1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHE_BSET_H 3 #define _BCACHE_BSET_H 4 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 8 #include "bcache_ondisk.h" 9 #include "util.h" /* for time_stats */ 10 11 /* 12 * BKEYS: 13 * 14 * A bkey contains a key, a size field, a variable number of pointers, and some 15 * ancillary flag bits. 16 * 17 * We use two different functions for validating bkeys, bch_ptr_invalid and 18 * bch_ptr_bad(). 19 * 20 * bch_ptr_invalid() primarily filters out keys and pointers that would be 21 * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and 22 * pointer that occur in normal practice but don't point to real data. 23 * 24 * The one exception to the rule that ptr_invalid() filters out invalid keys is 25 * that it also filters out keys of size 0 - these are keys that have been 26 * completely overwritten. It'd be safe to delete these in memory while leaving 27 * them on disk, just unnecessary work - so we filter them out when resorting 28 * instead. 29 * 30 * We can't filter out stale keys when we're resorting, because garbage 31 * collection needs to find them to ensure bucket gens don't wrap around - 32 * unless we're rewriting the btree node those stale keys still exist on disk. 33 * 34 * We also implement functions here for removing some number of sectors from the 35 * front or the back of a bkey - this is mainly used for fixing overlapping 36 * extents, by removing the overlapping sectors from the older key. 37 * 38 * BSETS: 39 * 40 * A bset is an array of bkeys laid out contiguously in memory in sorted order, 41 * along with a header. A btree node is made up of a number of these, written at 42 * different times. 43 * 44 * There could be many of them on disk, but we never allow there to be more than 45 * 4 in memory - we lazily resort as needed. 46 * 47 * We implement code here for creating and maintaining auxiliary search trees 48 * (described below) for searching an individial bset, and on top of that we 49 * implement a btree iterator. 50 * 51 * BTREE ITERATOR: 52 * 53 * Most of the code in bcache doesn't care about an individual bset - it needs 54 * to search entire btree nodes and iterate over them in sorted order. 55 * 56 * The btree iterator code serves both functions; it iterates through the keys 57 * in a btree node in sorted order, starting from either keys after a specific 58 * point (if you pass it a search key) or the start of the btree node. 59 * 60 * AUXILIARY SEARCH TREES: 61 * 62 * Since keys are variable length, we can't use a binary search on a bset - we 63 * wouldn't be able to find the start of the next key. But binary searches are 64 * slow anyways, due to terrible cache behaviour; bcache originally used binary 65 * searches and that code topped out at under 50k lookups/second. 66 * 67 * So we need to construct some sort of lookup table. Since we only insert keys 68 * into the last (unwritten) set, most of the keys within a given btree node are 69 * usually in sets that are mostly constant. We use two different types of 70 * lookup tables to take advantage of this. 71 * 72 * Both lookup tables share in common that they don't index every key in the 73 * set; they index one key every BSET_CACHELINE bytes, and then a linear search 74 * is used for the rest. 75 * 76 * For sets that have been written to disk and are no longer being inserted 77 * into, we construct a binary search tree in an array - traversing a binary 78 * search tree in an array gives excellent locality of reference and is very 79 * fast, since both children of any node are adjacent to each other in memory 80 * (and their grandchildren, and great grandchildren...) - this means 81 * prefetching can be used to great effect. 82 * 83 * It's quite useful performance wise to keep these nodes small - not just 84 * because they're more likely to be in L2, but also because we can prefetch 85 * more nodes on a single cacheline and thus prefetch more iterations in advance 86 * when traversing this tree. 87 * 88 * Nodes in the auxiliary search tree must contain both a key to compare against 89 * (we don't want to fetch the key from the set, that would defeat the purpose), 90 * and a pointer to the key. We use a few tricks to compress both of these. 