1 /* 2 * Code for working with individual keys, and sorted sets of keys with in a 3 * btree node 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 12 #include <linux/random.h> 13 #include <linux/prefetch.h> 14 15 /* Keylists */ 16 17 void bch_keylist_copy(struct keylist *dest, struct keylist *src) 18 { 19 *dest = *src; 20 21 if (src->list == src->d) { 22 size_t n = (uint64_t *) src->top - src->d; 23 dest->top = (struct bkey *) &dest->d[n]; 24 dest->list = dest->d; 25 } 26 } 27 28 int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c) 29 { 30 unsigned oldsize = (uint64_t *) l->top - l->list; 31 unsigned newsize = oldsize + 2 + nptrs; 32 uint64_t *new; 33 34 /* The journalling code doesn't handle the case where the keys to insert 35 * is bigger than an empty write: If we just return -ENOMEM here, 36 * bio_insert() and bio_invalidate() will insert the keys created so far 37 * and finish the rest when the keylist is empty. 38 */ 39 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 40 return -ENOMEM; 41 42 newsize = roundup_pow_of_two(newsize); 43 44 if (newsize <= KEYLIST_INLINE || 45 roundup_pow_of_two(oldsize) == newsize) 46 return 0; 47 48 new = krealloc(l->list == l->d ? NULL : l->list, 49 sizeof(uint64_t) * newsize, GFP_NOIO); 50 51 if (!new) 52 return -ENOMEM; 53 54 if (l->list == l->d) 55 memcpy(new, l->list, sizeof(uint64_t) * KEYLIST_INLINE); 56 57 l->list = new; 58 l->top = (struct bkey *) (&l->list[oldsize]); 59 60 return 0; 61 } 62 63 struct bkey *bch_keylist_pop(struct keylist *l) 64 { 65 struct bkey *k = l->bottom; 66 67 if (k == l->top) 68 return NULL; 69 70 while (bkey_next(k) != l->top) 71 k = bkey_next(k); 72 73 return l->top = k; 74 } 75 76 /* Pointer validation */ 77 78 bool __bch_ptr_invalid(struct cache_set *c, int level, const struct bkey *k) 79 { 80 unsigned i; 81 82 if (level && (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))) 83 goto bad; 84 85 if (!level && KEY_SIZE(k) > KEY_OFFSET(k)) 86 goto bad; 87 88 if (!KEY_SIZE(k)) 89 return true; 90 91 for (i = 0; i < KEY_PTRS(k); i++) 92 if (ptr_available(c, k, i)) { 93 struct cache *ca = PTR_CACHE(c, k, i); 94 size_t bucket = PTR_BUCKET_NR(c, k, i); 95 size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); 96 97 if (KEY_SIZE(k) + r > c->sb.bucket_size || 98 bucket < ca->sb.first_bucket || 99 bucket >= ca->sb.nbuckets) 100 goto bad; 101 } 102 103 return false; 104 bad: 105 cache_bug(c, "spotted bad key %s: %s", pkey(k), bch_ptr_status(c, k)); 106 return true; 107 } 108 109 bool bch_ptr_bad(struct btree *b, const struct bkey *k) 110 { 111 struct bucket *g; 112 unsigned i, stale; 113 114 if (!bkey_cmp(k, &ZERO_KEY) || 115 !KEY_PTRS(k) || 116 bch_ptr_invalid(b, k)) 117 return true; 118 119 if (KEY_PTRS(k) && PTR_DEV(k, 0) == PTR_CHECK_DEV) 120 return true; 121 122 for (i = 0; i < KEY_PTRS(k); i++) 123 if (ptr_available(b->c, k, i)) { 124 g = PTR_BUCKET(b->c, k, i); 125 stale = ptr_stale(b->c, k, i); 126 127 btree_bug_on(stale > 96, b, 128 "key too stale: %i, need_gc %u", 129 stale, b->c->need_gc); 130 131 btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k), 132 b, "stale dirty pointer"); 133 134 if (stale) 135 return true; 136 137 #ifdef CONFIG_BCACHE_EDEBUG 138 if (!mutex_trylock(&b->c->bucket_lock)) 139 continue; 140 141 if (b->level) { 142 if (KEY_DIRTY(k) || 143 g->prio != BTREE_PRIO || 144 (b->c->gc_mark_valid && 145 GC_MARK(g) != GC_MARK_METADATA)) 146 goto bug; 147 148 } else { 149 if (g->prio == BTREE_PRIO) 150 goto bug; 151 152 if (KEY_DIRTY(k) && 153 b->c->gc_mark_valid && 154 GC_MARK(g) != GC_MARK_DIRTY) 155 goto bug; 156 } 157 mutex_unlock(&b->c->bucket_lock); 158 #endif 159 } 160 161 return false; 162 #ifdef CONFIG_BCACHE_EDEBUG 163 bug: 