1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 static struct workqueue_struct *btree_io_wq; 103 104 #define insert_lock(s, b) ((b)->level <= (s)->lock) 105 106 107 static inline struct bset *write_block(struct btree *b) 108 { 109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 110 } 111 112 static void bch_btree_init_next(struct btree *b) 113 { 114 /* If not a leaf node, always sort */ 115 if (b->level && b->keys.nsets) 116 bch_btree_sort(&b->keys, &b->c->sort); 117 else 118 bch_btree_sort_lazy(&b->keys, &b->c->sort); 119 120 if (b->written < btree_blocks(b)) 121 bch_bset_init_next(&b->keys, write_block(b), 122 bset_magic(&b->c->cache->sb)); 123 124 } 125 126 /* Btree key manipulation */ 127 128 void bkey_put(struct cache_set *c, struct bkey *k) 129 { 130 unsigned int i; 131 132 for (i = 0; i < KEY_PTRS(k); i++) 133 if (ptr_available(c, k, i)) 134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 135 } 136 137 /* Btree IO */ 138 139 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 140 { 141 uint64_t crc = b->key.ptr[0]; 142 void *data = (void *) i + 8, *end = bset_bkey_last(i); 143 144 crc = crc64_be(crc, data, end - data); 145 return crc ^ 0xffffffffffffffffULL; 146 } 147 148 void bch_btree_node_read_done(struct btree *b) 149 { 150 const char *err = "bad btree header"; 151 struct bset *i = btree_bset_first(b); 152 struct btree_iter *iter; 153 154 /* 155 * c->fill_iter can allocate an iterator with more memory space 156 * than static MAX_BSETS. 157 * See the comment arount cache_set->fill_iter. 158 */ 159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 161 iter->used = 0; 162 163 #ifdef CONFIG_BCACHE_DEBUG 164 iter->b = &b->keys; 165 #endif 166 167 if (!i->seq) 168 goto err; 169 170 for (; 171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 172 i = write_block(b)) { 173 err = "unsupported bset version"; 174 if (i->version > BCACHE_BSET_VERSION) 175 goto err; 176 177 err = "bad btree header"; 178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 179 btree_blocks(b)) 180 goto err; 181 182 err = "bad magic"; 183 if (i->magic != bset_magic(&b->c->cache->sb)) 184 goto err; 185 186 err = "bad checksum"; 187 switch (i->version) { 188 case 0: 189 if (i->csum != csum_set(i)) 190 goto err; 191 break; 192 case BCACHE_BSET_VERSION: 193 if (i->csum != btree_csum_set(b, i)) 194 goto err; 195 break; 196 } 197 198 err = "empty set"; 199 if (i != b->keys.set[0].data && !i->keys) 200 goto err; 201 202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 203 204 b->written += set_blocks(i, block_bytes(b->c->cache)); 205 } 206 207 err = "corrupted btree"; 208 for (i = write_block(b); 209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 210 i = ((void *) i) + block_bytes(b->c->cache)) 211 if (i->seq == b->keys.set[0].data->seq) 212 goto err; 213 214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 215 216 i = b->keys.set[0].data; 217 err = "short btree key"; 218 if (b->keys.set[0].size && 219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 220 goto err; 221 222 if (b->written < btree_blocks(b)) 223 bch_bset_init_next(&b->keys, write_block(b), 224 bset_magic(&b->c->cache->sb)); 225 out: 226 mempool_free(iter, &b->c->fill_iter); 227 return; 228 err: 229 set_btree_node_io_error(b); 230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 231 err, PTR_BUCKET_NR(b->c, &b->key, 0), 232 bset_block_offset(b, i), i->keys); 233 goto out; 234 } 235 236 static void btree_node_read_endio(struct bio *bio) 237 { 238 struct closure *cl = bio->bi_private; 239 240 closure_put(cl); 241 } 242 243 static void bch_btree_node_read(struct btree *b) 244 { 245 uint64_t start_time = local_clock(); 246 struct closure cl; 247 struct bio *bio; 248 249 trace_bcache_btree_read(b); 250 251 closure_init_stack(&cl); 252 253 bio = bch_bbio_alloc(b->c); 254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 255 bio->bi_end_io = btree_node_read_endio; 256 bio->bi_private = &cl; 257 bio->bi_opf = REQ_OP_READ | REQ_META; 258 259 bch_bio_map(bio, b->keys.set[0].data); 260 261 bch_submit_bbio(bio, b->c, &b->key, 0); 262 closure_sync(&cl); 263 264 if (bio->bi_status) 265 set_btree_node_io_error(b); 266 267 bch_bbio_free(bio, b->c); 268 269 if (btree_node_io_error(b)) 270 goto err; 271 272 bch_btree_node_read_done(b); 273 bch_time_stats_update(&b->c->btree_read_time, start_time); 274 275 return; 276 err: 277 bch_cache_set_error(b->c, "io error reading bucket %zu", 278 PTR_BUCKET_NR(b->c, &b->key, 0)); 279 } 280 281 static void btree_complete_write(struct btree *b, struct btree_write *w) 282 { 283 if (w->prio_blocked && 284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 285 wake_up_allocators(b->c); 286 287 if (w->journal) { 288 atomic_dec_bug(w->journal); 289 __closure_wake_up(&b->c->journal.wait); 290 } 291 292 w->prio_blocked = 0; 293 w->journal = NULL; 294 } 295 296 static CLOSURE_CALLBACK(btree_node_write_unlock) 297 { 298 closure_type(b, struct btree, io); 299 300 up(&b->io_mutex); 301 } 302 303 static CLOSURE_CALLBACK(__btree_node_write_done) 304 { 305 closure_type(b, struct btree, io); 306 struct btree_write *w = btree_prev_write(b); 307 308 bch_bbio_free(b->bio, b->c); 309 b->bio = NULL; 310 btree_complete_write(b, w); 311 312 if (btree_node_dirty(b)) 313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 314 315 closure_return_with_destructor(cl, btree_node_write_unlock); 316 } 317 318 static CLOSURE_CALLBACK(btree_node_write_done) 319 { 320 closure_type(b, struct btree, io); 321 322 bio_free_pages(b->bio); 323 __btree_node_write_done(&cl->work); 324 } 325 326 static void btree_node_write_endio(struct bio *bio) 327 { 328 struct closure *cl = bio->bi_private; 329 struct btree *b = container_of(cl, struct btree, io); 330 331 if (bio->bi_status) 332 set_btree_node_io_error(b); 333 334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 335 closure_put(cl); 336 } 337 338 static void do_btree_node_write(struct btree *b) 339 { 340 struct closure *cl = &b->io; 341 struct bset *i = btree_bset_last(b); 342 BKEY_PADDED(key) k; 343 344 i->version = BCACHE_BSET_VERSION; 345 i->csum = btree_csum_set(b, i); 346 347 BUG_ON(b->bio); 348 b->bio = bch_bbio_alloc(b->c); 349 350 b->bio->bi_end_io = btree_node_write_endio; 351 b->bio->bi_private = cl; 352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 354 bch_bio_map(b->bio, i); 355 356 /* 357 * If we're appending to a leaf node, we don't technically need FUA - 358 * this write just needs to be persisted before the next journal write, 359 * which will be marked FLUSH|FUA. 360 * 361 * Similarly if we're writing a new btree root - the pointer is going to 362 * be in the next journal entry. 363 * 364 * But if we're writing a new btree node (that isn't a root) or 365 * appending to a non leaf btree node, we need either FUA or a flush 366 * when we write the parent with the new pointer. FUA is cheaper than a 367 * flush, and writes appending to leaf nodes aren't blocking anything so 368 * just make all btree node writes FUA to keep things sane. 369 */ 370 371 bkey_copy(&k.key, &b->key); 372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 373 bset_sector_offset(&b->keys, i)); 374 375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 376 struct bio_vec *bv; 377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 378 struct bvec_iter_all iter_all; 379 380 bio_for_each_segment_all(bv, b->bio, iter_all) { 381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 382 addr += PAGE_SIZE; 383 } 384 385 bch_submit_bbio(b->bio, b->c, &k.key, 0); 386 387 continue_at(cl, btree_node_write_done, NULL); 388 } else { 389 /* 390 * No problem for multipage bvec since the bio is 391 * just allocated 392 */ 393 b->bio->bi_vcnt = 0; 394 bch_bio_map(b->bio, i); 395 396 bch_submit_bbio(b->bio, b->c, &k.key, 0); 397 398 closure_sync(cl); 399 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 400 } 401 } 402 403 void __bch_btree_node_write(struct btree *b, struct closure *parent) 404 { 405 struct bset *i = btree_bset_last(b); 406 407 lockdep_assert_held(&b->write_lock); 408 409 trace_bcache_btree_write(b); 410 411 BUG_ON(current->bio_list); 412 BUG_ON(b->written >= btree_blocks(b)); 413 BUG_ON(b->written && !i->keys); 414 BUG_ON(btree_bset_first(b)->seq != i->seq); 415 bch_check_keys(&b->keys, "writing"); 416 417 cancel_delayed_work(&b->work); 418 419 /* If caller isn't waiting for write, parent refcount is cache set */ 420 down(&b->io_mutex); 421 closure_init(&b->io, parent ?: &b->c->cl); 422 423 clear_bit(BTREE_NODE_dirty, &b->flags); 424 change_bit(BTREE_NODE_write_idx, &b->flags); 425 426 do_btree_node_write(b); 427 428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 429 &b->c->cache->btree_sectors_written); 430 431 b->written += set_blocks(i, block_bytes(b->c->cache)); 432 } 433 434 void bch_btree_node_write(struct btree *b, struct closure *parent) 435 { 436 unsigned int nsets = b->keys.nsets; 437 438 lockdep_assert_held(&b->lock); 439 440 __bch_btree_node_write(b, parent); 441 442 /* 443 * do verify if there was more than one set initially (i.e. we did a 444 * sort) and we sorted down to a single set: 445 */ 446 if (nsets && !b->keys.nsets) 447 bch_btree_verify(b); 448 449 bch_btree_init_next(b); 450 } 451 452 static void bch_btree_node_write_sync(struct btree *b) 453 { 454 struct closure cl; 455 456 closure_init_stack(&cl); 457 458 mutex_lock(&b->write_lock); 459 bch_btree_node_write(b, &cl); 460 mutex_unlock(&b->write_lock); 461 462 closure_sync(&cl); 463 } 464 465 static void btree_node_write_work(struct work_struct *w) 466 { 467 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 468 469 mutex_lock(&b->write_lock); 470 if (btree_node_dirty(b)) 471 __bch_btree_node_write(b, NULL); 472 mutex_unlock(&b->write_lock); 473 } 474 475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 476 { 477 struct bset *i = btree_bset_last(b); 478 struct btree_write *w = btree_current_write(b); 479 480 lockdep_assert_held(&b->write_lock); 481 482 BUG_ON(!b->written); 483 BUG_ON(!i->keys); 484 485 if (!btree_node_dirty(b)) 486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 487 488 set_btree_node_dirty(b); 489 490 /* 491 * w->journal is always the oldest journal pin of all bkeys 492 * in the leaf node, to make sure the oldest jset seq won't 493 * be increased before this btree node is flushed. 494 */ 495 if (journal_ref) { 496 if (w->journal && 497 journal_pin_cmp(b->c, w->journal, journal_ref)) { 498 atomic_dec_bug(w->journal); 499 w->journal = NULL; 500 } 501 502 if (!w->journal) { 503 w->journal = journal_ref; 504 atomic_inc(w->journal); 505 } 506 } 507 508 /* Force write if set is too big */ 509 if (set_bytes(i) > PAGE_SIZE - 48 && 510 !current->bio_list) 511 bch_btree_node_write(b, NULL); 512 } 513 514 /* 515 * Btree in memory cache - allocation/freeing 516 * mca -> memory cache 517 */ 518 519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 520 ? c->root->level : 1) * 8 + 16) 521 #define mca_can_free(c) \ 522 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 523 524 static void mca_data_free(struct btree *b) 525 { 526 BUG_ON(b->io_mutex.count != 1); 527 528 bch_btree_keys_free(&b->keys); 529 530 b->c->btree_cache_used--; 531 list_move(&b->list, &b->c->btree_cache_freed); 532 } 533 534 static void mca_bucket_free(struct btree *b) 535 { 536 BUG_ON(btree_node_dirty(b)); 537 538 b->key.ptr[0] = 0; 539 hlist_del_init_rcu(&b->hash); 540 list_move(&b->list, &b->c->btree_cache_freeable); 541 } 542 543 static unsigned int btree_order(struct bkey *k) 544 { 545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 546 } 547 548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 549 { 550 if (!bch_btree_keys_alloc(&b->keys, 551 max_t(unsigned int, 552 ilog2(b->c->btree_pages), 553 btree_order(k)), 554 gfp)) { 555 b->c->btree_cache_used++; 556 list_move(&b->list, &b->c->btree_cache); 557 } else { 558 list_move(&b->list, &b->c->btree_cache_freed); 559 } 560 } 561 562 #define cmp_int(l, r) ((l > r) - (l < r)) 563 564 #ifdef CONFIG_PROVE_LOCKING 565 static int btree_lock_cmp_fn(const struct lockdep_map *_a, 566 const struct lockdep_map *_b) 567 { 568 const struct btree *a = container_of(_a, struct btree, lock.dep_map); 569 const struct btree *b = container_of(_b, struct btree, lock.dep_map); 570 571 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key); 572 } 573 574 static void btree_lock_print_fn(const struct lockdep_map *map) 575 { 576 const struct btree *b = container_of(map, struct btree, lock.dep_map); 577 578 printk(KERN_CONT " l=%u %llu:%llu", b->level, 579 KEY_INODE(&b->key), KEY_OFFSET(&b->key)); 580 } 581 #endif 582 583 static struct btree *mca_bucket_alloc(struct cache_set *c, 584 struct bkey *k, gfp_t gfp) 585 { 586 /* 587 * kzalloc() is necessary here for initialization, 588 * see code comments in bch_btree_keys_init(). 589 */ 590 struct btree *b = kzalloc(sizeof(struct btree), gfp); 591 592 if (!b) 593 return NULL; 594 595 init_rwsem(&b->lock); 596 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn); 597 mutex_init(&b->write_lock); 598 lockdep_set_novalidate_class(&b->write_lock); 599 INIT_LIST_HEAD(&b->list); 600 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 601 b->c = c; 602 sema_init(&b->io_mutex, 1); 603 604 mca_data_alloc(b, k, gfp); 605 return b; 606 } 607 608 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 609 { 610 struct closure cl; 611 612 closure_init_stack(&cl); 613 lockdep_assert_held(&b->c->bucket_lock); 614 615 if (!down_write_trylock(&b->lock)) 616 return -ENOMEM; 617 618 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 619 620 if (b->keys.page_order < min_order) 621 goto out_unlock; 622 623 if (!flush) { 624 if (btree_node_dirty(b)) 625 goto out_unlock; 626 627 if (down_trylock(&b->io_mutex)) 628 goto out_unlock; 629 up(&b->io_mutex); 630 } 631 632 retry: 633 /* 634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 635 * __bch_btree_node_write(). To avoid an extra flush, acquire 636 * b->write_lock before checking BTREE_NODE_dirty bit. 637 */ 638 mutex_lock(&b->write_lock); 639 /* 640 * If this btree node is selected in btree_flush_write() by journal 641 * code, delay and retry until the node is flushed by journal code 642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 643 */ 644 if (btree_node_journal_flush(b)) { 645 pr_debug("bnode %p is flushing by journal, retry\n", b); 646 mutex_unlock(&b->write_lock); 647 udelay(1); 648 goto retry; 649 } 650 651 if (btree_node_dirty(b)) 652 __bch_btree_node_write(b, &cl); 653 mutex_unlock(&b->write_lock); 654 655 closure_sync(&cl); 656 657 /* wait for any in flight btree write */ 658 down(&b->io_mutex); 659 up(&b->io_mutex); 660 661 return 0; 662 out_unlock: 663 rw_unlock(true, b); 664 return -ENOMEM; 665 } 666 667 static unsigned long bch_mca_scan(struct shrinker *shrink, 668 struct shrink_control *sc) 669 { 670 struct cache_set *c = shrink->private_data; 671 struct btree *b, *t; 672 unsigned long i, nr = sc->nr_to_scan; 673 unsigned long freed = 0; 674 unsigned int btree_cache_used; 675 676 if (c->shrinker_disabled) 677 return SHRINK_STOP; 678 679 if (c->btree_cache_alloc_lock) 680 return SHRINK_STOP; 681 682 /* Return -1 if we can't do anything right now */ 683 if (sc->gfp_mask & __GFP_IO) 684 mutex_lock(&c->bucket_lock); 685 else if (!mutex_trylock(&c->bucket_lock)) 686 return -1; 687 688 /* 689 * It's _really_ critical that we don't free too many btree nodes - we 690 * have to always leave ourselves a reserve. The reserve is how we 691 * guarantee that allocating memory for a new btree node can always 692 * succeed, so that inserting keys into the btree can always succeed and 693 * IO can always make forward progress: 694 */ 695 nr /= c->btree_pages; 696 if (nr == 0) 697 nr = 1; 698 nr = min_t(unsigned long, nr, mca_can_free(c)); 699 700 i = 0; 701 btree_cache_used = c->btree_cache_used; 702 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 703 if (nr <= 0) 704 goto out; 705 706 if (!mca_reap(b, 0, false)) { 707 mca_data_free(b); 708 rw_unlock(true, b); 709 freed++; 710 } 711 nr--; 712 i++; 713 } 714 715 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 716 if (nr <= 0 || i >= btree_cache_used) 717 goto out; 718 719 if (!mca_reap(b, 0, false)) { 720 mca_bucket_free(b); 721 mca_data_free(b); 722 rw_unlock(true, b); 723 freed++; 724 } 725 726 nr--; 727 i++; 728 } 729 out: 730 mutex_unlock(&c->bucket_lock); 731 return freed * c->btree_pages; 732 } 733 734 static unsigned long bch_mca_count(struct shrinker *shrink, 735 struct shrink_control *sc) 736 { 737 struct cache_set *c = shrink->private_data; 738 739 if (c->shrinker_disabled) 740 return 0; 741 742 if (c->btree_cache_alloc_lock) 743 return 0; 744 745 return mca_can_free(c) * c->btree_pages; 746 } 747 748 void bch_btree_cache_free(struct cache_set *c) 749 { 750 struct btree *b; 751 struct closure cl; 752 753 closure_init_stack(&cl); 754 755 if (c->shrink) 756 shrinker_free(c->shrink); 757 758 mutex_lock(&c->bucket_lock); 759 760 #ifdef CONFIG_BCACHE_DEBUG 761 if (c->verify_data) 762 list_move(&c->verify_data->list, &c->btree_cache); 763 764 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 765 #endif 766 767 list_splice(&c->btree_cache_freeable, 768 &c->btree_cache); 769 770 while (!list_empty(&c->btree_cache)) { 771 b = list_first_entry(&c->btree_cache, struct btree, list); 772 773 /* 774 * This function is called by cache_set_free(), no I/O 775 * request on cache now, it is unnecessary to acquire 776 * b->write_lock before clearing BTREE_NODE_dirty anymore. 