0;
1334 
1335 	for (i = 0; i < nodes; i++) {
1336 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1337 		if (IS_ERR_OR_NULL(new_nodes[i]))
1338 			goto out_nocoalesce;
1339 	}
1340 
1341 	/*
1342 	 * We have to check the reserve here, after we've allocated our new
1343 	 * nodes, to make sure the insert below will succeed - we also check
1344 	 * before as an optimization to potentially avoid a bunch of expensive
1345 	 * allocs/sorts
1346 	 */
1347 	if (btree_check_reserve(b, NULL))
1348 		goto out_nocoalesce;
1349 
1350 	for (i = 0; i < nodes; i++)
1351 		mutex_lock(&new_nodes[i]->write_lock);
1352 
1353 	for (i = nodes - 1; i > 0; --i) {
1354 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1355 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1356 		struct bkey *k, *last = NULL;
1357 
1358 		keys = 0;
1359 
1360 		if (i > 1) {
1361 			for (k = n2->start;
1362 			     k < bset_bkey_last(n2);
1363 			     k = bkey_next(k)) {
1364 				if (__set_blocks(n1, n1->keys + keys +
1365 						 bkey_u64s(k),
1366 						 block_bytes(b->c)) > blocks)
1367 					break;
1368 
1369 				last = k;
1370 				keys += bkey_u64s(k);
1371 			}
1372 		} else {
1373 			/*
1374 			 * Last node we're not getting rid of - we're getting
1375 			 * rid of the node at r[0]. Have to try and fit all of
1376 			 * the remaining keys into this node; we can't ensure
1377 			 * they will always fit due to rounding and variable
1378 			 * length keys (shouldn't be possible in practice,
1379 			 * though)
1380 			 */
1381 			if (__set_blocks(n1, n1->keys + n2->keys,
1382 					 block_bytes(b->c)) >
1383 			    btree_blocks(new_nodes[i]))
1384 				goto out_nocoalesce;
1385 
1386 			keys = n2->keys;
1387 			/* Take the key of the node we're getting rid of */
1388 			last = &r->b->key;
1389 		}
1390 
1391 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1392 		       btree_blocks(new_nodes[i]));
1393 
1394 		if (last)
1395 			bkey_copy_key(&new_nodes[i]->key, last);
1396 
1397 		memcpy(bset_bkey_last(n1),
1398 		       n2->start,
1399 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1400 
1401 		n1->keys += keys;
1402 		r[i].keys = n1->keys;
1403 
1404 		memmove(n2->start,
1405 			bset_bkey_idx(n2, keys),
1406 			(void *) bset_bkey_last(n2) -
1407 			(void *) bset_bkey_idx(n2, keys));
1408 
1409 		n2->keys -= keys;
1410 
1411 		if (__bch_keylist_realloc(&keylist,
1412 					  bkey_u64s(&new_nodes[i]->key)))
1413 			goto out_nocoalesce;
1414 
1415 		bch_btree_node_write(new_nodes[i], &cl);
1416 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1417 	}
1418 
1419 	for (i = 0; i < nodes; i++)
1420 		mutex_unlock(&new_nodes[i]->write_lock);
1421 
1422 	closure_sync(&cl);
1423 
1424 	/* We emptied out this node */
1425 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1426 	btree_node_free(new_nodes[0]);
1427 	rw_unlock(true, new_nodes[0]);
1428 	new_nodes[0] = NULL;
1429 
1430 	for (i = 0; i < nodes; i++) {
1431 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1432 			goto out_nocoalesce;
1433 
1434 		make_btree_freeing_key(r[i].b, keylist.top);
1435 		bch_keylist_push(&keylist);
1436 	}
1437 
1438 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1439 	BUG_ON(!bch_keylist_empty(&keylist));
1440 
1441 	for (i = 0; i < nodes; i++) {
1442 		btree_node_free(r[i].b);
1443 		rw_unlock(true, r[i].b);
1444 
1445 		r[i].b = new_nodes[i];
1446 	}
1447 
1448 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1449 	r[nodes - 1].b = ERR_PTR(-EINTR);
1450 
1451 	trace_bcache_btree_gc_coalesce(nodes);
1452 	gc->nodes--;
1453 
1454 	bch_keylist_free(&keylist);
1455 
1456 	/* Invalidated our iterator */
1457 	return -EINTR;
1458 
1459 out_nocoalesce:
1460 	closure_sync(&cl);
1461 	bch_keylist_free(&keylist);
1462 
1463 	while ((k = bch_keylist_pop(&keylist)))
1464 		if (!bkey_cmp(k, &ZERO_KEY))
1465 			atomic_dec(&b->c->prio_blocked);
1466 
1467 	for (i = 0; i < nodes; i++)
1468 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1469 			btree_node_free(new_nodes[i]);
