1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <trace/events/bcache.h> 40 41 /* 42 * Todo: 43 * register_bcache: Return errors out to userspace correctly 44 * 45 * Writeback: don't undirty key until after a cache flush 46 * 47 * Create an iterator for key pointers 48 * 49 * On btree write error, mark bucket such that it won't be freed from the cache 50 * 51 * Journalling: 52 * Check for bad keys in replay 53 * Propagate barriers 54 * Refcount journal entries in journal_replay 55 * 56 * Garbage collection: 57 * Finish incremental gc 58 * Gc should free old UUIDs, data for invalid UUIDs 59 * 60 * Provide a way to list backing device UUIDs we have data cached for, and 61 * probably how long it's been since we've seen them, and a way to invalidate 62 * dirty data for devices that will never be attached again 63 * 64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 65 * that based on that and how much dirty data we have we can keep writeback 66 * from being starved 67 * 68 * Add a tracepoint or somesuch to watch for writeback starvation 69 * 70 * When btree depth > 1 and splitting an interior node, we have to make sure 71 * alloc_bucket() cannot fail. This should be true but is not completely 72 * obvious. 73 * 74 * Plugging? 75 * 76 * If data write is less than hard sector size of ssd, round up offset in open 77 * bucket to the next whole sector 78 * 79 * Superblock needs to be fleshed out for multiple cache devices 80 * 81 * Add a sysfs tunable for the number of writeback IOs in flight 82 * 83 * Add a sysfs tunable for the number of open data buckets 84 * 85 * IO tracking: Can we track when one process is doing io on behalf of another? 86 * IO tracking: Don't use just an average, weigh more recent stuff higher 87 * 88 * Test module load/unload 89 */ 90 91 #define MAX_NEED_GC 64 92 #define MAX_SAVE_PRIO 72 93 #define MAX_GC_TIMES 100 94 #define MIN_GC_NODES 100 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 static struct workqueue_struct *btree_io_wq; 103 104 #define insert_lock(s, b) ((b)->level <= (s)->lock) 105 106 107 static inline struct bset *write_block(struct btree *b) 108 { 109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 110 } 111 112 static void bch_btree_init_next(struct btree *b) 113 { 114 /* If not a leaf node, always sort */ 115 if (b->level && b->keys.nsets) 116 bch_btree_sort(&b->keys, &b->c->sort); 117 else 118 bch_btree_sort_lazy(&b->keys, &b->c->sort); 119 120 if (b->written < btree_blocks(b)) 121 bch_bset_init_next(&b->keys, write_block(b), 122 bset_magic(&b->c->cache->sb)); 123 124 } 125 126 /* Btree key manipulation */ 127 128 void bkey_put(struct cache_set *c, struct bkey *k) 129 { 130 unsigned int i; 131 132 for (i = 0; i < KEY_PTRS(k); i++) 133 if (ptr_available(c, k, i)) 134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 135 } 136 137 /* Btree IO */ 138 139 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 140 { 141 uint64_t crc = b->key.ptr[0]; 142 void *data = (void *) i + 8, *end = bset_bkey_last(i); 143 144 crc = crc64_be(crc, data, end - data); 145 return crc ^ 0xffffffffffffffffULL; 146 } 147 148 void bch_btree_node_read_done(struct btree *b) 149 { 150 const char *err = "bad btree header"; 151 struct bset *i = btree_bset_first(b); 152 struct btree_iter *iter; 153 154 /* 155 * c->fill_iter can allocate an iterator with more memory space 156 * than static MAX_BSETS. 157 * See the comment arount cache_set->fill_iter. 158 */ 159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 161 iter->used = 0; 162 163 #ifdef CONFIG_BCACHE_DEBUG 164 iter->b = &b->keys; 165 #endif 166 167 if (!i->seq) 168 goto err; 169 170 for (; 171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 172 i = write_block(b)) { 173 err = "unsupported bset version"; 174 if (i->version > BCACHE_BSET_VERSION) 175 goto err; 176 177 err = "bad btree header"; 178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 179 btree_blocks(b)) 180 goto err; 181 182 err = "bad magic"; 183 if (i->magic != bset_magic(&b->c->cache->sb)) 184 goto err; 185 186 err = "bad checksum"; 187 switch (i->version) { 188 case 0: 189 if (i->csum != csum_set(i)) 190 goto err; 191 break; 192 case BCACHE_BSET_VERSION: 193 if (i->csum != btree_csum_set(b, i)) 194 goto err; 195 break; 196 } 197 198 err = "empty set"; 199 if (i != b->keys.set[0].data && !i->keys) 200 goto err; 201 202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 203 204 b->written += set_blocks(i, block_bytes(b->c->cache)); 205 } 206 207 err = "corrupted btree"; 208 for (i = write_block(b); 209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 210 i = ((void *) i) + block_bytes(b->c->cache)) 211 if (i->seq == b->keys.set[0].data->seq) 212 goto err; 213 214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 215 216 i = b->keys.set[0].data; 217 err = "short btree key"; 218 if (b->keys.set[0].size && 219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 220 goto err; 221 222 if (b->written < btree_blocks(b)) 223 bch_bset_init_next(&b->keys, write_block(b), 224 bset_magic(&b->c->cache->sb)); 225 out: 226 mempool_free(iter, &b->c->fill_iter); 227 return; 228 err: 229 set_btree_node_io_error(b); 230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 231 err, PTR_BUCKET_NR(b->c, &b->key, 0), 232 bset_block_offset(b, i), i->keys); 233 goto out; 234 } 235 236 static void btree_node_read_endio(struct bio *bio) 237 { 238 struct closure *cl = bio->bi_private; 239 240 closure_put(cl); 241 } 242 243 static void bch_btree_node_read(struct btree *b) 244 { 245 uint64_t start_time = local_clock(); 246 struct closure cl; 247 struct bio *bio; 248 249 trace_bcache_btree_read(b); 250 251 closure_init_stack(&cl); 252 253 bio = bch_bbio_alloc(b->c); 254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 255 bio->bi_end_io = btree_node_read_endio; 256 bio->bi_private = &cl; 257 bio->bi_opf = REQ_OP_READ | REQ_META; 258 259 bch_bio_map(bio, b->keys.set[0].data); 260 261 bch_submit_bbio(bio, b->c, &b->key, 0); 262 closure_sync(&cl); 263 264 if (bio->bi_status) 265 set_btree_node_io_error(b); 266 267 bch_bbio_free(bio, b->c); 268 269 if (btree_node_io_error(b)) 270 goto err; 271 272 bch_btree_node_read_done(b); 273 bch_time_stats_update(&b->c->btree_read_time, start_time); 274 275 return; 276 err: 277 bch_cache_set_error(b->c, "io error reading bucket %zu", 278 PTR_BUCKET_NR(b->c, &b->key, 0)); 279 } 280 281 static void btree_complete_write(struct btree *b, struct btree_write *w) 282 { 283 if (w->prio_blocked && 284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 285 wake_up_allocators(b->c); 286 287 if (w->journal) { 288 atomic_dec_bug(w->journal); 289 __closure_wake_up(&b->c->journal.wait); 290 } 291 292 w->prio_blocked = 0; 293 w->journal = NULL; 294 } 295 296 static void btree_node_write_unlock(struct closure *cl) 297 { 298 struct btree *b = container_of(cl, struct btree, io); 299 300 up(&b->io_mutex); 301 } 302 303 static void __btree_node_write_done(struct closure *cl) 304 { 305 struct btree *b = container_of(cl, struct btree, io); 306 struct btree_write *w = btree_prev_write(b); 307 308 bch_bbio_free(b->bio, b->c); 309 b->bio = NULL; 310 btree_complete_write(b, w); 311 312 if (btree_node_dirty(b)) 313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 314 315 closure_return_with_destructor(cl, btree_node_write_unlock); 316 } 317 318 static void btree_node_write_done(struct closure *cl) 319 { 320 struct btree *b = container_of(cl, struct btree, io); 321 322 bio_free_pages(b->bio); 323 __btree_node_write_done(cl); 324 } 325 326 static void btree_node_write_endio(struct bio *bio) 327 { 328 struct closure *cl = bio->bi_private; 329 struct btree *b = container_of(cl, struct btree, io); 330 331 if (bio->bi_status) 332 set_btree_node_io_error(b); 333 334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 335 closure_put(cl); 336 } 337 338 static void do_btree_node_write(struct btree *b) 339 { 340 struct closure *cl = &b->io; 341 struct bset *i = btree_bset_last(b); 342 BKEY_PADDED(key) k; 343 344 i->version = BCACHE_BSET_VERSION; 345 i->csum = btree_csum_set(b, i); 346 347 BUG_ON(b->bio); 348 b->bio = bch_bbio_alloc(b->c); 349 350 b->bio->bi_end_io = btree_node_write_endio; 351 b->bio->bi_private = cl; 352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 354 bch_bio_map(b->bio, i); 355 356 /* 357 * If we're appending to a leaf node, we don't technically need FUA - 358 * this write just needs to be persisted before the next journal write, 359 * which will be marked FLUSH|FUA. 360 * 361 * Similarly if we're writing a new btree root - the pointer is going to 362 * be in the next journal entry. 