777 */ 778 if (btree_node_dirty(b)) { 779 btree_complete_write(b, btree_current_write(b)); 780 clear_bit(BTREE_NODE_dirty, &b->flags); 781 } 782 mca_data_free(b); 783 } 784 785 while (!list_empty(&c->btree_cache_freed)) { 786 b = list_first_entry(&c->btree_cache_freed, 787 struct btree, list); 788 list_del(&b->list); 789 cancel_delayed_work_sync(&b->work); 790 kfree(b); 791 } 792 793 mutex_unlock(&c->bucket_lock); 794 } 795 796 int bch_btree_cache_alloc(struct cache_set *c) 797 { 798 unsigned int i; 799 800 for (i = 0; i < mca_reserve(c); i++) 801 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 802 return -ENOMEM; 803 804 list_splice_init(&c->btree_cache, 805 &c->btree_cache_freeable); 806 807 #ifdef CONFIG_BCACHE_DEBUG 808 mutex_init(&c->verify_lock); 809 810 c->verify_ondisk = (void *) 811 __get_free_pages(GFP_KERNEL|__GFP_COMP, 812 ilog2(meta_bucket_pages(&c->cache->sb))); 813 if (!c->verify_ondisk) { 814 /* 815 * Don't worry about the mca_rereserve buckets 816 * allocated in previous for-loop, they will be 817 * handled properly in bch_cache_set_unregister(). 818 */ 819 return -ENOMEM; 820 } 821 822 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 823 824 if (c->verify_data && 825 c->verify_data->keys.set->data) 826 list_del_init(&c->verify_data->list); 827 else 828 c->verify_data = NULL; 829 #endif 830 831 c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid); 832 if (!c->shrink) { 833 pr_warn("bcache: %s: could not allocate shrinker\n", __func__); 834 return 0; 835 } 836 837 c->shrink->count_objects = bch_mca_count; 838 c->shrink->scan_objects = bch_mca_scan; 839 c->shrink->seeks = 4; 840 c->shrink->batch = c->btree_pages * 2; 841 c->shrink->private_data = c; 842 843 shrinker_register(c->shrink); 844 845 return 0; 846 } 847 848 /* Btree in memory cache - hash table */ 849 850 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 851 { 852 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 853 } 854 855 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 856 { 857 struct btree *b; 858 859 rcu_read_lock(); 860 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 861 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 862 goto out; 863 b = NULL; 864 out: 865 rcu_read_unlock(); 866 return b; 867 } 868 869 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 870 { 871 spin_lock(&c->btree_cannibalize_lock); 872 if (likely(c->btree_cache_alloc_lock == NULL)) { 873 c->btree_cache_alloc_lock = current; 874 } else if (c->btree_cache_alloc_lock != current) { 875 if (op) 876 prepare_to_wait(&c->btree_cache_wait, &op->wait, 877 TASK_UNINTERRUPTIBLE); 878 spin_unlock(&c->btree_cannibalize_lock); 879 return -EINTR; 880 } 881 spin_unlock(&c->btree_cannibalize_lock); 882 883 return 0; 884 } 885 886 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 887 struct bkey *k) 888 { 889 struct btree *b; 890 891 trace_bcache_btree_cache_cannibalize(c); 892 893 if (mca_cannibalize_lock(c, op)) 894 return ERR_PTR(-EINTR); 895 896 list_for_each_entry_reverse(b, &c->btree_cache, list) 897 if (!mca_reap(b, btree_order(k), false)) 898 return b; 899 900 list_for_each_entry_reverse(b, &c->btree_cache, list) 901 if (!mca_reap(b, btree_order(k), true)) 902 return b; 903 904 WARN(1, "btree cache cannibalize failed\n"); 905 return ERR_PTR(-ENOMEM); 906 } 907 908 /* 909 * We can only have one thread cannibalizing other cached btree nodes at a time, 910 * or we'll deadlock. We use an open coded mutex to ensure that, which a 911 * cannibalize_bucket() will take. This means every time we unlock the root of 912 * the btree, we need to release this lock if we have it held. 913 */ 914 void bch_cannibalize_unlock(struct cache_set *c) 915 { 916 spin_lock(&c->btree_cannibalize_lock); 917 if (c->btree_cache_alloc_lock == current) { 918 c->btree_cache_alloc_lock = NULL; 919 wake_up(&c->btree_cache_wait); 920 } 921 spin_unlock(&c->btree_cannibalize_lock); 922 } 923 924 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 925 struct bkey *k, int level) 926 { 927 struct btree *b; 928 929 BUG_ON(current->bio_list); 930 931 lockdep_assert_held(&c->bucket_lock); 932 933 if (mca_find(c, k)) 934 return NULL; 935 936 /* btree_free() doesn't free memory; it sticks the node on the end of 937 * the list. Check if there's any freed nodes there: 938 */ 939 list_for_each_entry(b, &c->btree_cache_freeable, list) 940 if (!mca_reap(b, btree_order(k), false)) 941 goto out; 942 943 /* We never free struct btree itself, just the memory that holds the on 944 * disk node. Check the freed list before allocating a new one: 945 */ 946 list_for_each_entry(b, &c->btree_cache_freed, list) 947 if (!mca_reap(b, 0, false)) { 948 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 949 if (!b->keys.set[0].data) 950 goto err; 951 else 952 goto out; 953 } 954 955 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 956 if (!b) 957 goto err; 958 959 BUG_ON(!down_write_trylock(&b->lock)); 960 if (!b->keys.set->data) 961 goto err; 962 out: 963 BUG_ON(b->io_mutex.count != 1); 964 965 bkey_copy(&b->key, k); 966 list_move(&b->list, &c->btree_cache); 967 hlist_del_init_rcu(&b->hash); 968 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 969 970 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 971 b->parent = (void *) ~0UL; 972 b->flags = 0; 973 b->written = 0; 974 b->level = level; 975 976 if (!b->level) 977 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 978 &b->c->expensive_debug_checks); 979 else 980 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 981 &b->c->expensive_debug_checks); 982 983 return b; 984 err: 985 if (b) 986 rw_unlock(true, b); 987 988 b = mca_cannibalize(c, op, k); 989 if (!IS_ERR(b)) 990 goto out; 991 992 return b; 993 } 994 995 /* 996 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 997 * in from disk if necessary. 998 * 999 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 1000 * 1001 * The btree node will have either a read or a write lock held, depending on 1002 * level and op->lock. 1003 * 1004 * Note: Only error code or btree pointer will be returned, it is unncessary 1005 * for callers to check NULL pointer. 1006 */ 1007 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1008 struct bkey *k, int level, bool write, 1009 struct btree *parent) 1010 { 1011 int i = 0; 1012 struct btree *b; 1013 1014 BUG_ON(level < 0); 1015 retry: 1016 b = mca_find(c, k); 1017 1018 if (!b) { 1019 if (current->bio_list) 1020 return ERR_PTR(-EAGAIN); 1021 1022 mutex_lock(&c->bucket_lock); 1023 b = mca_alloc(c, op, k, level); 1024 mutex_unlock(&c->bucket_lock); 1025 1026 if (!b) 1027 goto retry; 1028 if (IS_ERR(b)) 1029 return b; 1030 1031 bch_btree_node_read(b); 1032 1033 if (!write) 1034 downgrade_write(&b->lock); 1035 } else { 1036 rw_lock(write, b, level); 1037 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1038 rw_unlock(write, b); 1039 goto retry; 1040 } 1041 BUG_ON(b->level != level); 1042 } 1043 1044 if (btree_node_io_error(b)) { 1045 rw_unlock(write, b); 1046 return ERR_PTR(-EIO); 1047 } 1048 1049 BUG_ON(!b->written); 1050 1051 b->parent = parent; 1052 1053 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1054 prefetch(b->keys.set[i].tree); 1055 prefetch(b->keys.set[i].data); 1056 } 1057 1058 for (; i <= b->keys.nsets; i++) 1059 prefetch(b->keys.set[i].data); 1060 1061 return b; 1062 } 1063 1064 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1065 { 1066 struct btree *b; 1067 1068 mutex_lock(&parent->c->bucket_lock); 1069 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1070 mutex_unlock(&parent->c->bucket_lock); 1071 1072 if (!IS_ERR_OR_NULL(b)) { 1073 b->parent = parent; 1074 bch_btree_node_read(b); 1075 rw_unlock(true, b); 1076 } 1077 } 1078 1079 /* Btree alloc */ 1080 1081 static void btree_node_free(struct btree *b) 1082 { 1083 trace_bcache_btree_node_free(b); 1084 1085 BUG_ON(b == b->c->root); 1086 1087 retry: 1088 mutex_lock(&b->write_lock); 1089 /* 1090 * If the btree node is selected and flushing in btree_flush_write(), 1091 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1092 * then it is safe to free the btree node here. Otherwise this btree 1093 * node will be in race condition. 1094 */ 1095 if (btree_node_journal_flush(b)) { 1096 mutex_unlock(&b->write_lock); 1097 pr_debug("bnode %p journal_flush set, retry\n", b); 1098 udelay(1); 1099 goto retry; 1100 } 1101 1102 if (btree_node_dirty(b)) { 1103 btree_complete_write(b, btree_current_write(b)); 1104 clear_bit(BTREE_NODE_dirty, &b->flags); 1105 } 1106 1107 mutex_unlock(&b->write_lock); 1108 1109 cancel_delayed_work(&b->work); 1110 1111 mutex_lock(&b->c->bucket_lock); 1112 bch_bucket_free(b->c, &b->key); 1113 mca_bucket_free(b); 1114 mutex_unlock(&b->c->bucket_lock); 1115 } 1116 1117 /* 1118 * Only error code or btree pointer will be returned, it is unncessary for 1119 * callers to check NULL pointer. 