1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Code for working with individual keys, and sorted sets of keys with in a 4 * btree node 5 * 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) "bcache: %s() " fmt, __func__ 10 11 #include "util.h" 12 #include "bset.h" 13 14 #include <linux/console.h> 15 #include <linux/sched/clock.h> 16 #include <linux/random.h> 17 #include <linux/prefetch.h> 18 19 #ifdef CONFIG_BCACHE_DEBUG 20 21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set) 22 { 23 struct bkey *k, *next; 24 25 for (k = i->start; k < bset_bkey_last(i); k = next) { 26 next = bkey_next(k); 27 28 pr_err("block %u key %u/%u: ", set, 29 (unsigned int) ((u64 *) k - i->d), i->keys); 30 31 if (b->ops->key_dump) 32 b->ops->key_dump(b, k); 33 else 34 pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k)); 35 36 if (next < bset_bkey_last(i) && 37 bkey_cmp(k, b->ops->is_extents ? 38 &START_KEY(next) : next) > 0) 39 pr_err("Key skipped backwards\n"); 40 } 41 } 42 43 void bch_dump_bucket(struct btree_keys *b) 44 { 45 unsigned int i; 46 47 console_lock(); 48 for (i = 0; i <= b->nsets; i++) 49 bch_dump_bset(b, b->set[i].data, 50 bset_sector_offset(b, b->set[i].data)); 51 console_unlock(); 52 } 53 54 int __bch_count_data(struct btree_keys *b) 55 { 56 unsigned int ret = 0; 57 struct btree_iter iter; 58 struct bkey *k; 59 60 min_heap_init(&iter.heap, NULL, MAX_BSETS); 61 62 if (b->ops->is_extents) 63 for_each_key(b, k, &iter) 64 ret += KEY_SIZE(k); 65 return ret; 66 } 67 68 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) 69 { 70 va_list args; 71 struct bkey *k, *p = NULL; 72 struct btree_iter iter; 73 const char *err; 74 75 min_heap_init(&iter.heap, NULL, MAX_BSETS); 76 77 for_each_key(b, k, &iter) { 78 if (b->ops->is_extents) { 79 err = "Keys out of order"; 80 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0) 81 goto bug; 82 83 if (bch_ptr_invalid(b, k)) 84 continue; 85 86 err = "Overlapping keys"; 87 if (p && bkey_cmp(p, &START_KEY(k)) > 0) 88 goto bug; 89 } else { 90 if (bch_ptr_bad(b, k)) 91 continue; 92 93 err = "Duplicate keys"; 94 if (p && !bkey_cmp(p, k)) 95 goto bug; 96 } 97 p = k; 98 } 99 #if 0 100 err = "Key larger than btree node key"; 101 if (p && bkey_cmp(p, &b->key) > 0) 102 goto bug; 103 #endif 104 return; 105 bug: 106 bch_dump_bucket(b); 107 108 va_start(args, fmt); 109 vprintk(fmt, args); 110 va_end(args); 111 112 panic("bch_check_keys error: %s:\n", err); 113 } 114 115 static void bch_btree_iter_next_check(struct btree_iter *iter) 116 { 117 struct bkey *k = iter->heap.data->k, *next = bkey_next(k); 118 119 if (next < iter->heap.data->end && 120 bkey_cmp(k, iter->b->ops->is_extents ? 121 &START_KEY(next) : next) > 0) { 122 bch_dump_bucket(iter->b); 123 panic("Key skipped backwards\n"); 124 } 125 } 126 127 #else 128 129 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {} 130 131 #endif 132 133 /* Keylists */ 134 135 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s) 136 { 137 size_t oldsize = bch_keylist_nkeys(l); 138 size_t newsize = oldsize + u64s; 139 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p; 140 uint64_t *new_keys; 141 142 newsize = roundup_pow_of_two(newsize); 143 144 if (newsize <= KEYLIST_INLINE || 145 roundup_pow_of_two(oldsize) == newsize) 146 return 0; 147 148 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO); 149 150 if (!new_keys) 151 return -ENOMEM; 152 153 if (!old_keys) 154 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize); 155 156 l->keys_p = new_keys; 157 l->top_p = new_keys + oldsize; 158 159 return 0; 160 } 161 162 /* Pop the top key of keylist by pointing l->top to its previous key */ 163 struct bkey *bch_keylist_pop(struct keylist *l) 164 { 165 struct bkey *k = l->keys; 166 167 if (k == l->top) 168 return NULL; 169 170 while (bkey_next(k) != l->top) 171 k = bkey_next(k); 172 173 return l->top = k; 174 } 175 176 /* Pop the bottom key of keylist and update l->top_p */ 177 void bch_keylist_pop_front(struct keylist *l) 178 { 179 l->top_p -= bkey_u64s(l->keys); 180 181 memmove(l->keys, 182 bkey_next(l->keys), 183 bch_keylist_bytes(l)); 184 } 185 186 /* Key/pointer manipulation */ 187 188 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, 189 unsigned int i) 190 { 191 BUG_ON(i > KEY_PTRS(src)); 192 193 /* Only copy the header, key, and one pointer. */ 194 memcpy(dest, src, 2 * sizeof(uint64_t)); 195 dest->ptr[0] = src->ptr[i]; 196 SET_KEY_PTRS(dest, 1); 197 /* We didn't copy the checksum so clear that bit. */ 198 SET_KEY_CSUM(dest, 0); 199 } 200 201 bool __bch_cut_front(const struct bkey *where, struct bkey *k) 202 { 203 unsigned int i, len = 0; 204 205 if (bkey_cmp(where, &START_KEY(k)) <= 0) 206 return false; 207 208 if (bkey_cmp(where, k) < 0) 209 len = KEY_OFFSET(k) - KEY_OFFSET(where); 210 else 211 bkey_copy_key(k, where); 212 213 for (i = 0; i < KEY_PTRS(k); i++) 214 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); 215 216 BUG_ON(len > KEY_SIZE(k)); 217 SET_KEY_SIZE(k, len); 218 return true; 219 } 220 221 bool __bch_cut_back(const struct bkey *where, struct bkey *k) 222 { 223 unsigned int len = 0; 224 225 if (bkey_cmp(where, k) >= 0) 226 return false; 227 228 BUG_ON(KEY_INODE(where) != KEY_INODE(k)); 229 230 if (bkey_cmp(where, &START_KEY(k)) > 0) 231 len = KEY_OFFSET(where) - KEY_START(k); 232 233 bkey_copy_key(k, where); 234 235 BUG_ON(len > KEY_SIZE(k)); 236 SET_KEY_SIZE(k, len); 237 return true; 238 } 239 240 /* Auxiliary search trees */ 241 242 /* 32 bits total: */ 243 #define BKEY_MID_BITS 3 244 #define BKEY_EXPONENT_BITS 7 245 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS) 246 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1) 247 248 struct bkey_float { 249 unsigned int exponent:BKEY_EXPONENT_BITS; 250 unsigned int m:BKEY_MID_BITS; 251 unsigned int mantissa:BKEY_MANTISSA_BITS; 252 } __packed; 253 254 /* 255 * BSET_CACHELINE was originally intended to match the hardware cacheline size - 256 * it used to be 64, but I realized the lookup code would touch slightly less 257 * memory if it was 128. 258 * 259 * It definites the number of bytes (in struct bset) per struct bkey_float in 260 * the auxiliar search tree - when we're done searching the bset_float tree we 261 * have this many bytes left that we do a linear search over. 262 * 263 * Since (after level 5) every level of the bset_tree is on a new cacheline, 264 * we're touching one fewer cacheline in the bset tree in exchange for one more 265 * cacheline in the linear search - but the linear search might stop before it 266 * gets to the second cacheline. 267 */ 268 269 #define BSET_CACHELINE 128 270 271 /* Space required for the btree node keys */ 272 static inline size_t btree_keys_bytes(struct btree_keys *b) 273 { 274 return PAGE_SIZE << b->page_order; 275 } 276 277 static inline size_t btree_keys_cachelines(struct btree_keys *b) 278 { 279 return btree_keys_bytes(b) / BSET_CACHELINE; 280 } 281 282 /* Space required for the auxiliary search trees */ 283 static inline size_t bset_tree_bytes(struct btree_keys *b) 284 { 285 return btree_keys_cachelines(b) * sizeof(struct bkey_float); 286 } 287 288 /* Space required for the prev pointers */ 289 static inline size_t bset_prev_bytes(struct btree_keys *b) 290 { 291 return btree_keys_cachelines(b) * sizeof(uint8_t); 292 } 293 294 /* Memory allocation */ 295 296 void bch_btree_keys_free(struct btree_keys *b) 297 { 298 struct bset_tree *t = b->set; 299 300 if (bset_prev_bytes(b) < PAGE_SIZE) 301 kfree(t->prev); 302 else 303 free_pages((unsigned long) t->prev, 304 get_order(bset_prev_bytes(b))); 305 306 if (bset_tree_bytes(b) < PAGE_SIZE) 307 kfree(t->tree); 308 else 309 free_pages((unsigned long) t->tree, 310 get_order(bset_tree_bytes(b))); 311 312 free_pages((unsigned long) t->data, b->page_order); 313 314 t->prev = NULL; 315 t->tree = NULL; 316 t->data = NULL; 317 } 318 319 int bch_btree_keys_alloc(struct btree_keys *b, 320 unsigned int page_order, 321 gfp_t gfp) 322 { 323 struct bset_tree *t = b->set; 324 325 BUG_ON(t->data); 326 327 b->page_order = page_order; 328 329 t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order); 330 if (!t->data) 331 goto err; 332 333 t->tree = bset_tree_bytes(b) < PAGE_SIZE 334 ? kmalloc(bset_tree_bytes(b), gfp) 335 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); 336 if (!t->tree) 337 goto err; 338 339 t->prev = bset_prev_bytes(b) < PAGE_SIZE 340 ? kmalloc(bset_prev_bytes(b), gfp) 341 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); 342 if (!t->prev) 343 goto err; 344 345 return 0; 346 err: 347 bch_btree_keys_free(b); 348 return -ENOMEM; 349 } 350 351 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops, 352 bool *expensive_debug_checks) 353 { 354 b->ops = ops; 355 b->expensive_debug_checks = expensive_debug_checks; 356 b->nsets = 0; 357 b->last_set_unwritten = 0; 358 359 /* 360 * struct btree_keys in embedded in struct btree, and struct 361 * bset_tree is embedded into struct btree_keys. They are all 362 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and 363 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we 364 * don't have to initiate b->set[].size and b->set[].data here 365 * any more. 366 */ 367 } 368 369 /* Binary tree stuff for auxiliary search trees */ 370 371 /* 372 * return array index next to j when does in-order traverse 373 * of a binary tree which is stored in a linear array 374 */ 375 static unsigned int inorder_next(unsigned int j, unsigned int size) 376 { 377 if (j * 2 + 1 < size) { 378 j = j * 2 + 1; 379 380 while (j * 2 < size) 381 j *= 2; 382 } else 383 j >>= ffz(j) + 1; 384 385 return j; 386 } 387 388 /* 389 * return array index previous to j when does in-order traverse 390 * of a binary tree which is stored in a linear array 391 */ 392 static unsigned int inorder_prev(unsigned int j, unsigned int size) 393 { 394 if (j * 2 < size) { 395 j = j * 2; 396 397 while (j * 2 + 1 < size) 398 j = j * 2 + 1; 399 } else 400 j >>= ffs(j); 401 402 return j; 403 } 404 405 /* 406 * I have no idea why this code works... and I'm the one who wrote it 407 * 408 * However, I do know what it does: 409 * Given a binary tree constructed in an array (i.e. how you normally implement 410 * a heap), it converts a node in the tree - referenced by array index - to the 411 * index it would have if you did an inorder traversal. 412 * 413 * Also tested for every j, size up to size somewhere around 6 million. 