363 * 364 * But if we're writing a new btree node (that isn't a root) or 365 * appending to a non leaf btree node, we need either FUA or a flush 366 * when we write the parent with the new pointer. FUA is cheaper than a 367 * flush, and writes appending to leaf nodes aren't blocking anything so 368 * just make all btree node writes FUA to keep things sane. 369 */ 370 371 bkey_copy(&k.key, &b->key); 372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 373 bset_sector_offset(&b->keys, i)); 374 375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) { 376 struct bio_vec *bv; 377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 378 struct bvec_iter_all iter_all; 379 380 bio_for_each_segment_all(bv, b->bio, iter_all) { 381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 382 addr += PAGE_SIZE; 383 } 384 385 bch_submit_bbio(b->bio, b->c, &k.key, 0); 386 387 continue_at(cl, btree_node_write_done, NULL); 388 } else { 389 /* 390 * No problem for multipage bvec since the bio is 391 * just allocated 392 */ 393 b->bio->bi_vcnt = 0; 394 bch_bio_map(b->bio, i); 395 396 bch_submit_bbio(b->bio, b->c, &k.key, 0); 397 398 closure_sync(cl); 399 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 400 } 401 } 402 403 void __bch_btree_node_write(struct btree *b, struct closure *parent) 404 { 405 struct bset *i = btree_bset_last(b); 406 407 lockdep_assert_held(&b->write_lock); 408 409 trace_bcache_btree_write(b); 410 411 BUG_ON(current->bio_list); 412 BUG_ON(b->written >= btree_blocks(b)); 413 BUG_ON(b->written && !i->keys); 414 BUG_ON(btree_bset_first(b)->seq != i->seq); 415 bch_check_keys(&b->keys, "writing"); 416 417 cancel_delayed_work(&b->work); 418 419 /* If caller isn't waiting for write, parent refcount is cache set */ 420 down(&b->io_mutex); 421 closure_init(&b->io, parent ?: &b->c->cl); 422 423 clear_bit(BTREE_NODE_dirty, &b->flags); 424 change_bit(BTREE_NODE_write_idx, &b->flags); 425 426 do_btree_node_write(b); 427 428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 429 &b->c->cache->btree_sectors_written); 430 431 b->written += set_blocks(i, block_bytes(b->c->cache)); 432 } 433 434 void bch_btree_node_write(struct btree *b, struct closure *parent) 435 { 436 unsigned int nsets = b->keys.nsets; 437 438 lockdep_assert_held(&b->lock); 439 440 __bch_btree_node_write(b, parent); 441 442 /* 443 * do verify if there was more than one set initially (i.e. we did a 444 * sort) and we sorted down to a single set: 445 */ 446 if (nsets && !b->keys.nsets) 447 bch_btree_verify(b); 448 449 bch_btree_init_next(b); 450 } 451 452 static void bch_btree_node_write_sync(struct btree *b) 453 { 454 struct closure cl; 455 456 closure_init_stack(&cl); 457 458 mutex_lock(&b->write_lock); 459 bch_btree_node_write(b, &cl); 460 mutex_unlock(&b->write_lock); 461 462 closure_sync(&cl); 463 } 464 465 static void btree_node_write_work(struct work_struct *w) 466 { 467 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 468 469 mutex_lock(&b->write_lock); 470 if (btree_node_dirty(b)) 471 __bch_btree_node_write(b, NULL); 472 mutex_unlock(&b->write_lock); 473 } 474 475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 476 { 477 struct bset *i = btree_bset_last(b); 478 struct btree_write *w = btree_current_write(b); 479 480 lockdep_assert_held(&b->write_lock); 481 482 BUG_ON(!b->written); 483 BUG_ON(!i->keys); 484 485 if (!btree_node_dirty(b)) 486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 487 488 set_btree_node_dirty(b); 489 490 /* 491 * w->journal is always the oldest journal pin of all bkeys 492 * in the leaf node, to make sure the oldest jset seq won't 493 * be increased before this btree node is flushed. 494 */ 495 if (journal_ref) { 496 if (w->journal && 497 journal_pin_cmp(b->c, w->journal, journal_ref)) { 498 atomic_dec_bug(w->journal); 499 w->journal = NULL; 500 } 501 502 if (!w->journal) { 503 w->journal = journal_ref; 504 atomic_inc(w->journal); 505 } 506 } 507 508 /* Force write if set is too big */ 509 if (set_bytes(i) > PAGE_SIZE - 48 && 510 !current->bio_list) 511 bch_btree_node_write(b, NULL); 512 } 513 514 /* 515 * Btree in memory cache - allocation/freeing 516 * mca -> memory cache 517 */ 518 519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 520 ? c->root->level : 1) * 8 + 16) 521 #define mca_can_free(c) \ 522 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 523 524 static void mca_data_free(struct btree *b) 525 { 526 BUG_ON(b->io_mutex.count != 1); 527 528 bch_btree_keys_free(&b->keys); 529 530 b->c->btree_cache_used--; 531 list_move(&b->list, &b->c->btree_cache_freed); 532 } 533 534 static void mca_bucket_free(struct btree *b) 535 { 536 BUG_ON(btree_node_dirty(b)); 537 538 b->key.ptr[0] = 0; 539 hlist_del_init_rcu(&b->hash); 540 list_move(&b->list, &b->c->btree_cache_freeable); 541 } 542 543 static unsigned int btree_order(struct bkey *k) 544 { 545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 546 } 547 548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 549 { 550 if (!bch_btree_keys_alloc(&b->keys, 551 max_t(unsigned int, 552 ilog2(b->c->btree_pages), 553 btree_order(k)), 554 gfp)) { 555 b->c->btree_cache_used++; 556 list_move(&b->list, &b->c->btree_cache); 557 } else { 558 list_move(&b->list, &b->c->btree_cache_freed); 559 } 560 } 561 562 #define cmp_int(l, r) ((l > r) - (l < r)) 563 564 #ifdef CONFIG_PROVE_LOCKING 565 static int btree_lock_cmp_fn(const struct lockdep_map *_a, 566 const struct lockdep_map *_b) 567 { 568 const struct btree *a = container_of(_a, struct btree, lock.dep_map); 569 const struct btree *b = container_of(_b, struct btree, lock.dep_map); 570 571 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key); 572 } 573 574 static void btree_lock_print_fn(const struct lockdep_map *map) 575 { 576 const struct btree *b = container_of(map, struct btree, lock.dep_map); 577 578 printk(KERN_CONT " l=%u %llu:%llu", b->level, 579 KEY_INODE(&b->key), KEY_OFFSET(&b->key)); 580 } 581 #endif 582 583 static struct btree *mca_bucket_alloc(struct cache_set *c, 584 struct bkey *k, gfp_t gfp) 585 { 586 /* 587 * kzalloc() is necessary here for initialization, 588 * see code comments in bch_btree_keys_init(). 589 */ 590 struct btree *b = kzalloc(sizeof(struct btree), gfp); 591 592 if (!b) 593 return NULL; 594 595 init_rwsem(&b->lock); 596 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn); 597 mutex_init(&b->write_lock); 598 lockdep_set_novalidate_class(&b->write_lock); 599 INIT_LIST_HEAD(&b->list); 600 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 601 b->c = c; 602 sema_init(&b->io_mutex, 1); 603 604 mca_data_alloc(b, k, gfp); 605 return b; 606 } 607 608 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 609 { 610 struct closure cl; 611 612 closure_init_stack(&cl); 613 lockdep_assert_held(&b->c->bucket_lock); 614 615 if (!down_write_trylock(&b->lock)) 616 return -ENOMEM; 617 618 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 619 620 if (b->keys.page_order < min_order) 621 goto out_unlock; 622 623 if (!flush) { 624 if (btree_node_dirty(b)) 625 goto out_unlock; 626 627 if (down_trylock(&b->io_mutex)) 628 goto out_unlock; 629 up(&b->io_mutex); 630 } 631 632 retry: 633 /* 634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 635 * __bch_btree_node_write(). To avoid an extra flush, acquire 636 * b->write_lock before checking BTREE_NODE_dirty bit. 637 */ 638 mutex_lock(&b->write_lock); 639 /* 640 * If this btree node is selected in btree_flush_write() by journal 641 * code, delay and retry until the node is flushed by journal code 642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 643 */ 644 if (btree_node_journal_flush(b)) { 645 pr_debug("bnode %p is flushing by journal, retry\n", b); 646 mutex_unlock(&b->write_lock); 647 udelay(1); 648 goto retry; 649 } 650 651 if (btree_node_dirty(b)) 652 __bch_btree_node_write(b, &cl); 653 mutex_unlock(&b->write_lock); 654 655 closure_sync(&cl); 656 657 /* wait for any in flight btree write */ 658 down(&b->io_mutex); 659 up(&b->io_mutex); 660 661 return 0; 662 out_unlock: 663 rw_unlock(true, b); 664 return -ENOMEM; 665 } 666 667 static unsigned long bch_mca_scan(struct shrinker *shrink, 668 struct shrink_control *sc) 669 { 670 struct cache_set *c = shrink->private_data; 671 struct btree *b, *t; 672 unsigned long i, nr = sc->nr_to_scan; 673 unsigned long freed = 0; 674 unsigned int btree_cache_used; 675 676 if (c->shrinker_disabled) 677 return SHRINK_STOP; 678 679 if (c->btree_cache_alloc_lock) 680 return SHRINK_STOP; 681 682 /* Return -1 if we can't do anything right now */ 683 if (sc->gfp_mask & __GFP_IO) 684 mutex_lock(&c->bucket_lock); 685 else if (!mutex_trylock(&c->bucket_lock)) 686 return -1; 687 688 /* 689 * It's _really_ critical that we don't free too many btree nodes - we 690 * have to always leave ourselves a reserve. The reserve is how we 691 * guarantee that allocating memory for a new btree node can always 692 * succeed, so that inserting keys into the btree can always succeed and 693 * IO can always make forward progress: 694 */ 695 nr /= c->btree_pages; 696 if (nr == 0) 697 nr = 1; 698 nr = min_t(unsigned long, nr, mca_can_free(c)); 699 700 i = 0; 701 btree_cache_used = c->btree_cache_used; 702 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 703 if (nr <= 0) 704 goto out; 705 706 if (!mca_reap(b, 0, false)) { 707 mca_data_free(b); 708 rw_unlock(true, b); 709 freed++; 710 } 711 nr--; 712 i++; 713 } 714 715 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 716 if (nr <= 0 || i >= btree_cache_used) 717 goto out; 718 719 if (!mca_reap(b, 0, false)) { 720 mca_bucket_free(b); 721 mca_data_free(b); 722 rw_unlock(true, b); 723 freed++; 724 } 725 726 nr--; 727 i++; 728 } 729 out: 730 mutex_unlock(&c->bucket_lock); 731 return freed * c->btree_pages; 732 } 733 734 static unsigned long bch_mca_count(struct shrinker *shrink, 735 struct shrink_control *sc) 736 { 737 struct cache_set *c = shrink->private_data; 738 739 if (c->shrinker_disabled) 740 return 0; 741 742 if (c->btree_cache_alloc_lock) 743 return 0; 744 745 return mca_can_free(c) * c->btree_pages; 746 } 747 748 void bch_btree_cache_free(struct cache_set *c) 749 { 750 struct btree *b; 751 struct closure cl; 752 753 closure_init_stack(&cl); 754 755 if (c->shrink) 756 shrinker_free(c->shrink); 757 758 mutex_lock(&c->bucket_lock); 759 760 #ifdef CONFIG_BCACHE_DEBUG 761 if (c->verify_data) 762 list_move(&c->verify_data->list, &c->btree_cache); 763 764 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 765 #endif 766 767 list_splice(&c->btree_cache_freeable, 768 &c->btree_cache); 769 770 while (!list_empty(&c->btree_cache)) { 771 b = list_first_entry(&c->btree_cache, struct btree, list); 772 773 /* 774 * This function is called by cache_set_free(), no I/O 775 * request on cache now, it is unnecessary to acquire 776 * b->write_lock before clearing BTREE_NODE_dirty anymore. 777 */ 778 if (btree_node_dirty(b)) { 779 btree_complete_write(b, btree_current_write(b)); 780 clear_bit(BTREE_NODE_dirty, &b->flags); 781 } 782 mca_data_free(b); 783 } 784 785 while (!list_empty(&c->btree_cache_freed)) { 786 b = list_first_entry(&c->btree_cache_freed, 787 struct btree, list); 788 list_del(&b->list); 789 cancel_delayed_work_sync(&b->work); 790 kfree(b); 791 } 792 793 mutex_unlock(&c->bucket_lock); 794 } 795 796 int bch_btree_cache_alloc(struct cache_set *c) 797 { 798 unsigned int i; 799 800 for (i = 0; i < mca_reserve(c); i++) 801 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 802 return -ENOMEM; 803 804 list_splice_init(&c->btree_cache, 805 &c->btree_cache_freeable); 806 807 #ifdef CONFIG_BCACHE_DEBUG 808 mutex_init(&c->verify_lock); 809 810 c->verify_ondisk = (void *) 811 __get_free_pages(GFP_KERNEL|__GFP_COMP, 812 ilog2(meta_bucket_pages(&c->cache->sb))); 813 if (!c->verify_ondisk) { 814 /* 815 * Don't worry about the mca_rereserve buckets 816 * allocated in previous for-loop, they will be 817 * handled properly in bch_cache_set_unregister(). 818 */ 819 return -ENOMEM; 820 } 821 822 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 823 824 if (c->verify_data && 825 c->verify_data->keys.set->data) 826 list_del_init(&c->verify_data->list); 827 else 828 c->verify_data = NULL; 829 #endif 830 831 c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid); 832 if (!c->shrink) { 833 pr_warn("bcache: %s: could not allocate shrinker\n", __func__); 834 return 0; 835 } 836 837 c->shrink->count_objects = bch_mca_count; 838 c->shrink->scan_objects = bch_mca_scan; 839 c->shrink->seeks = 4; 840 c->shrink->batch = c->btree_pages * 2; 841 c->shrink->private_data = c; 842 843 shrinker_register(c->shrink); 844 845 return 0; 846 } 847 848 /* Btree in memory cache - hash table */ 849 850 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 851 { 852 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 853 } 854 855 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 856 { 857 struct btree *b; 858 859 rcu_read_lock(); 860 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 861 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 862 goto out; 863 b = NULL; 864 out: 865 rcu_read_unlock(); 866 return b; 867 } 868 869 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 870 { 871 spin_lock(&c->btree_cannibalize_lock); 872 if (likely(c->btree_cache_alloc_lock == NULL)) { 873 c->btree_cache_alloc_lock = current; 874 } else if (c->btree_cache_alloc_lock != current) { 875 if (op) 876 prepare_to_wait(&c->btree_cache_wait, &op->wait, 877 TASK_UNINTERRUPTIBLE); 878 spin_unlock(&c->btree_cannibalize_lock); 879 return -EINTR; 880 } 881 spin_unlock(&c->btree_cannibalize_lock); 882 883 return 0; 884 } 885 886 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 887 struct bkey *k) 888 { 889 struct btree *b; 890 891 trace_bcache_btree_cache_cannibalize(c); 892 893 if (mca_cannibalize_lock(c, op)) 894 return ERR_PTR(-EINTR); 895 896 list_for_each_entry_reverse(b, &c->btree_cache, list) 897 if (!mca_reap(b, btree_order(k), false)) 898 return b; 899 900 list_for_each_entry_reverse(b, &c->btree_cache, list) 901 if (!mca_reap(b, btree_order(k), true)) 902 return b; 903 904 WARN(1, "btree cache cannibalize failed\n"); 905 return ERR_PTR(-ENOMEM); 906 } 907 908 /* 909 * We can only have one thread cannibalizing other cached btree nodes at a time, 910 * or we'll deadlock. We use an open coded mutex to ensure that, which a 911 * cannibalize_bucket() will take. This means every time we unlock the root of 912 * the btree, we need to release this lock if we have it held. 913 */ 914 void bch_cannibalize_unlock(struct cache_set *c) 915 { 916 spin_lock(&c->btree_cannibalize_lock); 917 if (c->btree_cache_alloc_lock == current) { 918 c->btree_cache_alloc_lock = NULL; 919 wake_up(&c->btree_cache_wait); 920 } 921 spin_unlock(&c->btree_cannibalize_lock); 922 } 923 924 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 925 struct bkey *k, int level) 926 { 927 struct btree *b; 928 929 BUG_ON(current->bio_list); 930 931 lockdep_assert_held(&c->bucket_lock); 932 933 if (mca_find(c, k)) 934 return NULL; 935 936 /* btree_free() doesn't free memory; it sticks the node on the end of 937 * the list. Check if there's any freed nodes there: 938 */ 939 list_for_each_entry(b, &c->btree_cache_freeable, list) 940 if (!mca_reap(b, btree_order(k), false)) 941 goto out; 942 943 /* We never free struct btree itself, just the memory that holds the on 944 * disk node. Check the freed list before allocating a new one: 945 */ 946 list_for_each_entry(b, &c->btree_cache_freed, list) 947 if (!mca_reap(b, 0, false)) { 948 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 949 if (!b->keys.set[0].data) 950 goto err; 951 else 952 goto out; 953 } 954 955 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 956 if (!b) 957 goto err; 958 959 BUG_ON(!down_write_trylock(&b->lock)); 960 if (!b->keys.set->data) 961 goto err; 962 out: 963 BUG_ON(b->io_mutex.count != 1); 964 965 bkey_copy(&b->key, k); 966 list_move(&b->list, &c->btree_cache); 967 hlist_del_init_rcu(&b->hash); 968 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 969 970 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 971 b->parent = (void *) ~0UL; 972 b->flags = 0; 973 b->written = 0; 974 b->level = level; 975 976 if (!b->level) 977 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 978 &b->c->expensive_debug_checks); 979 else 980 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 981 &b->c->expensive_debug_checks); 982 983 return b; 984 err: 985 if (b) 986 rw_unlock(true, b); 987 988 b = mca_cannibalize(c, op, k); 989 if (!IS_ERR(b)) 990 goto out; 991 992 return b; 993 } 994 995 /* 996 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 997 * in from disk if necessary. 998 * 999 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 1000 * 1001 * The btree node will have either a read or a write lock held, depending on 1002 * level and op->lock. 1003 */ 1004 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1005 struct bkey *k, int level, bool write, 1006 struct btree *parent) 1007 { 1008 int i = 0; 1009 struct btree *b; 1010 1011 BUG_ON(level < 0); 1012 retry: 1013 b = mca_find(c, k); 1014 1015 if (!b) { 1016 if (current->bio_list) 1017 return ERR_PTR(-EAGAIN); 1018 1019 mutex_lock(&c->bucket_lock); 1020 b = mca_alloc(c, op, k, level); 1021 mutex_unlock(&c->bucket_lock); 1022 1023 if (!b) 1024 goto retry; 1025 if (IS_ERR(b)) 1026 return b; 1027 1028 bch_btree_node_read(b); 1029 1030 if (!write) 1031 downgrade_write(&b->lock); 1032 } else { 1033 rw_lock(write, b, level); 1034 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1035 rw_unlock(write, b); 1036 goto retry; 1037 } 1038 BUG_ON(b->level != level); 1039 } 1040 1041 if (btree_node_io_error(b)) { 1042 rw_unlock(write, b); 1043 return ERR_PTR(-EIO); 1044 } 1045 1046 BUG_ON(!b->written); 1047 1048 b->parent = parent; 1049 1050 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1051 prefetch(b->keys.set[i].tree); 1052 prefetch(b->keys.set[i].data); 1053 } 1054 1055 for (; i <= b->keys.nsets; i++) 1056 prefetch(b->keys.set[i].data); 1057 1058 return b; 1059 } 1060 1061 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1062 { 1063 struct btree *b; 1064 1065 mutex_lock(&parent->c->bucket_lock); 1066 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1067 mutex_unlock(&parent->c->bucket_lock); 1068 1069 if (!IS_ERR_OR_NULL(b)) { 1070 b->parent = parent; 1071 bch_btree_node_read(b); 1072 rw_unlock(true, b); 1073 } 1074 } 1075 1076 /* Btree alloc */ 1077 1078 static void btree_node_free(struct btree *b) 1079 { 1080 trace_bcache_btree_node_free(b); 1081 1082 BUG_ON(b == b->c->root); 1083 1084 retry: 1085 mutex_lock(&b->write_lock); 1086 /* 1087 * If the btree node is selected and flushing in btree_flush_write(), 1088 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1089 * then it is safe to free the btree node here. Otherwise this btree 1090 * node will be in race condition. 