1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <linux/sort.h> 40 #include <trace/events/bcache.h> 41 42 /* 43 * Todo: 44 * register_bcache: Return errors out to userspace correctly 45 * 46 * Writeback: don't undirty key until after a cache flush 47 * 48 * Create an iterator for key pointers 49 * 50 * On btree write error, mark bucket such that it won't be freed from the cache 51 * 52 * Journalling: 53 * Check for bad keys in replay 54 * Propagate barriers 55 * Refcount journal entries in journal_replay 56 * 57 * Garbage collection: 58 * Finish incremental gc 59 * Gc should free old UUIDs, data for invalid UUIDs 60 * 61 * Provide a way to list backing device UUIDs we have data cached for, and 62 * probably how long it's been since we've seen them, and a way to invalidate 63 * dirty data for devices that will never be attached again 64 * 65 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 66 * that based on that and how much dirty data we have we can keep writeback 67 * from being starved 68 * 69 * Add a tracepoint or somesuch to watch for writeback starvation 70 * 71 * When btree depth > 1 and splitting an interior node, we have to make sure 72 * alloc_bucket() cannot fail. This should be true but is not completely 73 * obvious. 74 * 75 * Plugging? 76 * 77 * If data write is less than hard sector size of ssd, round up offset in open 78 * bucket to the next whole sector 79 * 80 * Superblock needs to be fleshed out for multiple cache devices 81 * 82 * Add a sysfs tunable for the number of writeback IOs in flight 83 * 84 * Add a sysfs tunable for the number of open data buckets 85 * 86 * IO tracking: Can we track when one process is doing io on behalf of another? 87 * IO tracking: Don't use just an average, weigh more recent stuff higher 88 * 89 * Test module load/unload 90 */ 91 92 #define MAX_NEED_GC 64 93 #define MAX_SAVE_PRIO 72 94 #define MAX_GC_TIMES 100 95 #define MIN_GC_NODES 100 96 #define GC_SLEEP_MS 100 97 98 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 99 100 #define PTR_HASH(c, k) \ 101 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 102 103 static struct workqueue_struct *btree_io_wq; 104 105 #define insert_lock(s, b) ((b)->level <= (s)->lock) 106 107 108 static inline struct bset *write_block(struct btree *b) 109 { 110 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 111 } 112 113 static void bch_btree_init_next(struct btree *b) 114 { 115 /* If not a leaf node, always sort */ 116 if (b->level && b->keys.nsets) 117 bch_btree_sort(&b->keys, &b->c->sort); 118 else 119 bch_btree_sort_lazy(&b->keys, &b->c->sort); 120 121 if (b->written < btree_blocks(b)) 122 bch_bset_init_next(&b->keys, write_block(b), 123 bset_magic(&b->c->cache->sb)); 124 125 } 126 127 /* Btree key manipulation */ 128 129 void bkey_put(struct cache_set *c, struct bkey *k) 130 { 131 unsigned int i; 132 133 for (i = 0; i < KEY_PTRS(k); i++) 134 if (ptr_available(c, k, i)) 135 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 136 } 137 138 /* Btree IO */ 139 140 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 141 { 142 uint64_t crc = b->key.ptr[0]; 143 void *data = (void *) i + 8, *end = bset_bkey_last(i); 144 145 crc = crc64_be(crc, data, end - data); 146 return crc ^ 0xffffffffffffffffULL; 147 } 148 149 void bch_btree_node_read_done(struct btree *b) 150 { 151 const char *err = "bad btree header"; 152 struct bset *i = btree_bset_first(b); 153 struct btree_iter iter; 154 155 /* 156 * c->fill_iter can allocate an iterator with more memory space 157 * than static MAX_BSETS. 158 * See the comment arount cache_set->fill_iter. 159 */ 160 iter.heap.data = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 161 iter.heap.size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 162 iter.heap.nr = 0; 163 164 #ifdef CONFIG_BCACHE_DEBUG 165 iter.b = &b->keys; 166 #endif 167 168 if (!i->seq) 169 goto err; 170 171 for (; 172 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 173 i = write_block(b)) { 174 err = "unsupported bset version"; 175 if (i->version > BCACHE_BSET_VERSION) 176 goto err; 177 178 err = "bad btree header"; 179 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 180 btree_blocks(b)) 181 goto err; 182 183 err = "bad magic"; 184 if (i->magic != bset_magic(&b->c->cache->sb)) 185 goto err; 186 187 err = "bad checksum"; 188 switch (i->version) { 189 case 0: 190 if (i->csum != csum_set(i)) 191 goto err; 192 break; 193 case BCACHE_BSET_VERSION: 194 if (i->csum != btree_csum_set(b, i)) 195 goto err; 196 break; 197 } 198 199 err = "empty set"; 200 if (i != b->keys.set[0].data && !i->keys) 201 goto err; 202 203 bch_btree_iter_push(&iter, i->start, bset_bkey_last(i)); 204 205 b->written += set_blocks(i, block_bytes(b->c->cache)); 206 } 207 208 err = "corrupted btree"; 209 for (i = write_block(b); 210 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 211 i = ((void *) i) + block_bytes(b->c->cache)) 212 if (i->seq == b->keys.set[0].data->seq) 213 goto err; 214 215 bch_btree_sort_and_fix_extents(&b->keys, &iter, &b->c->sort); 216 217 i = b->keys.set[0].data; 218 err = "short btree key"; 219 if (b->keys.set[0].size && 220 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 221 goto err; 222 223 if (b->written < btree_blocks(b)) 224 bch_bset_init_next(&b->keys, write_block(b), 225 bset_magic(&b->c->cache->sb)); 226 out: 227 mempool_free(iter.heap.data, &b->c->fill_iter); 228 return; 229 err: 230 set_btree_node_io_error(b); 231 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 232 err, PTR_BUCKET_NR(b->c, &b->key, 0), 233 bset_block_offset(b, i), i->keys); 234 goto out; 235 } 236 237 static void btree_node_read_endio(struct bio *bio) 238 { 239 struct closure *cl = bio->bi_private; 240 241 closure_put(cl); 242 } 243 244 static void bch_btree_node_read(struct btree *b) 245 { 246 uint64_t start_time = local_clock(); 247 struct closure cl; 248 struct bio *bio; 249 250 trace_bcache_btree_read(b); 251 252 closure_init_stack(&cl); 253 254 bio = bch_bbio_alloc(b->c); 255 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 256 bio->bi_end_io = btree_node_read_endio; 257 bio->bi_private = &cl; 258 bio->bi_opf = REQ_OP_READ | REQ_META; 259 260 bch_bio_map(bio, b->keys.set[0].data); 261 262 bch_submit_bbio(bio, b->c, &b->key, 0); 263 closure_sync(&cl); 264 265 if (bio->bi_status) 266 set_btree_node_io_error(b); 267 268 bch_bbio_free(bio, b->c); 269 270 if (btree_node_io_error(b)) 271 goto err; 272 273 bch_btree_node_read_done(b); 274 bch_time_stats_update(&b->c->btree_read_time, start_time); 275 276 return; 277 err: 278 bch_cache_set_error(b->c, "io error reading bucket %zu", 279 PTR_BUCKET_NR(b->c, &b->key, 0)); 280 } 281 282 static void btree_complete_write(struct btree *b, struct btree_write *w) 283 { 284 if (w->prio_blocked && 285 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 286 wake_up_allocators(b->c); 287 288 if (w->journal) { 289 atomic_dec_bug(w->journal); 290 __closure_wake_up(&b->c->journal.wait); 291 } 292 293 w->prio_blocked = 0; 294 w->journal = NULL; 295 } 296 297 static CLOSURE_CALLBACK(btree_node_write_unlock) 298 { 299 closure_type(b, struct btree, io); 300 301 up(&b->io_mutex); 302 } 303 304 static CLOSURE_CALLBACK(__btree_node_write_done) 305 { 306 closure_type(b, struct btree, io); 307 struct btree_write *w = btree_prev_write(b); 308 309 bch_bbio_free(b->bio, b->c); 310 b->bio = NULL; 311 btree_complete_write(b, w); 312 313 if (btree_node_dirty(b)) 314 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 315 316 closure_return_with_destructor(cl, btree_node_write_unlock); 317 } 318 319 static CLOSURE_CALLBACK(btree_node_write_done) 320 { 321 closure_type(b, struct btree, io); 322 323 bio_free_pages(b->bio); 324 __btree_node_write_done(&cl->work); 325 } 326 327 static void btree_node_write_endio(struct bio *bio) 328 { 329 struct closure *cl = bio->bi_private; 330 struct btree *b = container_of(cl, struct btree, io); 331 332 if (bio->bi_status) 333 set_btree_node_io_error(b); 334 335 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 336 closure_put(cl); 337 } 338 339 static void do_btree_node_write(struct btree *b) 340 { 341 struct closure *cl = &b->io; 342 struct bset *i = btree_bset_last(b); 343 BKEY_PADDED(key) k; 344 345 i->version = BCACHE_BSET_VERSION; 346 i->csum = btree_csum_set(b, i); 347 348 BUG_ON(b->bio); 349 b->bio = bch_bbio_alloc(b->c); 350 351 b->bio->bi_end_io = btree_node_write_endio; 352 b->bio->bi_private = cl; 353 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 354 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 355 bch_bio_map(b->bio, i); 356 357 /* 358 * If we're appending to a leaf node, we don't technically need FUA - 359 * this write just needs to be persisted before the next journal write, 360 * which will be marked FLUSH|FUA. 361 * 362 * Similarly if we're writing a new btree root - the pointer is going to 363 * be in the next journal entry. 