414 * 415 * The binary tree starts at array index 1, not 0 416 * extra is a function of size: 417 * extra = (size - rounddown_pow_of_two(size - 1)) << 1; 418 */ 419 static unsigned int __to_inorder(unsigned int j, 420 unsigned int size, 421 unsigned int extra) 422 { 423 unsigned int b = fls(j); 424 unsigned int shift = fls(size - 1) - b; 425 426 j ^= 1U << (b - 1); 427 j <<= 1; 428 j |= 1; 429 j <<= shift; 430 431 if (j > extra) 432 j -= (j - extra) >> 1; 433 434 return j; 435 } 436 437 /* 438 * Return the cacheline index in bset_tree->data, where j is index 439 * from a linear array which stores the auxiliar binary tree 440 */ 441 static unsigned int to_inorder(unsigned int j, struct bset_tree *t) 442 { 443 return __to_inorder(j, t->size, t->extra); 444 } 445 446 static unsigned int __inorder_to_tree(unsigned int j, 447 unsigned int size, 448 unsigned int extra) 449 { 450 unsigned int shift; 451 452 if (j > extra) 453 j += j - extra; 454 455 shift = ffs(j); 456 457 j >>= shift; 458 j |= roundup_pow_of_two(size) >> shift; 459 460 return j; 461 } 462 463 /* 464 * Return an index from a linear array which stores the auxiliar binary 465 * tree, j is the cacheline index of t->data. 466 */ 467 static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t) 468 { 469 return __inorder_to_tree(j, t->size, t->extra); 470 } 471 472 #if 0 473 void inorder_test(void) 474 { 475 unsigned long done = 0; 476 ktime_t start = ktime_get(); 477 478 for (unsigned int size = 2; 479 size < 65536000; 480 size++) { 481 unsigned int extra = 482 (size - rounddown_pow_of_two(size - 1)) << 1; 483 unsigned int i = 1, j = rounddown_pow_of_two(size - 1); 484 485 if (!(size % 4096)) 486 pr_notice("loop %u, %llu per us\n", size, 487 done / ktime_us_delta(ktime_get(), start)); 488 489 while (1) { 490 if (__inorder_to_tree(i, size, extra) != j) 491 panic("size %10u j %10u i %10u", size, j, i); 492 493 if (__to_inorder(j, size, extra) != i) 494 panic("size %10u j %10u i %10u", size, j, i); 495 496 if (j == rounddown_pow_of_two(size) - 1) 497 break; 498 499 BUG_ON(inorder_prev(inorder_next(j, size), size) != j); 500 501 j = inorder_next(j, size); 502 i++; 503 } 504 505 done += size - 1; 506 } 507 } 508 #endif 509 510 /* 511 * Cacheline/offset <-> bkey pointer arithmetic: 512 * 513 * t->tree is a binary search tree in an array; each node corresponds to a key 514 * in one cacheline in t->set (BSET_CACHELINE bytes). 515 * 516 * This means we don't have to store the full index of the key that a node in 517 * the binary tree points to; to_inorder() gives us the cacheline, and then 518 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. 519 * 520 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 521 * make this work. 522 * 523 * To construct the bfloat for an arbitrary key we need to know what the key 524 * immediately preceding it is: we have to check if the two keys differ in the 525 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 526 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 527 */ 528 529 static struct bkey *cacheline_to_bkey(struct bset_tree *t, 530 unsigned int cacheline, 531 unsigned int offset) 532 { 533 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; 534 } 535 536 static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k) 537 { 538 return ((void *) k - (void *) t->data) / BSET_CACHELINE; 539 } 540 541 static unsigned int bkey_to_cacheline_offset(struct bset_tree *t, 542 unsigned int cacheline, 543 struct bkey *k) 544 { 545 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0); 546 } 547 548 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j) 549 { 550 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); 551 } 552 553 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j) 554 { 555 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); 556 } 557 558 /* 559 * For the write set - the one we're currently inserting keys into - we don't 560 * maintain a full search tree, we just keep a simple lookup table in t->prev. 561 */ 562 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline) 563 { 564 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); 565 } 566 567 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) 568 { 569 low >>= shift; 570 low |= (high << 1) << (63U - shift); 571 return low; 572 } 573 574 /* 575 * Calculate mantissa value for struct bkey_float. 