1091 */ 1092 if (btree_node_journal_flush(b)) { 1093 mutex_unlock(&b->write_lock); 1094 pr_debug("bnode %p journal_flush set, retry\n", b); 1095 udelay(1); 1096 goto retry; 1097 } 1098 1099 if (btree_node_dirty(b)) { 1100 btree_complete_write(b, btree_current_write(b)); 1101 clear_bit(BTREE_NODE_dirty, &b->flags); 1102 } 1103 1104 mutex_unlock(&b->write_lock); 1105 1106 cancel_delayed_work(&b->work); 1107 1108 mutex_lock(&b->c->bucket_lock); 1109 bch_bucket_free(b->c, &b->key); 1110 mca_bucket_free(b); 1111 mutex_unlock(&b->c->bucket_lock); 1112 } 1113 1114 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1115 int level, bool wait, 1116 struct btree *parent) 1117 { 1118 BKEY_PADDED(key) k; 1119 struct btree *b; 1120 1121 mutex_lock(&c->bucket_lock); 1122 retry: 1123 /* return ERR_PTR(-EAGAIN) when it fails */ 1124 b = ERR_PTR(-EAGAIN); 1125 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1126 goto err; 1127 1128 bkey_put(c, &k.key); 1129 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1130 1131 b = mca_alloc(c, op, &k.key, level); 1132 if (IS_ERR(b)) 1133 goto err_free; 1134 1135 if (!b) { 1136 cache_bug(c, 1137 "Tried to allocate bucket that was in btree cache"); 1138 goto retry; 1139 } 1140 1141 b->parent = parent; 1142 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1143 1144 mutex_unlock(&c->bucket_lock); 1145 1146 trace_bcache_btree_node_alloc(b); 1147 return b; 1148 err_free: 1149 bch_bucket_free(c, &k.key); 1150 err: 1151 mutex_unlock(&c->bucket_lock); 1152 1153 trace_bcache_btree_node_alloc_fail(c); 1154 return b; 1155 } 1156 1157 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1158 struct btree_op *op, int level, 1159 struct btree *parent) 1160 { 1161 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1162 } 1163 1164 static struct btree *btree_node_alloc_replacement(struct btree *b, 1165 struct btree_op *op) 1166 { 1167 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1168 1169 if (!IS_ERR(n)) { 1170 mutex_lock(&n->write_lock); 1171 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1172 bkey_copy_key(&n->key, &b->key); 1173 mutex_unlock(&n->write_lock); 1174 } 1175 1176 return n; 1177 } 1178 1179 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1180 { 1181 unsigned int i; 1182 1183 mutex_lock(&b->c->bucket_lock); 1184 1185 atomic_inc(&b->c->prio_blocked); 1186 1187 bkey_copy(k, &b->key); 1188 bkey_copy_key(k, &ZERO_KEY); 1189 1190 for (i = 0; i < KEY_PTRS(k); i++) 1191 SET_PTR_GEN(k, i, 1192 bch_inc_gen(b->c->cache, 1193 PTR_BUCKET(b->c, &b->key, i))); 1194 1195 mutex_unlock(&b->c->bucket_lock); 1196 } 1197 1198 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1199 { 1200 struct cache_set *c = b->c; 1201 struct cache *ca = c->cache; 1202 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1203 1204 mutex_lock(&c->bucket_lock); 1205 1206 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1207 if (op) 1208 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1209 TASK_UNINTERRUPTIBLE); 1210 mutex_unlock(&c->bucket_lock); 1211 return -EINTR; 1212 } 1213 1214 mutex_unlock(&c->bucket_lock); 1215 1216 return mca_cannibalize_lock(b->c, op); 1217 } 1218 1219 /* Garbage collection */ 1220 1221 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1222 struct bkey *k) 1223 { 1224 uint8_t stale = 0; 1225 unsigned int i; 1226 struct bucket *g; 1227 1228 /* 1229 * ptr_invalid() can't return true for the keys that mark btree nodes as 1230 * freed, but since ptr_bad() returns true we'll never actually use them 1231 * for anything and thus we don't want mark their pointers here 1232 */ 1233 if (!bkey_cmp(k, &ZERO_KEY)) 1234 return stale; 1235 1236 for (i = 0; i < KEY_PTRS(k); i++) { 1237 if (!ptr_available(c, k, i)) 1238 continue; 1239 1240 g = PTR_BUCKET(c, k, i); 1241 1242 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1243 g->last_gc = PTR_GEN(k, i); 1244 1245 if (ptr_stale(c, k, i)) { 1246 stale = max(stale, ptr_stale(c, k, i)); 1247 continue; 1248 } 1249 1250 cache_bug_on(GC_MARK(g) && 1251 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1252 c, "inconsistent ptrs: mark = %llu, level = %i", 1253 GC_MARK(g), level); 1254 1255 if (level) 1256 SET_GC_MARK(g, GC_MARK_METADATA); 1257 else if (KEY_DIRTY(k)) 1258 SET_GC_MARK(g, GC_MARK_DIRTY); 1259 else if (!GC_MARK(g)) 1260 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1261 1262 /* guard against overflow */ 1263 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1264 GC_SECTORS_USED(g) + KEY_SIZE(k), 1265 MAX_GC_SECTORS_USED)); 1266 1267 BUG_ON(!GC_SECTORS_USED(g)); 1268 } 1269 1270 return stale; 1271 } 1272 1273 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1274 1275 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1276 { 1277 unsigned int i; 1278 1279 for (i = 0; i < KEY_PTRS(k); i++) 1280 if (ptr_available(c, k, i) && 1281 !ptr_stale(c, k, i)) { 1282 struct bucket *b = PTR_BUCKET(c, k, i); 1283 1284 b->gen = PTR_GEN(k, i); 1285 1286 if (level && bkey_cmp(k, &ZERO_KEY)) 1287 b->prio = BTREE_PRIO; 1288 else if (!level && b->prio == BTREE_PRIO) 1289 b->prio = INITIAL_PRIO; 1290 } 1291 1292 __bch_btree_mark_key(c, level, k); 1293 } 1294 1295 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1296 { 1297 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1298 } 1299 1300 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1301 { 1302 uint8_t stale = 0; 1303 unsigned int keys = 0, good_keys = 0; 1304 struct bkey *k; 1305 struct btree_iter iter; 1306 struct bset_tree *t; 1307 1308 gc->nodes++; 1309 1310 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1311 stale = max(stale, btree_mark_key(b, k)); 1312 keys++; 1313 1314 if (bch_ptr_bad(&b->keys, k)) 1315 continue; 1316 1317 gc->key_bytes += bkey_u64s(k); 1318 gc->nkeys++; 1319 good_keys++; 1320 1321 gc->data += KEY_SIZE(k); 1322 } 1323 1324 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1325 btree_bug_on(t->size && 1326 bset_written(&b->keys, t) && 1327 bkey_cmp(&b->key, &t->end) < 0, 1328 b, "found short btree key in gc"); 1329 1330 if (b->c->gc_always_rewrite) 1331 return true; 1332 1333 if (stale > 10) 1334 return true; 1335 1336 if ((keys - good_keys) * 2 > keys) 1337 return true; 1338 1339 return false; 1340 } 1341 1342 #define GC_MERGE_NODES 4U 1343 1344 struct gc_merge_info { 1345 struct btree *b; 1346 unsigned int keys; 1347 }; 1348 1349 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1350 struct keylist *insert_keys, 1351 atomic_t *journal_ref, 1352 struct bkey *replace_key); 1353 1354 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1355 struct gc_stat *gc, struct gc_merge_info *r) 1356 { 1357 unsigned int i, nodes = 0, keys = 0, blocks; 1358 struct btree *new_nodes[GC_MERGE_NODES]; 1359 struct keylist keylist; 1360 struct closure cl; 1361 struct bkey *k; 1362 1363 bch_keylist_init(&keylist); 1364 1365 if (btree_check_reserve(b, NULL)) 1366 return 0; 1367 1368 memset(new_nodes, 0, sizeof(new_nodes)); 1369 closure_init_stack(&cl); 1370 1371 while (nodes < GC_MERGE_NODES && !IS_ERR(r[nodes].b)) 1372 keys += r[nodes++].keys; 1373 1374 blocks = btree_default_blocks(b->c) * 2 / 3; 1375 1376 if (nodes < 2 || 1377 __set_blocks(b->keys.set[0].data, keys, 1378 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1379 return 0; 1380 1381 for (i = 0; i < nodes; i++) { 1382 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1383 if (IS_ERR(new_nodes[i])) 1384 goto out_nocoalesce; 1385 } 1386 1387 /* 1388 * We have to check the reserve here, after we've allocated our new 1389 * nodes, to make sure the insert below will succeed - we also check 1390 * before as an optimization to potentially avoid a bunch of expensive 1391 * allocs/sorts 1392 */ 1393 if (btree_check_reserve(b, NULL)) 1394 goto out_nocoalesce; 1395 1396 for (i = 0; i < nodes; i++) 1397 mutex_lock(&new_nodes[i]->write_lock); 1398 1399 for (i = nodes - 1; i > 0; --i) { 1400 struct bset *n1 = btree_bset_first(new_nodes[i]); 1401 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1402 struct bkey *k, *last = NULL; 1403 1404 keys = 0; 1405 1406 if (i > 1) { 1407 for (k = n2->start; 