164 mutex_unlock(&b->c->bucket_lock); 165 btree_bug(b, 166 "inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i", 167 pkey(k), PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin), 168 g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen); 169 return true; 170 #endif 171 } 172 173 /* Key/pointer manipulation */ 174 175 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, 176 unsigned i) 177 { 178 BUG_ON(i > KEY_PTRS(src)); 179 180 /* Only copy the header, key, and one pointer. */ 181 memcpy(dest, src, 2 * sizeof(uint64_t)); 182 dest->ptr[0] = src->ptr[i]; 183 SET_KEY_PTRS(dest, 1); 184 /* We didn't copy the checksum so clear that bit. */ 185 SET_KEY_CSUM(dest, 0); 186 } 187 188 bool __bch_cut_front(const struct bkey *where, struct bkey *k) 189 { 190 unsigned i, len = 0; 191 192 if (bkey_cmp(where, &START_KEY(k)) <= 0) 193 return false; 194 195 if (bkey_cmp(where, k) < 0) 196 len = KEY_OFFSET(k) - KEY_OFFSET(where); 197 else 198 bkey_copy_key(k, where); 199 200 for (i = 0; i < KEY_PTRS(k); i++) 201 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); 202 203 BUG_ON(len > KEY_SIZE(k)); 204 SET_KEY_SIZE(k, len); 205 return true; 206 } 207 208 bool __bch_cut_back(const struct bkey *where, struct bkey *k) 209 { 210 unsigned len = 0; 211 212 if (bkey_cmp(where, k) >= 0) 213 return false; 214 215 BUG_ON(KEY_INODE(where) != KEY_INODE(k)); 216 217 if (bkey_cmp(where, &START_KEY(k)) > 0) 218 len = KEY_OFFSET(where) - KEY_START(k); 219 220 bkey_copy_key(k, where); 221 222 BUG_ON(len > KEY_SIZE(k)); 223 SET_KEY_SIZE(k, len); 224 return true; 225 } 226 227 static uint64_t merge_chksums(struct bkey *l, struct bkey *r) 228 { 229 return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) & 230 ~((uint64_t)1 << 63); 231 } 232 233 /* Tries to merge l and r: l should be lower than r 234 * Returns true if we were able to merge. If we did merge, l will be the merged 235 * key, r will be untouched. 236 */ 237 bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r) 238 { 239 unsigned i; 240 241 if (key_merging_disabled(b->c)) 242 return false; 243 244 if (KEY_PTRS(l) != KEY_PTRS(r) || 245 KEY_DIRTY(l) != KEY_DIRTY(r) || 246 bkey_cmp(l, &START_KEY(r))) 247 return false; 248 249 for (i = 0; i < KEY_PTRS(l); i++) 250 if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || 251 PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) 252 return false; 253 254 /* Keys with no pointers aren't restricted to one bucket and could 255 * overflow KEY_SIZE 256 */ 257 if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) { 258 SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l)); 259 SET_KEY_SIZE(l, USHRT_MAX); 260 261 bch_cut_front(l, r); 262 return false; 263 } 264 265 if (KEY_CSUM(l)) { 266 if (KEY_CSUM(r)) 267 l->ptr[KEY_PTRS(l)] = merge_chksums(l, r); 268 else 269 SET_KEY_CSUM(l, 0); 270 } 271 272 SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r)); 273 SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r)); 274 275 return true; 276 } 277 278 /* Binary tree stuff for auxiliary search trees */ 279 280 static unsigned inorder_next(unsigned j, unsigned size) 281 { 282 if (j * 2 + 1 < size) { 283 j = j * 2 + 1; 284 285 while (j * 2 < size) 286 j *= 2; 287 } else 288 j >>= ffz(j) + 1; 289 290 return j; 291 } 292 293 static unsigned inorder_prev(unsigned j, unsigned size) 294 { 295 if (j * 2 < size) { 296 j = j * 2; 297 298 while (j * 2 + 1 < size) 299 j = j * 2 + 1; 300 } else 301 j >>= ffs(j); 302 303 return j; 304 } 305 306 /* I have no idea why this code works... and I'm the one who wrote it 307 * 308 * However, I do know what it does: 309 * Given a binary tree constructed in an array (i.e. how you normally implement 310 * a heap), it converts a node in the tree - referenced by array index - to the 311 * index it would have if you did an inorder traversal. 