1470 			rw_unlock(true, new_nodes[i]);
1471 		}
1472 	return 0;
1473 }
1474 
1475 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1476 				 struct btree *replace)
1477 {
1478 	struct keylist keys;
1479 	struct btree *n;
1480 
1481 	if (btree_check_reserve(b, NULL))
1482 		return 0;
1483 
1484 	n = btree_node_alloc_replacement(replace, NULL);
1485 
1486 	/* recheck reserve after allocating replacement node */
1487 	if (btree_check_reserve(b, NULL)) {
1488 		btree_node_free(n);
1489 		rw_unlock(true, n);
1490 		return 0;
1491 	}
1492 
1493 	bch_btree_node_write_sync(n);
1494 
1495 	bch_keylist_init(&keys);
1496 	bch_keylist_add(&keys, &n->key);
1497 
1498 	make_btree_freeing_key(replace, keys.top);
1499 	bch_keylist_push(&keys);
1500 
1501 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1502 	BUG_ON(!bch_keylist_empty(&keys));
1503 
1504 	btree_node_free(replace);
1505 	rw_unlock(true, n);
1506 
1507 	/* Invalidated our iterator */
1508 	return -EINTR;
1509 }
1510 
1511 static unsigned btree_gc_count_keys(struct btree *b)
1512 {
1513 	struct bkey *k;
1514 	struct btree_iter iter;
1515 	unsigned ret = 0;
1516 
1517 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1518 		ret += bkey_u64s(k);
1519 
1520 	return ret;
1521 }
1522 
1523 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1524 			    struct closure *writes, struct gc_stat *gc)
1525 {
1526 	int ret = 0;
1527 	bool should_rewrite;
1528 	struct bkey *k;
1529 	struct btree_iter iter;
1530 	struct gc_merge_info r[GC_MERGE_NODES];
1531 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1532 
1533 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1534 
1535 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1536 		i->b = ERR_PTR(-EINTR);
1537 
1538 	while (1) {
1539 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1540 		if (k) {
1541 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1542 						  true, b);
1543 			if (IS_ERR(r->b)) {
1544 				ret = PTR_ERR(r->b);
1545 				break;
1546 			}
1547 
1548 			r->keys = btree_gc_count_keys(r->b);
1549 
1550 			ret = btree_gc_coalesce(b, op, gc, r);
1551 			if (ret)
1552 				break;
1553 		}
1554 
1555 		if (!last->b)
1556 			break;
1557 
1558 		if (!IS_ERR(last->b)) {
1559 			should_rewrite = btree_gc_mark_node(last->b, gc);
1560 			if (should_rewrite) {
1561 				ret = btree_gc_rewrite_node(b, op, last->b);
1562 				if (ret)
1563 					break;
1564 			}
1565 
1566 			if (last->b->level) {
1567 				ret = btree_gc_recurse(last->b, op, writes, gc);
1568 				if (ret)
1569 					break;
1570 			}
1571 
1572 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1573 
1574 			/*
1575 			 * Must flush leaf nodes before gc ends, since replace
1576 			 * operations aren't journalled
1577 			 */
1578 			mutex_lock(&last->b->write_lock);
1579 			if (btree_node_dirty(last->b))
1580 				bch_btree_node_write(last->b, writes);
1581 			mutex_unlock(&last->b->write_lock);
1582 			rw_unlock(true, last->b);
1583 		}
1584 
1585 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1586 		r->b = NULL;
1587 
1588 		if (need_resched()) {
1589 			ret = -EAGAIN;
1590 			break;
1591 		}
1592 	}
1593 
1594 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1595 		if (!IS_ERR_OR_NULL(i->b)) {
1596 			mutex_lock(&i->b->write_lock);
1597 			if (btree_node_dirty(i->b))
1598 				bch_btree_node_write(i->b, writes);
1599 			mutex_unlock(&i->b->write_lock);
1600 			rw_unlock(true, i->b);
1601 		}
1602 
1603 	return ret;
1604 }
1605 
1606 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1607 			     struct closure *writes, struct gc_stat *gc)
1608 {
1609 	struct btree *n = NULL;
1610 	int ret = 0;
1611 	bool should_rewrite;
1612 
1613 	should_rewrite = btree_gc_mark_node(b, gc);
1614 	if (should_rewrite) {
1615 		n = btree_node_alloc_replacement(b, NULL);
1616 
1617 		if (!IS_ERR_OR_NULL(n)) {
1618 			bch_btree_node_write_sync(n);
1619 
1620 			bch_btree_set_root(n);
1621 			btree_node_free(b);
1622 			rw_unlock(true, n);
1623 
1624 			return -EINTR;
1625 		}
1626 	}
1627 