1408 k < bset_bkey_last(n2); 1409 k = bkey_next(k)) { 1410 if (__set_blocks(n1, n1->keys + keys + 1411 bkey_u64s(k), 1412 block_bytes(b->c->cache)) > blocks) 1413 break; 1414 1415 last = k; 1416 keys += bkey_u64s(k); 1417 } 1418 } else { 1419 /* 1420 * Last node we're not getting rid of - we're getting 1421 * rid of the node at r[0]. Have to try and fit all of 1422 * the remaining keys into this node; we can't ensure 1423 * they will always fit due to rounding and variable 1424 * length keys (shouldn't be possible in practice, 1425 * though) 1426 */ 1427 if (__set_blocks(n1, n1->keys + n2->keys, 1428 block_bytes(b->c->cache)) > 1429 btree_blocks(new_nodes[i])) 1430 goto out_unlock_nocoalesce; 1431 1432 keys = n2->keys; 1433 /* Take the key of the node we're getting rid of */ 1434 last = &r->b->key; 1435 } 1436 1437 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1438 btree_blocks(new_nodes[i])); 1439 1440 if (last) 1441 bkey_copy_key(&new_nodes[i]->key, last); 1442 1443 memcpy(bset_bkey_last(n1), 1444 n2->start, 1445 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1446 1447 n1->keys += keys; 1448 r[i].keys = n1->keys; 1449 1450 memmove(n2->start, 1451 bset_bkey_idx(n2, keys), 1452 (void *) bset_bkey_last(n2) - 1453 (void *) bset_bkey_idx(n2, keys)); 1454 1455 n2->keys -= keys; 1456 1457 if (__bch_keylist_realloc(&keylist, 1458 bkey_u64s(&new_nodes[i]->key))) 1459 goto out_unlock_nocoalesce; 1460 1461 bch_btree_node_write(new_nodes[i], &cl); 1462 bch_keylist_add(&keylist, &new_nodes[i]->key); 1463 } 1464 1465 for (i = 0; i < nodes; i++) 1466 mutex_unlock(&new_nodes[i]->write_lock); 1467 1468 closure_sync(&cl); 1469 1470 /* We emptied out this node */ 1471 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1472 btree_node_free(new_nodes[0]); 1473 rw_unlock(true, new_nodes[0]); 1474 new_nodes[0] = NULL; 1475 1476 for (i = 0; i < nodes; i++) { 1477 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1478 goto out_nocoalesce; 1479 1480 make_btree_freeing_key(r[i].b, keylist.top); 1481 bch_keylist_push(&keylist); 1482 } 1483 1484 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1485 BUG_ON(!bch_keylist_empty(&keylist)); 1486 1487 for (i = 0; i < nodes; i++) { 1488 btree_node_free(r[i].b); 1489 rw_unlock(true, r[i].b); 1490 1491 r[i].b = new_nodes[i]; 1492 } 1493 1494 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1495 r[nodes - 1].b = ERR_PTR(-EINTR); 1496 1497 trace_bcache_btree_gc_coalesce(nodes); 1498 gc->nodes--; 1499 1500 bch_keylist_free(&keylist); 1501 1502 /* Invalidated our iterator */ 1503 return -EINTR; 1504 1505 out_unlock_nocoalesce: 1506 for (i = 0; i < nodes; i++) 1507 mutex_unlock(&new_nodes[i]->write_lock); 1508 1509 out_nocoalesce: 1510 closure_sync(&cl); 1511 1512 while ((k = bch_keylist_pop(&keylist))) 1513 if (!bkey_cmp(k, &ZERO_KEY)) 1514 atomic_dec(&b->c->prio_blocked); 1515 bch_keylist_free(&keylist); 1516 1517 for (i = 0; i < nodes; i++) 1518 if (!IS_ERR(new_nodes[i])) { 1519 btree_node_free(new_nodes[i]); 1520 rw_unlock(true, new_nodes[i]); 1521 } 1522 return 0; 1523 } 1524 1525 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1526 struct btree *replace) 1527 { 1528 struct keylist keys; 1529 struct btree *n; 1530 1531 if (btree_check_reserve(b, NULL)) 1532 return 0; 1533 1534 n = btree_node_alloc_replacement(replace, NULL); 1535 1536 /* recheck reserve after allocating replacement node */ 1537 if (btree_check_reserve(b, NULL)) { 1538 btree_node_free(n); 1539 rw_unlock(true, n); 1540 return 0; 1541 } 1542 1543 bch_btree_node_write_sync(n); 1544 1545 bch_keylist_init(&keys); 1546 bch_keylist_add(&keys, &n->key); 1547 1548 make_btree_freeing_key(replace, keys.top); 1549 bch_keylist_push(&keys); 1550 1551 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1552 BUG_ON(!bch_keylist_empty(&keys)); 1553 1554 btree_node_free(replace); 1555 rw_unlock(true, n); 1556 1557 /* Invalidated our iterator */ 1558 return -EINTR; 1559 } 1560 1561 static unsigned int btree_gc_count_keys(struct btree *b) 1562 { 1563 struct bkey *k; 1564 struct btree_iter iter; 1565 unsigned int ret = 0; 1566 1567 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1568 ret += bkey_u64s(k); 1569 1570 return ret; 1571 } 1572 1573 static size_t btree_gc_min_nodes(struct cache_set *c) 1574 { 1575 size_t min_nodes; 1576 1577 /* 1578 * Since incremental GC would stop 100ms when front 1579 * side I/O comes, so when there are many btree nodes, 1580 * if GC only processes constant (100) nodes each time, 1581 * GC would last a long time, and the front side I/Os 1582 * would run out of the buckets (since no new bucket 1583 * can be allocated during GC), and be blocked again. 1584 * So GC should not process constant nodes, but varied 1585 * nodes according to the number of btree nodes, which 1586 * realized by dividing GC into constant(100) times, 1587 * so when there are many btree nodes, GC can process 1588 * more nodes each time, otherwise, GC will process less 1589 * nodes each time (but no less than MIN_GC_NODES) 1590 */ 1591 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES; 1592 if (min_nodes < MIN_GC_NODES) 1593 min_nodes = MIN_GC_NODES; 1594 1595 return min_nodes; 1596 } 1597 1598 1599 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1600 struct closure *writes, struct gc_stat *gc) 1601 { 1602 int ret = 0; 1603 bool should_rewrite; 1604 struct bkey *k; 1605 struct btree_iter iter; 1606 struct gc_merge_info r[GC_MERGE_NODES]; 1607 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1608 1609 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done); 1610 1611 for (i = r; i < r + ARRAY_SIZE(r); i++) 1612 i->b = ERR_PTR(-EINTR); 1613 1614 while (1) { 1615 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad); 1616 if (k) { 1617 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1618 true, b); 1619 if (IS_ERR(r->b)) { 1620 ret = PTR_ERR(r->b); 1621 break; 1622 } 1623 1624 r->keys = btree_gc_count_keys(r->b); 1625 1626 ret = btree_gc_coalesce(b, op, gc, r); 1627 if (ret) 1628 break; 1629 } 1630 1631 if (!last->b) 1632 break; 1633 1634 if (!IS_ERR(last->b)) { 1635 should_rewrite = btree_gc_mark_node(last->b, gc); 1636 if (should_rewrite) { 1637 ret = btree_gc_rewrite_node(b, op, last->b); 1638 if (ret) 1639 break; 1640 } 1641 1642 if (last->b->level) { 1643 ret = btree_gc_recurse(last->b, op, writes, gc); 1644 if (ret) 1645 break; 1646 } 1647 1648 bkey_copy_key(&b->c->gc_done, &last->b->key); 1649 1650 /* 1651 * Must flush leaf nodes before gc ends, since replace 1652 * operations aren't journalled 1653 */ 1654 mutex_lock(&last->b->write_lock); 1655 if (btree_node_dirty(last->b)) 1656 bch_btree_node_write(last->b, writes); 1657 mutex_unlock(&last->b->write_lock); 1658 rw_unlock(true, last->b); 1659 } 1660 1661 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1662 r->b = NULL; 1663 1664 if (atomic_read(&b->c->search_inflight) && 1665 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) { 1666 gc->nodes_pre = gc->nodes; 1667 ret = -EAGAIN; 1668 break; 1669 } 1670 1671 if (need_resched()) { 1672 ret = -EAGAIN; 1673 break; 1674 } 1675 } 1676 1677 for (i = r; i < r + ARRAY_SIZE(r); i++) 1678 if (!IS_ERR_OR_NULL(i->b)) { 1679 mutex_lock(&i->b->write_lock); 1680 if (btree_node_dirty(i->b)) 1681 bch_btree_node_write(i->b, writes); 1682 mutex_unlock(&i->b->write_lock); 1683 rw_unlock(true, i->b); 1684 } 1685 1686 return ret; 1687 } 1688 1689 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1690 struct closure *writes, struct gc_stat *gc) 1691 { 1692 struct btree *n = NULL; 1693 int ret = 0; 1694 bool should_rewrite; 1695 1696 should_rewrite = btree_gc_mark_node(b, gc); 1697 if (should_rewrite) { 1698 n = btree_node_alloc_replacement(b, NULL); 1699 1700 if (!IS_ERR(n)) { 1701 bch_btree_node_write_sync(n); 1702 1703 bch_btree_set_root(n); 1704 btree_node_free(b); 1705 rw_unlock(true, n); 1706 1707 return -EINTR; 1708 } 1709 } 1710 1711 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1712 1713 if (b->level) { 1714 ret = btree_gc_recurse(b, op, writes, gc); 1715 if (ret) 1716 return ret; 1717 } 1718 1719 bkey_copy_key(&b->c->gc_done, &b->key); 1720 1721 return ret; 1722 } 1723 1724 static void btree_gc_start(struct cache_set *c) 1725 { 1726 struct cache *ca; 1727 struct bucket *b; 1728 1729 if (!c->gc_mark_valid) 1730 return; 1731 1732 mutex_lock(&c->bucket_lock); 1733 1734 c->gc_mark_valid = 0; 1735 c->gc_done = ZERO_KEY; 1736 1737 ca = c->cache; 1738 for_each_bucket(b, ca) { 1739 b->last_gc = b->gen; 1740 if (!atomic_read(&b->pin)) { 1741 SET_GC_MARK(b, 0); 1742 SET_GC_SECTORS_USED(b, 0); 1743 } 1744 } 1745 1746 mutex_unlock(&c->bucket_lock); 1747 } 1748 1749 static void bch_btree_gc_finish(struct cache_set *c) 1750 { 1751 struct bucket *b; 1752 struct cache *ca; 1753 unsigned int i, j; 1754 uint64_t *k; 1755 1756 mutex_lock(&c->bucket_lock); 1757 1758 set_gc_sectors(c); 1759 c->gc_mark_valid = 