xref: /linux/drivers/md/bcache/btree.c (revision 335bbdf01d25517ae832ac1807fd8323c1f4f3b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 static struct workqueue_struct *btree_io_wq;
103 
104 #define insert_lock(s, b)	((b)->level <= (s)->lock)
105 
106 
107 static inline struct bset *write_block(struct btree *b)
108 {
109 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110 }
111 
112 static void bch_btree_init_next(struct btree *b)
113 {
114 	/* If not a leaf node, always sort */
115 	if (b->level && b->keys.nsets)
116 		bch_btree_sort(&b->keys, &b->c->sort);
117 	else
118 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
119 
120 	if (b->written < btree_blocks(b))
121 		bch_bset_init_next(&b->keys, write_block(b),
122 				   bset_magic(&b->c->cache->sb));
123 
124 }
125 
126 /* Btree key manipulation */
127 
128 void bkey_put(struct cache_set *c, struct bkey *k)
129 {
130 	unsigned int i;
131 
132 	for (i = 0; i < KEY_PTRS(k); i++)
133 		if (ptr_available(c, k, i))
134 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135 }
136 
137 /* Btree IO */
138 
139 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140 {
141 	uint64_t crc = b->key.ptr[0];
142 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
143 
144 	crc = crc64_be(crc, data, end - data);
145 	return crc ^ 0xffffffffffffffffULL;
146 }
147 
148 void bch_btree_node_read_done(struct btree *b)
149 {
150 	const char *err = "bad btree header";
151 	struct bset *i = btree_bset_first(b);
152 	struct btree_iter *iter;
153 
154 	/*
155 	 * c->fill_iter can allocate an iterator with more memory space
156 	 * than static MAX_BSETS.
157 	 * See the comment arount cache_set->fill_iter.
158 	 */
159 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160 	iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 	iter->used = 0;
162 
163 #ifdef CONFIG_BCACHE_DEBUG
164 	iter->b = &b->keys;
165 #endif
166 
167 	if (!i->seq)
168 		goto err;
169 
170 	for (;
171 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 	     i = write_block(b)) {
173 		err = "unsupported bset version";
174 		if (i->version > BCACHE_BSET_VERSION)
175 			goto err;
176 
177 		err = "bad btree header";
178 		if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 		    btree_blocks(b))
180 			goto err;
181 
182 		err = "bad magic";
183 		if (i->magic != bset_magic(&b->c->cache->sb))
184 			goto err;
185 
186 		err = "bad checksum";
187 		switch (i->version) {
188 		case 0:
189 			if (i->csum != csum_set(i))
190 				goto err;
191 			break;
192 		case BCACHE_BSET_VERSION:
193 			if (i->csum != btree_csum_set(b, i))
194 				goto err;
195 			break;
196 		}
197 
198 		err = "empty set";
199 		if (i != b->keys.set[0].data && !i->keys)
200 			goto err;
201 
202 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203 
204 		b->written += set_blocks(i, block_bytes(b->c->cache));
205 	}
206 
207 	err = "corrupted btree";
208 	for (i = write_block(b);
209 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210 	     i = ((void *) i) + block_bytes(b->c->cache))
211 		if (i->seq == b->keys.set[0].data->seq)
212 			goto err;
213 
214 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215 
216 	i = b->keys.set[0].data;
217 	err = "short btree key";
218 	if (b->keys.set[0].size &&
219 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220 		goto err;
221 
222 	if (b->written < btree_blocks(b))
223 		bch_bset_init_next(&b->keys, write_block(b),
224 				   bset_magic(&b->c->cache->sb));
225 out:
226 	mempool_free(iter, &b->c->fill_iter);
227 	return;
228 err:
229 	set_btree_node_io_error(b);
230 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
232 			    bset_block_offset(b, i), i->keys);
233 	goto out;
234 }
235 
236 static void btree_node_read_endio(struct bio *bio)
237 {
238 	struct closure *cl = bio->bi_private;
239 
240 	closure_put(cl);
241 }
242 
243 static void bch_btree_node_read(struct btree *b)
244 {
245 	uint64_t start_time = local_clock();
246 	struct closure cl;
247 	struct bio *bio;
248 
249 	trace_bcache_btree_read(b);
250 
251 	closure_init_stack(&cl);
252 
253 	bio = bch_bbio_alloc(b->c);
254 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255 	bio->bi_end_io	= btree_node_read_endio;
256 	bio->bi_private	= &cl;
257 	bio->bi_opf = REQ_OP_READ | REQ_META;
258 
259 	bch_bio_map(bio, b->keys.set[0].data);
260 
261 	bch_submit_bbio(bio, b->c, &b->key, 0);
262 	closure_sync(&cl);
263 
264 	if (bio->bi_status)
265 		set_btree_node_io_error(b);
266 
267 	bch_bbio_free(bio, b->c);
268 
269 	if (btree_node_io_error(b))
270 		goto err;
271 
272 	bch_btree_node_read_done(b);
273 	bch_time_stats_update(&b->c->btree_read_time, start_time);
274 
275 	return;
276 err:
277 	bch_cache_set_error(b->c, "io error reading bucket %zu",
278 			    PTR_BUCKET_NR(b->c, &b->key, 0));
279 }
280 
281 static void btree_complete_write(struct btree *b, struct btree_write *w)
282 {
283 	if (w->prio_blocked &&
284 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285 		wake_up_allocators(b->c);
286 
287 	if (w->journal) {
288 		atomic_dec_bug(w->journal);
289 		__closure_wake_up(&b->c->journal.wait);
290 	}
291 
292 	w->prio_blocked	= 0;
293 	w->journal	= NULL;
294 }
295 
296 static void btree_node_write_unlock(struct closure *cl)
297 {
298 	struct btree *b = container_of(cl, struct btree, io);
299 
300 	up(&b->io_mutex);
301 }
302 
303 static void __btree_node_write_done(struct closure *cl)
304 {
305 	struct btree *b = container_of(cl, struct btree, io);
306 	struct btree_write *w = btree_prev_write(b);
307 
308 	bch_bbio_free(b->bio, b->c);
309 	b->bio = NULL;
310 	btree_complete_write(b, w);
311 
312 	if (btree_node_dirty(b))
313 		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314 
315 	closure_return_with_destructor(cl, btree_node_write_unlock);
316 }
317 
318 static void btree_node_write_done(struct closure *cl)
319 {
320 	struct btree *b = container_of(cl, struct btree, io);
321 
322 	bio_free_pages(b->bio);
323 	__btree_node_write_done(cl);
324 }
325 
326 static void btree_node_write_endio(struct bio *bio)
327 {
328 	struct closure *cl = bio->bi_private;
329 	struct btree *b = container_of(cl, struct btree, io);
330 
331 	if (bio->bi_status)
332 		set_btree_node_io_error(b);
333 
334 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335 	closure_put(cl);
336 }
337 
338 static void do_btree_node_write(struct btree *b)
339 {
340 	struct closure *cl = &b->io;
341 	struct bset *i = btree_bset_last(b);
342 	BKEY_PADDED(key) k;
343 
344 	i->version	= BCACHE_BSET_VERSION;
345 	i->csum		= btree_csum_set(b, i);
346 
347 	BUG_ON(b->bio);
348 	b->bio = bch_bbio_alloc(b->c);
349 
350 	b->bio->bi_end_io	= btree_node_write_endio;
351 	b->bio->bi_private	= cl;
352 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c->cache));
353 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
354 	bch_bio_map(b->bio, i);
355 
356 	/*
357 	 * If we're appending to a leaf node, we don't technically need FUA -
358 	 * this write just needs to be persisted before the next journal write,
359 	 * which will be marked FLUSH|FUA.
360 	 *
361 	 * Similarly if we're writing a new btree root - the pointer is going to
362 	 * be in the next journal entry.
363 	 *
364 	 * But if we're writing a new btree node (that isn't a root) or
365 	 * appending to a non leaf btree node, we need either FUA or a flush
366 	 * when we write the parent with the new pointer. FUA is cheaper than a
367 	 * flush, and writes appending to leaf nodes aren't blocking anything so
368 	 * just make all btree node writes FUA to keep things sane.
369 	 */
370 
371 	bkey_copy(&k.key, &b->key);
372 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373 		       bset_sector_offset(&b->keys, i));
374 
375 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 		struct bio_vec *bv;
377 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 		struct bvec_iter_all iter_all;
379 
380 		bio_for_each_segment_all(bv, b->bio, iter_all) {
381 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 			addr += PAGE_SIZE;
383 		}
384 
385 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
386 
387 		continue_at(cl, btree_node_write_done, NULL);
388 	} else {
389 		/*
390 		 * No problem for multipage bvec since the bio is
391 		 * just allocated
392 		 */
393 		b->bio->bi_vcnt = 0;
394 		bch_bio_map(b->bio, i);
395 
396 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
397 
398 		closure_sync(cl);
399 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 	}
401 }
402 
403 void __bch_btree_node_write(struct btree *b, struct closure *parent)
404 {
405 	struct bset *i = btree_bset_last(b);
406 
407 	lockdep_assert_held(&b->write_lock);
408 
409 	trace_bcache_btree_write(b);
410 
411 	BUG_ON(current->bio_list);
412 	BUG_ON(b->written >= btree_blocks(b));
413 	BUG_ON(b->written && !i->keys);
414 	BUG_ON(btree_bset_first(b)->seq != i->seq);
415 	bch_check_keys(&b->keys, "writing");
416 
417 	cancel_delayed_work(&b->work);
418 
419 	/* If caller isn't waiting for write, parent refcount is cache set */
420 	down(&b->io_mutex);
421 	closure_init(&b->io, parent ?: &b->c->cl);
422 
423 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
424 	change_bit(BTREE_NODE_write_idx, &b->flags);
425 
426 	do_btree_node_write(b);
427 
428 	atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 			&b->c->cache->btree_sectors_written);
430 
431 	b->written += set_blocks(i, block_bytes(b->c->cache));
432 }
433 
434 void bch_btree_node_write(struct btree *b, struct closure *parent)
435 {
436 	unsigned int nsets = b->keys.nsets;
437 
438 	lockdep_assert_held(&b->lock);
439 
440 	__bch_btree_node_write(b, parent);
441 
442 	/*
443 	 * do verify if there was more than one set initially (i.e. we did a
444 	 * sort) and we sorted down to a single set:
445 	 */
446 	if (nsets && !b->keys.nsets)
447 		bch_btree_verify(b);
448 
449 	bch_btree_init_next(b);
450 }
451 
452 static void bch_btree_node_write_sync(struct btree *b)
453 {
454 	struct closure cl;
455 
456 	closure_init_stack(&cl);
457 
458 	mutex_lock(&b->write_lock);
459 	bch_btree_node_write(b, &cl);
460 	mutex_unlock(&b->write_lock);
461 
462 	closure_sync(&cl);
463 }
464 
465 static void btree_node_write_work(struct work_struct *w)
466 {
467 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468 
469 	mutex_lock(&b->write_lock);
470 	if (btree_node_dirty(b))
471 		__bch_btree_node_write(b, NULL);
472 	mutex_unlock(&b->write_lock);
473 }
474 
475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476 {
477 	struct bset *i = btree_bset_last(b);
478 	struct btree_write *w = btree_current_write(b);
479 
480 	lockdep_assert_held(&b->write_lock);
481 
482 	BUG_ON(!b->written);
483 	BUG_ON(!i->keys);
484 
485 	if (!btree_node_dirty(b))
486 		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487 
488 	set_btree_node_dirty(b);
489 
490 	/*
491 	 * w->journal is always the oldest journal pin of all bkeys
492 	 * in the leaf node, to make sure the oldest jset seq won't
493 	 * be increased before this btree node is flushed.