364 * 365 * But if we're writing a new btree node (that isn't a root) or 366 * appending to a non leaf btree node, we need either FUA or a flush 367 * when we write the parent with the new pointer. FUA is cheaper than a 368 * flush, and writes appending to leaf nodes aren't blocking anything so 369 * just make all btree node writes FUA to keep things sane. 370 */ 371 372 bkey_copy(&k.key, &b->key); 373 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 374 bset_sector_offset(&b->keys, i)); 375 376 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 377 struct bio_vec *bv; 378 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 379 struct bvec_iter_all iter_all; 380 381 bio_for_each_segment_all(bv, b->bio, iter_all) { 382 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 383 addr += PAGE_SIZE; 384 } 385 386 bch_submit_bbio(b->bio, b->c, &k.key, 0); 387 388 continue_at(cl, btree_node_write_done, NULL); 389 } else { 390 /* 391 * No problem for multipage bvec since the bio is 392 * just allocated 393 */ 394 b->bio->bi_vcnt = 0; 395 bch_bio_map(b->bio, i); 396 397 bch_submit_bbio(b->bio, b->c, &k.key, 0); 398 399 closure_sync(cl); 400 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 401 } 402 } 403 404 void __bch_btree_node_write(struct btree *b, struct closure *parent) 405 { 406 struct bset *i = btree_bset_last(b); 407 408 lockdep_assert_held(&b->write_lock); 409 410 trace_bcache_btree_write(b); 411 412 BUG_ON(current->bio_list); 413 BUG_ON(b->written >= btree_blocks(b)); 414 BUG_ON(b->written && !i->keys); 415 BUG_ON(btree_bset_first(b)->seq != i->seq); 416 bch_check_keys(&b->keys, "writing"); 417 418 cancel_delayed_work(&b->work); 419 420 /* If caller isn't waiting for write, parent refcount is cache set */ 421 down(&b->io_mutex); 422 closure_init(&b->io, parent ?: &b->c->cl); 423 424 clear_bit(BTREE_NODE_dirty, &b->flags); 425 change_bit(BTREE_NODE_write_idx, &b->flags); 426 427 do_btree_node_write(b); 428 429 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 430 &b->c->cache->btree_sectors_written); 431 432 b->written += set_blocks(i, block_bytes(b->c->cache)); 433 } 434 435 void bch_btree_node_write(struct btree *b, struct closure *parent) 436 { 437 unsigned int nsets = b->keys.nsets; 438 439 lockdep_assert_held(&b->lock); 440 441 __bch_btree_node_write(b, parent); 442 443 /* 444 * do verify if there was more than one set initially (i.e. we did a 445 * sort) and we sorted down to a single set: 446 */ 447 if (nsets && !b->keys.nsets) 448 bch_btree_verify(b); 449 450 bch_btree_init_next(b); 451 } 452 453 static void bch_btree_node_write_sync(struct btree *b) 454 { 455 struct closure cl; 456 457 closure_init_stack(&cl); 458 459 mutex_lock(&b->write_lock); 460 bch_btree_node_write(b, &cl); 461 mutex_unlock(&b->write_lock); 462 463 closure_sync(&cl); 464 } 465 466 static void btree_node_write_work(struct work_struct *w) 467 { 468 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 469 470 mutex_lock(&b->write_lock); 471 if (btree_node_dirty(b)) 472 __bch_btree_node_write(b, NULL); 473 mutex_unlock(&b->write_lock); 474 } 475 476 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 477 { 478 struct bset *i = btree_bset_last(b); 479 struct btree_write *w = btree_current_write(b); 480 481 lockdep_assert_held(&b->write_lock); 482 483 BUG_ON(!b->written); 484 BUG_ON(!i->keys); 485 486 if (!btree_node_dirty(b)) 487 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 488 489 set_btree_node_dirty(b); 490 491 /* 492 * w->journal is always the oldest journal pin of all bkeys 493 * in the leaf node, to make sure the oldest jset seq won't 494 * be increased before this btree node is flushed. 495 */ 496 if (journal_ref) { 497 if (w->journal && 498 journal_pin_cmp(b->c, w->journal, journal_ref)) { 499 atomic_dec_bug(w->journal); 500 w->journal = NULL; 501 } 502 503 if (!w->journal) { 504 w->journal = journal_ref; 505 atomic_inc(w->journal); 506 } 507 } 508 509 /* Force write if set is too big */ 510 if (set_bytes(i) > PAGE_SIZE - 48 && 511 !current->bio_list) 512 bch_btree_node_write(b, NULL); 513 } 514 515 /* 516 * Btree in memory cache - allocation/freeing 517 * mca -> memory cache 518 */ 519 520 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 521 ? c->root->level : 1) * 8 + 16) 522 #define mca_can_free(c) \ 523 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 524 525 static void mca_data_free(struct btree *b) 526 { 527 BUG_ON(b->io_mutex.count != 1); 528 529 bch_btree_keys_free(&b->keys); 530 531 b->c->btree_cache_used--; 532 list_move(&b->list, &b->c->btree_cache_freed); 533 } 534 535 static void mca_bucket_free(struct btree *b) 536 { 537 BUG_ON(btree_node_dirty(b)); 538 539 b->key.ptr[0] = 0; 540 hlist_del_init_rcu(&b->hash); 541 list_move(&b->list, &b->c->btree_cache_freeable); 542 } 543 544 static unsigned int btree_order(struct bkey *k) 545 { 546 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 547 } 548 549 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 550 { 551 if (!bch_btree_keys_alloc(&b->keys, 552 max_t(unsigned int, 553 ilog2(b->c->btree_pages), 554 btree_order(k)), 555 gfp)) { 556 b->c->btree_cache_used++; 557 list_move(&b->list, &b->c->btree_cache); 558 } else { 559 list_move(&b->list, &b->c->btree_cache_freed); 560 } 561 } 562 563 #ifdef CONFIG_PROVE_LOCKING 564 static int btree_lock_cmp_fn(const struct lockdep_map *_a, 565 const struct lockdep_map *_b) 566 { 567 const struct btree *a = container_of(_a, struct btree, lock.dep_map); 568 const struct btree *b = container_of(_b, struct btree, lock.dep_map); 569 570 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key); 571 } 572 573 static void btree_lock_print_fn(const struct lockdep_map *map) 574 { 575 const struct btree *b = container_of(map, struct btree, lock.dep_map); 576 577 printk(KERN_CONT " l=%u %llu:%llu", b->level, 578 KEY_INODE(&b->key), KEY_OFFSET(&b->key)); 579 } 580 #endif 581 582 static struct btree *mca_bucket_alloc(struct cache_set *c, 583 struct bkey *k, gfp_t gfp) 584 { 585 /* 586 * kzalloc() is necessary here for initialization, 587 * see code comments in bch_btree_keys_init(). 588 */ 589 struct btree *b = kzalloc(sizeof(struct btree), gfp); 590 591 if (!b) 592 return NULL; 593 594 init_rwsem(&b->lock); 595 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn); 596 mutex_init(&b->write_lock); 597 lockdep_set_novalidate_class(&b->write_lock); 598 INIT_LIST_HEAD(&b->list); 599 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 600 b->c = c; 601 sema_init(&b->io_mutex, 1); 602 603 mca_data_alloc(b, k, gfp); 604 return b; 605 } 606 607 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 608 { 609 struct closure cl; 610 611 closure_init_stack(&cl); 612 lockdep_assert_held(&b->c->bucket_lock); 613 614 if (!down_write_trylock(&b->lock)) 615 return -ENOMEM; 616 617 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 618 619 if (b->keys.page_order < min_order) 620 goto out_unlock; 621 622 if (!flush) { 623 if (btree_node_dirty(b)) 624 goto out_unlock; 625 626 if (down_trylock(&b->io_mutex)) 627 goto out_unlock; 628 up(&b->io_mutex); 629 } 630 631 retry: 632 /* 633 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 634 * __bch_btree_node_write(). To avoid an extra flush, acquire 635 * b->write_lock before checking BTREE_NODE_dirty bit. 636 */ 637 mutex_lock(&b->write_lock); 638 /* 639 * If this btree node is selected in btree_flush_write() by journal 640 * code, delay and retry until the node is flushed by journal code 641 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 642 */ 643 if (btree_node_journal_flush(b)) { 644 pr_debug("bnode %p is flushing by journal, retry\n", b); 645 mutex_unlock(&b->write_lock); 646 udelay(1); 647 goto retry; 648 } 649 650 if (btree_node_dirty(b)) 651 __bch_btree_node_write(b, &cl); 652 mutex_unlock(&b->write_lock); 653 654 closure_sync(&cl); 655 656 /* wait for any in flight btree write */ 657 down(&b->io_mutex); 658 up(&b->io_mutex); 659 660 return 0; 661 out_unlock: 662 rw_unlock(true, b); 663 return -ENOMEM; 664 } 665 666 static unsigned long bch_mca_scan(struct shrinker *shrink, 667 struct shrink_control *sc) 668 { 669 struct cache_set *c = shrink->private_data; 670 struct btree *b, *t; 671 unsigned long i, nr = sc->nr_to_scan; 672 unsigned long freed = 0; 673 unsigned int btree_cache_used; 674 675 if (c->shrinker_disabled) 676 return SHRINK_STOP; 677 678 if (c->btree_cache_alloc_lock) 679 return SHRINK_STOP; 680 681 /* Return -1 if we can't do anything right now */ 682 if (sc->gfp_mask & __GFP_IO) 683 mutex_lock(&c->bucket_lock); 684 else if (!mutex_trylock(&c->bucket_lock)) 685 return -1; 686 687 /* 688 * It's _really_ critical that we don't free too many btree nodes - we 689 * have to always leave ourselves a reserve. The reserve is how we 690 * guarantee that allocating memory for a new btree node can always 691 * succeed, so that inserting keys into the btree can always succeed and 692 * IO can always make forward progress: 693 */ 694 nr /= c->btree_pages; 695 if (nr == 0) 696 nr = 1; 697 nr = min_t(unsigned long, nr, mca_can_free(c)); 698 699 i = 0; 700 btree_cache_used = c->btree_cache_used; 701 