576 * If most significant bit of f->exponent is not set, then 577 * - f->exponent >> 6 is 0 578 * - p[0] points to bkey->low 579 * - p[-1] borrows bits from KEY_INODE() of bkey->high 580 * if most isgnificant bits of f->exponent is set, then 581 * - f->exponent >> 6 is 1 582 * - p[0] points to bits from KEY_INODE() of bkey->high 583 * - p[-1] points to other bits from KEY_INODE() of 584 * bkey->high too. 585 * See make_bfloat() to check when most significant bit of f->exponent 586 * is set or not. 587 */ 588 static inline unsigned int bfloat_mantissa(const struct bkey *k, 589 struct bkey_float *f) 590 { 591 const uint64_t *p = &k->low - (f->exponent >> 6); 592 593 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; 594 } 595 596 static void make_bfloat(struct bset_tree *t, unsigned int j) 597 { 598 struct bkey_float *f = &t->tree[j]; 599 struct bkey *m = tree_to_bkey(t, j); 600 struct bkey *p = tree_to_prev_bkey(t, j); 601 602 struct bkey *l = is_power_of_2(j) 603 ? t->data->start 604 : tree_to_prev_bkey(t, j >> ffs(j)); 605 606 struct bkey *r = is_power_of_2(j + 1) 607 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end)) 608 : tree_to_bkey(t, j >> (ffz(j) + 1)); 609 610 BUG_ON(m < l || m > r); 611 BUG_ON(bkey_next(p) != m); 612 613 /* 614 * If l and r have different KEY_INODE values (different backing 615 * device), f->exponent records how many least significant bits 616 * are different in KEY_INODE values and sets most significant 617 * bits to 1 (by +64). 618 * If l and r have same KEY_INODE value, f->exponent records 619 * how many different bits in least significant bits of bkey->low. 620 * See bfloat_mantiss() how the most significant bit of 621 * f->exponent is used to calculate bfloat mantissa value. 622 */ 623 if (KEY_INODE(l) != KEY_INODE(r)) 624 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; 625 else 626 f->exponent = fls64(r->low ^ l->low); 627 628 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); 629 630 /* 631 * Setting f->exponent = 127 flags this node as failed, and causes the 632 * lookup code to fall back to comparing against the original key. 633 */ 634 635 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) 636 f->mantissa = bfloat_mantissa(m, f) - 1; 637 else 638 f->exponent = 127; 639 } 640 641 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t) 642 { 643 if (t != b->set) { 644 unsigned int j = roundup(t[-1].size, 645 64 / sizeof(struct bkey_float)); 646 647 t->tree = t[-1].tree + j; 648 t->prev = t[-1].prev + j; 649 } 650 651 while (t < b->set + MAX_BSETS) 652 t++->size = 0; 653 } 654 655 static void bch_bset_build_unwritten_tree(struct btree_keys *b) 656 { 657 struct bset_tree *t = bset_tree_last(b); 658 659 BUG_ON(b->last_set_unwritten); 660 b->last_set_unwritten = 1; 661 662 bset_alloc_tree(b, t); 663 664 if (t->tree != b->set->tree + btree_keys_cachelines(b)) { 665 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start); 666 t->size = 1; 667 } 668 } 669 670 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic) 671 { 672 if (i != b->set->data) { 673 b->set[++b->nsets].data = i; 674 i->seq = b->set->data->seq; 