1628 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1629 
1630 	if (b->level) {
1631 		ret = btree_gc_recurse(b, op, writes, gc);
1632 		if (ret)
1633 			return ret;
1634 	}
1635 
1636 	bkey_copy_key(&b->c->gc_done, &b->key);
1637 
1638 	return ret;
1639 }
1640 
1641 static void btree_gc_start(struct cache_set *c)
1642 {
1643 	struct cache *ca;
1644 	struct bucket *b;
1645 	unsigned i;
1646 
1647 	if (!c->gc_mark_valid)
1648 		return;
1649 
1650 	mutex_lock(&c->bucket_lock);
1651 
1652 	c->gc_mark_valid = 0;
1653 	c->gc_done = ZERO_KEY;
1654 
1655 	for_each_cache(ca, c, i)
1656 		for_each_bucket(b, ca) {
1657 			b->last_gc = b->gen;
1658 			if (!atomic_read(&b->pin)) {
1659 				SET_GC_MARK(b, 0);
1660 				SET_GC_SECTORS_USED(b, 0);
1661 			}
1662 		}
1663 
1664 	mutex_unlock(&c->bucket_lock);
1665 }
1666 
1667 static void bch_btree_gc_finish(struct cache_set *c)
1668 {
1669 	struct bucket *b;
1670 	struct cache *ca;
1671 	unsigned i;
1672 
1673 	mutex_lock(&c->bucket_lock);
1674 
1675 	set_gc_sectors(c);
1676 	c->gc_mark_valid = 1;
1677 	c->need_gc	= 0;
1678 
1679 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1680 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1681 			    GC_MARK_METADATA);
1682 
1683 	/* don't reclaim buckets to which writeback keys point */
1684 	rcu_read_lock();
1685 	for (i = 0; i < c->devices_max_used; i++) {
1686 		struct bcache_device *d = c->devices[i];
1687 		struct cached_dev *dc;
1688 		struct keybuf_key *w, *n;
1689 		unsigned j;
1690 
1691 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1692 			continue;
1693 		dc = container_of(d, struct cached_dev, disk);
1694 
1695 		spin_lock(&dc->writeback_keys.lock);
1696 		rbtree_postorder_for_each_entry_safe(w, n,
1697 					&dc->writeback_keys.keys, node)
1698 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1699 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1700 					    GC_MARK_DIRTY);
1701 		spin_unlock(&dc->writeback_keys.lock);
1702 	}
1703 	rcu_read_unlock();
1704 
1705 	c->avail_nbuckets = 0;
1706 	for_each_cache(ca, c, i) {
1707 		uint64_t *i;
1708 
1709 		ca->invalidate_needs_gc = 0;
1710 
1711 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1712 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1713 
1714 		for (i = ca->prio_buckets;
1715 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1716 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1717 
1718 		for_each_bucket(b, ca) {
1719 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1720 
1721 			if (atomic_read(&b->pin))
1722 				continue;
1723 
1724 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1725 
1726 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1727 				c->avail_nbuckets++;
1728 		}
1729 	}
1730 
1731 	mutex_unlock(&c->bucket_lock);
1732 }
1733 
1734 static void bch_btree_gc(struct cache_set *c)
1735 {
1736 	int ret;
1737 	struct gc_stat stats;
1738 	struct closure writes;
1739 	struct btree_op op;
1740 	uint64_t start_time = local_clock();
1741 
1742 	trace_bcache_gc_start(c);
1743 
1744 	memset(&stats, 0, sizeof(struct gc_stat));
1745 	closure_init_stack(&writes);
1746 	bch_btree_op_init(&op, SHRT_MAX);
1747 
1748 	btree_gc_start(c);
1749 
1750 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1751 	do {
1752 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1753 		closure_sync(&writes);
1754 		cond_resched();
1755 
1756 		if (ret && ret != -EAGAIN)
1757 			pr_warn("gc failed!");
1758 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1759 
1760 	bch_btree_gc_finish(c);
1761 	wake_up_allocators(c);
1762 
1763 	bch_time_stats_update(&c->btree_gc_time, start_time);
1764 
1765 	stats.key_bytes *= sizeof(uint64_t);
1766 	stats.data	<<= 9;
1767 	bch_update_bucket_in_use(c, &stats);
1768 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1769 
1770 	trace_bcache_gc_end(c);
1771 
1772 	bch_moving_gc(c);
1773 }
1774 
1775 static bool gc_should_run(struct cache_set *c)
1776 {
1777 	struct cache *ca;
1778 	unsigned i;
1779 
1780 	for_each_cache(ca, c, i)