494 	 */
495 	if (journal_ref) {
496 		if (w->journal &&
497 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 			atomic_dec_bug(w->journal);
499 			w->journal = NULL;
500 		}
501 
502 		if (!w->journal) {
503 			w->journal = journal_ref;
504 			atomic_inc(w->journal);
505 		}
506 	}
507 
508 	/* Force write if set is too big */
509 	if (set_bytes(i) > PAGE_SIZE - 48 &&
510 	    !current->bio_list)
511 		bch_btree_node_write(b, NULL);
512 }
513 
514 /*
515  * Btree in memory cache - allocation/freeing
516  * mca -> memory cache
517  */
518 
519 #define mca_reserve(c)	(((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 			  ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c)						\
522 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523 
524 static void mca_data_free(struct btree *b)
525 {
526 	BUG_ON(b->io_mutex.count != 1);
527 
528 	bch_btree_keys_free(&b->keys);
529 
530 	b->c->btree_cache_used--;
531 	list_move(&b->list, &b->c->btree_cache_freed);
532 }
533 
534 static void mca_bucket_free(struct btree *b)
535 {
536 	BUG_ON(btree_node_dirty(b));
537 
538 	b->key.ptr[0] = 0;
539 	hlist_del_init_rcu(&b->hash);
540 	list_move(&b->list, &b->c->btree_cache_freeable);
541 }
542 
543 static unsigned int btree_order(struct bkey *k)
544 {
545 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546 }
547 
548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549 {
550 	if (!bch_btree_keys_alloc(&b->keys,
551 				  max_t(unsigned int,
552 					ilog2(b->c->btree_pages),
553 					btree_order(k)),
554 				  gfp)) {
555 		b->c->btree_cache_used++;
556 		list_move(&b->list, &b->c->btree_cache);
557 	} else {
558 		list_move(&b->list, &b->c->btree_cache_freed);
559 	}
560 }
561 
562 #define cmp_int(l, r)		((l > r) - (l < r))
563 
564 #ifdef CONFIG_PROVE_LOCKING
565 static int btree_lock_cmp_fn(const struct lockdep_map *_a,
566 			     const struct lockdep_map *_b)
567 {
568 	const struct btree *a = container_of(_a, struct btree, lock.dep_map);
569 	const struct btree *b = container_of(_b, struct btree, lock.dep_map);
570 
571 	return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key);
572 }
573 
574 static void btree_lock_print_fn(const struct lockdep_map *map)
575 {
576 	const struct btree *b = container_of(map, struct btree, lock.dep_map);
577 
578 	printk(KERN_CONT " l=%u %llu:%llu", b->level,
579 	       KEY_INODE(&b->key), KEY_OFFSET(&b->key));
580 }
581 #endif
582 
583 static struct btree *mca_bucket_alloc(struct cache_set *c,
584 				      struct bkey *k, gfp_t gfp)
585 {
586 	/*
587 	 * kzalloc() is necessary here for initialization,
588 	 * see code comments in bch_btree_keys_init().
589 	 */
590 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
591 
592 	if (!b)
593 		return NULL;
594 
595 	init_rwsem(&b->lock);
596 	lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn);
597 	mutex_init(&b->write_lock);
598 	lockdep_set_novalidate_class(&b->write_lock);
599 	INIT_LIST_HEAD(&b->list);
600 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
601 	b->c = c;
602 	sema_init(&b->io_mutex, 1);
603 
604 	mca_data_alloc(b, k, gfp);
605 	return b;
606 }
607 
608 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
609 {
610 	struct closure cl;
611 
612 	closure_init_stack(&cl);
613 	lockdep_assert_held(&b->c->bucket_lock);
614 
615 	if (!down_write_trylock(&b->lock))
616 		return -ENOMEM;
617 
618 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
619 
620 	if (b->keys.page_order < min_order)
621 		goto out_unlock;
622 
623 	if (!flush) {
624 		if (btree_node_dirty(b))
625 			goto out_unlock;
626 
627 		if (down_trylock(&b->io_mutex))
628 			goto out_unlock;
629 		up(&b->io_mutex);
630 	}
631 
632 retry:
633 	/*
634 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
635 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
636 	 * b->write_lock before checking BTREE_NODE_dirty bit.
637 	 */
638 	mutex_lock(&b->write_lock);
639 	/*
640 	 * If this btree node is selected in btree_flush_write() by journal
641 	 * code, delay and retry until the node is flushed by journal code
642 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
643 	 */
644 	if (btree_node_journal_flush(b)) {
645 		pr_debug("bnode %p is flushing by journal, retry\n", b);
646 		mutex_unlock(&b->write_lock);
647 		udelay(1);
648 		goto retry;
649 	}
650 
651 	if (btree_node_dirty(b))
652 		__bch_btree_node_write(b, &cl);
653 	mutex_unlock(&b->write_lock);
654 
655 	closure_sync(&cl);
656 
657 	/* wait for any in flight btree write */
658 	down(&b->io_mutex);
659 	up(&b->io_mutex);
660 
661 	return 0;
662 out_unlock:
663 	rw_unlock(true, b);
664 	return -ENOMEM;
665 }
666 
667 static unsigned long bch_mca_scan(struct shrinker *shrink,
668 				  struct shrink_control *sc)
669 {
670 	struct cache_set *c = shrink->private_data;
671 	struct btree *b, *t;
672 	unsigned long i, nr = sc->nr_to_scan;
673 	unsigned long freed = 0;
674 	unsigned int btree_cache_used;
675 
676 	if (c->shrinker_disabled)
677 		return SHRINK_STOP;
678 
679 	if (c->btree_cache_alloc_lock)
680 		return SHRINK_STOP;
681 
682 	/* Return -1 if we can't do anything right now */
683 	if (sc->gfp_mask & __GFP_IO)
684 		mutex_lock(&c->bucket_lock);
685 	else if (!mutex_trylock(&c->bucket_lock))
686 		return -1;
687 
688 	/*
689 	 * It's _really_ critical that we don't free too many btree nodes - we
690 	 * have to always leave ourselves a reserve. The reserve is how we
691 	 * guarantee that allocating memory for a new btree node can always
692 	 * succeed, so that inserting keys into the btree can always succeed and
693 	 * IO can always make forward progress:
694 	 */
695 	nr /= c->btree_pages;
696 	if (nr == 0)
697 		nr = 1;
698 	nr = min_t(unsigned long, nr, mca_can_free(c));
699 
700 	i = 0;
701 	btree_cache_used = c->btree_cache_used;
702 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
703 		if (nr <= 0)
704 			goto out;
705 
706 		if (!mca_reap(b, 0, false)) {
707 			mca_data_free(b);
708 			rw_unlock(true, b);
709 			freed++;
710 		}
711 		nr--;
712 		i++;
713 	}
714 
715 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
716 		if (nr <= 0 || i >= btree_cache_used)
717 			goto out;
718 
719 		if (!mca_reap(b, 0, false)) {
720 			mca_bucket_free(b);
721 			mca_data_free(b);
722 			rw_unlock(true, b);
723 			freed++;
724 		}
725 
726 		nr--;
727 		i++;
728 	}
729 out:
730 	mutex_unlock(&c->bucket_lock);
731 	return freed * c->btree_pages;
732 }
733 
734 static unsigned long bch_mca_count(struct shrinker *shrink,
735 				   struct shrink_control *sc)
736 {
737 	struct cache_set *c = shrink->private_data;
738 
739 	if (c->shrinker_disabled)
740 		return 0;
741 
742 	if (c->btree_cache_alloc_lock)
743 		return 0;
744 
745 	return mca_can_free(c) * c->btree_pages;
746 }
747 
748 void bch_btree_cache_free(struct cache_set *c)
749 {
750 	struct btree *b;
751 	struct closure cl;
752 
753 	closure_init_stack(&cl);
754 
755 	if (c->shrink)
756 		shrinker_free(c->shrink);
757 
758 	mutex_lock(&c->bucket_lock);
759 
760 #ifdef CONFIG_BCACHE_DEBUG
761 	if (c->verify_data)
762 		list_move(&c->verify_data->list, &c->btree_cache);
763 
764 	free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
765 #endif
766 
767 	list_splice(&c->btree_cache_freeable,
768 		    &c->btree_cache);
769 
770 	while (!list_empty(&c->btree_cache)) {
771 		b = list_first_entry(&c->btree_cache, struct btree, list);
772 
773 		/*
774 		 * This function is called by cache_set_free(), no I/O
775 		 * request on cache now, it is unnecessary to acquire
776 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
777 		 */
778 		if (btree_node_dirty(b)) {
779 			btree_complete_write(b, btree_current_write(b));
780 			clear_bit(BTREE_NODE_dirty, &b->flags);
781 		}
782 		mca_data_free(b);
783 	}
784 
785 	while (!list_empty(&c->btree_cache_freed)) {
786 		b = list_first_entry(&c->btree_cache_freed,
787 				     struct btree, list);
788 		list_del(&b->list);
789 		cancel_delayed_work_sync(&b->work);
790 		kfree(b);
791 	}
792 
793 	mutex_unlock(&c->bucket_lock);
794 }
795 
796 int bch_btree_cache_alloc(struct cache_set *c)
797 {
798 	unsigned int i;
799 
800 	for (i = 0; i < mca_reserve(c); i++)
801 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
802 			return -ENOMEM;
803 
804 	list_splice_init(&c->btree_cache,
805 			 &c->btree_cache_freeable);
806 
807 #ifdef CONFIG_BCACHE_DEBUG
808 	mutex_init(&c->verify_lock);
809 
810 	c->verify_ondisk = (void *)
811 		__get_free_pages(GFP_KERNEL|__GFP_COMP,
812 				 ilog2(meta_bucket_pages(&c->cache->sb)));
813 	if (!c->verify_ondisk) {
814 		/*
815 		 * Don't worry about the mca_rereserve buckets
816 		 * allocated in previous for-loop, they will be
817 		 * handled properly in bch_cache_set_unregister().
