xref: /linux/drivers/md/bcache/bset.h (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHE_BSET_H
3 #define _BCACHE_BSET_H
4 
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 
8 #include "bcache_ondisk.h"
9 #include "util.h" /* for time_stats */
10 
11 /*
12  * BKEYS:
13  *
14  * A bkey contains a key, a size field, a variable number of pointers, and some
15  * ancillary flag bits.
16  *
17  * We use two different functions for validating bkeys, bch_ptr_invalid and
18  * bch_ptr_bad().
19  *
20  * bch_ptr_invalid() primarily filters out keys and pointers that would be
21  * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
22  * pointer that occur in normal practice but don't point to real data.
23  *
24  * The one exception to the rule that ptr_invalid() filters out invalid keys is
25  * that it also filters out keys of size 0 - these are keys that have been
26  * completely overwritten. It'd be safe to delete these in memory while leaving
27  * them on disk, just unnecessary work - so we filter them out when resorting
28  * instead.
29  *
30  * We can't filter out stale keys when we're resorting, because garbage
31  * collection needs to find them to ensure bucket gens don't wrap around -
32  * unless we're rewriting the btree node those stale keys still exist on disk.
33  *
34  * We also implement functions here for removing some number of sectors from the
35  * front or the back of a bkey - this is mainly used for fixing overlapping
36  * extents, by removing the overlapping sectors from the older key.
37  *
38  * BSETS:
39  *
40  * A bset is an array of bkeys laid out contiguously in memory in sorted order,
41  * along with a header. A btree node is made up of a number of these, written at
42  * different times.
43  *
44  * There could be many of them on disk, but we never allow there to be more than
45  * 4 in memory - we lazily resort as needed.
46  *
47  * We implement code here for creating and maintaining auxiliary search trees
48  * (described below) for searching an individial bset, and on top of that we
49  * implement a btree iterator.
50  *
51  * BTREE ITERATOR:
52  *
53  * Most of the code in bcache doesn't care about an individual bset - it needs
54  * to search entire btree nodes and iterate over them in sorted order.
55  *
56  * The btree iterator code serves both functions; it iterates through the keys
57  * in a btree node in sorted order, starting from either keys after a specific
58  * point (if you pass it a search key) or the start of the btree node.
59  *
60  * AUXILIARY SEARCH TREES:
61  *
62  * Since keys are variable length, we can't use a binary search on a bset - we
63  * wouldn't be able to find the start of the next key. But binary searches are
64  * slow anyways, due to terrible cache behaviour; bcache originally used binary
65  * searches and that code topped out at under 50k lookups/second.
66  *
67  * So we need to construct some sort of lookup table. Since we only insert keys
68  * into the last (unwritten) set, most of the keys within a given btree node are
69  * usually in sets that are mostly constant. We use two different types of
70  * lookup tables to take advantage of this.
71  *
72  * Both lookup tables share in common that they don't index every key in the
73  * set; they index one key every BSET_CACHELINE bytes, and then a linear search
74  * is used for the rest.
75  *
76  * For sets that have been written to disk and are no longer being inserted
77  * into, we construct a binary search tree in an array - traversing a binary
78  * search tree in an array gives excellent locality of reference and is very
79  * fast, since both children of any node are adjacent to each other in memory
80  * (and their grandchildren, and great grandchildren...) - this means
81  * prefetching can be used to great effect.
82  *
83  * It's quite useful performance wise to keep these nodes small - not just
84  * because they're more likely to be in L2, but also because we can prefetch
85  * more nodes on a single cacheline and thus prefetch more iterations in advance
86  * when traversing this tree.
87  *
88  * Nodes in the auxiliary search tree must contain both a key to compare against
89  * (we don't want to fetch the key from the set, that would defeat the purpose),
90  * and a pointer to the key. We use a few tricks to compress both of these.
91  *
92  * To compress the pointer, we take advantage of the fact that one node in the
93  * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
94  * a function (to_inorder()) that takes the index of a node in a binary tree and
95  * returns what its index would be in an inorder traversal, so we only have to
96  * store the low bits of the offset.