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 702 if (nr <= 0) 703 goto out; 704 705 if (!mca_reap(b, 0, false)) { 706 mca_data_free(b); 707 rw_unlock(true, b); 708 freed++; 709 } 710 nr--; 711 i++; 712 } 713 714 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 715 if (nr <= 0 || i >= btree_cache_used) 716 goto out; 717 718 if (!mca_reap(b, 0, false)) { 719 mca_bucket_free(b); 720 mca_data_free(b); 721 rw_unlock(true, b); 722 freed++; 723 } 724 725 nr--; 726 i++; 727 } 728 out: 729 mutex_unlock(&c->bucket_lock); 730 return freed * c->btree_pages; 731 } 732 733 static unsigned long bch_mca_count(struct shrinker *shrink, 734 struct shrink_control *sc) 735 { 736 struct cache_set *c = shrink->private_data; 737 738 if (c->shrinker_disabled) 739 return 0; 740 741 if (c->btree_cache_alloc_lock) 742 return 0; 743 744 return mca_can_free(c) * c->btree_pages; 745 } 746 747 void bch_btree_cache_free(struct cache_set *c) 748 { 749 struct btree *b; 750 struct closure cl; 751 752 closure_init_stack(&cl); 753 754 if (c->shrink) 755 shrinker_free(c->shrink); 756 757 mutex_lock(&c->bucket_lock); 758 759 #ifdef CONFIG_BCACHE_DEBUG 760 if (c->verify_data) 761 list_move(&c->verify_data->list, &c->btree_cache); 762 763 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 764 #endif 765 766 list_splice(&c->btree_cache_freeable, 767 &c->btree_cache); 768 769 while (!list_empty(&c->btree_cache)) { 770 b = list_first_entry(&c->btree_cache, struct btree, list); 771 772 /* 773 * This function is called by cache_set_free(), no I/O 774 * request on cache now, it is unnecessary to acquire 775 * b->write_lock before clearing BTREE_NODE_dirty anymore. 776 */ 777 if (btree_node_dirty(b)) { 778 btree_complete_write(b, btree_current_write(b)); 779 clear_bit(BTREE_NODE_dirty, &b->flags); 780 } 781 mca_data_free(b); 782 } 783 784 while (!list_empty(&c->btree_cache_freed)) { 785 b = list_first_entry(&c->btree_cache_freed, 786 struct btree, list); 787 list_del(&b->list); 788 cancel_delayed_work_sync(&b->work); 789 kfree(b); 790 } 791 792 mutex_unlock(&c->bucket_lock); 793 } 794 795 int bch_btree_cache_alloc(struct cache_set *c) 796 { 797 unsigned int i; 798 799 for (i = 0; i < mca_reserve(c); i++) 800 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 801 return -ENOMEM; 802 803 list_splice_init(&c->btree_cache, 804 &c->btree_cache_freeable); 805 806 #ifdef CONFIG_BCACHE_DEBUG 807 mutex_init(&c->verify_lock); 808 809 c->verify_ondisk = (void *) 810 __get_free_pages(GFP_KERNEL|__GFP_COMP, 811 ilog2(meta_bucket_pages(&c->cache->sb))); 812 if (!c->verify_ondisk) { 813 /* 814 * Don't worry about the mca_rereserve buckets 815 * allocated in previous for-loop, they will be 816 * handled properly in bch_cache_set_unregister(). 817 */ 818 return -ENOMEM; 819 } 820 821 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 822 823 if (c->verify_data && 824 c->verify_data->keys.set->data) 825 list_del_init(&c->verify_data->list); 826 else 827 c->verify_data = NULL; 828 #endif 829 830 c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid); 831 if (!c->shrink) { 832 pr_warn("bcache: %s: could not allocate shrinker\n", __func__); 833 return 0; 834 } 835 836 c->shrink->count_objects = bch_mca_count; 837 c->shrink->scan_objects = bch_mca_scan; 838 c->shrink->seeks = 4; 839 c->shrink->batch = c->btree_pages * 2; 840 c->shrink->private_data = c; 841 842 shrinker_register(c->shrink); 843 844 return 0; 845 } 846 847 /* Btree in memory cache - hash table */ 848 849 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 850 { 851 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 852 } 853 854 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 855 { 856 struct btree *b; 857 858 rcu_read_lock(); 859 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 860 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 861 goto out; 862 b = NULL; 863 out: 864 rcu_read_unlock(); 865 return b; 866 } 867 868 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 869 { 870 spin_lock(&c->btree_cannibalize_lock); 871 if (likely(c->btree_cache_alloc_lock == NULL)) { 872 c->btree_cache_alloc_lock = current; 873 } else if (c->btree_cache_alloc_lock != current) { 874 if (op) 875 prepare_to_wait(&c->btree_cache_wait, &op->wait, 876 TASK_UNINTERRUPTIBLE); 877 spin_unlock(&c->btree_cannibalize_lock); 878 return -EINTR; 879 } 880 spin_unlock(&c->btree_cannibalize_lock); 881 882 return 0; 883 } 884 885 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 886 struct bkey *k) 887 { 888 struct btree *b; 889 890 trace_bcache_btree_cache_cannibalize(c); 891 892 if (mca_cannibalize_lock(c, op)) 893 return ERR_PTR(-EINTR); 894 895 list_for_each_entry_reverse(b, &c->btree_cache, list) 896 if (!mca_reap(b, btree_order(k), false)) 897 return b; 898 899 list_for_each_entry_reverse(b, &c->btree_cache, list) 900 if (!mca_reap(b, btree_order(k), true)) 901 return b; 902 903 WARN(1, "btree cache cannibalize failed\n"); 904 return ERR_PTR(-ENOMEM); 905 } 906 907 /* 908 * We can only have one thread cannibalizing other cached btree nodes at a time, 909 * or we'll deadlock. We use an open coded mutex to ensure that, which a 910 * cannibalize_bucket() will take. This means every time we unlock the root of 911 * the btree, we need to release this lock if we have it held. 912 */ 913 void bch_cannibalize_unlock(struct cache_set *c) 914 { 915 spin_lock(&c->btree_cannibalize_lock); 916 if (c->btree_cache_alloc_lock == current) { 917 c->btree_cache_alloc_lock = NULL; 918 wake_up(&c->btree_cache_wait); 919 } 920 spin_unlock(&c->btree_cannibalize_lock); 921 } 922 923 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 924 struct bkey *k, int level) 925 { 926 struct btree *b; 927 928 BUG_ON(current->bio_list); 929 930 lockdep_assert_held(&c->bucket_lock); 931 932 if (mca_find(c, k)) 933 return NULL; 934 935 /* btree_free() doesn't free memory; it sticks the node on the end of 936 * the list. Check if there's any freed nodes there: 937 */ 938 list_for_each_entry(b, &c->btree_cache_freeable, list) 939 if (!mca_reap(b, btree_order(k), false)) 940 goto out; 941 942 /* We never free struct btree itself, just the memory that holds the on 943 * disk node. Check the freed list before allocating a new one: 944 */ 945 list_for_each_entry(b, &c->btree_cache_freed, list) 946 if (!mca_reap(b, 0, false)) { 947 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 948 if (!b->keys.set[0].data) 949 goto err; 950 else 951 goto out; 952 } 953 954 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 955 if (!b) 956 goto err; 957 958 BUG_ON(!down_write_trylock(&b->lock)); 959 if (!b->keys.set->data) 960 goto err; 961 out: 962 BUG_ON(b->io_mutex.count != 1); 963 964 bkey_copy(&b->key, k); 965 list_move(&b->list, &c->btree_cache); 966 hlist_del_init_rcu(&b->hash); 967 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 968 969 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 970 b->parent = (void *) ~0UL; 971 b->flags = 0; 972 b->written = 0; 973 b->level = level; 974 975 if (!b->level) 976 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 977 &b->c->expensive_debug_checks); 978 else 979 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 980 &b->c->expensive_debug_checks); 981 982 return b; 983 err: 984 if (b) 985 rw_unlock(true, b); 986 987 b = mca_cannibalize(c, op, k); 988 if (!IS_ERR(b)) 989 goto out; 990 991 return b; 992 } 993 994 /* 995 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 996 * in from disk if necessary. 997 * 998 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 999 * 1000 * The btree node will have either a read or a write lock held, depending on 1001 * level and op->lock. 1002 * 1003 * Note: Only error code or btree pointer will be returned, it is unncessary 1004 * for callers to check NULL pointer. 1005 */ 1006 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1007 struct bkey *k, int level, bool write, 1008 struct btree *parent) 1009 { 1010 int i = 0; 1011 struct btree *b; 1012 1013 BUG_ON(level < 0); 1014 retry: 1015 b = mca_find(c, k); 1016 1017 if (!b) { 1018 if (current->bio_list) 1019 return ERR_PTR(-EAGAIN); 1020 1021 mutex_lock(&c->bucket_lock); 1022 b = mca_alloc(c, op, k, level); 1023 mutex_unlock(&c->bucket_lock); 1024 1025 if (!b) 1026 goto retry; 1027 if (IS_ERR(b)) 1028 return b; 1029 1030 bch_btree_node_read(b); 1031 1032 if (!write) 1033 downgrade_write(&b->lock); 1034 } else { 1035 rw_lock(write, b, level); 1036 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1037 rw_unlock(write, b); 1038 goto retry; 1039 } 1040 BUG_ON(b->level != level); 1041 } 1042 1043 if (btree_node_io_error(b)) { 1044 rw_unlock(write, b); 1045 return ERR_PTR(-EIO); 1046 } 1047 1048 BUG_ON(!b->written); 1049 1050 b->parent = parent; 1051 1052 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1053 prefetch(b->keys.set[i].tree); 1054 prefetch(b->keys.set[i].data); 1055 } 1056 1057 for (; i <= b->keys.nsets; i++) 1058 prefetch(b->keys.set[i].data); 1059 1060 return b; 1061 } 1062 1063 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1064 { 1065 struct btree *b; 1066 1067 mutex_lock(&parent->c->bucket_lock); 1068 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1069 mutex_unlock(&parent->c->bucket_lock); 1070 1071 if (!IS_ERR_OR_NULL(b)) { 1072 b->parent = parent; 1073 bch_btree_node_read(b); 1074 rw_unlock(true, b); 1075 } 1076 } 1077 1078 /* Btree alloc */ 1079 1080 static void btree_node_free(struct btree *b) 1081 { 1082 trace_bcache_btree_node_free(b); 1083 1084 BUG_ON(b == b->c->root); 1085 1086 retry: 1087 mutex_lock(&b->write_lock); 1088 /* 1089 * If the btree node is selected and flushing in btree_flush_write(), 1090 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1091 * then it is safe to free the btree node here. Otherwise this btree 1092 * node will be in race condition. 