1120 */ 1121 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1122 int level, bool wait, 1123 struct btree *parent) 1124 { 1125 BKEY_PADDED(key) k; 1126 struct btree *b; 1127 1128 mutex_lock(&c->bucket_lock); 1129 retry: 1130 /* return ERR_PTR(-EAGAIN) when it fails */ 1131 b = ERR_PTR(-EAGAIN); 1132 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1133 goto err; 1134 1135 bkey_put(c, &k.key); 1136 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1137 1138 b = mca_alloc(c, op, &k.key, level); 1139 if (IS_ERR(b)) 1140 goto err_free; 1141 1142 if (!b) { 1143 cache_bug(c, 1144 "Tried to allocate bucket that was in btree cache"); 1145 goto retry; 1146 } 1147 1148 b->parent = parent; 1149 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1150 1151 mutex_unlock(&c->bucket_lock); 1152 1153 trace_bcache_btree_node_alloc(b); 1154 return b; 1155 err_free: 1156 bch_bucket_free(c, &k.key); 1157 err: 1158 mutex_unlock(&c->bucket_lock); 1159 1160 trace_bcache_btree_node_alloc_fail(c); 1161 return b; 1162 } 1163 1164 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1165 struct btree_op *op, int level, 1166 struct btree *parent) 1167 { 1168 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1169 } 1170 1171 static struct btree *btree_node_alloc_replacement(struct btree *b, 1172 struct btree_op *op) 1173 { 1174 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1175 1176 if (!IS_ERR(n)) { 1177 mutex_lock(&n->write_lock); 1178 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1179 bkey_copy_key(&n->key, &b->key); 1180 mutex_unlock(&n->write_lock); 1181 } 1182 1183 return n; 1184 } 1185 1186 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1187 { 1188 unsigned int i; 1189 1190 mutex_lock(&b->c->bucket_lock); 1191 1192 atomic_inc(&b->c->prio_blocked); 1193 1194 bkey_copy(k, &b->key); 1195 bkey_copy_key(k, &ZERO_KEY); 1196 1197 for (i = 0; i < KEY_PTRS(k); i++) 1198 SET_PTR_GEN(k, i, 1199 bch_inc_gen(b->c->cache, 1200 PTR_BUCKET(b->c, &b->key, i))); 1201 1202 mutex_unlock(&b->c->bucket_lock); 1203 } 1204 1205 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1206 { 1207 struct cache_set *c = b->c; 1208 struct cache *ca = c->cache; 1209 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1210 1211 mutex_lock(&c->bucket_lock); 1212 1213 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1214 if (op) 1215 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1216 TASK_UNINTERRUPTIBLE); 1217 mutex_unlock(&c->bucket_lock); 1218 return -EINTR; 1219 } 1220 1221 mutex_unlock(&c->bucket_lock); 1222 1223 return mca_cannibalize_lock(b->c, op); 1224 } 1225 1226 /* Garbage collection */ 1227 1228 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1229 struct bkey *k) 1230 { 1231 uint8_t stale = 0; 1232 unsigned int i; 1233 struct bucket *g; 1234 1235 /* 1236 * ptr_invalid() can't return true for the keys that mark btree nodes as 1237 * freed, but since ptr_bad() returns true we'll never actually use them 1238 * for anything and thus we don't want mark their pointers here 1239 */ 1240 if (!bkey_cmp(k, &ZERO_KEY)) 1241 return stale; 1242 1243 for (i = 0; i < KEY_PTRS(k); i++) { 1244 if (!ptr_available(c, k, i)) 1245 continue; 1246 1247 g = PTR_BUCKET(c, k, i); 1248 1249 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1250 g->last_gc = PTR_GEN(k, i); 1251 1252 if (ptr_stale(c, k, i)) { 1253 stale = max(stale, ptr_stale(c, k, i)); 1254 continue; 1255 } 1256 1257 cache_bug_on(GC_MARK(g) && 1258 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1259 c, "inconsistent ptrs: mark = %llu, level = %i", 1260 GC_MARK(g), level); 1261 1262 if (level) 1263 SET_GC_MARK(g, GC_MARK_METADATA); 1264 else if (KEY_DIRTY(k)) 1265 SET_GC_MARK(g, GC_MARK_DIRTY); 1266 else if (!GC_MARK(g)) 1267 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1268 1269 /* guard against overflow */ 1270 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1271 GC_SECTORS_USED(g) + KEY_SIZE(k), 1272 MAX_GC_SECTORS_USED)); 1273 1274 BUG_ON(!GC_SECTORS_USED(g)); 1275 } 1276 1277 return stale; 1278 } 1279 1280 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1281 1282 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1283 { 1284 unsigned int i; 1285 1286 for (i = 0; i < KEY_PTRS(k); i++) 1287 if (ptr_available(c, k, i) && 1288 !ptr_stale(c, k, i)) { 1289 struct bucket *b = PTR_BUCKET(c, k, i); 1290 1291 b->gen = PTR_GEN(k, i); 1292 1293 if (level && bkey_cmp(k, &ZERO_KEY)) 1294 b->prio = BTREE_PRIO; 1295 else if (!level && b->prio == BTREE_PRIO) 1296 b->prio = INITIAL_PRIO; 1297 } 1298 1299 __bch_btree_mark_key(c, level, k); 1300 } 1301 1302 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1303 { 1304 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1305 } 1306 1307 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1308 { 1309 uint8_t stale = 0; 1310 unsigned int keys = 0, good_keys = 0; 1311 struct bkey *k; 1312 struct btree_iter_stack iter; 1313 struct bset_tree *t; 1314 1315 gc->nodes++; 1316 1317 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1318 stale = max(stale, btree_mark_key(b, k)); 1319 keys++; 1320 1321 if (bch_ptr_bad(&b->keys, k)) 1322 continue; 1323 1324 gc->key_bytes += bkey_u64s(k); 1325 gc->nkeys++; 1326 good_keys++; 1327 1328 gc->data += KEY_SIZE(k); 1329 } 1330 1331 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1332 btree_bug_on(t->size && 1333 bset_written(&b->keys, t) && 1334 bkey_cmp(&b->key, &t->end) < 0, 1335 b, "found short btree key in gc"); 1336 1337 if (b->c->gc_always_rewrite) 1338 return true; 1339 1340 if (stale > 10) 1341 return true; 1342 1343 if ((keys - good_keys) * 2 > keys) 1344 return true; 1345 1346 return false; 1347 } 1348 1349 #define GC_MERGE_NODES 4U 1350 1351 struct gc_merge_info { 1352 struct btree *b; 1353 unsigned int keys; 1354 }; 1355 1356 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1357 struct keylist *insert_keys, 1358 atomic_t *journal_ref, 1359 struct bkey *replace_key); 1360 1361 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1362 struct gc_stat *gc, struct gc_merge_info *r) 1363 { 1364 unsigned int i, nodes = 0, keys = 0, blocks; 1365 struct btree *new_nodes[GC_MERGE_NODES]; 1366 struct keylist keylist; 1367 struct closure cl; 1368 struct bkey *k; 1369 1370 bch_keylist_init(&keylist); 1371 1372 if (btree_check_reserve(b, NULL)) 1373 return 0; 1374 1375 memset(new_nodes, 0, sizeof(new_nodes)); 1376 closure_init_stack(&cl); 1377 1378 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1379 keys += r[nodes++].keys; 1380 1381 blocks = btree_default_blocks(b->c) * 2 / 3; 1382 1383 if (nodes < 2 || 1384 __set_blocks(b->keys.set[0].data, keys, 1385 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1386 return 0; 1387 1388 for (i = 0; i < nodes; i++) { 1389 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1390 if (IS_ERR(new_nodes[i])) 1391 goto out_nocoalesce; 1392 } 1393 1394 /* 1395 * We have to check the reserve here, after we've allocated our new 1396 * nodes, to make sure the insert below will succeed - we also check 1397 * before as an optimization to potentially avoid a bunch of expensive 1398 * allocs/sorts 1399 */ 1400 if (btree_check_reserve(b, NULL)) 1401 goto out_nocoalesce; 1402 1403 for (i = 0; i < nodes; i++) 1404 mutex_lock(&new_nodes[i]->write_lock); 1405 1406 for (i = nodes - 1; i > 0; --i) { 1407 struct bset *n1 = btree_bset_first(new_nodes[i]); 1408 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1409 struct bkey *k, *last = NULL; 1410 1411 keys = 0; 1412 1413 if (i > 1) { 1414 for (k = n2->start; 1415 k < bset_bkey_last(n2); 1416 k = bkey_next(k)) { 1417 if (__set_blocks(n1, n1->keys + keys + 1418 bkey_u64s(k), 1419 block_bytes(b->c->cache)) > blocks) 1420 break; 1421 1422 last = k; 1423 keys += bkey_u64s(k); 1424 } 1425 } else { 1426 /* 1427 * Last node we're not getting rid of - we're getting 1428 * rid of the node at r[0]. Have to try and fit all of 1429 * the remaining keys into this node; we can't ensure 1430 * they will always fit due to rounding and variable 1431 * length keys (shouldn't be possible in practice, 1432 * though) 1433 */ 1434 if (__set_blocks(n1, n1->keys + n2->keys, 1435 block_bytes(b->c->cache)) > 1436 btree_blocks(new_nodes[i])) 1437 goto out_unlock_nocoalesce; 1438 1439 keys = n2->keys; 1440 /* Take the key of the node we're getting rid of */ 1441 last = &r->b->key; 1442 } 1443 1444 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1445 btree_blocks(new_nodes[i])); 1446 1447 if (last) 1448 bkey_copy_key(&new_nodes[i]->key, last); 1449 1450 memcpy(bset_bkey_last(n1), 