818 		 */
819 		return -ENOMEM;
820 	}
821 
822 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
823 
824 	if (c->verify_data &&
825 	    c->verify_data->keys.set->data)
826 		list_del_init(&c->verify_data->list);
827 	else
828 		c->verify_data = NULL;
829 #endif
830 
831 	c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid);
832 	if (!c->shrink) {
833 		pr_warn("bcache: %s: could not allocate shrinker\n", __func__);
834 		return 0;
835 	}
836 
837 	c->shrink->count_objects = bch_mca_count;
838 	c->shrink->scan_objects = bch_mca_scan;
839 	c->shrink->seeks = 4;
840 	c->shrink->batch = c->btree_pages * 2;
841 	c->shrink->private_data = c;
842 
843 	shrinker_register(c->shrink);
844 
845 	return 0;
846 }
847 
848 /* Btree in memory cache - hash table */
849 
850 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
851 {
852 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
853 }
854 
855 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
856 {
857 	struct btree *b;
858 
859 	rcu_read_lock();
860 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
861 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
862 			goto out;
863 	b = NULL;
864 out:
865 	rcu_read_unlock();
866 	return b;
867 }
868 
869 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
870 {
871 	spin_lock(&c->btree_cannibalize_lock);
872 	if (likely(c->btree_cache_alloc_lock == NULL)) {
873 		c->btree_cache_alloc_lock = current;
874 	} else if (c->btree_cache_alloc_lock != current) {
875 		if (op)
876 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
877 					TASK_UNINTERRUPTIBLE);
878 		spin_unlock(&c->btree_cannibalize_lock);
879 		return -EINTR;
880 	}
881 	spin_unlock(&c->btree_cannibalize_lock);
882 
883 	return 0;
884 }
885 
886 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
887 				     struct bkey *k)
888 {
889 	struct btree *b;
890 
891 	trace_bcache_btree_cache_cannibalize(c);
892 
893 	if (mca_cannibalize_lock(c, op))
894 		return ERR_PTR(-EINTR);
895 
896 	list_for_each_entry_reverse(b, &c->btree_cache, list)
897 		if (!mca_reap(b, btree_order(k), false))
898 			return b;
899 
900 	list_for_each_entry_reverse(b, &c->btree_cache, list)
901 		if (!mca_reap(b, btree_order(k), true))
902 			return b;
903 
904 	WARN(1, "btree cache cannibalize failed\n");
905 	return ERR_PTR(-ENOMEM);
906 }
907 
908 /*
909  * We can only have one thread cannibalizing other cached btree nodes at a time,
910  * or we'll deadlock. We use an open coded mutex to ensure that, which a
911  * cannibalize_bucket() will take. This means every time we unlock the root of
912  * the btree, we need to release this lock if we have it held.
913  */
914 void bch_cannibalize_unlock(struct cache_set *c)
915 {
916 	spin_lock(&c->btree_cannibalize_lock);
917 	if (c->btree_cache_alloc_lock == current) {
918 		c->btree_cache_alloc_lock = NULL;
919 		wake_up(&c->btree_cache_wait);
920 	}
921 	spin_unlock(&c->btree_cannibalize_lock);
922 }
923 
924 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
925 			       struct bkey *k, int level)
926 {
927 	struct btree *b;
928 
929 	BUG_ON(current->bio_list);
930 
931 	lockdep_assert_held(&c->bucket_lock);
932 
933 	if (mca_find(c, k))
934 		return NULL;
935 
936 	/* btree_free() doesn't free memory; it sticks the node on the end of
937 	 * the list. Check if there's any freed nodes there:
938 	 */
939 	list_for_each_entry(b, &c->btree_cache_freeable, list)
940 		if (!mca_reap(b, btree_order(k), false))
941 			goto out;
942 
943 	/* We never free struct btree itself, just the memory that holds the on
944 	 * disk node. Check the freed list before allocating a new one:
945 	 */
946 	list_for_each_entry(b, &c->btree_cache_freed, list)
947 		if (!mca_reap(b, 0, false)) {
948 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
949 			if (!b->keys.set[0].data)
950 				goto err;
951 			else
952 				goto out;
953 		}
954 
955 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
956 	if (!b)
957 		goto err;
958 
959 	BUG_ON(!down_write_trylock(&b->lock));
960 	if (!b->keys.set->data)
961 		goto err;
962 out:
963 	BUG_ON(b->io_mutex.count != 1);
964 
965 	bkey_copy(&b->key, k);
966 	list_move(&b->list, &c->btree_cache);
967 	hlist_del_init_rcu(&b->hash);
968 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
969 
970 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
971 	b->parent	= (void *) ~0UL;
972 	b->flags	= 0;
973 	b->written	= 0;
974 	b->level	= level;
975 
976 	if (!b->level)
977 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
978 				    &b->c->expensive_debug_checks);
979 	else
980 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
981 				    &b->c->expensive_debug_checks);
982 
983 	return b;
984 err:
985 	if (b)
986 		rw_unlock(true, b);
987 
988 	b = mca_cannibalize(c, op, k);
989 	if (!IS_ERR(b))
990 		goto out;
991 
992 	return b;
993 }
994 
995 /*
996  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
997  * in from disk if necessary.
998  *
999  * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
1000  *
1001  * The btree node will have either a read or a write lock held, depending on
1002  * level and op->lock.
1003  */
1004 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1005 				 struct bkey *k, int level, bool write,
1006 				 struct btree *parent)
1007 {
1008 	int i = 0;
1009 	struct btree *b;
1010 
1011 	BUG_ON(level < 0);
1012 retry:
1013 	b = mca_find(c, k);
1014 
1015 	if (!b) {
1016 		if (current->bio_list)
1017 			return ERR_PTR(-EAGAIN);
1018 
1019 		mutex_lock(&c->bucket_lock);
1020 		b = mca_alloc(c, op, k, level);
1021 		mutex_unlock(&c->bucket_lock);
1022 
1023 		if (!b)
1024 			goto retry;
1025 		if (IS_ERR(b))
1026 			return b;
1027 
1028 		bch_btree_node_read(b);
1029 
1030 		if (!write)
1031 			downgrade_write(&b->lock);
1032 	} else {
1033 		rw_lock(write, b, level);
1034 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1035 			rw_unlock(write, b);
1036 			goto retry;
1037 		}
1038 		BUG_ON(b->level != level);
1039 	}
1040 
1041 	if (btree_node_io_error(b)) {
1042 		rw_unlock(write, b);
1043 		return ERR_PTR(-EIO);
1044 	}
1045 
1046 	BUG_ON(!b->written);
1047 
1048 	b->parent = parent;
1049 
1050 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1051 		prefetch(b->keys.set[i].tree);
1052 		prefetch(b->keys.set[i].data);
1053 	}
1054 
1055 	for (; i <= b->keys.nsets; i++)
1056 		prefetch(b->keys.set[i].data);
1057 
1058 	return b;
1059 }
1060 
1061 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1062 {
1063 	struct btree *b;
1064 
1065 	mutex_lock(&parent->c->bucket_lock);
1066 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1067 	mutex_unlock(&parent->c->bucket_lock);
1068 
1069 	if (!IS_ERR_OR_NULL(b)) {
1070 		b->parent = parent;
1071 		bch_btree_node_read(b);
1072 		rw_unlock(true, b);
1073 	}
1074 }
1075 
1076 /* Btree alloc */
1077 
1078 static void btree_node_free(struct btree *b)
1079 {
1080 	trace_bcache_btree_node_free(b);
1081 
1082 	BUG_ON(b == b->c->root);
1083 
1084 retry:
1085 	mutex_lock(&b->write_lock);
1086 	/*
1087 	 * If the btree node is selected and flushing in btree_flush_write(),
1088 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1089 	 * then it is safe to free the btree node here. Otherwise this btree
1090 	 * node will be in race condition.