97  *
98  * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
99  * compress that,  we take advantage of the fact that when we're traversing the
100  * search tree at every iteration we know that both our search key and the key
101  * we're looking for lie within some range - bounded by our previous
102  * comparisons. (We special case the start of a search so that this is true even
103  * at the root of the tree).
104  *
105  * So we know the key we're looking for is between a and b, and a and b don't
106  * differ higher than bit 50, we don't need to check anything higher than bit
107  * 50.
108  *
109  * We don't usually need the rest of the bits, either; we only need enough bits
110  * to partition the key range we're currently checking.  Consider key n - the
111  * key our auxiliary search tree node corresponds to, and key p, the key
112  * immediately preceding n.  The lowest bit we need to store in the auxiliary
113  * search tree is the highest bit that differs between n and p.
114  *
115  * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
116  * comparison. But we'd really like our nodes in the auxiliary search tree to be
117  * of fixed size.
118  *
119  * The solution is to make them fixed size, and when we're constructing a node
120  * check if p and n differed in the bits we needed them to. If they don't we
121  * flag that node, and when doing lookups we fallback to comparing against the
122  * real key. As long as this doesn't happen to often (and it seems to reliably
123  * happen a bit less than 1% of the time), we win - even on failures, that key
124  * is then more likely to be in cache than if we were doing binary searches all
125  * the way, since we're touching so much less memory.
126  *
127  * The keys in the auxiliary search tree are stored in (software) floating
128  * point, with an exponent and a mantissa. The exponent needs to be big enough
129  * to address all the bits in the original key, but the number of bits in the
130  * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
131  *
132  * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
133  * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
134  * We need one node per 128 bytes in the btree node, which means the auxiliary
135  * search trees take up 3% as much memory as the btree itself.
136  *
137  * Constructing these auxiliary search trees is moderately expensive, and we
138  * don't want to be constantly rebuilding the search tree for the last set
139  * whenever we insert another key into it. For the unwritten set, we use a much
140  * simpler lookup table - it's just a flat array, so index i in the lookup table
141  * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
142  * within each byte range works the same as with the auxiliary search trees.
143  *
144  * These are much easier to keep up to date when we insert a key - we do it
145  * somewhat lazily; when we shift a key up we usually just increment the pointer
146  * to it, only when it would overflow do we go to the trouble of finding the
147  * first key in that range of bytes again.
148  */
149 
150 struct btree_keys;
151 struct btree_iter;
152 struct btree_iter_set;
153 struct bkey_float;
154 
155 #define MAX_BSETS		4U
156 
157 struct bset_tree {
158 	/*
159 	 * We construct a binary tree in an array as if the array
160 	 * started at 1, so that things line up on the same cachelines
161 	 * better: see comments in bset.c at cacheline_to_bkey() for
162 	 * details
163 	 */
164 
165 	/* size of the binary tree and prev array */
166 	unsigned int		size;
167 
168 	/* function of size - precalculated for to_inorder() */
169 	unsigned int		extra;
170 
171 	/* copy of the last key in the set */
172 	struct bkey		end;
173 	struct bkey_float	*tree;
174 
175 	/*
176 	 * The nodes in the bset tree point to specific keys - this
177 	 * array holds the sizes of the previous key.
178 	 *
179 	 * Conceptually it's a member of struct bkey_float, but we want
180 	 * to keep bkey_float to 4 bytes and prev isn't used in the fast
181 	 * path.