1451 n2->start, 1452 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1453 1454 n1->keys += keys; 1455 r[i].keys = n1->keys; 1456 1457 memmove(n2->start, 1458 bset_bkey_idx(n2, keys), 1459 (void *) bset_bkey_last(n2) - 1460 (void *) bset_bkey_idx(n2, keys)); 1461 1462 n2->keys -= keys; 1463 1464 if (__bch_keylist_realloc(&keylist, 1465 bkey_u64s(&new_nodes[i]->key))) 1466 goto out_unlock_nocoalesce; 1467 1468 bch_btree_node_write(new_nodes[i], &cl); 1469 bch_keylist_add(&keylist, &new_nodes[i]->key); 1470 } 1471 1472 for (i = 0; i < nodes; i++) 1473 mutex_unlock(&new_nodes[i]->write_lock); 1474 1475 closure_sync(&cl); 1476 1477 /* We emptied out this node */ 1478 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1479 btree_node_free(new_nodes[0]); 1480 rw_unlock(true, new_nodes[0]); 1481 new_nodes[0] = NULL; 1482 1483 for (i = 0; i < nodes; i++) { 1484 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1485 goto out_nocoalesce; 1486 1487 make_btree_freeing_key(r[i].b, keylist.top); 1488 bch_keylist_push(&keylist); 1489 } 1490 1491 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1492 BUG_ON(!bch_keylist_empty(&keylist)); 1493 1494 for (i = 0; i < nodes; i++) { 1495 btree_node_free(r[i].b); 1496 rw_unlock(true, r[i].b); 1497 1498 r[i].b = new_nodes[i]; 1499 } 1500 1501 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1502 r[nodes - 1].b = ERR_PTR(-EINTR); 1503 1504 trace_bcache_btree_gc_coalesce(nodes); 1505 gc->nodes--; 1506 1507 bch_keylist_free(&keylist); 1508 1509 /* Invalidated our iterator */ 1510 return -EINTR; 1511 1512 out_unlock_nocoalesce: 1513 for (i = 0; i < nodes; i++) 1514 mutex_unlock(&new_nodes[i]->write_lock); 1515 1516 out_nocoalesce: 1517 closure_sync(&cl); 1518 1519 while ((k = bch_keylist_pop(&keylist))) 1520 if (!bkey_cmp(k, &ZERO_KEY)) 1521 atomic_dec(&b->c->prio_blocked); 1522 bch_keylist_free(&keylist); 1523 1524 for (i = 0; i < nodes; i++) 1525 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1526 btree_node_free(new_nodes[i]); 1527 rw_unlock(true, new_nodes[i]); 1528 } 1529 return 0; 1530 } 1531 1532 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1533 struct btree *replace) 1534 { 1535 struct keylist keys; 1536 struct btree *n; 1537 1538 if (btree_check_reserve(b, NULL)) 1539 return 0; 1540 1541 n = btree_node_alloc_replacement(replace, NULL); 1542 if (IS_ERR(n)) 1543 return 0; 1544 1545 /* recheck reserve after allocating replacement node */ 1546 if (btree_check_reserve(b, NULL)) { 1547 btree_node_free(n); 1548 rw_unlock(true, n); 1549 return 0; 1550 } 1551 1552 bch_btree_node_write_sync(n); 1553 1554 bch_keylist_init(&keys); 1555 bch_keylist_add(&keys, &n->key); 1556 1557 make_btree_freeing_key(replace, keys.top); 1558 bch_keylist_push(&keys); 1559 1560 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1561 BUG_ON(!bch_keylist_empty(&keys)); 1562 1563 btree_node_free(replace); 1564 rw_unlock(true, n); 1565 1566 /* Invalidated our iterator */ 1567 return -EINTR; 1568 } 1569 1570 static unsigned int btree_gc_count_keys(struct btree *b) 1571 { 1572 struct bkey *k; 1573 struct btree_iter_stack iter; 1574 unsigned int ret = 0; 1575 1576 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1577 ret += bkey_u64s(k); 1578 1579 return ret; 1580 } 1581 1582 static size_t btree_gc_min_nodes(struct cache_set *c) 1583 { 1584 size_t min_nodes; 1585 1586 /* 1587 * Since incremental GC would stop 100ms when front 1588 * side I/O comes, so when there are many btree nodes, 1589 * if GC only processes constant (100) nodes each time, 1590 * GC would last a long time, and the front side I/Os 1591 * would run out of the buckets (since no new bucket 1592 * can be allocated during GC), and be blocked again. 1593 * So GC should not process constant nodes, but varied 1594 * nodes according to the number of btree nodes, which 1595 * realized by dividing GC into constant(100) times, 1596 * so when there are many btree nodes, GC can process 1597 * more nodes each time, otherwise, GC will process less 1598 * nodes each time (but no less than MIN_GC_NODES) 1599 */ 1600 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1601 if (min_nodes < MIN_GC_NODES) 1602 min_nodes = MIN_GC_NODES; 1603 1604 return min_nodes; 1605 } 1606 1607 1608 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1609 struct closure *writes, struct gc_stat *gc) 1610 { 1611 int ret = 0; 1612 bool should_rewrite; 1613 struct bkey *k; 1614 struct btree_iter_stack iter; 1615 struct gc_merge_info r[GC_MERGE_NODES]; 1616 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1617 1618 bch_btree_iter_stack_init(&b->keys, &iter, &b->c->gc_done); 1619 1620 for (i = r; i < r + ARRAY_SIZE(r); i++) 1621 i->b = ERR_PTR(-EINTR); 1622 1623 while (1) { 1624 k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 1625 bch_ptr_bad); 1626 if (k) { 1627 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1628 true, b); 1629 if (IS_ERR(r->b)) { 1630 ret = PTR_ERR(r->b); 1631 break; 1632 } 1633 1634 r->keys = btree_gc_count_keys(r->b); 1635 1636 ret = btree_gc_coalesce(b, op, gc, r); 1637 if (ret) 1638 break; 1639 } 1640 1641 if (!last->b) 1642 break; 1643 1644 if (!IS_ERR(last->b)) { 1645 should_rewrite = btree_gc_mark_node(last->b, gc); 1646 if (should_rewrite) { 1647 ret = btree_gc_rewrite_node(b, op, last->b); 1648 if (ret) 1649 break; 1650 } 1651 1652 if (last->b->level) { 1653 ret = btree_gc_recurse(last->b, op, writes, gc); 1654 if (ret) 1655 break; 1656 } 1657 1658 bkey_copy_key(&b->c->gc_done, &last->b->key); 1659 1660 /* 1661 * Must flush leaf nodes before gc ends, since replace 1662 * operations aren't journalled 1663 */ 1664 mutex_lock(&last->b->write_lock); 1665 if (btree_node_dirty(last->b)) 1666 bch_btree_node_write(last->b, writes); 1667 mutex_unlock(&last->b->write_lock); 1668 rw_unlock(true, last->b); 1669 } 1670 1671 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1672 r->b = NULL; 1673 1674 if (atomic_read(&b->c->search_inflight) && 1675 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1676 gc->nodes_pre = gc->nodes; 1677 ret = -EAGAIN; 1678 break; 1679 } 1680 1681 if (need_resched()) { 1682 ret = -EAGAIN; 1683 break; 1684 } 1685 } 1686 1687 for (i = r; i < r + ARRAY_SIZE(r); i++) 1688 if (!IS_ERR_OR_NULL(i->b)) { 1689 mutex_lock(&i->b->write_lock); 1690 if (btree_node_dirty(i->b)) 1691 bch_btree_node_write(i->b, writes); 1692 mutex_unlock(&i->b->write_lock); 1693 rw_unlock(true, i->b); 1694 } 1695 1696 return ret; 1697 } 1698 1699 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1700 struct closure *writes, struct gc_stat *gc) 1701 { 1702 struct btree *n = NULL; 1703 int ret = 0; 1704 bool should_rewrite; 1705 1706 should_rewrite = btree_gc_mark_node(b, gc); 1707 if (should_rewrite) { 1708 n = btree_node_alloc_replacement(b, NULL); 1709 1710 if (!IS_ERR(n)) { 1711 bch_btree_node_write_sync(n); 1712 1713 bch_btree_set_root(n); 1714 btree_node_free(b); 1715 rw_unlock(true, n); 1716 1717 return -EINTR; 1718 } 1719 } 1720 1721 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1722 1723 if (b->level) { 1724 ret = btree_gc_recurse(b, op, writes, gc); 1725 if (ret) 1726 return ret; 1727 } 1728 1729 bkey_copy_key(&b->c->gc_done, &b->key); 1730 1731 return ret; 1732 } 1733 1734 static void btree_gc_start(struct cache_set *c) 1735 { 1736 struct cache *ca; 1737 struct bucket *b; 1738 1739 if (!c->gc_mark_valid) 1740 return; 1741 1742 mutex_lock(&c->bucket_lock); 1743 1744 c->gc_done = ZERO_KEY; 1745 1746 ca = c->cache; 1747 for_each_bucket(b, ca) { 1748 b->last_gc = b->gen; 1749 if (bch_can_invalidate_bucket(ca, b)) 1750 b->reclaimable_in_gc = 1; 1751 if (!atomic_read(&b->pin)) { 1752 SET_GC_MARK(b, 0); 1753 SET_GC_SECTORS_USED(b, 0); 1754 } 1755 } 1756 1757 c->gc_mark_valid = 0; 1758 mutex_unlock(&c->bucket_lock); 1759 } 1760 1761 static void bch_btree_gc_finish(struct cache_set *c) 1762 { 1763 struct bucket *b; 1764 struct cache *ca; 1765 unsigned int i, j; 1766 uint64_t *k; 1767 1768 mutex_lock(&c->bucket_lock); 1769 1770 set_gc_sectors(c); 1771 c->gc_mark_valid = 1; 1772 c->need_gc = 0; 1773 1774 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1775 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1776 GC_MARK_METADATA); 1777 1778 /* don't reclaim buckets to which writeback keys point */ 1779 rcu_read_lock(); 1780 for (i = 0; i < c->devices_max_used; i++) { 1781 struct bcache_device *d = c->devices[i]; 1782 struct cached_dev *dc; 1783 struct keybuf_key *w, *n; 1784 1785 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1786 continue; 1787 dc = container_of(d, struct cached_dev, disk); 1788 1789 spin_lock(&dc->writeback_keys.lock); 1790 rbtree_postorder_for_each_entry_safe(w, n, 1791 &dc->writeback_keys.keys, node) 1792 for (j = 