312 * 313 * Also tested for every j, size up to size somewhere around 6 million. 314 * 315 * The binary tree starts at array index 1, not 0 316 * extra is a function of size: 317 * extra = (size - rounddown_pow_of_two(size - 1)) << 1; 318 */ 319 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) 320 { 321 unsigned b = fls(j); 322 unsigned shift = fls(size - 1) - b; 323 324 j ^= 1U << (b - 1); 325 j <<= 1; 326 j |= 1; 327 j <<= shift; 328 329 if (j > extra) 330 j -= (j - extra) >> 1; 331 332 return j; 333 } 334 335 static unsigned to_inorder(unsigned j, struct bset_tree *t) 336 { 337 return __to_inorder(j, t->size, t->extra); 338 } 339 340 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) 341 { 342 unsigned shift; 343 344 if (j > extra) 345 j += j - extra; 346 347 shift = ffs(j); 348 349 j >>= shift; 350 j |= roundup_pow_of_two(size) >> shift; 351 352 return j; 353 } 354 355 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) 356 { 357 return __inorder_to_tree(j, t->size, t->extra); 358 } 359 360 #if 0 361 void inorder_test(void) 362 { 363 unsigned long done = 0; 364 ktime_t start = ktime_get(); 365 366 for (unsigned size = 2; 367 size < 65536000; 368 size++) { 369 unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; 370 unsigned i = 1, j = rounddown_pow_of_two(size - 1); 371 372 if (!(size % 4096)) 373 printk(KERN_NOTICE "loop %u, %llu per us\n", size, 374 done / ktime_us_delta(ktime_get(), start)); 375 376 while (1) { 377 if (__inorder_to_tree(i, size, extra) != j) 378 panic("size %10u j %10u i %10u", size, j, i); 379 380 if (__to_inorder(j, size, extra) != i) 381 panic("size %10u j %10u i %10u", size, j, i); 382 383 if (j == rounddown_pow_of_two(size) - 1) 384 break; 385 386 BUG_ON(inorder_prev(inorder_next(j, size), size) != j); 387 388 j = inorder_next(j, size); 389 i++; 390 } 391 392 done += size - 1; 393 } 394 } 395 #endif 396 397 /* 398 * Cacheline/offset <-> bkey pointer arithmetic: 399 * 400 * t->tree is a binary search tree in an array; each node corresponds to a key 401 * in one cacheline in t->set (BSET_CACHELINE bytes). 402 * 403 * This means we don't have to store the full index of the key that a node in 404 * the binary tree points to; to_inorder() gives us the cacheline, and then 405 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. 406 * 407 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 408 * make this work. 409 * 410 * To construct the bfloat for an arbitrary key we need to know what the key 411 * immediately preceding it is: we have to check if the two keys differ in the 412 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 413 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 414 */ 415 416 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, 417 unsigned offset) 418 { 419 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; 420 } 421 422 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) 423 { 424 return ((void *) k - (void *) t->data) / BSET_CACHELINE; 425 } 426 427 static unsigned bkey_to_cacheline_offset(struct bkey *k) 428 { 429 return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t); 430 } 431 432 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) 433 { 434 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); 435 } 436 437 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) 438 { 439 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); 440 } 441 442 /* 443 * For the write set - the one we're currently inserting keys into - we don't 444 * maintain a full search tree, we just keep a simple lookup table in t->prev. 445 */ 446 