91 * 92 * To compress the pointer, we take advantage of the fact that one node in the 93 * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have 94 * a function (to_inorder()) that takes the index of a node in a binary tree and 95 * returns what its index would be in an inorder traversal, so we only have to 96 * store the low bits of the offset. 97 * 98 * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To 99 * compress that, we take advantage of the fact that when we're traversing the 100 * search tree at every iteration we know that both our search key and the key 101 * we're looking for lie within some range - bounded by our previous 102 * comparisons. (We special case the start of a search so that this is true even 103 * at the root of the tree). 104 * 105 * So we know the key we're looking for is between a and b, and a and b don't 106 * differ higher than bit 50, we don't need to check anything higher than bit 107 * 50. 108 * 109 * We don't usually need the rest of the bits, either; we only need enough bits 110 * to partition the key range we're currently checking. Consider key n - the 111 * key our auxiliary search tree node corresponds to, and key p, the key 112 * immediately preceding n. The lowest bit we need to store in the auxiliary 113 * search tree is the highest bit that differs between n and p. 114 * 115 * Note that this could be bit 0 - we might sometimes need all 80 bits to do the 116 * comparison. But we'd really like our nodes in the auxiliary search tree to be 117 * of fixed size. 118 * 119 * The solution is to make them fixed size, and when we're constructing a node 120 * check if p and n differed in the bits we needed them to. If they don't we 121 * flag that node, and when doing lookups we fallback to comparing against the 122 * real key. As long as this doesn't happen to often (and it seems to reliably 123 * happen a bit less than 1% of the time), we win - even on failures, that key 124 * is then more likely to be in cache than if we were doing binary searches all 125 * the way, since we're touching so much less memory. 126 * 127 * The keys in the auxiliary search tree are stored in (software) floating 128 * point, with an exponent and a mantissa. The exponent needs to be big enough 129 * to address all the bits in the original key, but the number of bits in the 130 * mantissa is somewhat arbitrary; more bits just gets us fewer failures. 131 * 132 * We need 7 bits for the exponent and 3 bits for the key's offset (since keys 133 * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes. 134 * We need one node per 128 bytes in the btree node, which means the auxiliary 135 * search trees take up 3% as much memory as the btree itself. 136 * 137 * Constructing these auxiliary search trees is moderately expensive, and we 138 * don't want to be constantly rebuilding the search tree for the last set 139 * whenever we insert another key into it. For the unwritten set, we use a much 140 * simpler lookup table - it's just a flat array, so index i in the lookup table 141 * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing 142 * within each byte range works the same as with the auxiliary search trees. 143 * 144 * These are much easier to keep up to date when we insert a key - we do it 145 * somewhat lazily; when we shift a key up we usually just increment the pointer 146 * to it, only when it would overflow do we go to the trouble of finding the 147 * first key in that range of bytes again. 