1; 1760 c->need_gc = 0; 1761 1762 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1763 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1764 GC_MARK_METADATA); 1765 1766 /* don't reclaim buckets to which writeback keys point */ 1767 rcu_read_lock(); 1768 for (i = 0; i < c->devices_max_used; i++) { 1769 struct bcache_device *d = c->devices[i]; 1770 struct cached_dev *dc; 1771 struct keybuf_key *w, *n; 1772 1773 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1774 continue; 1775 dc = container_of(d, struct cached_dev, disk); 1776 1777 spin_lock(&dc->writeback_keys.lock); 1778 rbtree_postorder_for_each_entry_safe(w, n, 1779 &dc->writeback_keys.keys, node) 1780 for (j = 0; j < KEY_PTRS(&w->key); j++) 1781 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1782 GC_MARK_DIRTY); 1783 spin_unlock(&dc->writeback_keys.lock); 1784 } 1785 rcu_read_unlock(); 1786 1787 c->avail_nbuckets = 0; 1788 1789 ca = c->cache; 1790 ca->invalidate_needs_gc = 0; 1791 1792 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1793 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1794 1795 for (k = ca->prio_buckets; 1796 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1797 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1798 1799 for_each_bucket(b, ca) { 1800 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1801 1802 if (atomic_read(&b->pin)) 1803 continue; 1804 1805 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1806 1807 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1808 c->avail_nbuckets++; 1809 } 1810 1811 mutex_unlock(&c->bucket_lock); 1812 } 1813 1814 static void bch_btree_gc(struct cache_set *c) 1815 { 1816 int ret; 1817 struct gc_stat stats; 1818 struct closure writes; 1819 struct btree_op op; 1820 uint64_t start_time = local_clock(); 1821 1822 trace_bcache_gc_start(c); 1823 1824 memset(&stats, 0, sizeof(struct gc_stat)); 1825 closure_init_stack(&writes); 1826 bch_btree_op_init(&op, SHRT_MAX); 1827 1828 btree_gc_start(c); 1829 1830 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1831 do { 1832 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1833 closure_sync(&writes); 1834 cond_resched(); 1835 1836 if (ret == -EAGAIN) 1837 schedule_timeout_interruptible(msecs_to_jiffies 1838 (GC_SLEEP_MS)); 1839 else if (ret) 1840 pr_warn("gc failed!\n"); 1841 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1842 1843 bch_btree_gc_finish(c); 1844 wake_up_allocators(c); 1845 1846 bch_time_stats_update(&c->btree_gc_time, start_time); 1847 1848 stats.key_bytes *= sizeof(uint64_t); 1849 stats.data <<= 9; 1850 bch_update_bucket_in_use(c, &stats); 1851 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1852 1853 trace_bcache_gc_end(c); 1854 1855 bch_moving_gc(c); 1856 } 1857 1858 static bool gc_should_run(struct cache_set *c) 1859 { 1860 struct cache *ca = c->cache; 1861 1862 if (ca->invalidate_needs_gc) 1863 return true; 1864 1865 if (atomic_read(&c->sectors_to_gc) < 0) 1866 return true; 1867 1868 return false; 1869 } 1870 1871 static int bch_gc_thread(void *arg) 1872 { 1873 struct cache_set *c = arg; 1874 1875 while (1) { 1876 wait_event_interruptible(c->gc_wait, 1877 kthread_should_stop() || 1878 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1879 gc_should_run(c)); 1880 1881 if (kthread_should_stop() || 1882 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1883 break; 1884 1885 set_gc_sectors(c); 1886 bch_btree_gc(c); 1887 } 1888 1889 wait_for_kthread_stop(); 1890 return 0; 1891 } 1892 1893 int bch_gc_thread_start(struct cache_set *c) 1894 { 1895 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1896 return PTR_ERR_OR_ZERO(c->gc_thread); 1897 } 1898 1899 /* Initial partial gc */ 1900 1901 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1902 { 1903 int ret = 0; 1904 struct bkey *k, *p = NULL; 1905 struct btree_iter iter; 1906 1907 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1908 bch_initial_mark_key(b->c, b->level, k); 1909 1910 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1911 1912 if (b->level) { 1913 bch_btree_iter_init(&b->keys, &iter, NULL); 1914 1915 do { 1916 k = bch_btree_iter_next_filter(&iter, &b->keys, 1917 bch_ptr_bad); 1918 if (k) { 1919 btree_node_prefetch(b, k); 1920 /* 1921 * initiallize c->gc_stats.nodes 1922 * for incremental GC 1923 */ 1924 b->c->gc_stats.nodes++; 1925 } 1926 1927 if (p) 1928 ret = bcache_btree(check_recurse, p, b, op); 1929 1930 p = k; 1931 } while (p && !ret); 1932 } 1933 1934 return ret; 1935 } 1936 1937 1938 static int bch_btree_check_thread(void *arg) 1939 { 1940 int ret; 1941 struct btree_check_info *info = arg; 1942 struct btree_check_state *check_state = info->state; 1943 struct cache_set *c = check_state->c; 1944 struct btree_iter iter; 1945 struct bkey *k, *p; 1946 int cur_idx, prev_idx, skip_nr; 1947 1948 k = p = NULL; 1949 cur_idx = prev_idx = 0; 1950 ret = 0; 1951 1952 /* root node keys are checked before thread created */ 1953 bch_btree_iter_init(&c->root->keys, &iter, NULL); 1954 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); 1955 BUG_ON(!k); 1956 1957 p = k; 1958 while (k) { 1959 /* 1960 * Fetch a root node key index, skip the keys which 1961 * should be fetched by other threads, then check the 1962 * sub-tree indexed by the fetched key. 1963 */ 1964 spin_lock(&check_state->idx_lock); 1965 cur_idx = check_state->key_idx; 1966 check_state->key_idx++; 1967 spin_unlock(&check_state->idx_lock); 1968 1969 skip_nr = cur_idx - prev_idx; 1970 1971 while (skip_nr) { 1972 k = bch_btree_iter_next_filter(&iter, 1973 &c->root->keys, 1974 bch_ptr_bad); 1975 if (k) 1976 p = k; 1977 else { 1978 /* 1979 * No more keys to check in root node, 1980 * current checking threads are enough, 1981 * stop creating more. 1982 */ 1983 atomic_set(&check_state->enough, 1); 1984 /* Update check_state->enough earlier */ 1985 smp_mb__after_atomic(); 1986 goto out; 1987 } 1988 skip_nr--; 1989 cond_resched(); 1990 } 1991 1992 if (p) { 1993 struct btree_op op; 1994 1995 btree_node_prefetch(c->root, p); 1996 c->gc_stats.nodes++; 1997 bch_btree_op_init(&op, 0); 1998 ret = bcache_btree(check_recurse, p, c->root, &op); 1999 /* 2000 * The op may be added to cache_set's btree_cache_wait 2001 * in mca_cannibalize(), must ensure it is removed from 2002 * the list and release btree_cache_alloc_lock before 2003 * free op memory. 2004 * Otherwise, the btree_cache_wait will be damaged. 2005 */ 2006 bch_cannibalize_unlock(c); 2007 finish_wait(&c->btree_cache_wait, &(&op)->wait); 2008 if (ret) 2009 goto out; 2010 } 2011 p = NULL; 2012 prev_idx = cur_idx; 2013 cond_resched(); 2014 } 2015 2016 out: 2017 info->result = ret; 2018 /* update check_state->started among all CPUs */ 2019 smp_mb__before_atomic(); 2020 if (atomic_dec_and_test(&check_state->started)) 2021 wake_up(&check_state->wait); 2022 2023 return ret; 2024 } 2025 2026 2027 2028 static int bch_btree_chkthread_nr(void) 2029 { 2030 int n = num_online_cpus()/2; 2031 2032 if (n == 0) 2033 n = 1; 2034 else if (n > BCH_BTR_CHKTHREAD_MAX) 2035 n = BCH_BTR_CHKTHREAD_MAX; 2036 2037 return n; 2038 } 2039 2040 int bch_btree_check(struct cache_set *c) 2041 { 2042 int ret = 0; 2043 int i; 2044 struct bkey *k = NULL; 2045 struct btree_iter iter; 2046 struct btree_check_state check_state; 2047 2048 /* check and mark root node keys */ 2049 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2050 bch_initial_mark_key(c, c->root->level, k); 2051 2052 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2053 2054 if (c->root->level == 0) 2055 return 0; 2056 2057 memset(&check_state, 0, sizeof(struct btree_check_state)); 2058 check_state.c = c; 2059 check_state.total_threads = bch_btree_chkthread_nr(); 2060 check_state.key_idx = 0; 2061 spin_lock_init(&check_state.idx_lock); 2062 atomic_set(&check_state.started, 0); 2063 atomic_set(&check_state.enough, 0); 2064 init_waitqueue_head(&check_state.wait); 2065 2066 rw_lock(0, c->root, c->root->level); 2067 /* 2068 * Run multiple threads to check btree nodes in parallel, 2069 * if check_state.enough is non-zero, it means current 2070 * running check threads are enough, unncessary to create 2071 * more. 2072 */ 2073 for (i = 0; i < check_state.total_threads; i++) { 2074 /* fetch latest check_state.enough earlier */ 2075 smp_mb__before_atomic(); 2076 if (atomic_read(&check_state.enough)) 2077 break; 2078 2079 check_state.infos[i].result = 0; 2080 check_state.infos[i].state = &check_state; 2081 2082 check_state.infos[i].thread = 2083 kthread_run(bch_btree_check_thread, 2084 &check_state.infos[i], 2085 "bch_btrchk[%d]", i); 2086 if (IS_ERR(check_state.infos[i].thread)) { 2087 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2088 for (--i; i >= 0; i--) 2089 kthread_stop(check_state.infos[i].thread); 2090 ret = -ENOMEM; 2091 goto out; 2092 } 2093 atomic_inc(&check_state.started); 2094 } 2095 2096 /* 2097 * Must wait for all threads to stop. 2098 */ 2099 wait_event(check_state.wait, atomic_read(&check_state.started) == 0); 2100 2101 for (i = 0; i < check_state.total_threads; i++) { 2102 if (check_state.infos[i].result) { 2103 ret = check_state.infos[i].result; 2104 goto out; 2105 } 2106 } 2107 2108 out: 2109 rw_unlock(0, c->root); 2110 return ret; 2111 } 2112 2113 void bch_initial_gc_finish(struct cache_set *c) 2114 { 2115 struct cache *ca = c->cache; 2116 struct bucket *b; 2117 2118 bch_btree_gc_finish(c); 2119 2120 mutex_lock(&c->bucket_lock); 2121 2122 /* 2123 * We need to put some unused buckets directly on the prio freelist in 2124 * order to get the allocator thread started - it needs freed buckets in 2125 * order to rewrite the prios and gens, and it needs to rewrite prios 2126 * and gens in order to free buckets. 