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) 447 { 448 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); 449 } 450 451 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) 452 { 453 #ifdef CONFIG_X86_64 454 asm("shrd %[shift],%[high],%[low]" 455 : [low] "+Rm" (low) 456 : [high] "R" (high), 457 [shift] "ci" (shift) 458 : "cc"); 459 #else 460 low >>= shift; 461 low |= (high << 1) << (63U - shift); 462 #endif 463 return low; 464 } 465 466 static inline unsigned bfloat_mantissa(const struct bkey *k, 467 struct bkey_float *f) 468 { 469 const uint64_t *p = &k->low - (f->exponent >> 6); 470 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; 471 } 472 473 static void make_bfloat(struct bset_tree *t, unsigned j) 474 { 475 struct bkey_float *f = &t->tree[j]; 476 struct bkey *m = tree_to_bkey(t, j); 477 struct bkey *p = tree_to_prev_bkey(t, j); 478 479 struct bkey *l = is_power_of_2(j) 480 ? t->data->start 481 : tree_to_prev_bkey(t, j >> ffs(j)); 482 483 struct bkey *r = is_power_of_2(j + 1) 484 ? node(t->data, t->data->keys - bkey_u64s(&t->end)) 485 : tree_to_bkey(t, j >> (ffz(j) + 1)); 486 487 BUG_ON(m < l || m > r); 488 BUG_ON(bkey_next(p) != m); 489 490 if (KEY_INODE(l) != KEY_INODE(r)) 491 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; 492 else 493 f->exponent = fls64(r->low ^ l->low); 494 495 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); 496 497 /* 498 * Setting f->exponent = 127 flags this node as failed, and causes the 499 * lookup code to fall back to comparing against the original key. 500 */ 501 502 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) 503 f->mantissa = bfloat_mantissa(m, f) - 1; 504 else 505 f->exponent = 127; 506 } 507 508 static void bset_alloc_tree(struct btree *b, struct bset_tree *t) 509 { 510 if (t != b->sets) { 511 unsigned j = roundup(t[-1].size, 512 64 / sizeof(struct bkey_float)); 513 514 t->tree = t[-1].tree + j; 515 t->prev = t[-1].prev + j; 516 } 517 518 while (t < b->sets + MAX_BSETS) 519 t++->size = 0; 520 } 521 522 static void bset_build_unwritten_tree(struct btree *b) 523 { 524 struct bset_tree *t = b->sets + b->nsets; 525 526 bset_alloc_tree(b, t); 527 528 if (t->tree != b->sets->tree + bset_tree_space(b)) { 529 t->prev[0] = bkey_to_cacheline_offset(t->data->start); 530 t->size = 1; 531 } 532 } 533 534 static void bset_build_written_tree(struct btree *b) 535 { 536 struct bset_tree *t = b->sets + b->nsets; 537 struct bkey *k = t->data->start; 538 unsigned j, cacheline = 1; 539 540 bset_alloc_tree(b, t); 541 542 t->size = min_t(unsigned, 543 bkey_to_cacheline(t, end(t->data)), 544 b->sets->tree + bset_tree_space(b) - t->tree); 545 546 if (t->size < 2) { 547 t->size = 0; 548 return; 549 } 550 551 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; 552 553 /* First we figure out where the first key in each cacheline is */ 554 for (j = inorder_next(0, t->size); 555 j; 556 j = inorder_next(j, t->size)) { 557 while (bkey_to_cacheline(t, k) != cacheline) 558 k = bkey_next(k); 559 560 t->prev[j] = bkey_u64s(k); 561 k = bkey_next(k); 562 cacheline++; 563 t->tree[j].m = bkey_to_cacheline_offset(k); 564 } 565 566 while (bkey_next(k) != end(t->data)) 567 k = bkey_next(k); 568 569 t->end = *k; 570 571 /* Then we build the tree */ 572 for (j = inorder_next(0, t->size); 573 j; 574 j = inorder_next(j, t->size)) 575 make_bfloat(t, j); 576 } 577 578 void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k) 579 { 580 struct bset_tree *t; 581 unsigned inorder, j = 1; 582 583 for (t = b->sets; t <= &b->sets[b->nsets]; t++) 584 if (k < end(t->data)) 585 goto found_set; 586 587 BUG(); 588 found_set: 589 if (!t->size || !bset_written(b, t)) 590 return; 591 592 inorder = bkey_to_cacheline(t, k); 593 594 