148 */ 149 150 struct btree_keys; 151 struct btree_iter; 152 struct btree_iter_set; 153 struct bkey_float; 154 155 #define MAX_BSETS 4U 156 157 struct bset_tree { 158 /* 159 * We construct a binary tree in an array as if the array 160 * started at 1, so that things line up on the same cachelines 161 * better: see comments in bset.c at cacheline_to_bkey() for 162 * details 163 */ 164 165 /* size of the binary tree and prev array */ 166 unsigned int size; 167 168 /* function of size - precalculated for to_inorder() */ 169 unsigned int extra; 170 171 /* copy of the last key in the set */ 172 struct bkey end; 173 struct bkey_float *tree; 174 175 /* 176 * The nodes in the bset tree point to specific keys - this 177 * array holds the sizes of the previous key. 178 * 179 * Conceptually it's a member of struct bkey_float, but we want 180 * to keep bkey_float to 4 bytes and prev isn't used in the fast 181 * path. 182 */ 183 uint8_t *prev; 184 185 /* The actual btree node, with pointers to each sorted set */ 186 struct bset *data; 187 }; 188 189 struct btree_keys_ops { 190 bool (*sort_cmp)(const void *l, 191 const void *r, 192 void *args); 193 struct bkey *(*sort_fixup)(struct btree_iter *iter, 194 struct bkey *tmp); 195 bool (*insert_fixup)(struct btree_keys *b, 196 struct bkey *insert, 197 struct btree_iter *iter, 198 struct bkey *replace_key); 199 bool (*key_invalid)(struct btree_keys *bk, 200 const struct bkey *k); 201 bool (*key_bad)(struct btree_keys *bk, 202 const struct bkey *k); 203 bool (*key_merge)(struct btree_keys *bk, 204 struct bkey *l, struct bkey *r); 205 void (*key_to_text)(char *buf, 206 size_t size, 207 const struct bkey *k); 208 void (*key_dump)(struct btree_keys *keys, 209 const struct bkey *k); 210 211 /* 212 * Only used for deciding whether to use START_KEY(k) or just the key 213 * itself in a couple places 214 */ 215 bool is_extents; 216 }; 217 218 struct btree_keys { 219 const struct btree_keys_ops *ops; 220 uint8_t page_order; 221 uint8_t nsets; 222 unsigned int last_set_unwritten:1; 223 bool *expensive_debug_checks; 224 225 /* 226 * Sets of sorted keys - the real btree node - plus a binary search tree 227 * 228 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point 229 * to the memory we have allocated for this btree node. Additionally, 230 * set[0]->data points to the entire btree node as it exists on disk. 231 */ 232 struct bset_tree set[MAX_BSETS]; 233 }; 234 235 static inline struct bset_tree *bset_tree_last(struct btree_keys *b) 236 { 237 return b->set + b->nsets; 238 } 239 240 static inline bool bset_written(struct btree_keys *b, struct bset_tree *t) 241 { 242 return t <= b->set + b->nsets - b->last_set_unwritten; 243 } 244 245 static inline bool bkey_written(struct btree_keys *b, struct bkey *k) 246 { 247 return !b->last_set_unwritten || k < b->set[b->nsets].data->start; 248 } 249 250 static inline unsigned int bset_byte_offset(struct btree_keys *b, 251 struct bset *i) 252 { 253 return ((size_t) i) - ((size_t) b->set->data); 254 } 255 256 static inline unsigned int bset_sector_offset(struct btree_keys *b, 257 struct bset *i) 258 { 259 return bset_byte_offset(b, i) >> 9; 260 } 261 262 #define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t)) 263 #define set_bytes(i) __set_bytes(i, i->keys) 264 265 #define __set_blocks(i, k, block_bytes) \ 266 DIV_ROUND_UP(__set_bytes(i, k), block_bytes) 267 #define set_blocks(i, block_bytes) \ 268 __set_blocks(i, (i)->keys, block_bytes) 269 270 static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b) 271 { 272 struct bset_tree *t = bset_tree_last(b); 273 274 BUG_ON((PAGE_SIZE << b->page_order) < 275 (bset_byte_offset(b, t->data) + set_bytes(t->data))); 276 277 if (!b->last_set_unwritten) 278 return 0; 279 280 return ((PAGE_SIZE << b->page_order) - 281 (bset_byte_offset(b, t->data) + set_bytes(t->data))) / 282 sizeof(u64); 283 } 284 285 static inline struct bset *bset_next_set(struct btree_keys *b, 286 unsigned int block_bytes) 287 { 288 struct bset *i = bset_tree_last(b)->data; 289 290 return ((void *) i) + roundup(set_bytes(i), block_bytes); 291 } 292 293 void bch_btree_keys_free(struct btree_keys *b); 294 int bch_btree_keys_alloc(struct btree_keys *b, unsigned int page_order, 295 gfp_t gfp); 296 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops, 297 bool *expensive_debug_checks); 298 299 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic); 300 void bch_bset_build_written_tree(struct btree_keys *b); 301 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k); 302 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r); 303 void bch_bset_insert(struct btree_keys *b, struct bkey *where, 304 