1091 	 */
1092 	if (btree_node_journal_flush(b)) {
1093 		mutex_unlock(&b->write_lock);
1094 		pr_debug("bnode %p journal_flush set, retry\n", b);
1095 		udelay(1);
1096 		goto retry;
1097 	}
1098 
1099 	if (btree_node_dirty(b)) {
1100 		btree_complete_write(b, btree_current_write(b));
1101 		clear_bit(BTREE_NODE_dirty, &b->flags);
1102 	}
1103 
1104 	mutex_unlock(&b->write_lock);
1105 
1106 	cancel_delayed_work(&b->work);
1107 
1108 	mutex_lock(&b->c->bucket_lock);
1109 	bch_bucket_free(b->c, &b->key);
1110 	mca_bucket_free(b);
1111 	mutex_unlock(&b->c->bucket_lock);
1112 }
1113 
1114 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1115 				     int level, bool wait,
1116 				     struct btree *parent)
1117 {
1118 	BKEY_PADDED(key) k;
1119 	struct btree *b;
1120 
1121 	mutex_lock(&c->bucket_lock);
1122 retry:
1123 	/* return ERR_PTR(-EAGAIN) when it fails */
1124 	b = ERR_PTR(-EAGAIN);
1125 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1126 		goto err;
1127 
1128 	bkey_put(c, &k.key);
1129 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1130 
1131 	b = mca_alloc(c, op, &k.key, level);
1132 	if (IS_ERR(b))
1133 		goto err_free;
1134 
1135 	if (!b) {
1136 		cache_bug(c,
1137 			"Tried to allocate bucket that was in btree cache");
1138 		goto retry;
1139 	}
1140 
1141 	b->parent = parent;
1142 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1143 
1144 	mutex_unlock(&c->bucket_lock);
1145 
1146 	trace_bcache_btree_node_alloc(b);
1147 	return b;
1148 err_free:
1149 	bch_bucket_free(c, &k.key);
1150 err:
1151 	mutex_unlock(&c->bucket_lock);
1152 
1153 	trace_bcache_btree_node_alloc_fail(c);
1154 	return b;
1155 }
1156 
1157 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1158 					  struct btree_op *op, int level,
1159 					  struct btree *parent)
1160 {
1161 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1162 }
1163 
1164 static struct btree *btree_node_alloc_replacement(struct btree *b,
1165 						  struct btree_op *op)
1166 {
1167 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1168 
1169 	if (!IS_ERR(n)) {
1170 		mutex_lock(&n->write_lock);
1171 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1172 		bkey_copy_key(&n->key, &b->key);
1173 		mutex_unlock(&n->write_lock);
1174 	}
1175 
1176 	return n;
1177 }
1178 
1179 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1180 {
1181 	unsigned int i;
1182 
1183 	mutex_lock(&b->c->bucket_lock);
1184 
1185 	atomic_inc(&b->c->prio_blocked);
1186 
1187 	bkey_copy(k, &b->key);
1188 	bkey_copy_key(k, &ZERO_KEY);
1189 
1190 	for (i = 0; i < KEY_PTRS(k); i++)
1191 		SET_PTR_GEN(k, i,
1192 			    bch_inc_gen(b->c->cache,
1193 					PTR_BUCKET(b->c, &b->key, i)));
1194 
1195 	mutex_unlock(&b->c->bucket_lock);
1196 }
1197 
1198 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1199 {
1200 	struct cache_set *c = b->c;
1201 	struct cache *ca = c->cache;
1202 	unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1203 
1204 	mutex_lock(&c->bucket_lock);
1205 
1206 	if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1207 		if (op)
1208 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
1209 					TASK_UNINTERRUPTIBLE);
1210 		mutex_unlock(&c->bucket_lock);
1211 		return -EINTR;
1212 	}
1213 
1214 	mutex_unlock(&c->bucket_lock);
1215 
1216 	return mca_cannibalize_lock(b->c, op);
1217 }
1218 
1219 /* Garbage collection */
1220 
1221 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1222 				    struct bkey *k)
1223 {
1224 	uint8_t stale = 0;
1225 	unsigned int i;
1226 	struct bucket *g;
1227 
1228 	/*
1229 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1230 	 * freed, but since ptr_bad() returns true we'll never actually use them
1231 	 * for anything and thus we don't want mark their pointers here
1232 	 */
1233 	if (!bkey_cmp(k, &ZERO_KEY))
1234 		return stale;
1235 
1236 	for (i = 0; i < KEY_PTRS(k); i++) {
1237 		if (!ptr_available(c, k, i))
1238 			continue;
1239 
1240 		g = PTR_BUCKET(c, k, i);
1241 
1242 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1243 			g->last_gc = PTR_GEN(k, i);
1244 
1245 		if (ptr_stale(c, k, i)) {
1246 			stale = max(stale, ptr_stale(c, k, i));
1247 			continue;
1248 		}
1249 
1250 		cache_bug_on(GC_MARK(g) &&
1251 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1252 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1253 			     GC_MARK(g), level);
1254 
1255 		if (level)
1256 			SET_GC_MARK(g, GC_MARK_METADATA);
1257 		else if (KEY_DIRTY(k))
1258 			SET_GC_MARK(g, GC_MARK_DIRTY);
1259 		else if (!GC_MARK(g))
1260 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1261 
1262 		/* guard against overflow */
1263 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1264 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1265 					     MAX_GC_SECTORS_USED));
1266 
1267 		BUG_ON(!GC_SECTORS_USED(g));
1268 	}
1269 
1270 	return stale;
1271 }
1272 
1273 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1274 
1275 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1276 {
1277 	unsigned int i;
1278 
1279 	for (i = 0; i < KEY_PTRS(k); i++)
1280 		if (ptr_available(c, k, i) &&
1281 		    !ptr_stale(c, k, i)) {
1282 			struct bucket *b = PTR_BUCKET(c, k, i);
1283 
1284 			b->gen = PTR_GEN(k, i);
1285 
1286 			if (level && bkey_cmp(k, &ZERO_KEY))
1287 				b->prio = BTREE_PRIO;
1288 			else if (!level && b->prio == BTREE_PRIO)
1289 				b->prio = INITIAL_PRIO;
1290 		}
1291 
1292 	__bch_btree_mark_key(c, level, k);
1293 }
1294 
1295 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1296 {
1297 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1298 }
1299 
1300 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1301 {
1302 	uint8_t stale = 0;
1303 	unsigned int keys = 0, good_keys = 0;
1304 	struct bkey *k;
1305 	struct btree_iter iter;
1306 	struct bset_tree *t;
1307 
1308 	gc->nodes++;
1309 
1310 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1311 		stale = max(stale, btree_mark_key(b, k));
1312 		keys++;
1313 
1314 		if (bch_ptr_bad(&b->keys, k))
1315 			continue;
1316 
1317 		gc->key_bytes += bkey_u64s(k);
1318 		gc->nkeys++;
1319 		good_keys++;
1320 
1321 		gc->data += KEY_SIZE(k);
1322 	}
1323 
1324 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1325 		btree_bug_on(t->size &&
1326 			     bset_written(&b->keys, t) &&
1327 			     bkey_cmp(&b->key, &t->end) < 0,
1328 			     b, "found short btree key in gc");
1329 
1330 	if (b->c->gc_always_rewrite)
1331 		return true;
1332 
1333 	if (stale > 10)
1334 		return true;
1335 
1336 	if ((keys - good_keys) * 2 > keys)
1337 		return true;
1338 
1339 	return false;
1340 }
1341 
1342 #define GC_MERGE_NODES	4U
1343 
1344 struct gc_merge_info {
1345 	struct btree	*b;
1346 	unsigned int	keys;
1347 };
1348 
1349 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1350 				 struct keylist *insert_keys,
1351 				 atomic_t *journal_ref,
1352 				 struct bkey *replace_key);
1353 
1354 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1355 			     struct gc_stat *gc, struct gc_merge_info *r)
1356 {
1357 	unsigned int i, nodes = 0, keys = 0, blocks;
1358 	struct btree *new_nodes[GC_MERGE_NODES];
1359 	struct keylist keylist;
1360 	struct closure cl;
1361 	struct bkey *k;
1362 
1363 	bch_keylist_init(&keylist);
1364 
1365 	if (btree_check_reserve(b, NULL))
1366 		return 0;
1367 
1368 	memset(new_nodes, 0, sizeof(new_nodes));
1369 	closure_init_stack(&cl);
1370 
1371 	while (nodes < GC_MERGE_NODES && !IS_ERR(r[nodes].b))
1372 		keys += r[nodes++].keys;
1373 
1374 	blocks = btree_default_blocks(b->c) * 2 / 3;
1375 
1376 	if (nodes < 2 ||
1377 	    __set_blocks(b->keys.set[0].data, keys,
1378 			 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1379 		return 0;
1380 
1381 	for (i = 0; i < nodes; i++) {
1382 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1383 		if (IS_ERR(new_nodes[i]))
1384 			goto out_nocoalesce;
1385 	}
1386 
1387 	/*
1388 	 * We have to check the reserve here, after we've allocated our new
1389 	 * nodes, to make sure the insert below will succeed - we also check
1390 	 * before as an optimization to potentially avoid a bunch of expensive
1391 	 * allocs/sorts
1392 	 */
1393 	if (btree_check_reserve(b, NULL))
1394 		goto out_nocoalesce;
1395 
1396 	for (i = 0; i < nodes; i++)
1397 		mutex_lock(&new_nodes[i]->write_lock);
1398 
1399 	for (i = nodes - 1; i > 0; --i) {
1400 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1401 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1402 		struct bkey *k, *last = NULL;
1403 
1404 		keys = 0;
1405 
1406 		if (i > 1) {
1407 			for (k = n2->start;
1408 			     k < bset_bkey_last(n2);
1409 			     k = bkey_next(k)) {
1410 				if (__set_blocks(n1, n1->keys + keys +
1411 						 bkey_u64s(k),
1412 						 block_bytes(b->c->cache)) > blocks)
1413 					break;
1414 
1415 				last = k;
1416 				keys += bkey_u64s(k);
1417 			}
1418 		} else {
1419 			/*
1420 			 * Last node we're not getting rid of - we're getting
1421 			 * rid of the node at r[0]. Have to try and fit all of
1422 			 * the remaining keys into this node; we can't ensure
1423 			 * they will always fit due to rounding and variable
1424 			 * length keys (shouldn't be possible in practice,
1425 			 * though)