182 	 */
183 	uint8_t			*prev;
184 
185 	/* The actual btree node, with pointers to each sorted set */
186 	struct bset		*data;
187 };
188 
189 struct btree_keys_ops {
190 	bool		(*sort_cmp)(const void *l,
191 				    const void *r,
192 					void *args);
193 	struct bkey	*(*sort_fixup)(struct btree_iter *iter,
194 				       struct bkey *tmp);
195 	bool		(*insert_fixup)(struct btree_keys *b,
196 					struct bkey *insert,
197 					struct btree_iter *iter,
198 					struct bkey *replace_key);
199 	bool		(*key_invalid)(struct btree_keys *bk,
200 				       const struct bkey *k);
201 	bool		(*key_bad)(struct btree_keys *bk,
202 				   const struct bkey *k);
203 	bool		(*key_merge)(struct btree_keys *bk,
204 				     struct bkey *l, struct bkey *r);
205 	void		(*key_to_text)(char *buf,
206 				       size_t size,
207 				       const struct bkey *k);
208 	void		(*key_dump)(struct btree_keys *keys,
209 				    const struct bkey *k);
210 
211 	/*
212 	 * Only used for deciding whether to use START_KEY(k) or just the key
213 	 * itself in a couple places
214 	 */
215 	bool		is_extents;
216 };
217 
218 struct btree_keys {
219 	const struct btree_keys_ops	*ops;
220 	uint8_t			page_order;
221 	uint8_t			nsets;
222 	unsigned int		last_set_unwritten:1;
223 	bool			*expensive_debug_checks;
224 
225 	/*
226 	 * Sets of sorted keys - the real btree node - plus a binary search tree
227 	 *
228 	 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
229 	 * to the memory we have allocated for this btree node. Additionally,
230 	 * set[0]->data points to the entire btree node as it exists on disk.
231 	 */
232 	struct bset_tree	set[MAX_BSETS];
233 };
234 
235 static inline struct bset_tree *bset_tree_last(struct btree_keys *b)
236 {
237 	return b->set + b->nsets;
238 }
239 
240 static inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
241 {
242 	return t <= b->set + b->nsets - b->last_set_unwritten;
243 }
244 
245 static inline bool bkey_written(struct btree_keys *b, struct bkey *k)
246 {
247 	return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
248 }
249 
250 static inline unsigned int bset_byte_offset(struct btree_keys *b,
251 					    struct bset *i)
252 {
253 	return ((size_t) i) - ((size_t) b->set->data);
254 }
255 
256 static inline unsigned int bset_sector_offset(struct btree_keys *b,
257 					      struct bset *i)
258 {
259 	return bset_byte_offset(b, i) >> 9;
260 }
261 
262 #define __set_bytes(i, k)	(sizeof(*(i)) + (k) * sizeof(uint64_t))
263 #define set_bytes(i)		__set_bytes(i, i->keys)
264 
265 #define __set_blocks(i, k, block_bytes)				\
266 	DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
267 #define set_blocks(i, block_bytes)				\
268 	__set_blocks(i, (i)->keys, block_bytes)
269 
270 static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
271 {
272 	struct bset_tree *t = bset_tree_last(b);
273 
274 	BUG_ON((PAGE_SIZE << b->page_order) <
275 	       (bset_byte_offset(b, t->data) + set_bytes(t->data)));
276 
277 	if (!b->last_set_unwritten)
278 		return 0;
279 
280 	return ((PAGE_SIZE << b->page_order) -
281 		(bset_byte_offset(b, t->data) + set_bytes(t->data))) /
282 		sizeof(u64);
283 }
284 
285 static inline struct bset *bset_next_set(struct btree_keys *b,
286 					 unsigned int block_bytes)
287 {
288 	struct bset *i = bset_tree_last(b)->data;
289 
290 	return ((void *) i) + roundup(set_bytes(i), block_bytes);
291 }
292 
293 void bch_btree_keys_free(struct btree_keys *b);
294 int bch_btree_keys_alloc(struct btree_keys *b, unsigned int page_order,
295 			 gfp_t gfp);
296 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
297 			 bool *expensive_debug_checks);
298 
299 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic);
300 void bch_bset_build_written_tree(struct btree_keys *b);
301 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k);
302 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r);
303 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
304 		     struct bkey *insert);
305 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
306 			      struct bkey *replace_key);
307 
308 enum {
309 	BTREE_INSERT_STATUS_NO_INSERT = 0,
310 	BTREE_INSERT_STATUS_INSERT,
311 	BTREE_INSERT_STATUS_BACK_MERGE,
312 	BTREE_INSERT_STATUS_OVERWROTE,
313 	BTREE_INSERT_STATUS_FRONT_MERGE,
314 };
315 
316 struct btree_iter_set {