struct bkey *insert); 305 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k, 306 struct bkey *replace_key); 307 308 enum { 309 BTREE_INSERT_STATUS_NO_INSERT = 0, 310 BTREE_INSERT_STATUS_INSERT, 311 BTREE_INSERT_STATUS_BACK_MERGE, 312 BTREE_INSERT_STATUS_OVERWROTE, 313 BTREE_INSERT_STATUS_FRONT_MERGE, 314 }; 315 316 struct btree_iter_set { 317 struct bkey *k, *end; 318 }; 319 320 /* Btree key iteration */ 321 322 struct btree_iter { 323 #ifdef CONFIG_BCACHE_DEBUG 324 struct btree_keys *b; 325 #endif 326 MIN_HEAP_PREALLOCATED(struct btree_iter_set, btree_iter_heap, MAX_BSETS) heap; 327 }; 328 329 typedef bool (*ptr_filter_fn)(struct btree_keys *b, const struct bkey *k); 330 331 struct bkey *bch_btree_iter_next(struct btree_iter *iter); 332 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, 333 struct btree_keys *b, 334 ptr_filter_fn fn); 335 336 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, 337 struct bkey *end); 338 struct bkey *bch_btree_iter_init(struct btree_keys *b, 339 struct btree_iter *iter, 340 struct bkey *search); 341 342 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, 343 const struct bkey *search); 344 345 /* 346 * Returns the first key that is strictly greater than search 347 */ 348 static inline struct bkey *bch_bset_search(struct btree_keys *b, 349 struct bset_tree *t, 350 const struct bkey *search) 351 { 352 return search ? __bch_bset_search(b, t, search) : t->data->start; 353 } 354 355 #define for_each_key_filter(b, k, iter, filter) \ 356 for (bch_btree_iter_init((b), (iter), NULL); \ 357 ((k) = bch_btree_iter_next_filter((iter), (b), filter));) 358 359 #define for_each_key(b, k, iter) \ 360 for (bch_btree_iter_init((b), (iter), NULL); \ 361 ((k) = bch_btree_iter_next(iter));) 362 363 /* Sorting */ 364 365 struct bset_sort_state { 366 mempool_t pool; 367 368 unsigned int page_order; 369 unsigned int crit_factor; 370 371 struct time_stats time; 372 }; 373 374 void bch_bset_sort_state_free(struct bset_sort_state *state); 375 int bch_bset_sort_state_init(struct bset_sort_state *state, 376 unsigned int page_order); 377 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state); 378 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new, 379 struct bset_sort_state *state); 380 void bch_btree_sort_and_fix_extents(struct btree_keys *b, 381 struct btree_iter *iter, 382 struct bset_sort_state *state); 383 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start, 384 struct bset_sort_state *state); 385 386 static inline void bch_btree_sort(struct btree_keys *b, 387 struct bset_sort_state *state) 388 { 389 bch_btree_sort_partial(b, 0, state); 390 } 391 392 struct bset_stats { 393 size_t sets_written, sets_unwritten; 394 size_t bytes_written, bytes_unwritten; 395 size_t floats, failed; 396 }; 397 398 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *state); 399 400 /* Bkey utility code */ 401 402 #define bset_bkey_last(i) bkey_idx((struct bkey *) (i)->d, \ 403 (unsigned int)(i)->keys) 404 405 static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned int idx) 406 { 407 return bkey_idx(i->start, idx); 408 } 409 410 static inline void bkey_init(struct bkey *k) 411 { 412 *k = ZERO_KEY; 413 } 414 415 static __always_inline int64_t bkey_cmp(const struct bkey *l, 416 const struct bkey *r) 417 { 418 return unlikely(KEY_INODE(l) != KEY_INODE(r)) 419 ? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r) 420 : (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r); 421 } 422 423 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, 424 unsigned int i); 425 bool __bch_cut_front(const struct bkey *where, struct bkey *k); 426 bool __bch_cut_back(const struct bkey *where, struct bkey *k); 427 428 static inline bool bch_cut_front(const struct bkey *where, struct bkey *k) 429 { 430 BUG_ON(bkey_cmp(where, k) > 0); 431 return __bch_cut_front(where, k); 432 } 433 434 static inline bool bch_cut_back(const struct bkey *where, struct bkey *k) 435 { 436 BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0); 437 return __bch_cut_back(where, k); 438 } 439 440 /* 441 * Pointer '*preceding_key_p' points to a memory object to store preceding 442 * key of k. If the preceding key does not exist, set '*preceding_key_p' to 443 * NULL. So the caller of preceding_key() needs to take care of memory 444 * which '*preceding_key_p' pointed to before calling preceding_key(). 