1781 		if (ca->invalidate_needs_gc)
1782 			return true;
1783 
1784 	if (atomic_read(&c->sectors_to_gc) < 0)
1785 		return true;
1786 
1787 	return false;
1788 }
1789 
1790 static int bch_gc_thread(void *arg)
1791 {
1792 	struct cache_set *c = arg;
1793 
1794 	while (1) {
1795 		wait_event_interruptible(c->gc_wait,
1796 			   kthread_should_stop() ||
1797 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1798 			   gc_should_run(c));
1799 
1800 		if (kthread_should_stop() ||
1801 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1802 			break;
1803 
1804 		set_gc_sectors(c);
1805 		bch_btree_gc(c);
1806 	}
1807 
1808 	wait_for_kthread_stop();
1809 	return 0;
1810 }
1811 
1812 int bch_gc_thread_start(struct cache_set *c)
1813 {
1814 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1815 	return PTR_ERR_OR_ZERO(c->gc_thread);
1816 }
1817 
1818 /* Initial partial gc */
1819 
1820 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1821 {
1822 	int ret = 0;
1823 	struct bkey *k, *p = NULL;
1824 	struct btree_iter iter;
1825 
1826 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1827 		bch_initial_mark_key(b->c, b->level, k);
1828 
1829 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1830 
1831 	if (b->level) {
1832 		bch_btree_iter_init(&b->keys, &iter, NULL);
1833 
1834 		do {
1835 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1836 						       bch_ptr_bad);
1837 			if (k)
1838 				btree_node_prefetch(b, k);
1839 
1840 			if (p)
1841 				ret = btree(check_recurse, p, b, op);
1842 
1843 			p = k;
1844 		} while (p && !ret);
1845 	}
1846 
1847 	return ret;
1848 }
1849 
1850 int bch_btree_check(struct cache_set *c)
1851 {
1852 	struct btree_op op;
1853 
1854 	bch_btree_op_init(&op, SHRT_MAX);
1855 
1856 	return btree_root(check_recurse, c, &op);
1857 }
1858 
1859 void bch_initial_gc_finish(struct cache_set *c)
1860 {
1861 	struct cache *ca;
1862 	struct bucket *b;
1863 	unsigned i;
1864 
1865 	bch_btree_gc_finish(c);
1866 
1867 	mutex_lock(&c->bucket_lock);
1868 
1869 	/*
1870 	 * We need to put some unused buckets directly on the prio freelist in
1871 	 * order to get the allocator thread started - it needs freed buckets in
1872 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1873 	 * and gens in order to free buckets.
1874 	 *
1875 	 * This is only safe for buckets that have no live data in them, which
1876 	 * there should always be some of.
1877 	 */
1878 	for_each_cache(ca, c, i) {
1879 		for_each_bucket(b, ca) {
1880 			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1881 			    fifo_full(&ca->free[RESERVE_BTREE]))
1882 				break;
1883 
1884 			if (bch_can_invalidate_bucket(ca, b) &&
1885 			    !GC_MARK(b)) {
1886 				__bch_invalidate_one_bucket(ca, b);
1887 				if (!fifo_push(&ca->free[RESERVE_PRIO],
1888 				   b - ca->buckets))
1889 					fifo_push(&ca->free[RESERVE_BTREE],
1890 						  b - ca->buckets);
1891 			}
1892 		}
1893 	}
1894 
1895 	mutex_unlock(&c->bucket_lock);
1896 }
1897 
1898 /* Btree insertion */
1899 
1900 static bool btree_insert_key(struct btree *b, struct bkey *k,
1901 			     struct bkey *replace_key)
1902 {
1903 	unsigned status;
1904 
1905 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1906 
1907 	status = bch_btree_insert_key(&b->keys, k, replace_key);
1908 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1909 		bch_check_keys(&b->keys, "%u for %s", status,
1910 			       replace_key ? "replace" : "insert");
1911 
1912 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1913 					      status);
1914 		return true;
1915 	} else
1916 		return false;
1917 }
1918 
1919 static size_t insert_u64s_remaining(struct btree *b)
1920 {
1921 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
1922 
1923 	/*
1924 	 * Might land in the middle of an existing extent and have to split it
1925 	 */
1926 	if (b->keys.ops->is_extents)
1927 		ret -= KEY_MAX_U64S;
1928 
1929 	return max(ret, 0L);
1930 }
1931 
1932 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1933 				  struct keylist *insert_keys,