if (k == t->data->start) 595 goto fix_left; 596 597 if (bkey_next(k) == end(t->data)) { 598 t->end = *k; 599 goto fix_right; 600 } 601 602 j = inorder_to_tree(inorder, t); 603 604 if (j && 605 j < t->size && 606 k == tree_to_bkey(t, j)) 607 fix_left: do { 608 make_bfloat(t, j); 609 j = j * 2; 610 } while (j < t->size); 611 612 j = inorder_to_tree(inorder + 1, t); 613 614 if (j && 615 j < t->size && 616 k == tree_to_prev_bkey(t, j)) 617 fix_right: do { 618 make_bfloat(t, j); 619 j = j * 2 + 1; 620 } while (j < t->size); 621 } 622 623 void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k) 624 { 625 struct bset_tree *t = &b->sets[b->nsets]; 626 unsigned shift = bkey_u64s(k); 627 unsigned j = bkey_to_cacheline(t, k); 628 629 /* We're getting called from btree_split() or btree_gc, just bail out */ 630 if (!t->size) 631 return; 632 633 /* k is the key we just inserted; we need to find the entry in the 634 * lookup table for the first key that is strictly greater than k: 635 * it's either k's cacheline or the next one 636 */ 637 if (j < t->size && 638 table_to_bkey(t, j) <= k) 639 j++; 640 641 /* Adjust all the lookup table entries, and find a new key for any that 642 * have gotten too big 643 */ 644 for (; j < t->size; j++) { 645 t->prev[j] += shift; 646 647 if (t->prev[j] > 7) { 648 k = table_to_bkey(t, j - 1); 649 650 while (k < cacheline_to_bkey(t, j, 0)) 651 k = bkey_next(k); 652 653 t->prev[j] = bkey_to_cacheline_offset(k); 654 } 655 } 656 657 if (t->size == b->sets->tree + bset_tree_space(b) - t->tree) 658 return; 659 660 /* Possibly add a new entry to the end of the lookup table */ 661 662 for (k = table_to_bkey(t, t->size - 1); 663 k != end(t->data); 664 k = bkey_next(k)) 665 if (t->size == bkey_to_cacheline(t, k)) { 666 t->prev[t->size] = bkey_to_cacheline_offset(k); 667 t->size++; 668 } 669 } 670 671 void bch_bset_init_next(struct btree *b) 672 { 673 struct bset *i = write_block(b); 674 675 if (i != b->sets[0].data) { 676 b->sets[++b->nsets].data = i; 677 i->seq = b->sets[0].data->seq; 678 } else 679 get_random_bytes(&i->seq, sizeof(uint64_t)); 680 681 i->magic = bset_magic(b->c); 682 i->version = 0; 683 i->keys = 0; 684 685 bset_build_unwritten_tree(b); 686 } 687 688 struct bset_search_iter { 689 struct bkey *l, *r; 690 }; 691 692 static struct bset_search_iter bset_search_write_set(struct btree *b, 693 struct bset_tree *t, 694 const struct bkey *search) 695 { 696 unsigned li = 0, ri = t->size; 697 698 BUG_ON(!b->nsets && 699 t->size < bkey_to_cacheline(t, end(t->data))); 700 701 while (li + 1 != ri) { 702 unsigned m = (li + ri) >> 1; 703 704 if (bkey_cmp(table_to_bkey(t, m), search) > 0) 705 ri = m; 706 else 707 li = m; 708 } 709 710 return (struct bset_search_iter) { 711 table_to_bkey(t, li), 712 ri < t->size ? table_to_bkey(t, ri) : end(t->data) 713 }; 714 } 715 716 static struct bset_search_iter bset_search_tree(struct btree *b, 717 struct bset_tree *t, 718 const struct bkey *search) 719 { 720 struct bkey *l, *r; 721 struct bkey_float *f; 722 unsigned inorder, j, n = 1; 723 724 do { 725 unsigned p = n << 4; 726 p &= ((int) (p - t->size)) >> 31; 727 728 prefetch(&t->tree[p]); 729 730 j = n; 731 f = &t->tree[j]; 732 733 /* 734 * n = (f->mantissa > bfloat_mantissa()) 735 * ? j * 2 736 * : j * 2 + 1; 737 * 738 * We need to subtract 1 from f->mantissa for the sign bit trick 739 * to work - that's done in make_bfloat() 740 */ 741 if (likely(f->exponent != 127)) 742 n = j * 2 + (((unsigned) 743 (f->mantissa - 744 bfloat_mantissa(search, f))) >> 31); 745 else 746 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) 747 ? j * 2 748 : j * 2 + 1; 749 } while (n < t->size); 750 751 inorder = to_inorder(j, t); 752 753 /* 754 * n would have been the node we recursed to - the low bit tells us if 755 * we recursed left or recursed right. 