1426 			 */
1427 			if (__set_blocks(n1, n1->keys + n2->keys,
1428 					 block_bytes(b->c->cache)) >
1429 			    btree_blocks(new_nodes[i]))
1430 				goto out_unlock_nocoalesce;
1431 
1432 			keys = n2->keys;
1433 			/* Take the key of the node we're getting rid of */
1434 			last = &r->b->key;
1435 		}
1436 
1437 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1438 		       btree_blocks(new_nodes[i]));
1439 
1440 		if (last)
1441 			bkey_copy_key(&new_nodes[i]->key, last);
1442 
1443 		memcpy(bset_bkey_last(n1),
1444 		       n2->start,
1445 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1446 
1447 		n1->keys += keys;
1448 		r[i].keys = n1->keys;
1449 
1450 		memmove(n2->start,
1451 			bset_bkey_idx(n2, keys),
1452 			(void *) bset_bkey_last(n2) -
1453 			(void *) bset_bkey_idx(n2, keys));
1454 
1455 		n2->keys -= keys;
1456 
1457 		if (__bch_keylist_realloc(&keylist,
1458 					  bkey_u64s(&new_nodes[i]->key)))
1459 			goto out_unlock_nocoalesce;
1460 
1461 		bch_btree_node_write(new_nodes[i], &cl);
1462 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1463 	}
1464 
1465 	for (i = 0; i < nodes; i++)
1466 		mutex_unlock(&new_nodes[i]->write_lock);
1467 
1468 	closure_sync(&cl);
1469 
1470 	/* We emptied out this node */
1471 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1472 	btree_node_free(new_nodes[0]);
1473 	rw_unlock(true, new_nodes[0]);
1474 	new_nodes[0] = NULL;
1475 
1476 	for (i = 0; i < nodes; i++) {
1477 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1478 			goto out_nocoalesce;
1479 
1480 		make_btree_freeing_key(r[i].b, keylist.top);
1481 		bch_keylist_push(&keylist);
1482 	}
1483 
1484 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1485 	BUG_ON(!bch_keylist_empty(&keylist));
1486 
1487 	for (i = 0; i < nodes; i++) {
1488 		btree_node_free(r[i].b);
1489 		rw_unlock(true, r[i].b);
1490 
1491 		r[i].b = new_nodes[i];
1492 	}
1493 
1494 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1495 	r[nodes - 1].b = ERR_PTR(-EINTR);
1496 
1497 	trace_bcache_btree_gc_coalesce(nodes);
1498 	gc->nodes--;
1499 
1500 	bch_keylist_free(&keylist);
1501 
1502 	/* Invalidated our iterator */
1503 	return -EINTR;
1504 
1505 out_unlock_nocoalesce:
1506 	for (i = 0; i < nodes; i++)
1507 		mutex_unlock(&new_nodes[i]->write_lock);
1508 
1509 out_nocoalesce:
1510 	closure_sync(&cl);
1511 
1512 	while ((k = bch_keylist_pop(&keylist)))
1513 		if (!bkey_cmp(k, &ZERO_KEY))
1514 			atomic_dec(&b->c->prio_blocked);
1515 	bch_keylist_free(&keylist);
1516 
1517 	for (i = 0; i < nodes; i++)
1518 		if (!IS_ERR(new_nodes[i])) {
1519 			btree_node_free(new_nodes[i]);
1520 			rw_unlock(true, new_nodes[i]);
1521 		}
1522 	return 0;
1523 }
1524 
1525 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1526 				 struct btree *replace)
1527 {
1528 	struct keylist keys;
1529 	struct btree *n;
1530 
1531 	if (btree_check_reserve(b, NULL))
1532 		return 0;
1533 
1534 	n = btree_node_alloc_replacement(replace, NULL);
1535 
1536 	/* recheck reserve after allocating replacement node */
1537 	if (btree_check_reserve(b, NULL)) {
1538 		btree_node_free(n);
1539 		rw_unlock(true, n);
1540 		return 0;
1541 	}
1542 
1543 	bch_btree_node_write_sync(n);
1544 
1545 	bch_keylist_init(&keys);
1546 	bch_keylist_add(&keys, &n->key);
1547 
1548 	make_btree_freeing_key(replace, keys.top);
1549 	bch_keylist_push(&keys);
1550 
1551 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1552 	BUG_ON(!bch_keylist_empty(&keys));
1553 
1554 	btree_node_free(replace);
1555 	rw_unlock(true, n);
1556 
1557 	/* Invalidated our iterator */
1558 	return -EINTR;
1559 }
1560 
1561 static unsigned int btree_gc_count_keys(struct btree *b)
1562 {
1563 	struct bkey *k;
1564 	struct btree_iter iter;
1565 	unsigned int ret = 0;
1566 
1567 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1568 		ret += bkey_u64s(k);
1569 
1570 	return ret;
1571 }
1572 
1573 static size_t btree_gc_min_nodes(struct cache_set *c)
1574 {
1575 	size_t min_nodes;
1576 
1577 	/*
1578 	 * Since incremental GC would stop 100ms when front
1579 	 * side I/O comes, so when there are many btree nodes,
1580 	 * if GC only processes constant (100) nodes each time,
1581 	 * GC would last a long time, and the front side I/Os
1582 	 * would run out of the buckets (since no new bucket
1583 	 * can be allocated during GC), and be blocked again.
1584 	 * So GC should not process constant nodes, but varied
1585 	 * nodes according to the number of btree nodes, which
1586 	 * realized by dividing GC into constant(100) times,
1587 	 * so when there are many btree nodes, GC can process
1588 	 * more nodes each time, otherwise, GC will process less
1589 	 * nodes each time (but no less than MIN_GC_NODES)
1590 	 */
1591 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1592 	if (min_nodes < MIN_GC_NODES)
1593 		min_nodes = MIN_GC_NODES;
1594 
1595 	return min_nodes;
1596 }
1597 
1598 
1599 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1600 			    struct closure *writes, struct gc_stat *gc)
1601 {
1602 	int ret = 0;
1603 	bool should_rewrite;
1604 	struct bkey *k;
1605 	struct btree_iter iter;
1606 	struct gc_merge_info r[GC_MERGE_NODES];
1607 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1608 
1609 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1610 
1611 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1612 		i->b = ERR_PTR(-EINTR);
1613 
1614 	while (1) {
1615 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1616 		if (k) {
1617 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1618 						  true, b);
1619 			if (IS_ERR(r->b)) {
1620 				ret = PTR_ERR(r->b);
1621 				break;
1622 			}
1623 
1624 			r->keys = btree_gc_count_keys(r->b);
1625 
1626 			ret = btree_gc_coalesce(b, op, gc, r);
1627 			if (ret)
1628 				break;
1629 		}
1630 
1631 		if (!last->b)
1632 			break;
1633 
1634 		if (!IS_ERR(last->b)) {
1635 			should_rewrite = btree_gc_mark_node(last->b, gc);
1636 			if (should_rewrite) {
1637 				ret = btree_gc_rewrite_node(b, op, last->b);
1638 				if (ret)
1639 					break;
1640 			}
1641 
1642 			if (last->b->level) {
1643 				ret = btree_gc_recurse(last->b, op, writes, gc);
1644 				if (ret)
1645 					break;
1646 			}
1647 
1648 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1649 
1650 			/*
1651 			 * Must flush leaf nodes before gc ends, since replace
1652 			 * operations aren't journalled
1653 			 */
1654 			mutex_lock(&last->b->write_lock);
1655 			if (btree_node_dirty(last->b))
1656 				bch_btree_node_write(last->b, writes);
1657 			mutex_unlock(&last->b->write_lock);
1658 			rw_unlock(true, last->b);
1659 		}
1660 
1661 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1662 		r->b = NULL;
1663 
1664 		if (atomic_read(&b->c->search_inflight) &&
1665 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1666 			gc->nodes_pre =  gc->nodes;
1667 			ret = -EAGAIN;
1668 			break;
1669 		}
1670 
1671 		if (need_resched()) {
1672 			ret = -EAGAIN;
1673 			break;
1674 		}
1675 	}
1676 
1677 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1678 		if (!IS_ERR_OR_NULL(i->b)) {
1679 			mutex_lock(&i->b->write_lock);
1680 			if (btree_node_dirty(i->b))
1681 				bch_btree_node_write(i->b, writes);
1682 			mutex_unlock(&i->b->write_lock);
1683 			rw_unlock(true, i->b);
1684 		}
1685 
1686 	return ret;
1687 }
1688 
1689 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1690 			     struct closure *writes, struct gc_stat *gc)
1691 {
1692 	struct btree *n = NULL;
1693 	int ret = 0;
1694 	bool should_rewrite;
1695 
1696 	should_rewrite = btree_gc_mark_node(b, gc);
1697 	if (should_rewrite) {
1698 		n = btree_node_alloc_replacement(b, NULL);
1699 
1700 		if (!IS_ERR(n)) {
1701 			bch_btree_node_write_sync(n);
1702 
1703 			bch_btree_set_root(n);
1704 			btree_node_free(b);
1705 			rw_unlock(true, n);
1706 
1707 			return -EINTR;
1708 		}
1709 	}
1710 
1711 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1712 
1713 	if (b->level) {
1714 		ret = btree_gc_recurse(b, op, writes, gc);
1715 		if (ret)
1716 			return ret;
1717 	}
1718 
1719 	bkey_copy_key(&b->c->gc_done, &b->key);
1720 
1721 	return ret;
1722 }
1723 
1724 static void btree_gc_start(struct cache_set *c)
1725 {
1726 	struct cache *ca;
1727 	struct bucket *b;
1728 
1729 	if (!c->gc_mark_valid)
1730 		return;
1731 
1732 	mutex_lock(&c->bucket_lock);
1733 
1734 	c->gc_mark_valid = 0;
1735 	c->gc_done = ZERO_KEY;
1736 
1737 	ca = c->cache;
1738 	for_each_bucket(b, ca) {
1739 		b->last_gc = b->gen;
1740 		if (!atomic_read(&b->pin)) {
1741 			SET_GC_MARK(b, 0);
1742 			SET_GC_SECTORS_USED(b, 0);
1743 		}
1744 	}
1745 
1746 	mutex_unlock(&c->bucket_lock);
1747 }
1748 
1749 static void bch_btree_gc_finish(struct cache_set *c)
1750 {
1751 	struct bucket *b;
1752 	struct cache *ca;
1753 	unsigned int i, j;
1754 	uint64_t *k;
1755 
1756 	mutex_lock(&c->bucket_lock);
1757 
1758 	set_gc_sectors(c);
1759 	c->gc_mark_valid = 1;
1760 	c->need_gc	= 0;
1761 
1762 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1763 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1764 			    GC_MARK_METADATA);
1765 
1766 	/* don't reclaim buckets to which writeback keys point */
1767 	rcu_read_lock();