1934 				  struct bkey *replace_key)
1935 {
1936 	bool ret = false;
1937 	int oldsize = bch_count_data(&b->keys);
1938 
1939 	while (!bch_keylist_empty(insert_keys)) {
1940 		struct bkey *k = insert_keys->keys;
1941 
1942 		if (bkey_u64s(k) > insert_u64s_remaining(b))
1943 			break;
1944 
1945 		if (bkey_cmp(k, &b->key) <= 0) {
1946 			if (!b->level)
1947 				bkey_put(b->c, k);
1948 
1949 			ret |= btree_insert_key(b, k, replace_key);
1950 			bch_keylist_pop_front(insert_keys);
1951 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1952 			BKEY_PADDED(key) temp;
1953 			bkey_copy(&temp.key, insert_keys->keys);
1954 
1955 			bch_cut_back(&b->key, &temp.key);
1956 			bch_cut_front(&b->key, insert_keys->keys);
1957 
1958 			ret |= btree_insert_key(b, &temp.key, replace_key);
1959 			break;
1960 		} else {
1961 			break;
1962 		}
1963 	}
1964 
1965 	if (!ret)
1966 		op->insert_collision = true;
1967 
1968 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1969 
1970 	BUG_ON(bch_count_data(&b->keys) < oldsize);
1971 	return ret;
1972 }
1973 
1974 static int btree_split(struct btree *b, struct btree_op *op,
1975 		       struct keylist *insert_keys,
1976 		       struct bkey *replace_key)
1977 {
1978 	bool split;
1979 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1980 	uint64_t start_time = local_clock();
1981 	struct closure cl;
1982 	struct keylist parent_keys;
1983 
1984 	closure_init_stack(&cl);
1985 	bch_keylist_init(&parent_keys);
1986 
1987 	if (btree_check_reserve(b, op)) {
1988 		if (!b->level)
1989 			return -EINTR;
1990 		else
1991 			WARN(1, "insufficient reserve for split\n");
1992 	}
1993 
1994 	n1 = btree_node_alloc_replacement(b, op);
1995 	if (IS_ERR(n1))
1996 		goto err;
1997 
1998 	split = set_blocks(btree_bset_first(n1),
1999 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2000 
2001 	if (split) {
2002 		unsigned keys = 0;
2003 
2004 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2005 
2006 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2007 		if (IS_ERR(n2))
2008 			goto err_free1;
2009 
2010 		if (!b->parent) {
2011 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2012 			if (IS_ERR(n3))
2013 				goto err_free2;
2014 		}
2015 
2016 		mutex_lock(&n1->write_lock);
2017 		mutex_lock(&n2->write_lock);
2018 
2019 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2020 
2021 		/*
2022 		 * Has to be a linear search because we don't have an auxiliary
2023 		 * search tree yet
2024 		 */
2025 
2026 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2027 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2028 							keys));
2029 
2030 		bkey_copy_key(&n1->key,
2031 			      bset_bkey_idx(btree_bset_first(n1), keys));
2032 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2033 
2034 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2035 		btree_bset_first(n1)->keys = keys;
2036 
2037 		memcpy(btree_bset_first(n2)->start,
2038 		       bset_bkey_last(btree_bset_first(n1)),
2039 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2040 
2041 		bkey_copy_key(&n2->key, &b->key);
2042 
2043 		bch_keylist_add(&parent_keys, &n2->key);
2044 		bch_btree_node_write(n2, &cl);
2045 		mutex_unlock(&n2->write_lock);
2046 		rw_unlock(true, n2);
2047 	} else {
2048 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2049 
2050 		mutex_lock(&n1->write_lock);
2051 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2052 	}
2053 
2054 	bch_keylist_add(&parent_keys, &n1->key);
2055 	bch_btree_node_write(n1, &cl);
2056 	mutex_unlock(&n1->write_lock);
2057 
2058 	if (n3) {
2059 		/* Depth increases, make a new root */
2060 		mutex_lock(&n3->write_lock);
2061 		bkey_copy_key(&n3->key, &MAX_KEY);
2062 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2063 		bch_btree_node_write(n3, &cl);
2064 		mutex_unlock(&n3->write_lock);
2065 
2066 		closure_sync(&cl);
2067 		bch_btree_set_root(n3);
2068 		rw_unlock(true, n3);
2069 	} else if (!b->parent) {
2070 		/* Root filled up but didn't need to be split */
2071 		closure_sync(&cl);