2127 * 2128 * This is only safe for buckets that have no live data in them, which 2129 * there should always be some of. 2130 */ 2131 for_each_bucket(b, ca) { 2132 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2133 fifo_full(&ca->free[RESERVE_BTREE])) 2134 break; 2135 2136 if (bch_can_invalidate_bucket(ca, b) && 2137 !GC_MARK(b)) { 2138 __bch_invalidate_one_bucket(ca, b); 2139 if (!fifo_push(&ca->free[RESERVE_PRIO], 2140 b - ca->buckets)) 2141 fifo_push(&ca->free[RESERVE_BTREE], 2142 b - ca->buckets); 2143 } 2144 } 2145 2146 mutex_unlock(&c->bucket_lock); 2147 } 2148 2149 /* Btree insertion */ 2150 2151 static bool btree_insert_key(struct btree *b, struct bkey *k, 2152 struct bkey *replace_key) 2153 { 2154 unsigned int status; 2155 2156 BUG_ON(bkey_cmp(k, &b->key) > 0); 2157 2158 status = bch_btree_insert_key(&b->keys, k, replace_key); 2159 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2160 bch_check_keys(&b->keys, "%u for %s", status, 2161 replace_key ? "replace" : "insert"); 2162 2163 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2164 status); 2165 return true; 2166 } else 2167 return false; 2168 } 2169 2170 static size_t insert_u64s_remaining(struct btree *b) 2171 { 2172 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2173 2174 /* 2175 * Might land in the middle of an existing extent and have to split it 2176 */ 2177 if (b->keys.ops->is_extents) 2178 ret -= KEY_MAX_U64S; 2179 2180 return max(ret, 0L); 2181 } 2182 2183 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2184 struct keylist *insert_keys, 2185 struct bkey *replace_key) 2186 { 2187 bool ret = false; 2188 int oldsize = bch_count_data(&b->keys); 2189 2190 while (!bch_keylist_empty(insert_keys)) { 2191 struct bkey *k = insert_keys->keys; 2192 2193 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2194 break; 2195 2196 if (bkey_cmp(k, &b->key) <= 0) { 2197 if (!b->level) 2198 bkey_put(b->c, k); 2199 2200 ret |= btree_insert_key(b, k, replace_key); 2201 bch_keylist_pop_front(insert_keys); 2202 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2203 BKEY_PADDED(key) temp; 2204 bkey_copy(&temp.key, insert_keys->keys); 2205 2206 bch_cut_back(&b->key, &temp.key); 2207 bch_cut_front(&b->key, insert_keys->keys); 2208 2209 ret |= btree_insert_key(b, &temp.key, replace_key); 2210 break; 2211 } else { 2212 break; 2213 } 2214 } 2215 2216 if (!ret) 2217 op->insert_collision = true; 2218 2219 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2220 2221 BUG_ON(bch_count_data(&b->keys) < oldsize); 2222 return ret; 2223 } 2224 2225 static int btree_split(struct btree *b, struct btree_op *op, 2226 struct keylist *insert_keys, 2227 struct bkey *replace_key) 2228 { 2229 bool split; 2230 struct btree *n1, *n2 = NULL, *n3 = NULL; 2231 uint64_t start_time = local_clock(); 2232 struct closure cl; 2233 struct keylist parent_keys; 2234 2235 closure_init_stack(&cl); 2236 bch_keylist_init(&parent_keys); 2237 2238 if (btree_check_reserve(b, op)) { 2239 if (!b->level) 2240 return -EINTR; 2241 else 2242 WARN(1, "insufficient reserve for split\n"); 2243 } 2244 2245 n1 = btree_node_alloc_replacement(b, op); 2246 if (IS_ERR(n1)) 2247 goto err; 2248 2249 split = set_blocks(btree_bset_first(n1), 2250 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2251 2252 if (split) { 2253 unsigned int keys = 0; 2254 2255 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2256 2257 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2258 if (IS_ERR(n2)) 2259 goto err_free1; 2260 2261 if (!b->parent) { 2262 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2263 if (IS_ERR(n3)) 2264 goto err_free2; 2265 } 2266 2267 mutex_lock(&n1->write_lock); 2268 mutex_lock(&n2->write_lock); 2269 2270 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2271 2272 /* 2273 * Has to be a linear search because we don't have an auxiliary 2274 * search tree yet 2275 */ 2276 2277 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2278 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2279 keys)); 2280 2281 bkey_copy_key(&n1->key, 2282 bset_bkey_idx(btree_bset_first(n1), keys)); 2283 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2284 2285 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2286 btree_bset_first(n1)->keys = keys; 2287 2288 memcpy(btree_bset_first(n2)->start, 2289 bset_bkey_last(btree_bset_first(n1)), 2290 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2291 2292 bkey_copy_key(&n2->key, &b->key); 2293 2294 bch_keylist_add(&parent_keys, &n2->key); 2295 bch_btree_node_write(n2, &cl); 2296 mutex_unlock(&n2->write_lock); 2297 rw_unlock(true, n2); 2298 } else { 2299 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2300 2301 mutex_lock(&n1->write_lock); 2302 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2303 } 2304 2305 bch_keylist_add(&parent_keys, &n1->key); 2306 bch_btree_node_write(n1, &cl); 2307 mutex_unlock(&n1->write_lock); 2308 2309 if (n3) { 2310 /* Depth increases, make a new root */ 2311 mutex_lock(&n3->write_lock); 2312 bkey_copy_key(&n3->key, &MAX_KEY); 2313 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2314 bch_btree_node_write(n3, &cl); 2315 mutex_unlock(&n3->write_lock); 2316 2317 closure_sync(&cl); 2318 bch_btree_set_root(n3); 2319 rw_unlock(true, n3); 2320 } else if (!b->parent) { 2321 /* Root filled up but didn't need to be split */ 2322 closure_sync(&cl); 2323 bch_btree_set_root(n1); 2324 } else { 2325 /* Split a non root node */ 2326 closure_sync(&cl); 2327 make_btree_freeing_key(b, parent_keys.top); 2328 bch_keylist_push(&parent_keys); 2329 2330 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2331 BUG_ON(!bch_keylist_empty(&parent_keys)); 2332 } 2333 2334 btree_node_free(b); 2335 rw_unlock(true, n1); 2336 2337 bch_time_stats_update(&b->c->btree_split_time, start_time); 2338 2339 return 0; 2340 err_free2: 2341 bkey_put(b->c, &n2->key); 2342 btree_node_free(n2); 2343 rw_unlock(true, n2); 2344 err_free1: 2345 bkey_put(b->c, &n1->key); 2346 btree_node_free(n1); 2347 rw_unlock(true, n1); 2348 err: 2349 WARN(1, "bcache: btree split failed (level %u)", b->level); 2350 2351 if (n3 == ERR_PTR(-EAGAIN) || 2352 n2 == ERR_PTR(-EAGAIN) || 2353 n1 == ERR_PTR(-EAGAIN)) 2354 return -EAGAIN; 2355 2356 return -ENOMEM; 2357 } 2358 2359 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2360 struct keylist *insert_keys, 2361 atomic_t *journal_ref, 2362 struct bkey *replace_key) 2363 { 2364 struct closure cl; 2365 2366 BUG_ON(b->level && replace_key); 2367 2368 closure_init_stack(&cl); 2369 2370 mutex_lock(&b->write_lock); 2371 2372 if (write_block(b) != btree_bset_last(b) && 2373 b->keys.last_set_unwritten) 2374 bch_btree_init_next(b); /* just wrote a set */ 2375 2376 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2377 mutex_unlock(&b->write_lock); 2378 goto split; 2379 } 2380 2381 BUG_ON(write_block(b) != btree_bset_last(b)); 2382 2383 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2384 if (!b->level) 2385 bch_btree_leaf_dirty(b, journal_ref); 2386 else 2387 bch_btree_node_write(b, &cl); 2388 } 2389 2390 mutex_unlock(&b->write_lock); 2391 2392 /* wait for btree node write if necessary, after unlock */ 2393 closure_sync(&cl); 2394 2395 return 0; 2396 split: 2397 if (current->bio_list) { 2398 op->lock = b->c->root->level + 1; 2399 return -EAGAIN; 2400 } else if (op->lock <= b->c->root->level) { 2401 op->lock = b->c->root->level + 1; 2402 return -EINTR; 2403 } else { 2404 /* Invalidated all iterators */ 2405 int ret = btree_split(b, op, insert_keys, replace_key); 2406 2407 if (bch_keylist_empty(insert_keys)) 2408 return 0; 2409 else if (!ret) 2410 return -EINTR; 2411 return ret; 2412 } 2413 } 2414 2415 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2416 struct bkey *check_key) 2417 { 2418 int ret = -EINTR; 2419 uint64_t btree_ptr = b->key.ptr[0]; 2420 unsigned long seq = b->seq; 2421 struct keylist insert; 2422 bool upgrade = op->lock == -1; 2423 2424 bch_keylist_init(&insert); 2425 2426 if (upgrade) { 2427 rw_unlock(false, b); 2428 rw_lock(true, b, b->level); 2429 2430 if (b->key.ptr[0] != btree_ptr || 2431 b->seq != seq + 1) { 2432 op->lock = b->level; 2433 goto out; 2434 } 