675 } else 676 get_random_bytes(&i->seq, sizeof(uint64_t)); 677 678 i->magic = magic; 679 i->version = 0; 680 i->keys = 0; 681 682 bch_bset_build_unwritten_tree(b); 683 } 684 685 /* 686 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to 687 * accelerate bkey search in a btree node (pointed by bset_tree->data in 688 * memory). After search in the auxiliar tree by calling bset_search_tree(), 689 * a struct bset_search_iter is returned which indicates range [l, r] from 690 * bset_tree->data where the searching bkey might be inside. Then a followed 691 * linear comparison does the exact search, see __bch_bset_search() for how 692 * the auxiliary tree is used. 693 */ 694 void bch_bset_build_written_tree(struct btree_keys *b) 695 { 696 struct bset_tree *t = bset_tree_last(b); 697 struct bkey *prev = NULL, *k = t->data->start; 698 unsigned int j, cacheline = 1; 699 700 b->last_set_unwritten = 0; 701 702 bset_alloc_tree(b, t); 703 704 t->size = min_t(unsigned int, 705 bkey_to_cacheline(t, bset_bkey_last(t->data)), 706 b->set->tree + btree_keys_cachelines(b) - t->tree); 707 708 if (t->size < 2) { 709 t->size = 0; 710 return; 711 } 712 713 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; 714 715 /* First we figure out where the first key in each cacheline is */ 716 for (j = inorder_next(0, t->size); 717 j; 718 j = inorder_next(j, t->size)) { 719 while (bkey_to_cacheline(t, k) < cacheline) { 720 prev = k; 721 k = bkey_next(k); 722 } 723 724 t->prev[j] = bkey_u64s(prev); 725 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k); 726 } 727 728 while (bkey_next(k) != bset_bkey_last(t->data)) 729 k = bkey_next(k); 730 731 t->end = *k; 732 733 /* Then we build the tree */ 734 for (j = inorder_next(0, t->size); 735 j; 736 j = inorder_next(j, t->size)) 737 make_bfloat(t, j); 738 } 739 740 /* Insert */ 741 742 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k) 743 { 744 struct bset_tree *t; 745 unsigned int inorder, j = 1; 746 747 for (t = b->set; t <= bset_tree_last(b); t++) 748 if (k < bset_bkey_last(t->data)) 749 goto found_set; 750 751 BUG(); 752 found_set: 753 if (!t->size || !bset_written(b, t)) 754 return; 755 756 inorder = bkey_to_cacheline(t, k); 757 758 if (k == t->data->start) 759 goto fix_left; 760 761 if (bkey_next(k) == bset_bkey_last(t->data)) { 762 t->end = *k; 763 goto fix_right; 764 } 765 766 j = inorder_to_tree(inorder, t); 767 768 if (j && 769 j < t->size && 770 k == tree_to_bkey(t, j)) 771 fix_left: do { 772 make_bfloat(t, j); 773 j = j * 2; 774 } while (j < t->size); 775 776 j = inorder_to_tree(inorder + 1, t); 777 778 if (j && 779 j < t->size && 780 k == tree_to_prev_bkey(t, j)) 781 fix_right: do { 782 make_bfloat(t, j); 783 j = j * 2 + 1; 784 } while (j < t->size); 785 } 786 787 static void bch_bset_fix_lookup_table(struct btree_keys *b, 788 struct bset_tree *t, 789 struct bkey *k) 790 { 791 unsigned int shift = bkey_u64s(k); 792 unsigned int j = bkey_to_cacheline(t, k); 793 794 /* We're getting called from btree_split() or btree_gc, just bail out */ 795 if (!t->size) 796 return; 797 798 /* 799 * k is the key we just inserted; we need to find the entry in the 800 * lookup table for the first key that is strictly greater than k: 801 * it's either k's cacheline or the next one 802 */ 803 while (j < t->size && 804 table_to_bkey(t, j) <= k) 805 j++; 806 807 /* 808 * Adjust all the lookup table entries, and find a new key for any that 809 * have gotten too big 810 */ 811 for (; j < t->size; j++) { 812 t->prev[j] += shift; 813 814 if (t->prev[j] > 7) { 815 k = table_to_bkey(t, j - 