2072 		bch_btree_set_root(n1);
2073 	} else {
2074 		/* Split a non root node */
2075 		closure_sync(&cl);
2076 		make_btree_freeing_key(b, parent_keys.top);
2077 		bch_keylist_push(&parent_keys);
2078 
2079 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2080 		BUG_ON(!bch_keylist_empty(&parent_keys));
2081 	}
2082 
2083 	btree_node_free(b);
2084 	rw_unlock(true, n1);
2085 
2086 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2087 
2088 	return 0;
2089 err_free2:
2090 	bkey_put(b->c, &n2->key);
2091 	btree_node_free(n2);
2092 	rw_unlock(true, n2);
2093 err_free1:
2094 	bkey_put(b->c, &n1->key);
2095 	btree_node_free(n1);
2096 	rw_unlock(true, n1);
2097 err:
2098 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2099 
2100 	if (n3 == ERR_PTR(-EAGAIN) ||
2101 	    n2 == ERR_PTR(-EAGAIN) ||
2102 	    n1 == ERR_PTR(-EAGAIN))
2103 		return -EAGAIN;
2104 
2105 	return -ENOMEM;
2106 }
2107 
2108 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2109 				 struct keylist *insert_keys,
2110 				 atomic_t *journal_ref,
2111 				 struct bkey *replace_key)
2112 {
2113 	struct closure cl;
2114 
2115 	BUG_ON(b->level && replace_key);
2116 
2117 	closure_init_stack(&cl);
2118 
2119 	mutex_lock(&b->write_lock);
2120 
2121 	if (write_block(b) != btree_bset_last(b) &&
2122 	    b->keys.last_set_unwritten)
2123 		bch_btree_init_next(b); /* just wrote a set */
2124 
2125 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2126 		mutex_unlock(&b->write_lock);
2127 		goto split;
2128 	}
2129 
2130 	BUG_ON(write_block(b) != btree_bset_last(b));
2131 
2132 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2133 		if (!b->level)
2134 			bch_btree_leaf_dirty(b, journal_ref);
2135 		else
2136 			bch_btree_node_write(b, &cl);
2137 	}
2138 
2139 	mutex_unlock(&b->write_lock);
2140 
2141 	/* wait for btree node write if necessary, after unlock */
2142 	closure_sync(&cl);
2143 
2144 	return 0;
2145 split:
2146 	if (current->bio_list) {
2147 		op->lock = b->c->root->level + 1;
2148 		return -EAGAIN;
2149 	} else if (op->lock <= b->c->root->level) {
2150 		op->lock = b->c->root->level + 1;
2151 		return -EINTR;
2152 	} else {
2153 		/* Invalidated all iterators */
2154 		int ret = btree_split(b, op, insert_keys, replace_key);
2155 
2156 		if (bch_keylist_empty(insert_keys))
2157 			return 0;
2158 		else if (!ret)
2159 			return -EINTR;
2160 		return ret;
2161 	}
2162 }
2163 
2164 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2165 			       struct bkey *check_key)
2166 {
2167 	int ret = -EINTR;
2168 	uint64_t btree_ptr = b->key.ptr[0];
2169 	unsigned long seq = b->seq;
2170 	struct keylist insert;
2171 	bool upgrade = op->lock == -1;
2172 
2173 	bch_keylist_init(&insert);
2174 
2175 	if (upgrade) {
2176 		rw_unlock(false, b);
2177 		rw_lock(true, b, b->level);
2178 
2179 		if (b->key.ptr[0] != btree_ptr ||
2180                    b->seq != seq + 1) {
2181 			op->lock = b->level;
2182 			goto out;
2183                }
2184 	}
2185 
2186 	SET_KEY_PTRS(check_key, 1);
2187 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2188 
2189 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2190 
2191 	bch_keylist_add(&insert, check_key);
2192 
2193 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2194 
2195 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2196 out:
2197 	if (upgrade)
2198 		downgrade_write(&b->lock);
2199 	return ret;
2200 }
2201 
2202 struct btree_insert_op {
2203 	struct btree_op	op;
2204 	struct keylist	*keys;
2205 	atomic_t	*journal_ref;
2206 	struct bkey	*replace_key;
2207 };
2208 
2209 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2210 {
2211 	struct btree_insert_op *op = container_of(b_op,
2212 					struct btree_insert_op, op);
2213 
2214 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2215 					op->journal_ref, op->replace_key);
2216 	if (ret && !bch_keylist_empty(op->keys))
2217 		return ret;
2218 	else
2219 		return MAP_DONE;
2220 }
2221 
2222 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2223 		     atomic_t *journal_ref, struct bkey *replace_key)