0; j < KEY_PTRS(&w->key); j++) 1793 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1794 GC_MARK_DIRTY); 1795 spin_unlock(&dc->writeback_keys.lock); 1796 } 1797 rcu_read_unlock(); 1798 1799 c->avail_nbuckets = 0; 1800 1801 ca = c->cache; 1802 ca->invalidate_needs_gc = 0; 1803 1804 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1805 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1806 1807 for (k = ca->prio_buckets; 1808 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1809 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1810 1811 for_each_bucket(b, ca) { 1812 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1813 1814 if (b->reclaimable_in_gc) 1815 b->reclaimable_in_gc = 0; 1816 1817 if (atomic_read(&b->pin)) 1818 continue; 1819 1820 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1821 1822 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1823 c->avail_nbuckets++; 1824 } 1825 1826 mutex_unlock(&c->bucket_lock); 1827 } 1828 1829 static void bch_btree_gc(struct cache_set *c) 1830 { 1831 int ret; 1832 struct gc_stat stats; 1833 struct closure writes; 1834 struct btree_op op; 1835 uint64_t start_time = local_clock(); 1836 1837 trace_bcache_gc_start(c); 1838 1839 memset(&stats, 0, sizeof(struct gc_stat)); 1840 closure_init_stack(&writes); 1841 bch_btree_op_init(&op, SHRT_MAX); 1842 1843 btree_gc_start(c); 1844 1845 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1846 do { 1847 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1848 closure_sync(&writes); 1849 cond_resched(); 1850 1851 if (ret == -EAGAIN) 1852 schedule_timeout_interruptible(msecs_to_jiffies 1853 (GC_SLEEP_MS)); 1854 else if (ret) 1855 pr_warn("gc failed!\n"); 1856 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1857 1858 bch_btree_gc_finish(c); 1859 wake_up_allocators(c); 1860 1861 bch_time_stats_update(&c->btree_gc_time, start_time); 1862 1863 stats.key_bytes *= sizeof(uint64_t); 1864 stats.data <<= 9; 1865 bch_update_bucket_in_use(c, &stats); 1866 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1867 1868 trace_bcache_gc_end(c); 1869 1870 bch_moving_gc(c); 1871 } 1872 1873 static bool gc_should_run(struct cache_set *c) 1874 { 1875 struct cache *ca = c->cache; 1876 1877 if (ca->invalidate_needs_gc) 1878 return true; 1879 1880 if (atomic_read(&c->sectors_to_gc) < 0) 1881 return true; 1882 1883 return false; 1884 } 1885 1886 static int bch_gc_thread(void *arg) 1887 { 1888 struct cache_set *c = arg; 1889 1890 while (1) { 1891 wait_event_interruptible(c->gc_wait, 1892 kthread_should_stop() || 1893 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1894 gc_should_run(c)); 1895 1896 if (kthread_should_stop() || 1897 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1898 break; 1899 1900 set_gc_sectors(c); 1901 bch_btree_gc(c); 1902 } 1903 1904 wait_for_kthread_stop(); 1905 return 0; 1906 } 1907 1908 int bch_gc_thread_start(struct cache_set *c) 1909 { 1910 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1911 return PTR_ERR_OR_ZERO(c->gc_thread); 1912 } 1913 1914 /* Initial partial gc */ 1915 1916 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1917 { 1918 int ret = 0; 1919 struct bkey *k, *p = NULL; 1920 struct btree_iter_stack iter; 1921 1922 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1923 bch_initial_mark_key(b->c, b->level, k); 1924 1925 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1926 1927 if (b->level) { 1928 bch_btree_iter_stack_init(&b->keys, &iter, NULL); 1929 1930 do { 1931 k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 1932 bch_ptr_bad); 1933 if (k) { 1934 btree_node_prefetch(b, k); 1935 /* 1936 * initiallize c->gc_stats.nodes 1937 * for incremental GC 1938 */ 1939 b->c->gc_stats.nodes++; 1940 } 1941 1942 if (p) 1943 ret = bcache_btree(check_recurse, p, b, op); 1944 1945 p = k; 1946 } while (p && !ret); 1947 } 1948 1949 return ret; 1950 } 1951 1952 1953 static int bch_btree_check_thread(void *arg) 1954 { 1955 int ret; 1956 struct btree_check_info *info = arg; 1957 struct btree_check_state *check_state = info->state; 1958 struct cache_set *c = check_state->c; 1959 struct btree_iter_stack iter; 1960 struct bkey *k, *p; 1961 int cur_idx, prev_idx, skip_nr; 1962 1963 k = p = NULL; 1964 cur_idx = prev_idx = 0; 1965 ret = 0; 1966 1967 /* root node keys are checked before thread created */ 1968 bch_btree_iter_stack_init(&c->root->keys, &iter, NULL); 1969 k = bch_btree_iter_next_filter(&iter.iter, &c->root->keys, bch_ptr_bad); 1970 BUG_ON(!k); 1971 1972 p = k; 1973 while (k) { 1974 /* 1975 * Fetch a root node key index, skip the keys which 1976 * should be fetched by other threads, then check the 1977 * sub-tree indexed by the fetched key. 1978 */ 1979 spin_lock(&check_state->idx_lock); 1980 cur_idx = check_state->key_idx; 1981 check_state->key_idx++; 1982 spin_unlock(&check_state->idx_lock); 1983 1984 skip_nr = cur_idx - prev_idx; 1985 1986 while (skip_nr) { 1987 k = bch_btree_iter_next_filter(&iter.iter, 1988 &c->root->keys, 1989 bch_ptr_bad); 1990 if (k) 1991 p = k; 1992 else { 1993 /* 1994 * No more keys to check in root node, 1995 * current checking threads are enough, 1996 * stop creating more. 1997 */ 1998 atomic_set(&check_state->enough, 1); 1999 /* Update check_state->enough earlier */ 2000 smp_mb__after_atomic(); 2001 goto out; 2002 } 2003 skip_nr--; 2004 cond_resched(); 2005 } 2006 2007 if (p) { 2008 struct btree_op op; 2009 2010 btree_node_prefetch(c->root, p); 2011 c->gc_stats.nodes++; 2012 bch_btree_op_init(&op, 0); 2013 ret = bcache_btree(check_recurse, p, c->root, &op); 2014 /* 2015 * The op may be added to cache_set's btree_cache_wait 2016 * in mca_cannibalize(), must ensure it is removed from 2017 * the list and release btree_cache_alloc_lock before 2018 * free op memory. 2019 * Otherwise, the btree_cache_wait will be damaged. 2020 */ 2021 bch_cannibalize_unlock(c); 2022 finish_wait(&c->btree_cache_wait, &(&op)->wait); 2023 if (ret) 2024 goto out; 2025 } 2026 p = NULL; 2027 prev_idx = cur_idx; 2028 cond_resched(); 2029 } 2030 2031 out: 2032 info->result = ret; 2033 /* update check_state->started among all CPUs */ 2034 smp_mb__before_atomic(); 2035 if (atomic_dec_and_test(&check_state->started)) 2036 wake_up(&check_state->wait); 2037 2038 return ret; 2039 } 2040 2041 2042 2043 static int bch_btree_chkthread_nr(void) 2044 { 2045 int n = num_online_cpus()/2; 2046 2047 if (n == 0) 2048 n = 1; 2049 else if (n > BCH_BTR_CHKTHREAD_MAX) 2050 n = BCH_BTR_CHKTHREAD_MAX; 2051 2052 return n; 2053 } 2054 2055 int bch_btree_check(struct cache_set *c) 2056 { 2057 int ret = 0; 2058 int i; 2059 struct bkey *k = NULL; 2060 struct btree_iter_stack iter; 2061 struct btree_check_state check_state; 2062 2063 /* check and mark root node keys */ 2064 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2065 bch_initial_mark_key(c, c->root->level, k); 2066 2067 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2068 2069 if (c->root->level == 0) 2070 return 0; 2071 2072 memset(&check_state, 0, sizeof(struct btree_check_state)); 2073 check_state.c = c; 2074 check_state.total_threads = bch_btree_chkthread_nr(); 2075 check_state.key_idx = 0; 2076 spin_lock_init(&check_state.idx_lock); 2077 atomic_set(&check_state.started, 0); 2078 atomic_set(&check_state.enough, 0); 2079 init_waitqueue_head(&check_state.wait); 2080 2081 rw_lock(0, c->root, c->root->level); 2082 /* 2083 * Run multiple threads to check btree nodes in parallel, 2084 * if check_state.enough is non-zero, it means current 2085 * running check threads are enough, unncessary to create 2086 * more. 2087 */ 2088 for (i = 0; i < check_state.total_threads; i++) { 2089 /* fetch latest check_state.enough earlier */ 2090 smp_mb__before_atomic(); 2091 if (atomic_read(&check_state.enough)) 2092 break; 2093 2094 check_state.infos[i].result = 0; 2095 check_state.infos[i].state = &check_state; 2096 2097 check_state.infos[i].thread = 2098 kthread_run(bch_btree_check_thread, 2099 &check_state.infos[i], 2100 "bch_btrchk[%d]", i); 2101 if (IS_ERR(check_state.infos[i].thread)) { 2102 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2103 for (--i; i >= 0; i--) 2104 kthread_stop(check_state.infos[i].thread); 2105 ret = -ENOMEM; 2106 goto out; 2107 } 2108 atomic_inc(&check_state.started); 2109 } 2110 2111 /* 2112 * Must wait for all threads to stop. 2113 */ 2114 wait_event(check_state.wait, atomic_read(&check_state.started) == 0); 2115 2116 for (i = 0; i < check_state.total_threads; i++) { 2117 if (check_state.infos[i].result) { 2118 ret = check_state.infos[i].result; 2119 goto out; 2120 } 2121 } 2122 2123 out: 2124 rw_unlock(0, c->root); 2125 return ret; 2126 } 2127 2128 void bch_initial_gc_finish(struct cache_set *c) 2129 { 2130 struct cache *ca = c->cache; 2131 struct bucket *b; 2132 2133 bch_btree_gc_finish(c); 2134 2135 mutex_lock(&c->bucket_lock); 2136 2137 /* 2138 * We need to put some unused buckets directly on the prio freelist in 2139 * order to get the allocator thread started - it needs freed buckets in 2140 * order to rewrite the prios and gens, and it needs to rewrite prios 2141 * and gens in order to free buckets. 