1093 */ 1094 if (btree_node_journal_flush(b)) { 1095 mutex_unlock(&b->write_lock); 1096 pr_debug("bnode %p journal_flush set, retry\n", b); 1097 udelay(1); 1098 goto retry; 1099 } 1100 1101 if (btree_node_dirty(b)) { 1102 btree_complete_write(b, btree_current_write(b)); 1103 clear_bit(BTREE_NODE_dirty, &b->flags); 1104 } 1105 1106 mutex_unlock(&b->write_lock); 1107 1108 cancel_delayed_work(&b->work); 1109 1110 mutex_lock(&b->c->bucket_lock); 1111 bch_bucket_free(b->c, &b->key); 1112 mca_bucket_free(b); 1113 mutex_unlock(&b->c->bucket_lock); 1114 } 1115 1116 /* 1117 * Only error code or btree pointer will be returned, it is unncessary for 1118 * callers to check NULL pointer. 1119 */ 1120 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1121 int level, bool wait, 1122 struct btree *parent) 1123 { 1124 BKEY_PADDED(key) k; 1125 struct btree *b; 1126 1127 mutex_lock(&c->bucket_lock); 1128 retry: 1129 /* return ERR_PTR(-EAGAIN) when it fails */ 1130 b = ERR_PTR(-EAGAIN); 1131 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1132 goto err; 1133 1134 bkey_put(c, &k.key); 1135 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1136 1137 b = mca_alloc(c, op, &k.key, level); 1138 if (IS_ERR(b)) 1139 goto err_free; 1140 1141 if (!b) { 1142 cache_bug(c, 1143 "Tried to allocate bucket that was in btree cache"); 1144 goto retry; 1145 } 1146 1147 b->parent = parent; 1148 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1149 1150 mutex_unlock(&c->bucket_lock); 1151 1152 trace_bcache_btree_node_alloc(b); 1153 return b; 1154 err_free: 1155 bch_bucket_free(c, &k.key); 1156 err: 1157 mutex_unlock(&c->bucket_lock); 1158 1159 trace_bcache_btree_node_alloc_fail(c); 1160 return b; 1161 } 1162 1163 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1164 struct btree_op *op, int level, 1165 struct btree *parent) 1166 { 1167 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1168 } 1169 1170 static struct btree *btree_node_alloc_replacement(struct btree *b, 1171 struct btree_op *op) 1172 { 1173 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1174 1175 if (!IS_ERR(n)) { 1176 mutex_lock(&n->write_lock); 1177 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1178 bkey_copy_key(&n->key, &b->key); 1179 mutex_unlock(&n->write_lock); 1180 } 1181 1182 return n; 1183 } 1184 1185 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1186 { 1187 unsigned int i; 1188 1189 mutex_lock(&b->c->bucket_lock); 1190 1191 atomic_inc(&b->c->prio_blocked); 1192 1193 bkey_copy(k, &b->key); 1194 bkey_copy_key(k, &ZERO_KEY); 1195 1196 for (i = 0; i < KEY_PTRS(k); i++) 1197 SET_PTR_GEN(k, i, 1198 bch_inc_gen(b->c->cache, 1199 PTR_BUCKET(b->c, &b->key, i))); 1200 1201 mutex_unlock(&b->c->bucket_lock); 1202 } 1203 1204 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1205 { 1206 struct cache_set *c = b->c; 1207 struct cache *ca = c->cache; 1208 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1209 1210 mutex_lock(&c->bucket_lock); 1211 1212 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1213 if (op) 1214 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1215 TASK_UNINTERRUPTIBLE); 1216 mutex_unlock(&c->bucket_lock); 1217 return -EINTR; 1218 } 1219 1220 mutex_unlock(&c->bucket_lock); 1221 1222 return mca_cannibalize_lock(b->c, op); 1223 } 1224 1225 /* Garbage collection */ 1226 1227 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1228 struct bkey *k) 1229 { 1230 uint8_t stale = 0; 1231 unsigned int i; 1232 struct bucket *g; 1233 1234 /* 1235 * ptr_invalid() can't return true for the keys that mark btree nodes as 1236 * freed, but since ptr_bad() returns true we'll never actually use them 1237 * for anything and thus we don't want mark their pointers here 1238 */ 1239 if (!bkey_cmp(k, &ZERO_KEY)) 1240 return stale; 1241 1242 for (i = 0; i < KEY_PTRS(k); i++) { 1243 if (!ptr_available(c, k, i)) 1244 continue; 1245 1246 g = PTR_BUCKET(c, k, i); 1247 1248 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1249 g->last_gc = PTR_GEN(k, i); 1250 1251 if (ptr_stale(c, k, i)) { 1252 stale = max(stale, ptr_stale(c, k, i)); 1253 continue; 1254 } 1255 1256 cache_bug_on(GC_MARK(g) && 1257 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1258 c, "inconsistent ptrs: mark = %llu, level = %i", 1259 GC_MARK(g), level); 1260 1261 if (level) 1262 SET_GC_MARK(g, GC_MARK_METADATA); 1263 else if (KEY_DIRTY(k)) 1264 SET_GC_MARK(g, GC_MARK_DIRTY); 1265 else if (!GC_MARK(g)) 1266 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1267 1268 /* guard against overflow */ 1269 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1270 GC_SECTORS_USED(g) + KEY_SIZE(k), 1271 MAX_GC_SECTORS_USED)); 1272 1273 BUG_ON(!GC_SECTORS_USED(g)); 1274 } 1275 1276 return stale; 1277 } 1278 1279 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1280 1281 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1282 { 1283 unsigned int i; 1284 1285 for (i = 0; i < KEY_PTRS(k); i++) 1286 if (ptr_available(c, k, i) && 1287 !ptr_stale(c, k, i)) { 1288 struct bucket *b = PTR_BUCKET(c, k, i); 1289 1290 b->gen = PTR_GEN(k, i); 1291 1292 if (level && bkey_cmp(k, &ZERO_KEY)) 1293 b->prio = BTREE_PRIO; 1294 else if (!level && b->prio == BTREE_PRIO) 1295 b->prio = INITIAL_PRIO; 1296 } 1297 1298 __bch_btree_mark_key(c, level, k); 1299 } 1300 1301 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1302 { 1303 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1304 } 1305 1306 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1307 { 1308 uint8_t stale = 0; 1309 unsigned int keys = 0, good_keys = 0; 1310 struct bkey *k; 1311 struct btree_iter iter; 1312 struct bset_tree *t; 1313 1314 min_heap_init(&iter.heap, NULL, MAX_BSETS); 1315 1316 gc->nodes++; 1317 1318 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1319 stale = max(stale, btree_mark_key(b, k)); 1320 keys++; 1321 1322 if (bch_ptr_bad(&b->keys, k)) 1323 continue; 1324 1325 gc->key_bytes += bkey_u64s(k); 1326 gc->nkeys++; 1327 good_keys++; 1328 1329 gc->data += KEY_SIZE(k); 1330 } 1331 1332 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1333 btree_bug_on(t->size && 1334 bset_written(&b->keys, t) && 1335 bkey_cmp(&b->key, &t->end) < 0, 1336 b, "found short btree key in gc"); 1337 1338 if (b->c->gc_always_rewrite) 1339 return true; 1340 1341 if (stale > 10) 1342 return true; 1343 1344 if ((keys - good_keys) * 2 > keys) 1345 return true; 1346 1347 return false; 1348 } 1349 1350 #define GC_MERGE_NODES 4U 1351 1352 struct gc_merge_info { 1353 struct btree *b; 1354 unsigned int keys; 1355 }; 1356 1357 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1358 struct keylist *insert_keys, 1359 atomic_t *journal_ref, 1360 struct bkey *replace_key); 1361 1362 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1363 struct gc_stat *gc, struct gc_merge_info *r) 1364 { 1365 unsigned int i, nodes = 0, keys = 0, blocks; 1366 struct btree *new_nodes[GC_MERGE_NODES]; 1367 struct keylist keylist; 1368 struct closure cl; 1369 struct bkey *k; 1370 1371 bch_keylist_init(&keylist); 1372 1373 if (btree_check_reserve(b, NULL)) 1374 return 0; 1375 1376 memset(new_nodes, 0, sizeof(new_nodes)); 1377 closure_init_stack(&cl); 1378 1379 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1380 keys += r[nodes++].keys; 1381 1382 blocks = btree_default_blocks(b->c) * 2 / 3; 1383 1384 if (nodes < 2 || 1385 __set_blocks(b->keys.set[0].data, keys, 1386 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1387 return 0; 1388 1389 for (i = 0; i < nodes; i++) { 1390 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1391 if (IS_ERR(new_nodes[i])) 1392 goto out_nocoalesce; 1393 } 1394 1395 /* 1396 * We have to check the reserve here, after we've allocated our new 1397 * nodes, to make sure the insert below will succeed - we also check 1398 * before as an optimization to potentially avoid a bunch of expensive 1399 * allocs/sorts 1400 */ 1401 if (btree_check_reserve(b, NULL)) 1402 goto out_nocoalesce; 1403 1404 for (i = 0; i < nodes; i++) 1405 mutex_lock(&new_nodes[i]->write_lock); 1406 1407 for (i = nodes - 1; i > 0; --i) { 1408 struct bset *n1 = btree_bset_first(new_nodes[i]); 1409 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1410 struct bkey *k, *last = NULL; 1411 1412 keys = 0; 1413 1414 if (i > 1) { 1415 for (k = n2->start; 1416 k < bset_bkey_last(n2); 1417 k = bkey_next(k)) { 1418 if (__set_blocks(n1, n1->keys + keys + 1419 bkey_u64s(k), 1420 block_bytes(b->c->cache)) > blocks) 1421 break; 1422 1423 last = k; 1424 keys += bkey_u64s(k); 1425 } 1426 } else { 1427 /* 1428 * Last node we're not getting rid of - we're getting 1429 * rid of the node at r[0]. Have to try and fit all of 1430 * the remaining keys into this node; we can't ensure 1431 * they will always fit due to rounding and variable 1432 * length keys (shouldn't be possible in practice, 1433 * though) 1434 */ 1435 if (__set_blocks(n1, n1->keys + n2->keys, 1436 block_bytes(b->c->cache)) > 1437 btree_blocks(new_nodes[i])) 1438 goto out_unlock_nocoalesce; 1439 1440 keys = n2->keys; 1441 /* Take the key of the node we're getting rid of */ 1442 last = &r->b->key; 1443 } 1444 1445 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1446 btree_blocks(new_nodes[i])); 1447 1448 if (last) 1449 bkey_copy_key(&new_nodes[i]->key, last); 1450 1451 memcpy(bset_bkey_last(n1), 1452 n2->start, 1453 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1454 1455 n1->keys += keys; 1456 r[i].keys = n1->keys; 1457 1458 memmove(n2->start, 1459 bset_bkey_idx(n2, keys), 1460 (void *) bset_bkey_last(n2) - 1461 (void *) bset_bkey_idx(n2, keys)); 1462 1463 n2->keys -= keys; 1464 1465 if (__bch_keylist_realloc(&keylist, 1466 bkey_u64s(&new_nodes[i]->key))) 1467 goto out_unlock_nocoalesce; 1468 1469 bch_btree_node_write(new_nodes[i], &cl); 1470 bch_keylist_add(&keylist, &new_nodes[i]->key); 1471 } 1472 1473 for (i = 0; i < nodes; i++) 1474 mutex_unlock(&new_nodes[i]->write_lock); 1475 1476 closure_sync(&cl); 1477 1478 /* We emptied out this node */ 1479 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1480 btree_node_free(new_nodes[0]); 1481 rw_unlock(true, new_nodes[0]); 1482 new_nodes[0] = NULL; 1483 1484 for (i = 0; i < nodes; i++) { 1485 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1486 goto out_nocoalesce; 1487 1488 make_btree_freeing_key(r[i].b, keylist.top); 1489 bch_keylist_push(&keylist); 1490 } 1491 1492 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1493 BUG_ON(!bch_keylist_empty(&keylist)); 1494 1495 for (i = 0; i < nodes; i++) { 1496 btree_node_free(r[i].b); 1497 rw_unlock(true, r[i].b); 1498 1499 r[i].b = new_nodes[i]; 1500 } 1501 1502 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1503 r[nodes - 1].b = ERR_PTR(-EINTR); 1504 1505 trace_bcache_btree_gc_coalesce(nodes); 1506 gc->nodes--; 1507 1508 bch_keylist_free(&keylist); 1509 1510 /* Invalidated our iterator */ 1511 return -EINTR; 1512 1513 out_unlock_nocoalesce: 1514 for (i = 0; i < nodes; i++) 1515 mutex_unlock(&new_nodes[i]->write_lock); 1516 1517 out_nocoalesce: 1518 closure_sync(&cl); 1519 1520 while ((k = bch_keylist_pop(&keylist))) 1521 if (!bkey_cmp(k, &ZERO_KEY)) 1522 atomic_dec(&b->c->prio_blocked); 1523 bch_keylist_free(&keylist); 1524 1525 for (i = 0; i < nodes; i++) 1526 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1527 btree_node_free(new_nodes[i]); 1528 rw_unlock(true, new_nodes[i]); 1529 } 1530 return 0; 1531 } 1532 1533 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1534 struct btree *replace) 1535 { 1536 struct keylist keys; 1537 struct btree *n; 1538 1539 if (btree_check_reserve(b, NULL)) 1540 return 0; 1541 1542 n = btree_node_alloc_replacement(replace, NULL); 1543 if (IS_ERR(n)) 1544 return 0; 1545 1546 /* recheck reserve after allocating replacement node */ 1547 if (btree_check_reserve(b, NULL)) { 1548 btree_node_free(n); 1549 rw_unlock(true, n); 1550 return 0; 1551 } 1552 1553 bch_btree_node_write_sync(n); 1554 1555 bch_keylist_init(&keys); 1556 bch_keylist_add(&keys, &n->key); 1557 1558 make_btree_freeing_key(replace, keys.top); 1559 bch_keylist_push(&keys); 1560 1561 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1562 BUG_ON(!bch_keylist_empty(&keys)); 1563 1564 btree_node_free(replace); 1565 rw_unlock(true, n); 1566 1567 /* Invalidated our iterator */ 1568 return -EINTR; 1569 } 1570 1571 static unsigned int btree_gc_count_keys(struct btree *b) 1572 { 1573 struct bkey *k; 1574 struct btree_iter iter; 1575 unsigned int ret = 0; 1576 1577 min_heap_init(&iter.heap, NULL, MAX_BSETS); 1578 1579 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1580 ret += bkey_u64s(k); 1581 1582 return ret; 1583 } 1584 1585 static size_t btree_gc_min_nodes(struct cache_set *c) 1586 { 1587 size_t min_nodes; 1588 1589 /* 1590 * Since incremental GC would stop 100ms when front 1591 * side I/O comes, so when there are many btree nodes, 1592 * if GC only processes constant (100) nodes each time, 1593 * GC would last a long time, and the front side I/Os 1594 * would run out of the buckets (since no new bucket 1595 * can be allocated during GC), and be blocked again. 1596 * So GC should not process constant nodes, but varied 1597 * nodes according to the number of btree nodes, which 1598 * realized by dividing GC into constant(100) times, 1599 * so when there are many btree nodes, GC can process 1600 * more nodes each time, otherwise, GC will process less 1601 * nodes each time (but no less than MIN_GC_NODES) 1602 */ 1603 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1604 if (min_nodes < MIN_GC_NODES) 1605 min_nodes = MIN_GC_NODES; 1606 1607 return min_nodes; 1608 } 1609 1610 1611 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1612 struct closure *writes, struct gc_stat *gc) 1613 { 1614 int ret = 0; 1615 bool should_rewrite; 1616 struct bkey *k; 1617 struct btree_iter iter; 1618 struct gc_merge_info r[GC_MERGE_NODES]; 1619 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1620 1621 min_heap_init(&iter.heap, NULL, MAX_BSETS); 1622 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1623 1624 for (i = r; i < r + ARRAY_SIZE(r); i++) 1625 i->b = ERR_PTR(-EINTR); 1626 1627 while (1) { 1628 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1629 if (k) { 1630 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1631 true, b); 1632 if (IS_ERR(r->b)) { 1633 ret = PTR_ERR(r->b); 1634 break; 1635 } 1636 1637 r->keys = btree_gc_count_keys(r->b); 1638 1639 ret = btree_gc_coalesce(b, op, gc, r); 1640 if (ret) 1641 break; 1642 } 1643 1644 if (!last->b) 1645 break; 1646 1647 if (!IS_ERR(last->b)) { 1648 should_rewrite = btree_gc_mark_node(last->b, gc); 1649 if (should_rewrite) { 1650 ret = btree_gc_rewrite_node(b, op, last->b); 1651 if (ret) 1652 break; 1653 } 1654 1655 if (last->b->level) { 1656 ret = btree_gc_recurse(last->b, op, writes, gc); 1657 if (ret) 1658 break; 1659 } 1660 1661 bkey_copy_key(&b->c->gc_done, &last->b->key); 1662 1663 /* 1664 * Must flush leaf nodes before gc ends, since replace 1665 * operations aren't journalled 1666 */ 1667 mutex_lock(&last->b->write_lock); 1668 if (btree_node_dirty(last->b)) 1669 bch_btree_node_write(last->b, writes); 1670 mutex_unlock(&last->b->write_lock); 1671 rw_unlock(true, last->b); 1672 } 1673 1674 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1675 r->b = NULL; 1676 1677 if (atomic_read(&b->c->search_inflight) && 1678 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1679 gc->nodes_pre = gc->nodes; 1680 ret = -EAGAIN; 1681 break; 1682 } 1683 1684 if (need_resched()) { 1685 ret = -EAGAIN; 1686 break; 1687 } 1688 } 1689 1690 for (i = r; i < r + ARRAY_SIZE(r); i++) 1691 if (!IS_ERR_OR_NULL(i->b)) { 1692 mutex_lock(&i->b->write_lock); 1693 if (btree_node_dirty(i->b)) 1694 bch_btree_node_write(i->b, writes); 1695 mutex_unlock(&i->b->write_lock); 1696 rw_unlock(true, i->b); 1697 } 1698 1699 return ret; 1700 } 1701 1702 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1703 struct closure *writes, struct gc_stat *gc) 1704 { 1705 struct btree *n = NULL; 1706 int ret = 0; 1707 bool should_rewrite; 1708 1709 should_rewrite = btree_gc_mark_node(b, gc); 1710 if (should_rewrite) { 1711 n = btree_node_alloc_replacement(b, NULL); 1712 1713 if (!IS_ERR(n)) { 1714 bch_btree_node_write_sync(n); 1715 1716 bch_btree_set_root(n); 1717 btree_node_free(b); 1718 rw_unlock(true, n); 1719 1720 return -EINTR; 1721 } 1722 } 1723 1724 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1725 1726 if (b->level) { 1727 ret = btree_gc_recurse(b, op, writes, gc); 1728 if (ret) 1729 return ret; 1730 } 1731 1732 bkey_copy_key(&b->c->gc_done, &b->key); 1733 1734 return ret; 1735 } 1736 1737 static void btree_gc_start(struct cache_set *c) 1738 { 1739 struct cache *ca; 1740 struct bucket *b; 1741 1742 if (!c->gc_mark_valid) 1743 return; 1744 1745 mutex_lock(&c->bucket_lock); 1746 1747 c->gc_done = ZERO_KEY; 1748 1749 ca = c->cache; 1750 for_each_bucket(b, ca) { 1751 b->last_gc = b->gen; 1752 if (bch_can_invalidate_bucket(ca, b)) 1753 b->reclaimable_in_gc = 1; 1754 if (!atomic_read(&b->pin)) { 1755 SET_GC_MARK(b, 0); 1756 SET_GC_SECTORS_USED(b, 0); 1757 } 1758 } 1759 1760 c->gc_mark_valid = 0; 1761 mutex_unlock(&c->bucket_lock); 1762 } 1763 1764 static void bch_btree_gc_finish(struct cache_set *c) 1765 { 1766 struct bucket *b; 1767 struct cache *ca; 1768 unsigned int i, j; 1769 uint64_t *k; 1770 1771 