1); 816 817 while (k < cacheline_to_bkey(t, j, 0)) 818 k = bkey_next(k); 819 820 t->prev[j] = bkey_to_cacheline_offset(t, j, k); 821 } 822 } 823 824 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree) 825 return; 826 827 /* Possibly add a new entry to the end of the lookup table */ 828 829 for (k = table_to_bkey(t, t->size - 1); 830 k != bset_bkey_last(t->data); 831 k = bkey_next(k)) 832 if (t->size == bkey_to_cacheline(t, k)) { 833 t->prev[t->size] = 834 bkey_to_cacheline_offset(t, t->size, k); 835 t->size++; 836 } 837 } 838 839 /* 840 * Tries to merge l and r: l should be lower than r 841 * Returns true if we were able to merge. If we did merge, l will be the merged 842 * key, r will be untouched. 843 */ 844 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r) 845 { 846 if (!b->ops->key_merge) 847 return false; 848 849 /* 850 * Generic header checks 851 * Assumes left and right are in order 852 * Left and right must be exactly aligned 853 */ 854 if (!bch_bkey_equal_header(l, r) || 855 bkey_cmp(l, &START_KEY(r))) 856 return false; 857 858 return b->ops->key_merge(b, l, r); 859 } 860 861 void bch_bset_insert(struct btree_keys *b, struct bkey *where, 862 struct bkey *insert) 863 { 864 struct bset_tree *t = bset_tree_last(b); 865 866 BUG_ON(!b->last_set_unwritten); 867 BUG_ON(bset_byte_offset(b, t->data) + 868 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) > 869 PAGE_SIZE << b->page_order); 870 871 memmove((uint64_t *) where + bkey_u64s(insert), 872 where, 873 (void *) bset_bkey_last(t->data) - (void *) where); 874 875 t->data->keys += bkey_u64s(insert); 876 bkey_copy(where, insert); 877 bch_bset_fix_lookup_table(b, t, where); 878 } 879 880 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k, 881 struct bkey *replace_key) 882 { 883 unsigned int status = BTREE_INSERT_STATUS_NO_INSERT; 884 struct bset *i = bset_tree_last(b)->data; 885 struct bkey *m, *prev = NULL; 886 struct btree_iter iter; 887 struct bkey preceding_key_on_stack = ZERO_KEY; 888 struct bkey *preceding_key_p = &preceding_key_on_stack; 889 890 BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); 891 892 min_heap_init(&iter.heap, NULL, MAX_BSETS); 893 894 /* 895 * If k has preceding key, preceding_key_p will be set to address 896 * of k's preceding key; otherwise preceding_key_p will be set 897 * to NULL inside preceding_key(). 898 */ 899 if (b->ops->is_extents) 900 preceding_key(&START_KEY(k), &preceding_key_p); 901 else 902 preceding_key(k, &preceding_key_p); 903 904 m = bch_btree_iter_init(b, &iter, preceding_key_p); 905 906 if (b->ops->insert_fixup(b, k, &iter, replace_key)) 907 return status; 908 909 status = BTREE_INSERT_STATUS_INSERT; 910 911 while (m != bset_bkey_last(i) && 912 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) { 913 prev = m; 914 m = bkey_next(m); 915 } 916 917 /* prev is in the tree, if we merge we're done */ 918 status = BTREE_INSERT_STATUS_BACK_MERGE; 919 if (prev && 920 bch_bkey_try_merge(b, prev, k)) 921 goto merged; 922 #if 0 923 status = BTREE_INSERT_STATUS_OVERWROTE; 924 if (m != bset_bkey_last(i) && 925 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) 926 goto copy; 927 #endif 928 status = BTREE_INSERT_STATUS_FRONT_MERGE; 929 if (m != bset_bkey_last(i) && 930 bch_bkey_try_merge(b, k, m)) 931 goto copy; 932 933 bch_bset_insert(b, m, k); 934 copy: bkey_copy(m, k); 935 merged: 936 return status; 937 } 938 939 /* Lookup */ 940 941 struct bset_search_iter { 942 struct bkey *l, *r; 943 }; 944 945 static struct bset_search_iter bset_search_write_set(struct bset_tree *t, 946 const