2142 * 2143 * This is only safe for buckets that have no live data in them, which 2144 * there should always be some of. 2145 */ 2146 for_each_bucket(b, ca) { 2147 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2148 fifo_full(&ca->free[RESERVE_BTREE])) 2149 break; 2150 2151 if (bch_can_invalidate_bucket(ca, b) && 2152 !GC_MARK(b)) { 2153 __bch_invalidate_one_bucket(ca, b); 2154 if (!fifo_push(&ca->free[RESERVE_PRIO], 2155 b - ca->buckets)) 2156 fifo_push(&ca->free[RESERVE_BTREE], 2157 b - ca->buckets); 2158 } 2159 } 2160 2161 mutex_unlock(&c->bucket_lock); 2162 } 2163 2164 /* Btree insertion */ 2165 2166 static bool btree_insert_key(struct btree *b, struct bkey *k, 2167 struct bkey *replace_key) 2168 { 2169 unsigned int status; 2170 2171 BUG_ON(bkey_cmp(k, &b->key) > 0); 2172 2173 status = bch_btree_insert_key(&b->keys, k, replace_key); 2174 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2175 bch_check_keys(&b->keys, "%u for %s", status, 2176 replace_key ? "replace" : "insert"); 2177 2178 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2179 status); 2180 return true; 2181 } else 2182 return false; 2183 } 2184 2185 static size_t insert_u64s_remaining(struct btree *b) 2186 { 2187 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2188 2189 /* 2190 * Might land in the middle of an existing extent and have to split it 2191 */ 2192 if (b->keys.ops->is_extents) 2193 ret -= KEY_MAX_U64S; 2194 2195 return max(ret, 0L); 2196 } 2197 2198 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2199 struct keylist *insert_keys, 2200 struct bkey *replace_key) 2201 { 2202 bool ret = false; 2203 int oldsize = bch_count_data(&b->keys); 2204 2205 while (!bch_keylist_empty(insert_keys)) { 2206 struct bkey *k = insert_keys->keys; 2207 2208 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2209 break; 2210 2211 if (bkey_cmp(k, &b->key) <= 0) { 2212 if (!b->level) 2213 bkey_put(b->c, k); 2214 2215 ret |= btree_insert_key(b, k, replace_key); 2216 bch_keylist_pop_front(insert_keys); 2217 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2218 BKEY_PADDED(key) temp; 2219 bkey_copy(&temp.key, insert_keys->keys); 2220 2221 bch_cut_back(&b->key, &temp.key); 2222 bch_cut_front(&b->key, insert_keys->keys); 2223 2224 ret |= btree_insert_key(b, &temp.key, replace_key); 2225 break; 2226 } else { 2227 break; 2228 } 2229 } 2230 2231 if (!ret) 2232 op->insert_collision = true; 2233 2234 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2235 2236 BUG_ON(bch_count_data(&b->keys) < oldsize); 2237 return ret; 2238 } 2239 2240 static int btree_split(struct btree *b, struct btree_op *op, 2241 struct keylist *insert_keys, 2242 struct bkey *replace_key) 2243 { 2244 bool split; 2245 struct btree *n1, *n2 = NULL, *n3 = NULL; 2246 uint64_t start_time = local_clock(); 2247 struct closure cl; 2248 struct keylist parent_keys; 2249 2250 closure_init_stack(&cl); 2251 bch_keylist_init(&parent_keys); 2252 2253 if (btree_check_reserve(b, op)) { 2254 if (!b->level) 2255 return -EINTR; 2256 else 2257 WARN(1, "insufficient reserve for split\n"); 2258 } 2259 2260 n1 = btree_node_alloc_replacement(b, op); 2261 if (IS_ERR(n1)) 2262 goto err; 2263 2264 split = set_blocks(btree_bset_first(n1), 2265 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2266 2267 if (split) { 2268 unsigned int keys = 0; 2269 2270 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2271 2272 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2273 if (IS_ERR(n2)) 2274 goto err_free1; 2275 2276 if (!b->parent) { 2277 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2278 if (IS_ERR(n3)) 2279 goto err_free2; 2280 } 2281 2282 mutex_lock(&n1->write_lock); 2283 mutex_lock(&n2->write_lock); 2284 2285 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2286 2287 /* 2288 * Has to be a linear search because we don't have an auxiliary 2289 * search tree yet 2290 */ 2291 2292 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2293 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2294 keys)); 2295 2296 bkey_copy_key(&n1->key, 2297 bset_bkey_idx(btree_bset_first(n1), keys)); 2298 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2299 2300 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2301 btree_bset_first(n1)->keys = keys; 2302 2303 memcpy(btree_bset_first(n2)->start, 2304 bset_bkey_last(btree_bset_first(n1)), 2305 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2306 2307 bkey_copy_key(&n2->key, &b->key); 2308 2309 bch_keylist_add(&parent_keys, &n2->key); 2310 bch_btree_node_write(n2, &cl); 2311 mutex_unlock(&n2->write_lock); 2312 rw_unlock(true, n2); 2313 } else { 2314 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2315 2316 mutex_lock(&n1->write_lock); 2317 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2318 } 2319 2320 bch_keylist_add(&parent_keys, &n1->key); 2321 bch_btree_node_write(n1, &cl); 2322 mutex_unlock(&n1->write_lock); 2323 2324 if (n3) { 2325 /* Depth increases, make a new root */ 2326 mutex_lock(&n3->write_lock); 2327 bkey_copy_key(&n3->key, &MAX_KEY); 2328 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2329 bch_btree_node_write(n3, &cl); 2330 mutex_unlock(&n3->write_lock); 2331 2332 closure_sync(&cl); 2333 bch_btree_set_root(n3); 2334 rw_unlock(true, n3); 2335 } else if (!b->parent) { 2336 /* Root filled up but didn't need to be split */ 2337 closure_sync(&cl); 2338 bch_btree_set_root(n1); 2339 } else { 2340 /* Split a non root node */ 2341 closure_sync(&cl); 2342 make_btree_freeing_key(b, parent_keys.top); 2343 bch_keylist_push(&parent_keys); 2344 2345 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2346 BUG_ON(!bch_keylist_empty(&parent_keys)); 2347 } 2348 2349 btree_node_free(b); 2350 rw_unlock(true, n1); 2351 2352 bch_time_stats_update(&b->c->btree_split_time, start_time); 2353 2354 return 0; 2355 err_free2: 2356 bkey_put(b->c, &n2->key); 2357 btree_node_free(n2); 2358 rw_unlock(true, n2); 2359 err_free1: 2360 bkey_put(b->c, &n1->key); 2361 btree_node_free(n1); 2362 rw_unlock(true, n1); 2363 err: 2364 WARN(1, "bcache: btree split failed (level %u)", b->level); 2365 2366 if (n3 == ERR_PTR(-EAGAIN) || 2367 n2 == ERR_PTR(-EAGAIN) || 2368 n1 == ERR_PTR(-EAGAIN)) 2369 return -EAGAIN; 2370 2371 return -ENOMEM; 2372 } 2373 2374 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2375 struct keylist *insert_keys, 2376 atomic_t *journal_ref, 2377 struct bkey *replace_key) 2378 { 2379 struct closure cl; 2380 2381 BUG_ON(b->level && replace_key); 2382 2383 closure_init_stack(&cl); 2384 2385 mutex_lock(&b->write_lock); 2386 2387 if (write_block(b) != btree_bset_last(b) && 2388 b->keys.last_set_unwritten) 2389 bch_btree_init_next(b); /* just wrote a set */ 2390 2391 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2392 mutex_unlock(&b->write_lock); 2393 goto split; 2394 } 2395 2396 BUG_ON(write_block(b) != btree_bset_last(b)); 2397 2398 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2399 if (!b->level) 2400 bch_btree_leaf_dirty(b, journal_ref); 2401 else 2402 bch_btree_node_write(b, &cl); 2403 } 2404 2405 mutex_unlock(&b->write_lock); 2406 2407 /* wait for btree node write if necessary, after unlock */ 2408 closure_sync(&cl); 2409 2410 return 0; 2411 split: 2412 if (current->bio_list) { 2413 op->lock = b->c->root->level + 1; 2414 return -EAGAIN; 2415 } else if (op->lock <= b->c->root->level) { 2416 op->lock = b->c->root->level + 1; 2417 return -EINTR; 2418 } else { 2419 /* Invalidated all iterators */ 2420 int ret = btree_split(b, op, insert_keys, replace_key); 2421 2422 if (bch_keylist_empty(insert_keys)) 2423 return 0; 2424 else if (!ret) 2425 return -EINTR; 2426 return ret; 2427 } 2428 } 2429 2430 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2431 struct bkey *check_key) 2432 { 2433 int ret = -EINTR; 2434 uint64_t btree_ptr = b->key.ptr[0]; 2435 unsigned long seq = b->seq; 2436 struct keylist insert; 2437 bool upgrade = op->lock == -1; 2438 2439 bch_keylist_init(&insert); 2440 2441 if (upgrade) { 2442 rw_unlock(false, b); 2443 rw_lock(true, b, b->level); 2444 2445 if (b->key.ptr[0] != btree_ptr || 2446 b->seq != seq + 1) { 2447 op->lock = b->level; 2448 goto out; 2449 } 2450 } 2451 2452 SET_KEY_PTRS(check_key, 1); 2453 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2454 2455 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2456 2457 bch_keylist_add(&insert, check_key); 2458 