756 */ 757 if (n & 1) { 758 l = cacheline_to_bkey(t, inorder, f->m); 759 760 if (++inorder != t->size) { 761 f = &t->tree[inorder_next(j, t->size)]; 762 r = cacheline_to_bkey(t, inorder, f->m); 763 } else 764 r = end(t->data); 765 } else { 766 r = cacheline_to_bkey(t, inorder, f->m); 767 768 if (--inorder) { 769 f = &t->tree[inorder_prev(j, t->size)]; 770 l = cacheline_to_bkey(t, inorder, f->m); 771 } else 772 l = t->data->start; 773 } 774 775 return (struct bset_search_iter) {l, r}; 776 } 777 778 struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t, 779 const struct bkey *search) 780 { 781 struct bset_search_iter i; 782 783 /* 784 * First, we search for a cacheline, then lastly we do a linear search 785 * within that cacheline. 786 * 787 * To search for the cacheline, there's three different possibilities: 788 * * The set is too small to have a search tree, so we just do a linear 789 * search over the whole set. 790 * * The set is the one we're currently inserting into; keeping a full 791 * auxiliary search tree up to date would be too expensive, so we 792 * use a much simpler lookup table to do a binary search - 793 * bset_search_write_set(). 794 * * Or we use the auxiliary search tree we constructed earlier - 795 * bset_search_tree() 796 */ 797 798 if (unlikely(!t->size)) { 799 i.l = t->data->start; 800 i.r = end(t->data); 801 } else if (bset_written(b, t)) { 802 /* 803 * Each node in the auxiliary search tree covers a certain range 804 * of bits, and keys above and below the set it covers might 805 * differ outside those bits - so we have to special case the 806 * start and end - handle that here: 807 */ 808 809 if (unlikely(bkey_cmp(search, &t->end) >= 0)) 810 return end(t->data); 811 812 if (unlikely(bkey_cmp(search, t->data->start) < 0)) 813 return t->data->start; 814 815 i = bset_search_tree(b, t, search); 816 } else 817 i = bset_search_write_set(b, t, search); 818 819 #ifdef CONFIG_BCACHE_EDEBUG 820 BUG_ON(bset_written(b, t) && 821 i.l != t->data->start && 822 bkey_cmp(tree_to_prev_bkey(t, 823 inorder_to_tree(bkey_to_cacheline(t, i.l), t)), 824 search) > 0); 825 826 BUG_ON(i.r != end(t->data) && 827 bkey_cmp(i.r, search) <= 0); 828 #endif 829 830 while (likely(i.l != i.r) && 831 bkey_cmp(i.l, search) <= 0) 832 i.l = bkey_next(i.l); 833 834 return i.l; 835 } 836 837 /* Btree iterator */ 838 839 static inline bool btree_iter_cmp(struct btree_iter_set l, 840 struct btree_iter_set r) 841 { 842 int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k)); 843 844 return c ? c > 0 : l.k < r.k; 845 } 846 847 static inline bool btree_iter_end(struct btree_iter *iter) 848 { 849 return !iter->used; 850 } 851 852 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, 853 struct bkey *end) 854 { 855 if (k != end) 856 BUG_ON(!heap_add(iter, 857 ((struct btree_iter_set) { k, end }), 858 btree_iter_cmp)); 859 } 860 861 struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter, 862 struct bkey *search, struct bset_tree *start) 863 { 864 struct bkey *ret = NULL; 865 iter->size = ARRAY_SIZE(iter->data); 866 iter->used = 0; 867 868 for (; start <= &b->sets[b->nsets]; start++) { 869 ret = bch_bset_search(b, start, search); 870 bch_btree_iter_push(iter, ret, end(start->data)); 871 } 872 873 return ret; 874 } 875 876 struct bkey *bch_btree_iter_next(struct btree_iter *iter) 877 { 878 struct btree_iter_set unused; 879 struct bkey *ret = NULL; 880 881 if (!btree_iter_end(iter)) { 882 ret = iter->data->k; 883 iter->data->k = bkey_next(iter->data->k); 884 885 if (iter->data->k > iter->data->end) { 886 WARN_ONCE(1, "bset was corrupt!