mutex_lock(&c->bucket_lock); 1772 1773 set_gc_sectors(c); 1774 c->gc_mark_valid = 1; 1775 c->need_gc = 0; 1776 1777 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1778 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1779 GC_MARK_METADATA); 1780 1781 /* don't reclaim buckets to which writeback keys point */ 1782 rcu_read_lock(); 1783 for (i = 0; i < c->devices_max_used; i++) { 1784 struct bcache_device *d = c->devices[i]; 1785 struct cached_dev *dc; 1786 struct keybuf_key *w, *n; 1787 1788 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1789 continue; 1790 dc = container_of(d, struct cached_dev, disk); 1791 1792 spin_lock(&dc->writeback_keys.lock); 1793 rbtree_postorder_for_each_entry_safe(w, n, 1794 &dc->writeback_keys.keys, node) 1795 for (j = 0; j < KEY_PTRS(&w->key); j++) 1796 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1797 GC_MARK_DIRTY); 1798 spin_unlock(&dc->writeback_keys.lock); 1799 } 1800 rcu_read_unlock(); 1801 1802 c->avail_nbuckets = 0; 1803 1804 ca = c->cache; 1805 ca->invalidate_needs_gc = 0; 1806 1807 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1808 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1809 1810 for (k = ca->prio_buckets; 1811 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1812 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1813 1814 for_each_bucket(b, ca) { 1815 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1816 1817 if (b->reclaimable_in_gc) 1818 b->reclaimable_in_gc = 0; 1819 1820 if (atomic_read(&b->pin)) 1821 continue; 1822 1823 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1824 1825 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1826 c->avail_nbuckets++; 1827 } 1828 1829 mutex_unlock(&c->bucket_lock); 1830 } 1831 1832 static void bch_btree_gc(struct cache_set *c) 1833 { 1834 int ret; 1835 struct gc_stat stats; 1836 struct closure writes; 1837 struct btree_op op; 1838 uint64_t start_time = local_clock(); 1839 1840 trace_bcache_gc_start(c); 1841 1842 memset(&stats, 0, sizeof(struct gc_stat)); 1843 closure_init_stack(&writes); 1844 bch_btree_op_init(&op, SHRT_MAX); 1845 1846 btree_gc_start(c); 1847 1848 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1849 do { 1850 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1851 closure_sync(&writes); 1852 cond_resched(); 1853 1854 if (ret == -EAGAIN) 1855 schedule_timeout_interruptible(msecs_to_jiffies 1856 (GC_SLEEP_MS)); 1857 else if (ret) 1858 pr_warn("gc failed!\n"); 1859 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1860 1861 bch_btree_gc_finish(c); 1862 wake_up_allocators(c); 1863 1864 bch_time_stats_update(&c->btree_gc_time, start_time); 1865 1866 stats.key_bytes *= sizeof(uint64_t); 1867 stats.data <<= 9; 1868 bch_update_bucket_in_use(c, &stats); 1869 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1870 1871 trace_bcache_gc_end(c); 1872 1873 bch_moving_gc(c); 1874 } 1875 1876 static bool gc_should_run(struct cache_set *c) 1877 { 1878 struct cache *ca = c->cache; 1879 1880 if (ca->invalidate_needs_gc) 1881 return true; 1882 1883 if (atomic_read(&c->sectors_to_gc) < 0) 1884 return true; 1885 1886 return false; 1887 } 1888 1889 static int bch_gc_thread(void *arg) 1890 { 1891 struct cache_set *c = arg; 1892 1893 while (1) { 1894 wait_event_interruptible(c->gc_wait, 1895 kthread_should_stop() || 1896 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1897 gc_should_run(c)); 1898 1899 if (kthread_should_stop() || 1900 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1901 break; 1902 1903 set_gc_sectors(c); 1904 bch_btree_gc(c); 1905 } 1906 1907 wait_for_kthread_stop(); 1908 return 0; 1909 } 1910 1911 int bch_gc_thread_start(struct cache_set *c) 1912 { 1913 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1914 return PTR_ERR_OR_ZERO(c->gc_thread); 1915 } 1916 1917 /* Initial partial gc */ 1918 1919 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1920 { 1921 int ret = 0; 1922 struct bkey *k, *p = NULL; 1923 struct btree_iter iter; 1924 1925 min_heap_init(&iter.heap, NULL, MAX_BSETS); 1926 1927 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1928 bch_initial_mark_key(b->c, b->level, k); 1929 1930 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1931 1932 if (b->level) { 1933 bch_btree_iter_init(&b->keys, &iter, NULL); 1934 1935 do { 1936 k = bch_btree_iter_next_filter(&iter, &b->keys, 1937 bch_ptr_bad); 1938 if (k) { 1939 btree_node_prefetch(b, k); 1940 /* 1941 * initiallize c->gc_stats.nodes 1942 * for incremental GC 1943 */ 1944 b->c->gc_stats.nodes++; 1945 } 1946 1947 if (p) 1948 ret = bcache_btree(check_recurse, p, b, op); 1949 1950 p = k; 1951 } while (p && !ret); 1952 } 1953 1954 return ret; 1955 } 1956 1957 1958 static int bch_btree_check_thread(void *arg) 1959 { 1960 int ret; 1961 struct btree_check_info *info = arg; 1962 struct btree_check_state *check_state = info->state; 1963 struct cache_set *c = check_state->c; 1964 struct btree_iter iter; 1965 struct bkey *k, *p; 1966 int cur_idx, prev_idx, skip_nr; 1967 1968 k = p = NULL; 1969 cur_idx = prev_idx = 0; 1970 ret = 0; 1971 1972 min_heap_init(&iter.heap, NULL, MAX_BSETS); 1973 1974 /* root node keys are checked before thread created */ 1975 bch_btree_iter_init(&c->root->keys, &iter, NULL); 1976 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); 1977 BUG_ON(!k); 1978 1979 p = k; 1980 while (k) { 1981 /* 1982 * Fetch a root node key index, skip the keys which 1983 * should be fetched by other threads, then check the 1984 * sub-tree indexed by the fetched key. 1985 */ 1986 spin_lock(&check_state->idx_lock); 1987 cur_idx = check_state->key_idx; 1988 check_state->key_idx++; 1989 spin_unlock(&check_state->idx_lock); 1990 1991 skip_nr = cur_idx - prev_idx; 1992 1993 while (skip_nr) { 1994 k = bch_btree_iter_next_filter(&iter, 1995 &c->root->keys, 1996 bch_ptr_bad); 1997 if (k) 1998 p = k; 1999 else { 2000 /* 2001 * No more keys to check in root node, 2002 * current checking threads are enough, 2003 * stop creating more. 2004 */ 2005 atomic_set(&check_state->enough, 1); 2006 /* Update check_state->enough earlier */ 2007 smp_mb__after_atomic(); 2008 goto out; 2009 } 2010 skip_nr--; 2011 cond_resched(); 2012 } 2013 2014 if (p) { 2015 struct btree_op op; 2016 2017 btree_node_prefetch(c->root, p); 2018 c->gc_stats.nodes++; 2019 bch_btree_op_init(&op, 0); 2020 ret = bcache_btree(check_recurse, p, c->root, &op); 2021 /* 2022 * The op may be added to cache_set's btree_cache_wait 2023 * in mca_cannibalize(), must ensure it is removed from 2024 * the list and release btree_cache_alloc_lock before 2025 * free op memory. 2026 * Otherwise, the btree_cache_wait will be damaged. 2027 */ 2028 bch_cannibalize_unlock(c); 2029 finish_wait(&c->btree_cache_wait, &(&op)->wait); 2030 if (ret) 2031 goto out; 2032 } 2033 p = NULL; 2034 prev_idx = cur_idx; 2035 cond_resched(); 2036 } 2037 2038 out: 2039 info->result = ret; 2040 /* update check_state->started among all CPUs */ 2041 smp_mb__before_atomic(); 2042 if (atomic_dec_and_test(&check_state->started)) 2043 wake_up(&check_state->wait); 2044 2045 return ret; 2046 } 2047 2048 2049 2050 static int bch_btree_chkthread_nr(void) 2051 { 2052 int n = num_online_cpus()/2; 2053 2054 if (n == 0) 2055 n = 1; 2056 else if (n > BCH_BTR_CHKTHREAD_MAX) 2057 n = BCH_BTR_CHKTHREAD_MAX; 2058 2059 return n; 2060 } 2061 2062 int bch_btree_check(struct cache_set *c) 2063 { 2064 int ret = 0; 2065 int i; 2066 struct bkey *k = NULL; 2067 struct btree_iter iter; 2068 struct btree_check_state check_state; 2069 2070 min_heap_init(&iter.heap, NULL, MAX_BSETS); 2071 2072 /* check and mark root node keys */ 2073 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2074 bch_initial_mark_key(c, c->root->level, k); 2075 2076 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2077 2078 if (c->root->level == 0) 2079 return 0; 2080 2081 memset(&check_state, 0, sizeof(struct btree_check_state)); 2082 check_state.c = c; 2083 check_state.total_threads = bch_btree_chkthread_nr(); 2084 check_state.key_idx = 0; 2085 spin_lock_init(&check_state.idx_lock); 2086 atomic_set(&check_state.started, 0); 2087 atomic_set(&check_state.enough, 0); 2088 init_waitqueue_head(&check_state.wait); 2089 2090 rw_lock(0, c->root, c->root->level); 2091 /* 2092 * Run multiple threads to check btree nodes in parallel, 2093 * if check_state.enough is non-zero, it means current 2094 * running check threads are enough, unncessary to create 2095 * more. 2096 */ 2097 for (i = 0; i < check_state.total_threads; i++) { 2098 /* fetch latest check_state.enough earlier */ 2099 smp_mb__before_atomic(); 2100 if (atomic_read(&check_state.enough)) 2101 break; 2102 2103 check_state.infos[i].result = 0; 2104 check_state.infos[i].state = &check_state; 2105 2106 check_state.infos[i].thread = 2107 kthread_run(bch_btree_check_thread, 2108 &check_state.infos[i], 2109 "bch_btrchk[%d]", i); 2110 if (IS_ERR(check_state.infos[i].thread)) { 2111 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2112 for (--i; i >= 0; i--) 2113 kthread_stop(check_state.infos[i].thread); 2114 ret = -ENOMEM; 2115 goto out; 2116 } 2117 atomic_inc(&check_state.started); 2118 } 2119 2120 /* 2121 * Must wait for all threads to stop. 2122 */ 2123 wait_event(check_state.wait, atomic_read(&check_state.started) == 0); 2124 2125 for (i = 0; i < check_state.total_threads; i++) { 2126 if (check_state.infos[i].result) { 2127 ret = check_state.infos[i].result; 2128 goto out; 2129 } 2130 } 2131 2132 out: 2133 rw_unlock(0, c->root); 2134 return ret; 2135 } 2136 2137 void bch_initial_gc_finish(struct cache_set *c) 2138 { 2139 struct cache *ca = c->cache; 2140 struct bucket *b; 2141 2142 bch_btree_gc_finish(c); 2143 2144 mutex_lock(&c->bucket_lock); 2145 2146 /* 2147 * We need to put some unused buckets directly on the prio freelist in 2148 * order to get the allocator thread started - it needs freed buckets in 2149 * order to rewrite the prios and gens, and it needs to rewrite prios 2150 * and gens in order to free buckets. 