2459 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2460 2461 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2462 out: 2463 if (upgrade) 2464 downgrade_write(&b->lock); 2465 return ret; 2466 } 2467 2468 struct btree_insert_op { 2469 struct btree_op op; 2470 struct keylist *keys; 2471 atomic_t *journal_ref; 2472 struct bkey *replace_key; 2473 }; 2474 2475 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2476 { 2477 struct btree_insert_op *op = container_of(b_op, 2478 struct btree_insert_op, op); 2479 2480 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2481 op->journal_ref, op->replace_key); 2482 if (ret && !bch_keylist_empty(op->keys)) 2483 return ret; 2484 else 2485 return MAP_DONE; 2486 } 2487 2488 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2489 atomic_t *journal_ref, struct bkey *replace_key) 2490 { 2491 struct btree_insert_op op; 2492 int ret = 0; 2493 2494 BUG_ON(current->bio_list); 2495 BUG_ON(bch_keylist_empty(keys)); 2496 2497 bch_btree_op_init(&op.op, 0); 2498 op.keys = keys; 2499 op.journal_ref = journal_ref; 2500 op.replace_key = replace_key; 2501 2502 while (!ret && !bch_keylist_empty(keys)) { 2503 op.op.lock = 0; 2504 ret = bch_btree_map_leaf_nodes(&op.op, c, 2505 &START_KEY(keys->keys), 2506 btree_insert_fn); 2507 } 2508 2509 if (ret) { 2510 struct bkey *k; 2511 2512 pr_err("error %i\n", ret); 2513 2514 while ((k = bch_keylist_pop(keys))) 2515 bkey_put(c, k); 2516 } else if (op.op.insert_collision) 2517 ret = -ESRCH; 2518 2519 return ret; 2520 } 2521 2522 void bch_btree_set_root(struct btree *b) 2523 { 2524 unsigned int i; 2525 struct closure cl; 2526 2527 closure_init_stack(&cl); 2528 2529 trace_bcache_btree_set_root(b); 2530 2531 BUG_ON(!b->written); 2532 2533 for (i = 0; i < KEY_PTRS(&b->key); i++) 2534 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2535 2536 mutex_lock(&b->c->bucket_lock); 2537 list_del_init(&b->list); 2538 mutex_unlock(&b->c->bucket_lock); 2539 2540 b->c->root = b; 2541 2542 bch_journal_meta(b->c, &cl); 2543 closure_sync(&cl); 2544 } 2545 2546 /* Map across nodes or keys */ 2547 2548 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2549 struct bkey *from, 2550 btree_map_nodes_fn *fn, int flags) 2551 { 2552 int ret = MAP_CONTINUE; 2553 2554 if (b->level) { 2555 struct bkey *k; 2556 struct btree_iter_stack iter; 2557 2558 bch_btree_iter_stack_init(&b->keys, &iter, from); 2559 2560 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 2561 bch_ptr_bad))) { 2562 ret = bcache_btree(map_nodes_recurse, k, b, 2563 op, from, fn, flags); 2564 from = NULL; 2565 2566 if (ret != MAP_CONTINUE) 2567 return ret; 2568 } 2569 } 2570 2571 if (!b->level || flags == MAP_ALL_NODES) 2572 ret = fn(op, b); 2573 2574 return ret; 2575 } 2576 2577 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2578 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2579 { 2580 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2581 } 2582 2583 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2584 struct bkey *from, btree_map_keys_fn *fn, 2585 int flags) 2586 { 2587 int ret = MAP_CONTINUE; 2588 struct bkey *k; 2589 struct btree_iter_stack iter; 2590 2591 bch_btree_iter_stack_init(&b->keys, &iter, from); 2592 2593 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 2594 bch_ptr_bad))) { 2595 ret = !b->level 2596 ? fn(op, b, k) 2597 : bcache_btree(map_keys_recurse, k, 2598 b, op, from, fn, flags); 2599 from = NULL; 2600 2601 if (ret != MAP_CONTINUE) 2602 return ret; 2603 } 2604 2605 if (!b->level && (flags & MAP_END_KEY)) 2606 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2607 KEY_OFFSET(&b->key), 0)); 2608 2609 return ret; 2610 } 2611 2612 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2613 struct bkey *from, btree_map_keys_fn *fn, int flags) 2614 { 2615 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2616 } 2617 2618 /* Keybuf code */ 2619 2620 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2621 { 2622 /* Overlapping keys compare equal */ 2623 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2624 return -1; 2625 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2626 return 1; 2627 return 0; 2628 } 2629 2630 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2631 struct keybuf_key *r) 2632 { 2633 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2634 } 2635 2636 struct refill { 2637 struct btree_op op; 2638 unsigned int nr_found; 2639 struct keybuf *buf; 2640 struct bkey *end; 2641 keybuf_pred_fn *pred; 2642 }; 2643 2644 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2645 struct bkey *k) 2646 { 2647 struct refill *refill = container_of(op, struct refill, op); 2648 struct keybuf *buf = refill->buf; 2649 int ret = MAP_CONTINUE; 2650 2651 if (bkey_cmp(k, refill->end) > 0) { 2652 ret = MAP_DONE; 2653 goto out; 2654 } 2655 2656 if (!KEY_SIZE(k)) /* end key */ 2657 goto out; 2658 2659 if (refill->pred(buf, k)) { 2660 struct keybuf_key *w; 2661 2662 spin_lock(&buf->lock); 2663 2664 w = array_alloc(&buf->freelist); 2665 if (!w) { 2666 spin_unlock(&buf->lock); 2667 return MAP_DONE; 2668 } 2669 2670 w->private = NULL; 2671 bkey_copy(&w->key, k); 2672 2673 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2674 array_free(&buf->freelist, w); 2675 else 2676 refill->nr_found++; 2677 2678 if (array_freelist_empty(&buf->freelist)) 2679 ret = MAP_DONE; 2680 2681 spin_unlock(&buf->lock); 2682 } 2683 out: 2684 buf->last_scanned = *k; 2685 return ret; 2686 } 2687 2688 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2689 struct bkey *end, keybuf_pred_fn *pred) 2690 { 2691 struct bkey start = buf->last_scanned; 2692 struct refill refill; 2693 2694 cond_resched(); 2695 2696 bch_btree_op_init(&refill.op, -1); 2697 refill.nr_found = 0; 2698 refill.buf = buf; 2699 refill.end = end; 2700 refill.pred = pred; 2701 2702 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2703 refill_keybuf_fn, MAP_END_KEY); 2704 2705 trace_bcache_keyscan(refill.nr_found, 2706 KEY_INODE(&start), KEY_OFFSET(&start), 2707 KEY_INODE(&buf->last_scanned), 2708 KEY_OFFSET(&buf->last_scanned)); 2709 2710 spin_lock(&buf->lock); 2711 2712 if (!RB_EMPTY_ROOT(&buf->keys)) { 2713 struct keybuf_key *w; 2714 2715 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2716 buf->start = START_KEY(&w->key); 2717 2718 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2719 buf->end = w->key; 2720 } else { 2721 buf->start = MAX_KEY; 2722 buf->end = MAX_KEY; 2723 } 2724 2725 spin_unlock(&buf->lock); 2726 } 2727 2728 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2729 { 2730 rb_erase(&w->node, &buf->keys); 2731 array_free(&buf->freelist, w); 2732 } 2733 2734 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2735 { 2736 spin_lock(&buf->lock); 2737 __bch_keybuf_del(buf, w); 2738 spin_unlock(&buf->lock); 2739 } 2740 2741 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2742 struct bkey *end) 2743 { 2744 bool ret = false; 2745 struct keybuf_key *p, *w, s; 2746 2747 s.key = *start; 2748 2749 if (bkey_cmp(end, &buf->start) <= 0 || 2750 bkey_cmp(start, &buf->end) >= 0) 2751 return false; 2752 2753 spin_lock(&buf->lock); 2754 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2755 2756 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2757 p = w; 2758 w = RB_NEXT(w, node); 2759 2760 if (p->private) 2761 ret = true; 2762 else 2763 __bch_keybuf_del(buf, p); 2764 } 2765 2766 spin_unlock(&buf->lock); 2767 return ret; 2768 } 2769 2770 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2771 { 2772 struct keybuf_key *w; 2773 2774 spin_lock(&buf->lock); 2775 2776 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2777 2778 while (w && w->private) 2779 w = RB_NEXT(w, node); 2780 2781 if (w) 2782 w->private = ERR_PTR(-EINTR); 2783 2784 spin_unlock(&buf->lock); 2785 return w; 2786 } 2787 2788 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2789 struct keybuf *buf, 2790 struct bkey *end, 2791 keybuf_pred_fn *pred) 2792 { 2793 struct keybuf_key *ret; 2794 2795 while (1) { 2796 ret = bch_keybuf_next(buf); 2797 if (ret) 2798 break; 2799 2800 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2801 pr_debug("scan finished\n"); 2802 break; 2803 } 2804 2805 bch_refill_keybuf(c, buf, end, pred); 2806 } 2807 2808 return ret; 2809 } 2810 2811 void bch_keybuf_init(struct keybuf *buf) 2812 { 2813 buf->last_scanned = MAX_KEY; 2814 buf->keys = RB_ROOT; 2815 2816 spin_lock_init(&buf->lock); 2817 array_allocator_init(&buf->freelist); 2818 } 2819 2820 void bch_btree_exit(void) 2821 { 2822 if (btree_io_wq) 2823 destroy_workqueue(btree_io_wq); 2824 } 2825 2826 int __init bch_btree_init(void) 2827 { 2828 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0); 2829 if (!btree_io_wq) 2830 return -ENOMEM; 2831 2832 return 0; 2833 } 2834