2224 {
2225 	struct btree_insert_op op;
2226 	int ret = 0;
2227 
2228 	BUG_ON(current->bio_list);
2229 	BUG_ON(bch_keylist_empty(keys));
2230 
2231 	bch_btree_op_init(&op.op, 0);
2232 	op.keys		= keys;
2233 	op.journal_ref	= journal_ref;
2234 	op.replace_key	= replace_key;
2235 
2236 	while (!ret && !bch_keylist_empty(keys)) {
2237 		op.op.lock = 0;
2238 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2239 					       &START_KEY(keys->keys),
2240 					       btree_insert_fn);
2241 	}
2242 
2243 	if (ret) {
2244 		struct bkey *k;
2245 
2246 		pr_err("error %i", ret);
2247 
2248 		while ((k = bch_keylist_pop(keys)))
2249 			bkey_put(c, k);
2250 	} else if (op.op.insert_collision)
2251 		ret = -ESRCH;
2252 
2253 	return ret;
2254 }
2255 
2256 void bch_btree_set_root(struct btree *b)
2257 {
2258 	unsigned i;
2259 	struct closure cl;
2260 
2261 	closure_init_stack(&cl);
2262 
2263 	trace_bcache_btree_set_root(b);
2264 
2265 	BUG_ON(!b->written);
2266 
2267 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2268 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2269 
2270 	mutex_lock(&b->c->bucket_lock);
2271 	list_del_init(&b->list);
2272 	mutex_unlock(&b->c->bucket_lock);
2273 
2274 	b->c->root = b;
2275 
2276 	bch_journal_meta(b->c, &cl);
2277 	closure_sync(&cl);
2278 }
2279 
2280 /* Map across nodes or keys */
2281 
2282 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2283 				       struct bkey *from,
2284 				       btree_map_nodes_fn *fn, int flags)
2285 {
2286 	int ret = MAP_CONTINUE;
2287 
2288 	if (b->level) {
2289 		struct bkey *k;
2290 		struct btree_iter iter;
2291 
2292 		bch_btree_iter_init(&b->keys, &iter, from);
2293 
2294 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2295 						       bch_ptr_bad))) {
2296 			ret = btree(map_nodes_recurse, k, b,
2297 				    op, from, fn, flags);
2298 			from = NULL;
2299 
2300 			if (ret != MAP_CONTINUE)
2301 				return ret;
2302 		}
2303 	}
2304 
2305 	if (!b->level || flags == MAP_ALL_NODES)
2306 		ret = fn(op, b);
2307 
2308 	return ret;
2309 }
2310 
2311 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2312 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2313 {
2314 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2315 }
2316 
2317 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2318 				      struct bkey *from, btree_map_keys_fn *fn,
2319 				      int flags)
2320 {
2321 	int ret = MAP_CONTINUE;
2322 	struct bkey *k;
2323 	struct btree_iter iter;
2324 
2325 	bch_btree_iter_init(&b->keys, &iter, from);
2326 
2327 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2328 		ret = !b->level
2329 			? fn(op, b, k)
2330 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2331 		from = NULL;
2332 
2333 		if (ret != MAP_CONTINUE)
2334 			return ret;
2335 	}
2336 
2337 	if (!b->level && (flags & MAP_END_KEY))
2338 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2339 				     KEY_OFFSET(&b->key), 0));
2340 
2341 	return ret;
2342 }
2343 
2344 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2345 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2346 {
2347 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2348 }
2349 
2350 /* Keybuf code */
2351 
2352 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2353 {
2354 	/* Overlapping keys compare equal */
2355 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2356 		return -1;
2357 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2358 		return 1;
2359 	return 0;
2360 }
2361 
2362 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2363 					    struct keybuf_key *r)
2364 {
2365 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2366 }
2367 
2368 struct refill {
2369 	struct btree_op	op;
2370 	unsigned	nr_found;
2371 	struct keybuf	*buf;
2372 	struct bkey	*end;
2373 	keybuf_pred_fn	*pred;
2374 };
2375 
2376 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2377 			    struct bkey *k)
2378 {
2379 	struct refill *refill = container_of(op, struct refill, op);