2435 } 2436 2437 SET_KEY_PTRS(check_key, 1); 2438 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2439 2440 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2441 2442 bch_keylist_add(&insert, check_key); 2443 2444 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2445 2446 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2447 out: 2448 if (upgrade) 2449 downgrade_write(&b->lock); 2450 return ret; 2451 } 2452 2453 struct btree_insert_op { 2454 struct btree_op op; 2455 struct keylist *keys; 2456 atomic_t *journal_ref; 2457 struct bkey *replace_key; 2458 }; 2459 2460 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2461 { 2462 struct btree_insert_op *op = container_of(b_op, 2463 struct btree_insert_op, op); 2464 2465 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2466 op->journal_ref, op->replace_key); 2467 if (ret && !bch_keylist_empty(op->keys)) 2468 return ret; 2469 else 2470 return MAP_DONE; 2471 } 2472 2473 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2474 atomic_t *journal_ref, struct bkey *replace_key) 2475 { 2476 struct btree_insert_op op; 2477 int ret = 0; 2478 2479 BUG_ON(current->bio_list); 2480 BUG_ON(bch_keylist_empty(keys)); 2481 2482 bch_btree_op_init(&op.op, 0); 2483 op.keys = keys; 2484 op.journal_ref = journal_ref; 2485 op.replace_key = replace_key; 2486 2487 while (!ret && !bch_keylist_empty(keys)) { 2488 op.op.lock = 0; 2489 ret = bch_btree_map_leaf_nodes(&op.op, c, 2490 &START_KEY(keys->keys), 2491 btree_insert_fn); 2492 } 2493 2494 if (ret) { 2495 struct bkey *k; 2496 2497 pr_err("error %i\n", ret); 2498 2499 while ((k = bch_keylist_pop(keys))) 2500 bkey_put(c, k); 2501 } else if (op.op.insert_collision) 2502 ret = -ESRCH; 2503 2504 return ret; 2505 } 2506 2507 void bch_btree_set_root(struct btree *b) 2508 { 2509 unsigned int i; 2510 struct closure cl; 2511 2512 closure_init_stack(&cl); 2513 2514 trace_bcache_btree_set_root(b); 2515 2516 BUG_ON(!b->written); 2517 2518 for (i = 0; i < KEY_PTRS(&b->key); i++) 2519 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2520 2521 mutex_lock(&b->c->bucket_lock); 2522 list_del_init(&b->list); 2523 mutex_unlock(&b->c->bucket_lock); 2524 2525 b->c->root = b; 2526 2527 bch_journal_meta(b->c, &cl); 2528 closure_sync(&cl); 2529 } 2530 2531 /* Map across nodes or keys */ 2532 2533 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2534 struct bkey *from, 2535 btree_map_nodes_fn *fn, int flags) 2536 { 2537 int ret = MAP_CONTINUE; 2538 2539 if (b->level) { 2540 struct bkey *k; 2541 struct btree_iter iter; 2542 2543 bch_btree_iter_init(&b->keys, &iter, from); 2544 2545 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, 2546 bch_ptr_bad))) { 2547 ret = bcache_btree(map_nodes_recurse, k, b, 2548 op, from, fn, flags); 2549 from = NULL; 2550 2551 if (ret != MAP_CONTINUE) 2552 return ret; 2553 } 2554 } 2555 2556 if (!b->level || flags == MAP_ALL_NODES) 2557 ret = fn(op, b); 2558 2559 return ret; 2560 } 2561 2562 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2563 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2564 { 2565 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2566 } 2567 2568 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2569 struct bkey *from, btree_map_keys_fn *fn, 2570 int flags) 2571 { 2572 int ret = MAP_CONTINUE; 2573 struct bkey *k; 2574 struct btree_iter iter; 2575 2576 bch_btree_iter_init(&b->keys, &iter, from); 2577 2578 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) { 2579 ret = !b->level 2580 ? fn(op, b, k) 2581 : bcache_btree(map_keys_recurse, k, 2582 b, op, from, fn, flags); 2583 from = NULL; 2584 2585 if (ret != MAP_CONTINUE) 2586 return ret; 2587 } 2588 2589 if (!b->level && (flags & MAP_END_KEY)) 2590 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2591 KEY_OFFSET(&b->key), 0)); 2592 2593 return ret; 2594 } 2595 2596 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2597 struct bkey *from, btree_map_keys_fn *fn, int flags) 2598 { 2599 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2600 } 2601 2602 /* Keybuf code */ 2603 2604 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2605 { 2606 /* Overlapping keys compare equal */ 2607 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2608 return -1; 2609 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2610 return 1; 2611 return 0; 2612 } 2613 2614 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2615 struct keybuf_key *r) 2616 { 2617 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2618 } 2619 2620 struct refill { 2621 struct btree_op op; 2622 unsigned int nr_found; 2623 struct keybuf *buf; 2624 struct bkey *end; 2625 keybuf_pred_fn *pred; 2626 }; 2627 2628 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2629 struct bkey *k) 2630 { 2631 struct refill *refill = container_of(op, struct refill, op); 2632 struct keybuf *buf = refill->buf; 2633 int ret = MAP_CONTINUE; 2634 2635 if (bkey_cmp(k, refill->end) > 0) { 2636 ret = MAP_DONE; 2637 goto out; 2638 } 2639 2640 if (!KEY_SIZE(k)) /* end key */ 2641 goto out; 2642 2643 if (refill->pred(buf, k)) { 2644 struct keybuf_key *w; 2645 2646 spin_lock(&buf->lock); 2647 2648 w = array_alloc(&buf->freelist); 2649 if (!w) { 2650 spin_unlock(&buf->lock); 2651 return MAP_DONE; 2652 } 2653 2654 w->private = NULL; 2655 bkey_copy(&w->key, k); 2656 2657 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2658 array_free(&buf->freelist, w); 2659 else 2660 refill->nr_found++; 2661 2662 if (array_freelist_empty(&buf->freelist)) 2663 ret = MAP_DONE; 2664 2665 spin_unlock(&buf->lock); 2666 } 2667 out: 2668 buf->last_scanned = *k; 2669 return ret; 2670 } 2671 2672 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2673 struct bkey *end, keybuf_pred_fn *pred) 2674 { 2675 struct bkey start = buf->last_scanned; 2676 struct refill refill; 2677 2678 cond_resched(); 2679 2680 bch_btree_op_init(&refill.op, -1); 2681 refill.nr_found = 0; 2682 refill.buf = buf; 2683 refill.end = end; 2684 refill.pred = pred; 2685 2686 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2687 refill_keybuf_fn, MAP_END_KEY); 2688 2689 trace_bcache_keyscan(refill.nr_found, 2690 KEY_INODE(&start), KEY_OFFSET(&start), 2691 KEY_INODE(&buf->last_scanned), 2692 KEY_OFFSET(&buf->last_scanned)); 2693 2694 spin_lock(&buf->lock); 2695 2696 if (!RB_EMPTY_ROOT(&buf->keys)) { 2697 struct keybuf_key *w; 2698 2699 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2700 buf->start = START_KEY(&w->key); 2701 2702 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2703 buf->end = w->key; 2704 } else { 2705 buf->start = MAX_KEY; 2706 buf->end = MAX_KEY; 2707 } 2708 2709 spin_unlock(&buf->lock); 2710 } 2711 2712 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2713 { 2714 rb_erase(&w->node, &buf->keys); 2715 array_free(&buf->freelist, w); 2716 } 2717 2718 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2719 { 2720 spin_lock(&buf->lock); 2721 __bch_keybuf_del(buf, w); 2722 spin_unlock(&buf->lock); 2723 } 2724 2725 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2726 struct bkey *end) 2727 { 2728 bool ret = false; 2729 struct keybuf_key *p, *w, s; 2730 2731 s.key = *start; 2732 2733 if (bkey_cmp(end, &buf->start) <= 0 || 2734 bkey_cmp(start, &buf->end) >= 0) 2735 return false; 2736 2737 spin_lock(&buf->lock); 2738 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2739 2740 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2741 p = w; 2742 w = RB_NEXT(w, node); 2743 2744 if (p->private) 2745 ret = true; 2746 else 2747 __bch_keybuf_del(buf, p); 2748 } 2749 2750 spin_unlock(&buf->lock); 2751 return ret; 2752 } 2753 2754 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2755 { 2756 struct keybuf_key *w; 2757 2758 spin_lock(&buf->lock); 2759 2760 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2761 2762 while (w && w->private) 2763 w = RB_NEXT(w, node); 2764 2765 if (w) 2766 w->private = ERR_PTR(-EINTR); 2767 2768 spin_unlock(&buf->lock); 2769 return w; 2770 } 2771 2772 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2773 struct keybuf *buf, 2774 struct bkey *end, 2775 keybuf_pred_fn *pred) 2776 { 2777 struct keybuf_key *ret; 2778 2779 while (1) { 2780 ret = bch_keybuf_next(buf); 2781 if (ret) 2782 break; 2783 2784 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2785 pr_debug("scan finished\n"); 2786 break; 2787 } 2788 2789 bch_refill_keybuf(c, buf, end, pred); 2790 } 2791 2792 return ret; 2793 } 2794 2795 void bch_keybuf_init(struct keybuf *buf) 2796 { 2797 buf->last_scanned = MAX_KEY; 2798 buf->keys = RB_ROOT; 2799 2800 spin_lock_init(&buf->lock); 2801 array_allocator_init(&buf->freelist); 2802 } 2803 2804 void bch_btree_exit(void) 2805 { 2806 if (btree_io_wq) 2807 destroy_workqueue(btree_io_wq); 2808 } 2809 2810 int __init bch_btree_init(void) 2811 { 2812 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0); 2813 if (!btree_io_wq) 2814 return -ENOMEM; 2815 2816 return 0; 2817 } 2818