317 	struct bkey *k, *end;
318 };
319 
320 /* Btree key iteration */
321 
322 struct btree_iter {
323 #ifdef CONFIG_BCACHE_DEBUG
324 	struct btree_keys *b;
325 #endif
326 	MIN_HEAP_PREALLOCATED(struct btree_iter_set, btree_iter_heap, MAX_BSETS) heap;
327 };
328 
329 typedef bool (*ptr_filter_fn)(struct btree_keys *b, const struct bkey *k);
330 
331 struct bkey *bch_btree_iter_next(struct btree_iter *iter);
332 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
333 					struct btree_keys *b,
334 					ptr_filter_fn fn);
335 
336 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
337 			 struct bkey *end);
338 struct bkey *bch_btree_iter_init(struct btree_keys *b,
339 				 struct btree_iter *iter,
340 				 struct bkey *search);
341 
342 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
343 			       const struct bkey *search);
344 
345 /*
346  * Returns the first key that is strictly greater than search
347  */
348 static inline struct bkey *bch_bset_search(struct btree_keys *b,
349 					   struct bset_tree *t,
350 					   const struct bkey *search)
351 {
352 	return search ? __bch_bset_search(b, t, search) : t->data->start;
353 }
354 
355 #define for_each_key_filter(b, k, iter, filter)				\
356 	for (bch_btree_iter_init((b), (iter), NULL);			\
357 	     ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
358 
359 #define for_each_key(b, k, iter)					\
360 	for (bch_btree_iter_init((b), (iter), NULL);			\
361 	     ((k) = bch_btree_iter_next(iter));)
362 
363 /* Sorting */
364 
365 struct bset_sort_state {
366 	mempool_t		pool;
367 
368 	unsigned int		page_order;
369 	unsigned int		crit_factor;
370 
371 	struct time_stats	time;
372 };
373 
374 void bch_bset_sort_state_free(struct bset_sort_state *state);
375 int bch_bset_sort_state_init(struct bset_sort_state *state,
376 			     unsigned int page_order);
377 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state);
378 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
379 			 struct bset_sort_state *state);
380 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
381 				    struct btree_iter *iter,
382 				    struct bset_sort_state *state);
383 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
384 			    struct bset_sort_state *state);
385 
386 static inline void bch_btree_sort(struct btree_keys *b,
387 				  struct bset_sort_state *state)
388 {
389 	bch_btree_sort_partial(b, 0, state);
390 }
391 
392 struct bset_stats {
393 	size_t sets_written, sets_unwritten;
394 	size_t bytes_written, bytes_unwritten;
395 	size_t floats, failed;
396 };
397 
398 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *state);
399 
400 /* Bkey utility code */
401 
402 #define bset_bkey_last(i)	bkey_idx((struct bkey *) (i)->d, \
403 					 (unsigned int)(i)->keys)
404 
405 static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned int idx)
406 {
407 	return bkey_idx(i->start, idx);
408 }
409 
410 static inline void bkey_init(struct bkey *k)
411 {
412 	*k = ZERO_KEY;
413 }
414 
415 static __always_inline int64_t bkey_cmp(const struct bkey *l,
416 					const struct bkey *r)
417 {
418 	return unlikely(KEY_INODE(l) != KEY_INODE(r))
419 		? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
420 		: (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
421 }
422 
423 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
424 			      unsigned int i);
425 bool __bch_cut_front(const struct bkey *where, struct bkey *k);
426 bool __bch_cut_back(const struct bkey *where, struct bkey *k);
427 
428 static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
429 {
430 	BUG_ON(bkey_cmp(where, k) > 0);
431 	return __bch_cut_front(where, k);
432 }
433 
434 static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
435 {
436 	BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
437 	return __bch_cut_back(where, k);
438 }
439 
440 /*
441  * Pointer '*preceding_key_p' points to a memory object to store preceding
442  * key of k. If the preceding key does not exist, set '*preceding_key_p' to
443  * NULL. So the caller of preceding_key() needs to take care of memory
444  * which '*preceding_key_p' pointed to before calling preceding_key().
445  * Currently the only caller of preceding_key() is bch_btree_insert_key(),
446  * and it points to an on-stack variable, so the memory release is handled
447  * by stackframe itself.