2151 * 2152 * This is only safe for buckets that have no live data in them, which 2153 * there should always be some of. 2154 */ 2155 for_each_bucket(b, ca) { 2156 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2157 fifo_full(&ca->free[RESERVE_BTREE])) 2158 break; 2159 2160 if (bch_can_invalidate_bucket(ca, b) && 2161 !GC_MARK(b)) { 2162 __bch_invalidate_one_bucket(ca, b); 2163 if (!fifo_push(&ca->free[RESERVE_PRIO], 2164 b - ca->buckets)) 2165 fifo_push(&ca->free[RESERVE_BTREE], 2166 b - ca->buckets); 2167 } 2168 } 2169 2170 mutex_unlock(&c->bucket_lock); 2171 } 2172 2173 /* Btree insertion */ 2174 2175 static bool btree_insert_key(struct btree *b, struct bkey *k, 2176 struct bkey *replace_key) 2177 { 2178 unsigned int status; 2179 2180 BUG_ON(bkey_cmp(k, &b->key) > 0); 2181 2182 status = bch_btree_insert_key(&b->keys, k, replace_key); 2183 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2184 bch_check_keys(&b->keys, "%u for %s", status, 2185 replace_key ? "replace" : "insert"); 2186 2187 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2188 status); 2189 return true; 2190 } else 2191 return false; 2192 } 2193 2194 static size_t insert_u64s_remaining(struct btree *b) 2195 { 2196 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2197 2198 /* 2199 * Might land in the middle of an existing extent and have to split it 2200 */ 2201 if (b->keys.ops->is_extents) 2202 ret -= KEY_MAX_U64S; 2203 2204 return max(ret, 0L); 2205 } 2206 2207 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2208 struct keylist *insert_keys, 2209 struct bkey *replace_key) 2210 { 2211 bool ret = false; 2212 int oldsize = bch_count_data(&b->keys); 2213 2214 while (!bch_keylist_empty(insert_keys)) { 2215 struct bkey *k = insert_keys->keys; 2216 2217 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2218 break; 2219 2220 if (bkey_cmp(k, &b->key) <= 0) { 2221 if (!b->level) 2222 bkey_put(b->c, k); 2223 2224 ret |= btree_insert_key(b, k, replace_key); 2225 bch_keylist_pop_front(insert_keys); 2226 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2227 BKEY_PADDED(key) temp; 2228 bkey_copy(&temp.key, insert_keys->keys); 2229 2230 bch_cut_back(&b->key, &temp.key); 2231 bch_cut_front(&b->key, insert_keys->keys); 2232 2233 ret |= btree_insert_key(b, &temp.key, replace_key); 2234 break; 2235 } else { 2236 break; 2237 } 2238 } 2239 2240 if (!ret) 2241 op->insert_collision = true; 2242 2243 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2244 2245 BUG_ON(bch_count_data(&b->keys) < oldsize); 2246 return ret; 2247 } 2248 2249 static int btree_split(struct btree *b, struct btree_op *op, 2250 struct keylist *insert_keys, 2251 struct bkey *replace_key) 2252 { 2253 bool split; 2254 struct btree *n1, *n2 = NULL, *n3 = NULL; 2255 uint64_t start_time = local_clock(); 2256 struct closure cl; 2257 struct keylist parent_keys; 2258 2259 closure_init_stack(&cl); 2260 bch_keylist_init(&parent_keys); 2261 2262 if (btree_check_reserve(b, op)) { 2263 if (!b->level) 2264 return -EINTR; 2265 else 2266 WARN(1, "insufficient reserve for split\n"); 2267 } 2268 2269 n1 = btree_node_alloc_replacement(b, op); 2270 if (IS_ERR(n1)) 2271 goto err; 2272 2273 split = set_blocks(btree_bset_first(n1), 2274 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2275 2276 if (split) { 2277 unsigned int keys = 0; 2278 2279 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2280 2281 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2282 if (IS_ERR(n2)) 2283 goto err_free1; 2284 2285 if (!b->parent) { 2286 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2287 if (IS_ERR(n3)) 2288 goto err_free2; 2289 } 2290 2291 mutex_lock(&n1->write_lock); 2292 mutex_lock(&n2->write_lock); 2293 2294 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2295 2296 /* 2297 * Has to be a linear search because we don't have an auxiliary 2298 * search tree yet 2299 */ 2300 2301 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2302 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2303 keys)); 2304 2305 bkey_copy_key(&n1->key, 2306 bset_bkey_idx(btree_bset_first(n1), keys)); 2307 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2308 2309 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2310 btree_bset_first(n1)->keys = keys; 2311 2312 memcpy(btree_bset_first(n2)->start, 2313 bset_bkey_last(btree_bset_first(n1)), 2314 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2315 2316 bkey_copy_key(&n2->key, &b->key); 2317 2318 bch_keylist_add(&parent_keys, &n2->key); 2319 bch_btree_node_write(n2, &cl); 2320 mutex_unlock(&n2->write_lock); 2321 rw_unlock(true, n2); 2322 } else { 2323 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2324 2325 mutex_lock(&n1->write_lock); 2326 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2327 } 2328 2329 bch_keylist_add(&parent_keys, &n1->key); 2330 bch_btree_node_write(n1, &cl); 2331 mutex_unlock(&n1->write_lock); 2332 2333 if (n3) { 2334 /* Depth increases, make a new root */ 2335 mutex_lock(&n3->write_lock); 2336 bkey_copy_key(&n3->key, &MAX_KEY); 2337 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2338 bch_btree_node_write(n3, &cl); 2339 mutex_unlock(&n3->write_lock); 2340 2341 closure_sync(&cl); 2342 bch_btree_set_root(n3); 2343 rw_unlock(true, n3); 2344 } else if (!b->parent) { 2345 /* Root filled up but didn't need to be split */ 2346 closure_sync(&cl); 2347 bch_btree_set_root(n1); 2348 } else { 2349 /* Split a non root node */ 2350 closure_sync(&cl); 2351 make_btree_freeing_key(b, parent_keys.top); 2352 bch_keylist_push(&parent_keys); 2353 2354 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2355 BUG_ON(!bch_keylist_empty(&parent_keys)); 2356 } 2357 2358 btree_node_free(b); 2359 rw_unlock(true, n1); 2360 2361 bch_time_stats_update(&b->c->btree_split_time, start_time); 2362 2363 return 0; 2364 err_free2: 2365 bkey_put(b->c, &n2->key); 2366 btree_node_free(n2); 2367 rw_unlock(true, n2); 2368 err_free1: 2369 bkey_put(b->c, &n1->key); 2370 btree_node_free(n1); 2371 rw_unlock(true, n1); 2372 err: 2373 WARN(1, "bcache: btree split failed (level %u)", b->level); 2374 2375 if (n3 == ERR_PTR(-EAGAIN) || 2376 n2 == ERR_PTR(-EAGAIN) || 2377 n1 == ERR_PTR(-EAGAIN)) 2378 return -EAGAIN; 2379 2380 return -ENOMEM; 2381 } 2382 2383 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2384 struct keylist *insert_keys, 2385 atomic_t *journal_ref, 2386 struct bkey *replace_key) 2387 { 2388 struct closure cl; 2389 2390 BUG_ON(b->level && replace_key); 2391 2392 closure_init_stack(&cl); 2393 2394 mutex_lock(&b->write_lock); 2395 2396 if (write_block(b) != btree_bset_last(b) && 2397 b->keys.last_set_unwritten) 2398 bch_btree_init_next(b); /* just wrote a set */ 2399 2400 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2401 mutex_unlock(&b->write_lock); 2402 goto split; 2403 } 2404 2405 BUG_ON(write_block(b) != btree_bset_last(b)); 2406 2407 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2408 if (!b->level) 2409 bch_btree_leaf_dirty(b, journal_ref); 2410 else 2411 bch_btree_node_write(b, &cl); 2412 } 2413 2414 mutex_unlock(&b->write_lock); 2415 2416 /* wait for btree node write if necessary, after unlock */ 2417 closure_sync(&cl); 2418 2419 return 0; 2420 split: 2421 if (current->bio_list) { 2422 op->lock = b->c->root->level + 1; 2423 return -EAGAIN; 2424 } else if (op->lock <= b->c->root->level) { 2425 op->lock = b->c->root->level + 1; 2426 return -EINTR; 2427 } else { 2428 /* Invalidated all iterators */ 2429 int ret = btree_split(b, op, insert_keys, replace_key); 2430 2431 if (bch_keylist_empty(insert_keys)) 2432 return 0; 2433 else if (!ret) 2434 return -EINTR; 2435 return ret; 2436 } 2437 } 2438 2439 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2440 struct bkey *check_key) 2441 { 2442 int ret = -EINTR; 2443 uint64_t btree_ptr = b->key.ptr[0]; 2444 unsigned long seq = b->seq; 2445 struct keylist insert; 2446 bool upgrade = op->lock == -1; 2447 2448 bch_keylist_init(&insert); 2449 2450 if (upgrade) { 2451 rw_unlock(false, b); 2452 rw_lock(true, b, b->level); 2453 2454 if (b->key.ptr[0] != btree_ptr || 2455 b->seq != seq + 1) { 2456 