2380 	struct keybuf *buf = refill->buf;
2381 	int ret = MAP_CONTINUE;
2382 
2383 	if (bkey_cmp(k, refill->end) >= 0) {
2384 		ret = MAP_DONE;
2385 		goto out;
2386 	}
2387 
2388 	if (!KEY_SIZE(k)) /* end key */
2389 		goto out;
2390 
2391 	if (refill->pred(buf, k)) {
2392 		struct keybuf_key *w;
2393 
2394 		spin_lock(&buf->lock);
2395 
2396 		w = array_alloc(&buf->freelist);
2397 		if (!w) {
2398 			spin_unlock(&buf->lock);
2399 			return MAP_DONE;
2400 		}
2401 
2402 		w->private = NULL;
2403 		bkey_copy(&w->key, k);
2404 
2405 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2406 			array_free(&buf->freelist, w);
2407 		else
2408 			refill->nr_found++;
2409 
2410 		if (array_freelist_empty(&buf->freelist))
2411 			ret = MAP_DONE;
2412 
2413 		spin_unlock(&buf->lock);
2414 	}
2415 out:
2416 	buf->last_scanned = *k;
2417 	return ret;
2418 }
2419 
2420 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2421 		       struct bkey *end, keybuf_pred_fn *pred)
2422 {
2423 	struct bkey start = buf->last_scanned;
2424 	struct refill refill;
2425 
2426 	cond_resched();
2427 
2428 	bch_btree_op_init(&refill.op, -1);
2429 	refill.nr_found	= 0;
2430 	refill.buf	= buf;
2431 	refill.end	= end;
2432 	refill.pred	= pred;
2433 
2434 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2435 			   refill_keybuf_fn, MAP_END_KEY);
2436 
2437 	trace_bcache_keyscan(refill.nr_found,
2438 			     KEY_INODE(&start), KEY_OFFSET(&start),
2439 			     KEY_INODE(&buf->last_scanned),
2440 			     KEY_OFFSET(&buf->last_scanned));
2441 
2442 	spin_lock(&buf->lock);
2443 
2444 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2445 		struct keybuf_key *w;
2446 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2447 		buf->start	= START_KEY(&w->key);
2448 
2449 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2450 		buf->end	= w->key;
2451 	} else {
2452 		buf->start	= MAX_KEY;
2453 		buf->end	= MAX_KEY;
2454 	}
2455 
2456 	spin_unlock(&buf->lock);
2457 }
2458 
2459 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2460 {
2461 	rb_erase(&w->node, &buf->keys);
2462 	array_free(&buf->freelist, w);
2463 }
2464 
2465 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2466 {
2467 	spin_lock(&buf->lock);
2468 	__bch_keybuf_del(buf, w);
2469 	spin_unlock(&buf->lock);
2470 }
2471 
2472 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2473 				  struct bkey *end)
2474 {
2475 	bool ret = false;
2476 	struct keybuf_key *p, *w, s;
2477 	s.key = *start;
2478 
2479 	if (bkey_cmp(end, &buf->start) <= 0 ||
2480 	    bkey_cmp(start, &buf->end) >= 0)
2481 		return false;
2482 
2483 	spin_lock(&buf->lock);
2484 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2485 
2486 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2487 		p = w;
2488 		w = RB_NEXT(w, node);
2489 
2490 		if (p->private)
2491 			ret = true;
2492 		else
2493 			__bch_keybuf_del(buf, p);
2494 	}
2495 
2496 	spin_unlock(&buf->lock);
2497 	return ret;
2498 }
2499 
2500 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2501 {
2502 	struct keybuf_key *w;
2503 	spin_lock(&buf->lock);
2504 
2505 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2506 
2507 	while (w && w->private)
2508 		w = RB_NEXT(w, node);
2509 
2510 	if (w)
2511 		w->private = ERR_PTR(-EINTR);
2512 
2513 	spin_unlock(&buf->lock);
2514 	return w;
2515 }
2516 
2517 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2518 					  struct keybuf *buf,
2519 					  struct bkey *end,
2520 					  keybuf_pred_fn *pred)
2521 {
2522 	struct keybuf_key *ret;
2523 
2524 	while (1) {
2525 		ret = bch_keybuf_next(buf);
2526 		if (ret)
2527 			break;
2528 
2529 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2530 			pr_debug("scan finished");
2531 			break;
2532 		}
2533 
2534 		bch_refill_keybuf(c, buf, end, pred);
2535 	}
2536 
2537 	return ret;
2538 }
2539 
2540 void bch_keybuf_init(struct keybuf *buf)
2541 {
2542 	buf->last_scanned	= MAX_KEY;
2543 	buf->keys		= RB_ROOT;
2544 
2545 	spin_lock_init(&buf->lock);
2546 	array_allocator_init(&buf->freelist);
2547 }
2548