445 * Currently the only caller of preceding_key() is bch_btree_insert_key(), 446 * and it points to an on-stack variable, so the memory release is handled 447 * by stackframe itself. 448 */ 449 static inline void preceding_key(struct bkey *k, struct bkey **preceding_key_p) 450 { 451 if (KEY_INODE(k) || KEY_OFFSET(k)) { 452 (**preceding_key_p) = KEY(KEY_INODE(k), KEY_OFFSET(k), 0); 453 if (!(*preceding_key_p)->low) 454 (*preceding_key_p)->high--; 455 (*preceding_key_p)->low--; 456 } else { 457 (*preceding_key_p) = NULL; 458 } 459 } 460 461 static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k) 462 { 463 return b->ops->key_invalid(b, k); 464 } 465 466 static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k) 467 { 468 return b->ops->key_bad(b, k); 469 } 470 471 static inline void bch_bkey_to_text(struct btree_keys *b, char *buf, 472 size_t size, const struct bkey *k) 473 { 474 return b->ops->key_to_text(buf, size, k); 475 } 476 477 static inline bool bch_bkey_equal_header(const struct bkey *l, 478 const struct bkey *r) 479 { 480 return (KEY_DIRTY(l) == KEY_DIRTY(r) && 481 KEY_PTRS(l) == KEY_PTRS(r) && 482 KEY_CSUM(l) == KEY_CSUM(r)); 483 } 484 485 /* Keylists */ 486 487 struct keylist { 488 union { 489 struct bkey *keys; 490 uint64_t *keys_p; 491 }; 492 union { 493 struct bkey *top; 494 uint64_t *top_p; 495 }; 496 497 /* Enough room for btree_split's keys without realloc */ 498 #define KEYLIST_INLINE 16 499 uint64_t inline_keys[KEYLIST_INLINE]; 500 }; 501 502 static inline void bch_keylist_init(struct keylist *l) 503 { 504 l->top_p = l->keys_p = l->inline_keys; 505 } 506 507 static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k) 508 { 509 l->keys = k; 510 l->top = bkey_next(k); 511 } 512 513 static inline void bch_keylist_push(struct keylist *l) 514 { 515 l->top = bkey_next(l->top); 516 } 517 518 static inline void bch_keylist_add(struct keylist *l, struct bkey *k) 519 { 520 bkey_copy(l->top, k); 521 bch_keylist_push(l); 522 } 523 524 static inline bool bch_keylist_empty(struct keylist *l) 525 { 526 return l->top == l->keys; 527 } 528 529 static inline void bch_keylist_reset(struct keylist *l) 530 { 531 l->top = l->keys; 532 } 533 534 static inline void bch_keylist_free(struct keylist *l) 535 { 536 if (l->keys_p != l->inline_keys) 537 kfree(l->keys_p); 538 } 539 540 static inline size_t bch_keylist_nkeys(struct keylist *l) 541 { 542 return l->top_p - l->keys_p; 543 } 544 545 static inline size_t bch_keylist_bytes(struct keylist *l) 546 { 547 return bch_keylist_nkeys(l) * sizeof(uint64_t); 548 } 549 550 struct bkey *bch_keylist_pop(struct keylist *l); 551 void bch_keylist_pop_front(struct keylist *l); 552 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s); 553 554 /* Debug stuff */ 555 556 #ifdef CONFIG_BCACHE_DEBUG 557 558 int __bch_count_data(struct btree_keys *b); 559 void __printf(2, 3) __bch_check_keys(struct btree_keys *b, 560 const char *fmt, 561 ...); 562 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set); 563 void bch_dump_bucket(struct btree_keys *b); 564 565 #else 566 567 static inline int __bch_count_data(struct btree_keys *b) { return -1; } 568 static inline void __printf(2, 3) 569 __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {} 570 static inline void bch_dump_bucket(struct btree_keys *b) {} 571 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set); 572 573 #endif 574 575 static inline bool btree_keys_expensive_checks(struct btree_keys *b) 576 { 577 #ifdef CONFIG_BCACHE_DEBUG 578 return *b->expensive_debug_checks; 579 #else 580 return false; 581 #endif 582 } 583 584 static inline int bch_count_data(struct btree_keys *b) 585 { 586 return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1; 587 } 588 589 #define bch_check_keys(b, ...) \ 590 do { \ 591 if (btree_keys_expensive_checks(b)) \ 592 __bch_check_keys(b, __VA_ARGS__); \ 593 } while (0) 594 595 #endif 596