1768 	for (i = 0; i < c->devices_max_used; i++) {
1769 		struct bcache_device *d = c->devices[i];
1770 		struct cached_dev *dc;
1771 		struct keybuf_key *w, *n;
1772 
1773 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1774 			continue;
1775 		dc = container_of(d, struct cached_dev, disk);
1776 
1777 		spin_lock(&dc->writeback_keys.lock);
1778 		rbtree_postorder_for_each_entry_safe(w, n,
1779 					&dc->writeback_keys.keys, node)
1780 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1781 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1782 					    GC_MARK_DIRTY);
1783 		spin_unlock(&dc->writeback_keys.lock);
1784 	}
1785 	rcu_read_unlock();
1786 
1787 	c->avail_nbuckets = 0;
1788 
1789 	ca = c->cache;
1790 	ca->invalidate_needs_gc = 0;
1791 
1792 	for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1793 		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1794 
1795 	for (k = ca->prio_buckets;
1796 	     k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1797 		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1798 
1799 	for_each_bucket(b, ca) {
1800 		c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1801 
1802 		if (atomic_read(&b->pin))
1803 			continue;
1804 
1805 		BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1806 
1807 		if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1808 			c->avail_nbuckets++;
1809 	}
1810 
1811 	mutex_unlock(&c->bucket_lock);
1812 }
1813 
1814 static void bch_btree_gc(struct cache_set *c)
1815 {
1816 	int ret;
1817 	struct gc_stat stats;
1818 	struct closure writes;
1819 	struct btree_op op;
1820 	uint64_t start_time = local_clock();
1821 
1822 	trace_bcache_gc_start(c);
1823 
1824 	memset(&stats, 0, sizeof(struct gc_stat));
1825 	closure_init_stack(&writes);
1826 	bch_btree_op_init(&op, SHRT_MAX);
1827 
1828 	btree_gc_start(c);
1829 
1830 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1831 	do {
1832 		ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1833 		closure_sync(&writes);
1834 		cond_resched();
1835 
1836 		if (ret == -EAGAIN)
1837 			schedule_timeout_interruptible(msecs_to_jiffies
1838 						       (GC_SLEEP_MS));
1839 		else if (ret)
1840 			pr_warn("gc failed!\n");
1841 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1842 
1843 	bch_btree_gc_finish(c);
1844 	wake_up_allocators(c);
1845 
1846 	bch_time_stats_update(&c->btree_gc_time, start_time);
1847 
1848 	stats.key_bytes *= sizeof(uint64_t);
1849 	stats.data	<<= 9;
1850 	bch_update_bucket_in_use(c, &stats);
1851 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1852 
1853 	trace_bcache_gc_end(c);
1854 
1855 	bch_moving_gc(c);
1856 }
1857 
1858 static bool gc_should_run(struct cache_set *c)
1859 {
1860 	struct cache *ca = c->cache;
1861 
1862 	if (ca->invalidate_needs_gc)
1863 		return true;
1864 
1865 	if (atomic_read(&c->sectors_to_gc) < 0)
1866 		return true;
1867 
1868 	return false;
1869 }
1870 
1871 static int bch_gc_thread(void *arg)
1872 {
1873 	struct cache_set *c = arg;
1874 
1875 	while (1) {
1876 		wait_event_interruptible(c->gc_wait,
1877 			   kthread_should_stop() ||
1878 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1879 			   gc_should_run(c));
1880 
1881 		if (kthread_should_stop() ||
1882 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1883 			break;
1884 
1885 		set_gc_sectors(c);
1886 		bch_btree_gc(c);
1887 	}
1888 
1889 	wait_for_kthread_stop();
1890 	return 0;
1891 }
1892 
1893 int bch_gc_thread_start(struct cache_set *c)
1894 {
1895 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1896 	return PTR_ERR_OR_ZERO(c->gc_thread);
1897 }
1898 
1899 /* Initial partial gc */
1900 
1901 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1902 {
1903 	int ret = 0;
1904 	struct bkey *k, *p = NULL;
1905 	struct btree_iter iter;
1906 
1907 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1908 		bch_initial_mark_key(b->c, b->level, k);
1909 
1910 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1911 
1912 	if (b->level) {
1913 		bch_btree_iter_init(&b->keys, &iter, NULL);
1914 
1915 		do {
1916 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1917 						       bch_ptr_bad);
1918 			if (k) {
1919 				btree_node_prefetch(b, k);
1920 				/*
1921 				 * initiallize c->gc_stats.nodes
1922 				 * for incremental GC
1923 				 */
1924 				b->c->gc_stats.nodes++;
1925 			}
1926 
1927 			if (p)
1928 				ret = bcache_btree(check_recurse, p, b, op);
1929 
1930 			p = k;
1931 		} while (p && !ret);
1932 	}
1933 
1934 	return ret;
1935 }
1936 
1937 
1938 static int bch_btree_check_thread(void *arg)
1939 {
1940 	int ret;
1941 	struct btree_check_info *info = arg;
1942 	struct btree_check_state *check_state = info->state;
1943 	struct cache_set *c = check_state->c;
1944 	struct btree_iter iter;
1945 	struct bkey *k, *p;
1946 	int cur_idx, prev_idx, skip_nr;
1947 
1948 	k = p = NULL;
1949 	cur_idx = prev_idx = 0;
1950 	ret = 0;
1951 
1952 	/* root node keys are checked before thread created */
1953 	bch_btree_iter_init(&c->root->keys, &iter, NULL);
1954 	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1955 	BUG_ON(!k);
1956 
1957 	p = k;
1958 	while (k) {
1959 		/*
1960 		 * Fetch a root node key index, skip the keys which
1961 		 * should be fetched by other threads, then check the
1962 		 * sub-tree indexed by the fetched key.
1963 		 */
1964 		spin_lock(&check_state->idx_lock);
1965 		cur_idx = check_state->key_idx;
1966 		check_state->key_idx++;
1967 		spin_unlock(&check_state->idx_lock);
1968 
1969 		skip_nr = cur_idx - prev_idx;
1970 
1971 		while (skip_nr) {
1972 			k = bch_btree_iter_next_filter(&iter,
1973 						       &c->root->keys,
1974 						       bch_ptr_bad);
1975 			if (k)
1976 				p = k;
1977 			else {
1978 				/*
1979 				 * No more keys to check in root node,
1980 				 * current checking threads are enough,
1981 				 * stop creating more.
1982 				 */
1983 				atomic_set(&check_state->enough, 1);
1984 				/* Update check_state->enough earlier */
1985 				smp_mb__after_atomic();
1986 				goto out;
1987 			}
1988 			skip_nr--;
1989 			cond_resched();
1990 		}
1991 
1992 		if (p) {
1993 			struct btree_op op;
1994 
1995 			btree_node_prefetch(c->root, p);
1996 			c->gc_stats.nodes++;
1997 			bch_btree_op_init(&op, 0);
1998 			ret = bcache_btree(check_recurse, p, c->root, &op);
1999 			/*
2000 			 * The op may be added to cache_set's btree_cache_wait
2001 			 * in mca_cannibalize(), must ensure it is removed from
2002 			 * the list and release btree_cache_alloc_lock before
2003 			 * free op memory.
2004 			 * Otherwise, the btree_cache_wait will be damaged.
2005 			 */
2006 			bch_cannibalize_unlock(c);
2007 			finish_wait(&c->btree_cache_wait, &(&op)->wait);
2008 			if (ret)
2009 				goto out;
2010 		}
2011 		p = NULL;
2012 		prev_idx = cur_idx;
2013 		cond_resched();
2014 	}
2015 
2016 out:
2017 	info->result = ret;
2018 	/* update check_state->started among all CPUs */
2019 	smp_mb__before_atomic();
2020 	if (atomic_dec_and_test(&check_state->started))
2021 		wake_up(&check_state->wait);
2022 
2023 	return ret;
2024 }
2025 
2026 
2027 
2028 static int bch_btree_chkthread_nr(void)
2029 {
2030 	int n = num_online_cpus()/2;
2031 
2032 	if (n == 0)
2033 		n = 1;
2034 	else if (n > BCH_BTR_CHKTHREAD_MAX)
2035 		n = BCH_BTR_CHKTHREAD_MAX;
2036 
2037 	return n;
2038 }
2039 
2040 int bch_btree_check(struct cache_set *c)
2041 {
2042 	int ret = 0;
2043 	int i;
2044 	struct bkey *k = NULL;
2045 	struct btree_iter iter;
2046 	struct btree_check_state check_state;
2047 
2048 	/* check and mark root node keys */
2049 	for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2050 		bch_initial_mark_key(c, c->root->level, k);
2051 
2052 	bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2053 
2054 	if (c->root->level == 0)
2055 		return 0;
2056 
2057 	memset(&check_state, 0, sizeof(struct btree_check_state));
2058 	check_state.c = c;
2059 	check_state.total_threads = bch_btree_chkthread_nr();
2060 	check_state.key_idx = 0;
2061 	spin_lock_init(&check_state.idx_lock);
2062 	atomic_set(&check_state.started, 0);
2063 	atomic_set(&check_state.enough, 0);
2064 	init_waitqueue_head(&check_state.wait);
2065 
2066 	rw_lock(0, c->root, c->root->level);
2067 	/*
2068 	 * Run multiple threads to check btree nodes in parallel,
2069 	 * if check_state.enough is non-zero, it means current
2070 	 * running check threads are enough, unncessary to create
2071 	 * more.
2072 	 */
2073 	for (i = 0; i < check_state.total_threads; i++) {
2074 		/* fetch latest check_state.enough earlier */
2075 		smp_mb__before_atomic();
2076 		if (atomic_read(&check_state.enough))
2077 			break;
2078 
2079 		check_state.infos[i].result = 0;
2080 		check_state.infos[i].state = &check_state;
2081 
2082 		check_state.infos[i].thread =
2083 			kthread_run(bch_btree_check_thread,
2084 				    &check_state.infos[i],
2085 				    "bch_btrchk[%d]", i);
2086 		if (IS_ERR(check_state.infos[i].thread)) {
2087 			pr_err("fails to run thread bch_btrchk[%d]\n", i);
2088 			for (--i; i >= 0; i--)
2089 				kthread_stop(check_state.infos[i].thread);
2090 			ret = -ENOMEM;
2091 			goto out;
2092 		}
2093 		atomic_inc(&check_state.started);
2094 	}
2095 
2096 	/*
2097 	 * Must wait for all threads to stop.