\n"); 887 iter->data->k = iter->data->end; 888 } 889 890 if (iter->data->k == iter->data->end) 891 heap_pop(iter, unused, btree_iter_cmp); 892 else 893 heap_sift(iter, 0, btree_iter_cmp); 894 } 895 896 return ret; 897 } 898 899 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, 900 struct btree *b, ptr_filter_fn fn) 901 { 902 struct bkey *ret; 903 904 do { 905 ret = bch_btree_iter_next(iter); 906 } while (ret && fn(b, ret)); 907 908 return ret; 909 } 910 911 struct bkey *bch_next_recurse_key(struct btree *b, struct bkey *search) 912 { 913 struct btree_iter iter; 914 915 bch_btree_iter_init(b, &iter, search); 916 return bch_btree_iter_next_filter(&iter, b, bch_ptr_bad); 917 } 918 919 /* Mergesort */ 920 921 static void btree_sort_fixup(struct btree_iter *iter) 922 { 923 while (iter->used > 1) { 924 struct btree_iter_set *top = iter->data, *i = top + 1; 925 struct bkey *k; 926 927 if (iter->used > 2 && 928 btree_iter_cmp(i[0], i[1])) 929 i++; 930 931 for (k = i->k; 932 k != i->end && bkey_cmp(top->k, &START_KEY(k)) > 0; 933 k = bkey_next(k)) 934 if (top->k > i->k) 935 __bch_cut_front(top->k, k); 936 else if (KEY_SIZE(k)) 937 bch_cut_back(&START_KEY(k), top->k); 938 939 if (top->k < i->k || k == i->k) 940 break; 941 942 heap_sift(iter, i - top, btree_iter_cmp); 943 } 944 } 945 946 static void btree_mergesort(struct btree *b, struct bset *out, 947 struct btree_iter *iter, 948 bool fixup, bool remove_stale) 949 { 950 struct bkey *k, *last = NULL; 951 bool (*bad)(struct btree *, const struct bkey *) = remove_stale 952 ? bch_ptr_bad 953 : bch_ptr_invalid; 954 955 while (!btree_iter_end(iter)) { 956 if (fixup && !b->level) 957 btree_sort_fixup(iter); 958 959 k = bch_btree_iter_next(iter); 960 if (bad(b, k)) 961 continue; 962 963 if (!last) { 964 last = out->start; 965 bkey_copy(last, k); 966 } else if (b->level || 967 !bch_bkey_try_merge(b, last, k)) { 968 last = bkey_next(last); 969 bkey_copy(last, k); 970 } 971 } 972 973 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; 974 975 pr_debug("sorted %i keys", out->keys); 976 bch_check_key_order(b, out); 977 } 978 979 static void __btree_sort(struct btree *b, struct btree_iter *iter, 980 unsigned start, unsigned order, bool fixup) 981 { 982 uint64_t start_time; 983 bool remove_stale = !b->written; 984 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO, 985 order); 986 if (!out) { 987 mutex_lock(&b->c->sort_lock); 988 out = b->c->sort; 989 order = ilog2(bucket_pages(b->c)); 990 } 991 992 start_time = local_clock(); 993 994 btree_mergesort(b, out, iter, fixup, remove_stale); 995 b->nsets = start; 996 997 if (!fixup && !start && b->written) 998 bch_btree_verify(b, out); 999 1000 if (!start && order == b->page_order) { 1001 /* 1002 * Our temporary buffer is the same size as the btree node's 1003 * buffer, we can just swap buffers instead of doing a big 1004 * memcpy() 1005 */ 1006 1007 out->magic = bset_magic(b->c); 1008 out->seq = b->sets[0].data->seq; 1009 out->version = b->sets[0].data->version; 1010 swap(out, b->sets[0].data); 1011 1012 if (b->c->sort == b->sets[0].data) 1013 b->c->sort = out; 1014 } else { 1015 b->sets[start].data->keys = out->keys; 1016 memcpy(b->sets[start].data->start, out->start, 1017 (void *) end(out) - (void *) out->start); 1018 } 1019 1020 if (out == b->c->sort) 1021 mutex_unlock(&b->c->sort_lock); 1022 else 1023 free_pages((unsigned long) out, order); 1024 1025 if (b->written) 1026 bset_build_written_tree(b); 1027 1028 if (!start) { 1029 spin_lock(&b->c->sort_time_lock); 1030 bch_time_stats_update(&b->c->sort_time, start_time); 1031 spin_unlock(&b->c->sort_time_lock); 1032 } 1033 } 1034 1035 void bch_btree_sort_partial(struct btree *b, unsigned start) 1036 { 1037 size_t oldsize = 0, order = b->page_order, keys = 0; 1038 struct btree_iter iter; 1039 __bch_btree_iter_init(b, &iter, NULL, &b->sets[start]); 1040 1041 BUG_ON(b->sets[b->nsets].data == write_block(b) && 1042 (b->sets[b->nsets].size || b->nsets)); 1043 1044 if (b->written) 1045 oldsize = bch_count_data(b); 1046 1047 if (start) { 1048 unsigned i; 1049 1050 for (i = start; i <= b->nsets; i++) 1051 keys += b->sets[i].data->keys; 1052 1053 order = roundup_pow_of_two(__set_bytes(b->sets->data, 1054 keys)) / PAGE_SIZE; 1055 if (order) 1056 order = ilog2(order); 1057 } 1058 1059 __btree_sort(b, &iter, start, order, false); 1060 1061 EBUG_ON(b->written && bch_count_data(b) != oldsize); 1062 } 1063 1064 void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter) 1065 { 1066 BUG_ON(!b->written); 1067 __btree_sort(b, iter, 0, b->page_order, true); 1068 } 1069 1070 void bch_btree_sort_into(struct btree *b, struct btree *new) 1071 { 1072 uint64_t start_time = local_clock(); 1073 1074 struct btree_iter iter; 1075 bch_btree_iter_init(b, &iter, NULL); 1076 1077 btree_mergesort(b, new->sets->data, &iter, false, true); 1078 1079 spin_lock(&b->c->sort_time_lock); 1080 bch_time_stats_update(&b->c->sort_time, start_time); 1081 spin_unlock(&b->c->sort_time_lock); 1082 1083 bkey_copy_key(&new->key, &b->key); 1084 new->sets->size = 0; 1085 } 1086 1087 void bch_btree_sort_lazy(struct btree *b) 1088 { 1089 if (b->nsets) { 1090 unsigned i, j, keys = 0, total; 1091 1092 for (i = 0; i <= b->nsets; i++) 1093 keys += b->sets[i].data->keys; 1094 1095 total = keys; 1096 1097 for (j = 0; j < b->nsets; j++) { 1098 if (keys * 2 < total || 1099 keys < 1000) { 1100 bch_btree_sort_partial(b, j); 1101 return; 1102 } 1103 1104 keys -= b->sets[j].data->keys; 1105 } 1106 1107 /* Must sort if b->nsets == 3 or we'll overflow */ 1108 if (b->nsets >= (MAX_BSETS - 1) - b->level) { 1109 bch_btree_sort(b); 1110 return; 1111 } 1112 } 1113 1114 bset_build_written_tree(b); 1115 } 1116 1117 /* Sysfs stuff */ 1118 1119 struct bset_stats { 1120 size_t nodes; 1121 size_t sets_written, sets_unwritten; 1122 size_t bytes_written, bytes_unwritten; 1123 size_t floats, failed; 1124 }; 1125 1126 static int bch_btree_bset_stats(struct btree *b, struct btree_op *op, 1127 struct bset_stats *stats) 1128 { 1129 struct bkey *k; 1130 unsigned i; 1131 1132 stats->nodes++; 1133 1134 for (i = 0; i <= b->nsets; i++) { 1135 struct bset_tree *t = &b->sets[i]; 1136 size_t bytes = t->data->keys * sizeof(uint64_t); 1137 size_t j; 1138 1139 if (bset_written(b, t)) { 1140 stats->sets_written++; 1141 stats->bytes_written += bytes; 1142 1143 stats->floats += t->size - 1; 1144 1145 for (j = 1; j < t->size; j++) 1146 if (t->tree[j].exponent == 127) 1147 stats->failed++; 1148 } else { 1149 stats->sets_unwritten++; 1150 stats->bytes_unwritten += bytes; 1151 } 1152 } 1153 1154 if (b->level) { 1155 struct btree_iter iter; 1156 1157 for_each_key_filter(b, k, &iter, bch_ptr_bad) { 1158 int ret = btree(bset_stats, k, b, op, stats); 1159 if (ret) 1160 return ret; 1161 } 1162 } 1163 1164 return 0; 1165 } 1166 1167 int bch_bset_print_stats(struct cache_set *c, char *buf) 1168 { 1169 struct btree_op op; 1170 struct bset_stats t; 1171 int ret; 1172 1173 bch_btree_op_init_stack(&op); 1174 memset(&t, 0, sizeof(struct bset_stats)); 1175 1176 ret = btree_root(bset_stats, c, &op, &t); 1177 if (ret) 1178 return ret; 1179 1180 return snprintf(buf, PAGE_SIZE, 1181 "btree nodes: %zu\n" 1182 "written sets: %zu\n" 1183 "unwritten sets: %zu\n" 1184 "written key bytes: %zu\n" 1185 "unwritten key bytes: %zu\n" 1186 "floats: %zu\n" 1187 "failed: %zu\n", 1188 t.nodes, 1189 t.sets_written, t.sets_unwritten, 1190 t.bytes_written, t.bytes_unwritten, 1191 t.floats, t.failed); 1192 } 1193