op->lock = b->level; 2457 goto out; 2458 } 2459 } 2460 2461 SET_KEY_PTRS(check_key, 1); 2462 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2463 2464 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2465 2466 bch_keylist_add(&insert, check_key); 2467 2468 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2469 2470 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2471 out: 2472 if (upgrade) 2473 downgrade_write(&b->lock); 2474 return ret; 2475 } 2476 2477 struct btree_insert_op { 2478 struct btree_op op; 2479 struct keylist *keys; 2480 atomic_t *journal_ref; 2481 struct bkey *replace_key; 2482 }; 2483 2484 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2485 { 2486 struct btree_insert_op *op = container_of(b_op, 2487 struct btree_insert_op, op); 2488 2489 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2490 op->journal_ref, op->replace_key); 2491 if (ret && !bch_keylist_empty(op->keys)) 2492 return ret; 2493 else 2494 return MAP_DONE; 2495 } 2496 2497 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2498 atomic_t *journal_ref, struct bkey *replace_key) 2499 { 2500 struct btree_insert_op op; 2501 int ret = 0; 2502 2503 BUG_ON(current->bio_list); 2504 BUG_ON(bch_keylist_empty(keys)); 2505 2506 bch_btree_op_init(&op.op, 0); 2507 op.keys = keys; 2508 op.journal_ref = journal_ref; 2509 op.replace_key = replace_key; 2510 2511 while (!ret && !bch_keylist_empty(keys)) { 2512 op.op.lock = 0; 2513 ret = bch_btree_map_leaf_nodes(&op.op, c, 2514 &START_KEY(keys->keys), 2515 btree_insert_fn); 2516 } 2517 2518 if (ret) { 2519 struct bkey *k; 2520 2521 pr_err("error %i\n", ret); 2522 2523 while ((k = bch_keylist_pop(keys))) 2524 bkey_put(c, k); 2525 } else if (op.op.insert_collision) 2526 ret = -ESRCH; 2527 2528 return ret; 2529 } 2530 2531 void bch_btree_set_root(struct btree *b) 2532 { 2533 unsigned int i; 2534 struct closure cl; 2535 2536 closure_init_stack(&cl); 2537 2538 trace_bcache_btree_set_root(b); 2539 2540 BUG_ON(!b->written); 2541 2542 for (i = 0; i < KEY_PTRS(&b->key); i++) 2543 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2544 2545 mutex_lock(&b->c->bucket_lock); 2546 list_del_init(&b->list); 2547 mutex_unlock(&b->c->bucket_lock); 2548 2549 b->c->root = b; 2550 2551 bch_journal_meta(b->c, &cl); 2552 closure_sync(&cl); 2553 } 2554 2555 /* Map across nodes or keys */ 2556 2557 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2558 struct bkey *from, 2559 btree_map_nodes_fn *fn, int flags) 2560 { 2561 int ret = MAP_CONTINUE; 2562 2563 if (b->level) { 2564 struct bkey *k; 2565 struct btree_iter iter; 2566 2567 min_heap_init(&iter.heap, NULL, MAX_BSETS); 2568 bch_btree_iter_init(&b->keys, &iter, from); 2569 2570 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2571 bch_ptr_bad))) { 2572 ret = bcache_btree(map_nodes_recurse, k, b, 2573 op, from, fn, flags); 2574 from = NULL; 2575 2576 if (ret != MAP_CONTINUE) 2577 return ret; 2578 } 2579 } 2580 2581 if (!b->level || flags == MAP_ALL_NODES) 2582 ret = fn(op, b); 2583 2584 return ret; 2585 } 2586 2587 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2588 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2589 { 2590 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2591 } 2592 2593 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2594 struct bkey *from, btree_map_keys_fn *fn, 2595 int flags) 2596 { 2597 int ret = MAP_CONTINUE; 2598 struct bkey *k; 2599 struct btree_iter iter; 2600 2601 min_heap_init(&iter.heap, NULL, MAX_BSETS); 2602 bch_btree_iter_init(&b->keys, &iter, from); 2603 2604 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2605 ret = !b->level 2606 ? fn(op, b, k) 2607 : bcache_btree(map_keys_recurse, k, 2608 b, op, from, fn, flags); 2609 from = NULL; 2610 2611 if (ret != MAP_CONTINUE) 2612 return ret; 2613 } 2614 2615 if (!b->level && (flags & MAP_END_KEY)) 2616 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2617 KEY_OFFSET(&b->key), 0)); 2618 2619 return ret; 2620 } 2621 2622 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2623 struct bkey *from, btree_map_keys_fn *fn, int flags) 2624 { 2625 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2626 } 2627 2628 /* Keybuf code */ 2629 2630 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2631 { 2632 /* Overlapping keys compare equal */ 2633 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2634 return -1; 2635 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2636 return 1; 2637 return 0; 2638 } 2639 2640 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2641 struct keybuf_key *r) 2642 { 2643 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2644 } 2645 2646 struct refill { 2647 struct btree_op op; 2648 unsigned int nr_found; 2649 struct keybuf *buf; 2650 struct bkey *end; 2651 keybuf_pred_fn *pred; 2652 }; 2653 2654 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2655 struct bkey *k) 2656 { 2657 struct refill *refill = container_of(op, struct refill, op); 2658 struct keybuf *buf = refill->buf; 2659 int ret = MAP_CONTINUE; 2660 2661 if (bkey_cmp(k, refill->end) > 0) { 2662 ret = MAP_DONE; 2663 goto out; 2664 } 2665 2666 if (!KEY_SIZE(k)) /* end key */ 2667 goto out; 2668 2669 if (refill->pred(buf, k)) { 2670 struct keybuf_key *w; 2671 2672 spin_lock(&buf->lock); 2673 2674 w = array_alloc(&buf->freelist); 2675 if (!w) { 2676 spin_unlock(&buf->lock); 2677 return MAP_DONE; 2678 } 2679 2680 w->private = NULL; 2681 bkey_copy(&w->key, k); 2682 2683 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2684 array_free(&buf->freelist, w); 2685 else 2686 refill->nr_found++; 2687 2688 if (array_freelist_empty(&buf->freelist)) 2689 ret = MAP_DONE; 2690 2691 spin_unlock(&buf->lock); 2692 } 2693 out: 2694 buf->last_scanned = *k; 2695 return ret; 2696 } 2697 2698 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2699 struct bkey *end, keybuf_pred_fn *pred) 2700 { 2701 struct bkey start = buf->last_scanned; 2702 struct refill refill; 2703 2704 cond_resched(); 2705 2706 bch_btree_op_init(&refill.op, -1); 2707 refill.nr_found = 0; 2708 refill.buf = buf; 2709 refill.end = end; 2710 refill.pred = pred; 2711 2712 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2713 refill_keybuf_fn, MAP_END_KEY); 2714 2715 trace_bcache_keyscan(refill.nr_found, 2716 KEY_INODE(&start), KEY_OFFSET(&start), 2717 KEY_INODE(&buf->last_scanned), 2718 KEY_OFFSET(&buf->last_scanned)); 2719 2720 spin_lock(&buf->lock); 2721 2722 if (!RB_EMPTY_ROOT(&buf->keys)) { 2723 struct keybuf_key *w; 2724 2725 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2726 buf->start = START_KEY(&w->key); 2727 2728 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2729 buf->end = w->key; 2730 } else { 2731 buf->start = MAX_KEY; 2732 buf->end = MAX_KEY; 2733 } 2734 2735 spin_unlock(&buf->lock); 2736 } 2737 2738 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2739 { 2740 rb_erase(&w->node, &buf->keys); 2741 array_free(&buf->freelist, w); 2742 } 2743 2744 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2745 { 2746 spin_lock(&buf->lock); 2747 __bch_keybuf_del(buf, w); 2748 spin_unlock(&buf->lock); 2749 } 2750 2751 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2752 struct bkey *end) 2753 { 2754 bool ret = false; 2755 struct keybuf_key *p, *w, s; 2756 2757 s.key = *start; 2758 2759 if (bkey_cmp(end, &buf->start) <= 0 || 2760 bkey_cmp(start, &buf->end) >= 0) 2761 return false; 2762 2763 spin_lock(&buf->lock); 2764 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2765 2766 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2767 p = w; 2768 w = RB_NEXT(w, node); 2769 2770 if (p->private) 2771 ret = true; 2772 else 2773 __bch_keybuf_del(buf, p); 2774 } 2775 2776 spin_unlock(&buf->lock); 2777 return ret; 2778 } 2779 2780 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2781 { 2782 struct keybuf_key *w; 2783 2784 spin_lock(&buf->lock); 2785 2786 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2787 2788 while (w && w->private) 2789 w = RB_NEXT(w, node); 2790 2791 if (w) 2792 w->private = ERR_PTR(-EINTR); 2793 2794 spin_unlock(&buf->lock); 2795 return w; 2796 } 2797 2798 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2799 struct keybuf *buf, 2800 struct bkey *end, 2801 keybuf_pred_fn *pred) 2802 { 2803 struct keybuf_key *ret; 2804 2805 while (1) { 2806 ret = bch_keybuf_next(buf); 2807 if (ret) 2808 break; 2809 2810 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2811 pr_debug("scan finished\n"); 2812 break; 2813 } 2814 2815 bch_refill_keybuf(c, buf, end, pred); 2816 } 2817 2818 return ret; 2819 } 2820 2821 void bch_keybuf_init(struct keybuf *buf) 2822 { 2823 buf->last_scanned = MAX_KEY; 2824 buf->keys = RB_ROOT; 2825 2826 spin_lock_init(&buf->lock); 2827 array_allocator_init(&buf->freelist); 2828 } 2829 2830 void bch_btree_exit(void) 2831 { 2832 if (btree_io_wq) 2833 destroy_workqueue(btree_io_wq); 2834 } 2835 2836 int __init bch_btree_init(void) 2837 { 2838 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0); 2839 if (!btree_io_wq) 2840 return -ENOMEM; 2841 2842 return 0; 2843 } 2844