448  */
449 static inline void preceding_key(struct bkey *k, struct bkey **preceding_key_p)
450 {
451 	if (KEY_INODE(k) || KEY_OFFSET(k)) {
452 		(**preceding_key_p) = KEY(KEY_INODE(k), KEY_OFFSET(k), 0);
453 		if (!(*preceding_key_p)->low)
454 			(*preceding_key_p)->high--;
455 		(*preceding_key_p)->low--;
456 	} else {
457 		(*preceding_key_p) = NULL;
458 	}
459 }
460 
461 static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
462 {
463 	return b->ops->key_invalid(b, k);
464 }
465 
466 static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
467 {
468 	return b->ops->key_bad(b, k);
469 }
470 
471 static inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
472 				    size_t size, const struct bkey *k)
473 {
474 	return b->ops->key_to_text(buf, size, k);
475 }
476 
477 static inline bool bch_bkey_equal_header(const struct bkey *l,
478 					 const struct bkey *r)
479 {
480 	return (KEY_DIRTY(l) == KEY_DIRTY(r) &&
481 		KEY_PTRS(l) == KEY_PTRS(r) &&
482 		KEY_CSUM(l) == KEY_CSUM(r));
483 }
484 
485 /* Keylists */
486 
487 struct keylist {
488 	union {
489 		struct bkey		*keys;
490 		uint64_t		*keys_p;
491 	};
492 	union {
493 		struct bkey		*top;
494 		uint64_t		*top_p;
495 	};
496 
497 	/* Enough room for btree_split's keys without realloc */
498 #define KEYLIST_INLINE		16
499 	uint64_t		inline_keys[KEYLIST_INLINE];
500 };
501 
502 static inline void bch_keylist_init(struct keylist *l)
503 {
504 	l->top_p = l->keys_p = l->inline_keys;
505 }
506 
507 static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k)
508 {
509 	l->keys = k;
510 	l->top = bkey_next(k);
511 }
512 
513 static inline void bch_keylist_push(struct keylist *l)
514 {
515 	l->top = bkey_next(l->top);
516 }
517 
518 static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
519 {
520 	bkey_copy(l->top, k);
521 	bch_keylist_push(l);
522 }
523 
524 static inline bool bch_keylist_empty(struct keylist *l)
525 {
526 	return l->top == l->keys;
527 }
528 
529 static inline void bch_keylist_reset(struct keylist *l)
530 {
531 	l->top = l->keys;
532 }
533 
534 static inline void bch_keylist_free(struct keylist *l)
535 {
536 	if (l->keys_p != l->inline_keys)
537 		kfree(l->keys_p);
538 }
539 
540 static inline size_t bch_keylist_nkeys(struct keylist *l)
541 {
542 	return l->top_p - l->keys_p;
543 }
544 
545 static inline size_t bch_keylist_bytes(struct keylist *l)
546 {
547 	return bch_keylist_nkeys(l) * sizeof(uint64_t);
548 }
549 
550 struct bkey *bch_keylist_pop(struct keylist *l);
551 void bch_keylist_pop_front(struct keylist *l);
552 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s);
553 
554 /* Debug stuff */
555 
556 #ifdef CONFIG_BCACHE_DEBUG
557 
558 int __bch_count_data(struct btree_keys *b);
559 void __printf(2, 3) __bch_check_keys(struct btree_keys *b,
560 				     const char *fmt,
561 				     ...);
562 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
563 void bch_dump_bucket(struct btree_keys *b);
564 
565 #else
566 
567 static inline int __bch_count_data(struct btree_keys *b) { return -1; }
568 static inline void __printf(2, 3)
569 	__bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
570 static inline void bch_dump_bucket(struct btree_keys *b) {}
571 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
572 
573 #endif
574 
575 static inline bool btree_keys_expensive_checks(struct btree_keys *b)
576 {
577 #ifdef CONFIG_BCACHE_DEBUG
578 	return *b->expensive_debug_checks;
579 #else
580 	return false;
581 #endif
582 }
583 
584 static inline int bch_count_data(struct btree_keys *b)
585 {
586 	return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
587 }
588 
589 #define bch_check_keys(b, ...)						\
590 do {									\
591 	if (btree_keys_expensive_checks(b))				\
592 		__bch_check_keys(b, __VA_ARGS__);			\
593 } while (0)
594 
595 #endif
596