2098 	 */
2099 	wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2100 
2101 	for (i = 0; i < check_state.total_threads; i++) {
2102 		if (check_state.infos[i].result) {
2103 			ret = check_state.infos[i].result;
2104 			goto out;
2105 		}
2106 	}
2107 
2108 out:
2109 	rw_unlock(0, c->root);
2110 	return ret;
2111 }
2112 
2113 void bch_initial_gc_finish(struct cache_set *c)
2114 {
2115 	struct cache *ca = c->cache;
2116 	struct bucket *b;
2117 
2118 	bch_btree_gc_finish(c);
2119 
2120 	mutex_lock(&c->bucket_lock);
2121 
2122 	/*
2123 	 * We need to put some unused buckets directly on the prio freelist in
2124 	 * order to get the allocator thread started - it needs freed buckets in
2125 	 * order to rewrite the prios and gens, and it needs to rewrite prios
2126 	 * and gens in order to free buckets.
2127 	 *
2128 	 * This is only safe for buckets that have no live data in them, which
2129 	 * there should always be some of.
2130 	 */
2131 	for_each_bucket(b, ca) {
2132 		if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2133 		    fifo_full(&ca->free[RESERVE_BTREE]))
2134 			break;
2135 
2136 		if (bch_can_invalidate_bucket(ca, b) &&
2137 		    !GC_MARK(b)) {
2138 			__bch_invalidate_one_bucket(ca, b);
2139 			if (!fifo_push(&ca->free[RESERVE_PRIO],
2140 			   b - ca->buckets))
2141 				fifo_push(&ca->free[RESERVE_BTREE],
2142 					  b - ca->buckets);
2143 		}
2144 	}
2145 
2146 	mutex_unlock(&c->bucket_lock);
2147 }
2148 
2149 /* Btree insertion */
2150 
2151 static bool btree_insert_key(struct btree *b, struct bkey *k,
2152 			     struct bkey *replace_key)
2153 {
2154 	unsigned int status;
2155 
2156 	BUG_ON(bkey_cmp(k, &b->key) > 0);
2157 
2158 	status = bch_btree_insert_key(&b->keys, k, replace_key);
2159 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2160 		bch_check_keys(&b->keys, "%u for %s", status,
2161 			       replace_key ? "replace" : "insert");
2162 
2163 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2164 					      status);
2165 		return true;
2166 	} else
2167 		return false;
2168 }
2169 
2170 static size_t insert_u64s_remaining(struct btree *b)
2171 {
2172 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2173 
2174 	/*
2175 	 * Might land in the middle of an existing extent and have to split it
2176 	 */
2177 	if (b->keys.ops->is_extents)
2178 		ret -= KEY_MAX_U64S;
2179 
2180 	return max(ret, 0L);
2181 }
2182 
2183 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2184 				  struct keylist *insert_keys,
2185 				  struct bkey *replace_key)
2186 {
2187 	bool ret = false;
2188 	int oldsize = bch_count_data(&b->keys);
2189 
2190 	while (!bch_keylist_empty(insert_keys)) {
2191 		struct bkey *k = insert_keys->keys;
2192 
2193 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2194 			break;
2195 
2196 		if (bkey_cmp(k, &b->key) <= 0) {
2197 			if (!b->level)
2198 				bkey_put(b->c, k);
2199 
2200 			ret |= btree_insert_key(b, k, replace_key);
2201 			bch_keylist_pop_front(insert_keys);
2202 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2203 			BKEY_PADDED(key) temp;
2204 			bkey_copy(&temp.key, insert_keys->keys);
2205 
2206 			bch_cut_back(&b->key, &temp.key);
2207 			bch_cut_front(&b->key, insert_keys->keys);
2208 
2209 			ret |= btree_insert_key(b, &temp.key, replace_key);
2210 			break;
2211 		} else {
2212 			break;
2213 		}
2214 	}
2215 
2216 	if (!ret)
2217 		op->insert_collision = true;
2218 
2219 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2220 
2221 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2222 	return ret;
2223 }
2224 
2225 static int btree_split(struct btree *b, struct btree_op *op,
2226 		       struct keylist *insert_keys,
2227 		       struct bkey *replace_key)
2228 {
2229 	bool split;
2230 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2231 	uint64_t start_time = local_clock();
2232 	struct closure cl;
2233 	struct keylist parent_keys;
2234 
2235 	closure_init_stack(&cl);
2236 	bch_keylist_init(&parent_keys);
2237 
2238 	if (btree_check_reserve(b, op)) {
2239 		if (!b->level)
2240 			return -EINTR;
2241 		else
2242 			WARN(1, "insufficient reserve for split\n");
2243 	}
2244 
2245 	n1 = btree_node_alloc_replacement(b, op);
2246 	if (IS_ERR(n1))
2247 		goto err;
2248 
2249 	split = set_blocks(btree_bset_first(n1),
2250 			   block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2251 
2252 	if (split) {
2253 		unsigned int keys = 0;
2254 
2255 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2256 
2257 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2258 		if (IS_ERR(n2))
2259 			goto err_free1;
2260 
2261 		if (!b->parent) {
2262 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2263 			if (IS_ERR(n3))
2264 				goto err_free2;
2265 		}
2266 
2267 		mutex_lock(&n1->write_lock);
2268 		mutex_lock(&n2->write_lock);
2269 
2270 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2271 
2272 		/*
2273 		 * Has to be a linear search because we don't have an auxiliary
2274 		 * search tree yet
2275 		 */
2276 
2277 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2278 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2279 							keys));
2280 
2281 		bkey_copy_key(&n1->key,
2282 			      bset_bkey_idx(btree_bset_first(n1), keys));
2283 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2284 
2285 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2286 		btree_bset_first(n1)->keys = keys;
2287 
2288 		memcpy(btree_bset_first(n2)->start,
2289 		       bset_bkey_last(btree_bset_first(n1)),
2290 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2291 
2292 		bkey_copy_key(&n2->key, &b->key);
2293 
2294 		bch_keylist_add(&parent_keys, &n2->key);
2295 		bch_btree_node_write(n2, &cl);
2296 		mutex_unlock(&n2->write_lock);
2297 		rw_unlock(true, n2);
2298 	} else {
2299 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2300 
2301 		mutex_lock(&n1->write_lock);
2302 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2303 	}
2304 
2305 	bch_keylist_add(&parent_keys, &n1->key);
2306 	bch_btree_node_write(n1, &cl);
2307 	mutex_unlock(&n1->write_lock);
2308 
2309 	if (n3) {
2310 		/* Depth increases, make a new root */
2311 		mutex_lock(&n3->write_lock);
2312 		bkey_copy_key(&n3->key, &MAX_KEY);
2313 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2314 		bch_btree_node_write(n3, &cl);
2315 		mutex_unlock(&n3->write_lock);
2316 
2317 		closure_sync(&cl);
2318 		bch_btree_set_root(n3);
2319 		rw_unlock(true, n3);
2320 	} else if (!b->parent) {
2321 		/* Root filled up but didn't need to be split */
2322 		closure_sync(&cl);
2323 		bch_btree_set_root(n1);
2324 	} else {
2325 		/* Split a non root node */
2326 		closure_sync(&cl);
2327 		make_btree_freeing_key(b, parent_keys.top);
2328 		bch_keylist_push(&parent_keys);
2329 
2330 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2331 		BUG_ON(!bch_keylist_empty(&parent_keys));
2332 	}
2333 
2334 	btree_node_free(b);
2335 	rw_unlock(true, n1);
2336 
2337 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2338 
2339 	return 0;
2340 err_free2:
2341 	bkey_put(b->c, &n2->key);
2342 	btree_node_free(n2);
2343 	rw_unlock(true, n2);
2344 err_free1:
2345 	bkey_put(b->c, &n1->key);
2346 	btree_node_free(n1);
2347 	rw_unlock(true, n1);
2348 err:
2349 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2350 
2351 	if (n3 == ERR_PTR(-EAGAIN) ||
2352 	    n2 == ERR_PTR(-EAGAIN) ||
2353 	    n1 == ERR_PTR(-EAGAIN))
2354 		return -EAGAIN;
2355 
2356 	return -ENOMEM;
2357 }
2358 
2359 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2360 				 struct keylist *insert_keys,
2361 				 atomic_t *journal_ref,
2362 				 struct bkey *replace_key)
2363 {
2364 	struct closure cl;
2365 
2366 	BUG_ON(b->level && replace_key);
2367 
2368 	closure_init_stack(&cl);
2369 
2370 	mutex_lock(&b->write_lock);
2371 
2372 	if (write_block(b) != btree_bset_last(b) &&
2373 	    b->keys.last_set_unwritten)
2374 		bch_btree_init_next(b); /* just wrote a set */
2375 
2376 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2377 		mutex_unlock(&b->write_lock);
2378 		goto split;
2379 	}
2380 
2381 	BUG_ON(write_block(b) != btree_bset_last(b));
2382 
2383 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2384 		if (!b->level)
2385 			bch_btree_leaf_dirty(b, journal_ref);
2386 		else
2387 			bch_btree_node_write(b, &cl);
2388 	}
2389 
2390 	mutex_unlock(&b->write_lock);
2391 
2392 	/* wait for btree node write if necessary, after unlock */
2393 	closure_sync(&cl);
2394 
2395 	return 0;
2396 split:
2397 	if (current->bio_list) {
2398 		op->lock = b->c->root->level + 1;
2399 		return -EAGAIN;
2400 	} else if (op->lock <= b->c->root->level) {
2401 		op->lock = b->c->root->level + 1;
2402 		return -EINTR;
2403 	} else {
2404 		/* Invalidated all iterators */
2405 		int ret = btree_split(b, op, insert_keys, replace_key);
2406 
2407 		if (bch_keylist_empty(insert_keys))
2408 			return 0;
2409 		else if (!ret)
2410 			return -EINTR;
2411 		return ret;
2412 	}
2413 }
2414 
2415 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2416 			       struct bkey *check_key)
2417 {
2418 	int ret = -EINTR;
2419 	uint64_t btree_ptr = b->key.ptr[0];
2420 	unsigned long seq = b->seq;
2421 	struct keylist insert;
2422 	bool upgrade = op->lock == -1;
2423 
2424 	bch_keylist_init(&insert);
2425 
2426 	if (upgrade) {
2427 		rw_unlock(false, b);
2428 		rw_lock(true, b, b->level);
2429 
2430 		if (b->key.ptr[0] != btree_ptr ||
2431 		    b->seq != seq + 1) {
2432 			op->lock = b->level;
2433 			goto out;
2434 		}
2435 	}
2436 
2437 	SET_KEY_PTRS(check_key, 1);
2438 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2439 
2440 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2441 
2442 	bch_keylist_add(&insert, check_key);
2443 
2444 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2445 
2446 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2447 out:
2448 	if (upgrade)
2449 		downgrade_write(&b->lock);
2450 	return ret;
2451 }
2452 
2453 struct btree_insert_op {
2454 	struct btree_op	op;
2455 	struct keylist	*keys;
2456 	atomic_t	*journal_ref;
2457 	struct bkey	*replace_key;
2458 };
2459 
2460 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2461 {
2462 	struct btree_insert_op *op = container_of(b_op,
2463 					struct btree_insert_op, op);
2464 
2465 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2466 					op->journal_ref, op->replace_key);
2467 	if (ret && !bch_keylist_empty(op->keys))
2468 		return ret;
2469 	else
2470 		return MAP_DONE;
2471 }
2472 
2473 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2474 		     atomic_t *journal_ref, struct bkey *replace_key)
2475 {
2476 	struct btree_insert_op op;
2477 	int ret = 0;
2478 
2479 	BUG_ON(current->bio_list);
2480 	BUG_ON(bch_keylist_empty(keys));
2481 
2482 	bch_btree_op_init(&op.op, 0);
2483 	op.keys		= keys;
2484 	op.journal_ref	= journal_ref;
2485 	op.replace_key	= replace_key;
2486 
2487 	while (!ret && !bch_keylist_empty(keys)) {
2488 		op.op.lock = 0;
2489 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2490 					       &START_KEY(keys->keys),
2491 					       btree_insert_fn);
2492 	}
2493 
2494 	if (ret) {
2495 		struct bkey *k;
2496 
2497 		pr_err("error %i\n", ret);
2498 
2499 		while ((k = bch_keylist_pop(keys)))
2500 			bkey_put(c, k);
2501 	} else if (op.op.insert_collision)
2502 		ret = -ESRCH;
2503 
2504 	return ret;
2505 }
2506 
2507 void bch_btree_set_root(struct btree *b)
2508 {
2509 	unsigned int i;
2510 	struct closure cl;
2511 
2512 	closure_init_stack(&cl);
2513 
2514 	trace_bcache_btree_set_root(b);
2515 
2516 	BUG_ON(!b->written);
2517 
2518 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2519 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2520 
2521 	mutex_lock(&b->c->bucket_lock);
2522 	list_del_init(&b->list);
2523 	mutex_unlock(&b->c->bucket_lock);
2524 
2525 	b->c->root = b;
2526 
2527 	bch_journal_meta(b->c, &cl);
2528 	closure_sync(&cl);
2529 }
2530 
2531 /* Map across nodes or keys */
2532 
2533 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2534 				       struct bkey *from,
2535 				       btree_map_nodes_fn *fn, int flags)
2536 {
2537 	int ret = MAP_CONTINUE;
2538 
2539 	if (b->level) {
2540 		struct bkey *k;
2541 		struct btree_iter iter;
2542 
2543 		bch_btree_iter_init(&b->keys, &iter, from);
2544 
2545 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2546 						       bch_ptr_bad))) {
2547 			ret = bcache_btree(map_nodes_recurse, k, b,
2548 				    op, from, fn, flags);
2549 			from = NULL;
2550 
2551 			if (ret != MAP_CONTINUE)
2552 				return ret;
2553 		}
2554 	}
2555 
2556 	if (!b->level || flags == MAP_ALL_NODES)
2557 		ret = fn(op, b);
2558 
2559 	return ret;
2560 }
2561 
2562 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2563 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2564 {
2565 	return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2566 }
2567 
2568 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2569 				      struct bkey *from, btree_map_keys_fn *fn,
2570 				      int flags)
2571 {
2572 	int ret = MAP_CONTINUE;
2573 	struct bkey *k;
2574 	struct btree_iter iter;
2575 
2576 	bch_btree_iter_init(&b->keys, &iter, from);
2577 
2578 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2579 		ret = !b->level
2580 			? fn(op, b, k)
2581 			: bcache_btree(map_keys_recurse, k,
2582 				       b, op, from, fn, flags);
2583 		from = NULL;
2584 
2585 		if (ret != MAP_CONTINUE)
2586 			return ret;
2587 	}
2588 
2589 	if (!b->level && (flags & MAP_END_KEY))
2590 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2591 				     KEY_OFFSET(&b->key), 0));
2592 
2593 	return ret;
2594 }
2595 
2596 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2597 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2598 {
2599 	return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2600 }
2601 
2602 /* Keybuf code */
2603 
2604 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2605 {
2606 	/* Overlapping keys compare equal */
2607 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2608 		return -1;
2609 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2610 		return 1;
2611 	return 0;
2612 }
2613 
2614 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2615 					    struct keybuf_key *r)
2616 {
2617 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2618 }
2619 
2620 struct refill {
2621 	struct btree_op	op;
2622 	unsigned int	nr_found;
2623 	struct keybuf	*buf;
2624 	struct bkey	*end;
2625 	keybuf_pred_fn	*pred;
2626 };
2627 
2628 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2629 			    struct bkey *k)
2630 {
2631 	struct refill *refill = container_of(op, struct refill, op);
2632 	struct keybuf *buf = refill->buf;
2633 	int ret = MAP_CONTINUE;
2634 
2635 	if (bkey_cmp(k, refill->end) > 0) {
2636 		ret = MAP_DONE;
2637 		goto out;
2638 	}
2639 
2640 	if (!KEY_SIZE(k)) /* end key */
2641 		goto out;
2642 
2643 	if (refill->pred(buf, k)) {
2644 		struct keybuf_key *w;
2645 
2646 		spin_lock(&buf->lock);
2647 
2648 		w = array_alloc(&buf->freelist);
2649 		if (!w) {
2650 			spin_unlock(&buf->lock);
2651 			return MAP_DONE;
2652 		}
2653 
2654 		w->private = NULL;
2655 		bkey_copy(&w->key, k);
2656 
2657 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2658 			array_free(&buf->freelist, w);
2659 		else
2660 			refill->nr_found++;
2661 
2662 		if (array_freelist_empty(&buf->freelist))
2663 			ret = MAP_DONE;
2664 
2665 		spin_unlock(&buf->lock);
2666 	}
2667 out:
2668 	buf->last_scanned = *k;
2669 	return ret;
2670 }
2671 
2672 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2673 		       struct bkey *end, keybuf_pred_fn *pred)
2674 {
2675 	struct bkey start = buf->last_scanned;
2676 	struct refill refill;
2677 
2678 	cond_resched();
2679 
2680 	bch_btree_op_init(&refill.op, -1);
2681 	refill.nr_found	= 0;
2682 	refill.buf	= buf;
2683 	refill.end	= end;
2684 	refill.pred	= pred;
2685 
2686 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2687 			   refill_keybuf_fn, MAP_END_KEY);
2688 
2689 	trace_bcache_keyscan(refill.nr_found,
2690 			     KEY_INODE(&start), KEY_OFFSET(&start),
2691 			     KEY_INODE(&buf->last_scanned),
2692 			     KEY_OFFSET(&buf->last_scanned));
2693 
2694 	spin_lock(&buf->lock);
2695 
2696 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2697 		struct keybuf_key *w;
2698 
2699 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2700 		buf->start	= START_KEY(&w->key);
2701 
2702 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2703 		buf->end	= w->key;
2704 	} else {
2705 		buf->start	= MAX_KEY;
2706 		buf->end	= MAX_KEY;
2707 	}
2708 
2709 	spin_unlock(&buf->lock);
2710 }
2711 
2712 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2713 {
2714 	rb_erase(&w->node, &buf->keys);
2715 	array_free(&buf->freelist, w);
2716 }
2717 
2718 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2719 {
2720 	spin_lock(&buf->lock);
2721 	__bch_keybuf_del(buf, w);
2722 	spin_unlock(&buf->lock);
2723 }
2724 
2725 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2726 				  struct bkey *end)
2727 {
2728 	bool ret = false;
2729 	struct keybuf_key *p, *w, s;
2730 
2731 	s.key = *start;
2732 
2733 	if (bkey_cmp(end, &buf->start) <= 0 ||
2734 	    bkey_cmp(start, &buf->end) >= 0)
2735 		return false;
2736 
2737 	spin_lock(&buf->lock);
2738 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2739 
2740 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2741 		p = w;
2742 		w = RB_NEXT(w, node);
2743 
2744 		if (p->private)
2745 			ret = true;
2746 		else
2747 			__bch_keybuf_del(buf, p);
2748 	}
2749 
2750 	spin_unlock(&buf->lock);
2751 	return ret;
2752 }
2753 
2754 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2755 {
2756 	struct keybuf_key *w;
2757 
2758 	spin_lock(&buf->lock);
2759 
2760 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2761 
2762 	while (w && w->private)
2763 		w = RB_NEXT(w, node);
2764 
2765 	if (w)
2766 		w->private = ERR_PTR(-EINTR);
2767 
2768 	spin_unlock(&buf->lock);
2769 	return w;
2770 }
2771 
2772 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2773 					  struct keybuf *buf,
2774 					  struct bkey *end,
2775 					  keybuf_pred_fn *pred)
2776 {
2777 	struct keybuf_key *ret;
2778 
2779 	while (1) {
2780 		ret = bch_keybuf_next(buf);
2781 		if (ret)
2782 			break;
2783 
2784 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2785 			pr_debug("scan finished\n");
2786 			break;
2787 		}
2788 
2789 		bch_refill_keybuf(c, buf, end, pred);
2790 	}
2791 
2792 	return ret;
2793 }
2794 
2795 void bch_keybuf_init(struct keybuf *buf)
2796 {
2797 	buf->last_scanned	= MAX_KEY;
2798 	buf->keys		= RB_ROOT;
2799 
2800 	spin_lock_init(&buf->lock);
2801 	array_allocator_init(&buf->freelist);
2802 }
2803 
2804 void bch_btree_exit(void)
2805 {
2806 	if (btree_io_wq)
2807 		destroy_workqueue(btree_io_wq);
2808 }
2809 
2810 int __init bch_btree_init(void)
2811 {
2812 	btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2813 	if (!btree_io_wq)
2814 		return -ENOMEM;
2815 
2816 	return 0;
2817 }
2818