struct bkey *search) 947 { 948 unsigned int li = 0, ri = t->size; 949 950 while (li + 1 != ri) { 951 unsigned int m = (li + ri) >> 1; 952 953 if (bkey_cmp(table_to_bkey(t, m), search) > 0) 954 ri = m; 955 else 956 li = m; 957 } 958 959 return (struct bset_search_iter) { 960 table_to_bkey(t, li), 961 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data) 962 }; 963 } 964 965 static struct bset_search_iter bset_search_tree(struct bset_tree *t, 966 const struct bkey *search) 967 { 968 struct bkey *l, *r; 969 struct bkey_float *f; 970 unsigned int inorder, j, n = 1; 971 972 do { 973 unsigned int p = n << 4; 974 975 if (p < t->size) 976 prefetch(&t->tree[p]); 977 978 j = n; 979 f = &t->tree[j]; 980 981 if (likely(f->exponent != 127)) { 982 if (f->mantissa >= bfloat_mantissa(search, f)) 983 n = j * 2; 984 else 985 n = j * 2 + 1; 986 } else { 987 if (bkey_cmp(tree_to_bkey(t, j), search) > 0) 988 n = j * 2; 989 else 990 n = j * 2 + 1; 991 } 992 } while (n < t->size); 993 994 inorder = to_inorder(j, t); 995 996 /* 997 * n would have been the node we recursed to - the low bit tells us if 998 * we recursed left or recursed right. 999 */ 1000 if (n & 1) { 1001 l = cacheline_to_bkey(t, inorder, f->m); 1002 1003 if (++inorder != t->size) { 1004 f = &t->tree[inorder_next(j, t->size)]; 1005 r = cacheline_to_bkey(t, inorder, f->m); 1006 } else 1007 r = bset_bkey_last(t->data); 1008 } else { 1009 r = cacheline_to_bkey(t, inorder, f->m); 1010 1011 if (--inorder) { 1012 f = &t->tree[inorder_prev(j, t->size)]; 1013 l = cacheline_to_bkey(t, inorder, f->m); 1014 } else 1015 l = t->data->start; 1016 } 1017 1018 return (struct bset_search_iter) {l, r}; 1019 } 1020 1021 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, 1022 const struct bkey *search) 1023 { 1024 struct bset_search_iter i; 1025 1026 /* 1027 * First, we search for a cacheline, then lastly we do a linear search 1028 * within that cacheline. 1029 * 1030 * To search for the cacheline, there's three different possibilities: 1031 * * The set is too small to have a search tree, so we just do a linear 1032 * search over the whole set. 1033 * * The set is the one we're currently inserting into; keeping a full 1034 * auxiliary search tree up to date would be too expensive, so we 1035 * use a much simpler lookup table to do a binary search - 1036 * bset_search_write_set(). 1037 * * Or we use the auxiliary search tree we constructed earlier - 1038 * bset_search_tree() 1039 */ 1040 1041 if (unlikely(!t->size)) { 1042 i.l = t->data->start; 1043 i.r = bset_bkey_last(t->data); 1044 } else if (bset_written(b, t)) { 1045 /* 1046 * Each node in the auxiliary search tree covers a certain range 1047 * of bits, and keys above and below the set it covers might 1048 * differ outside those bits - so we have to special case the 1049 * start and end - handle that here: 1050 */ 1051 1052 if (unlikely(bkey_cmp(search, &t->end) >= 0)) 1053 return bset_bkey_last(t->data); 1054 1055 if (unlikely(bkey_cmp(search, t->data->start) < 0)) 1056 return t->data->start; 1057 1058 i = bset_search_tree(t, search); 1059 } else { 1060 BUG_ON(!b->nsets && 1061 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data))); 1062 1063 i = bset_search_write_set(t, search); 1064 } 1065 1066 if (btree_keys_expensive_checks(b)) { 1067 BUG_ON(bset_written(b, t) && 1068 i.l != t->data->start && 1069 bkey_cmp(tree_to_prev_bkey(t, 1070 inorder_to_tree(bkey_to_cacheline(t, i.l), t)), 1071 search) > 0); 1072 1073 BUG_ON(i.r != bset_bkey_last(t->data) && 1074 bkey_cmp(i.r, search) <= 0); 1075 } 1076 1077 while (likely(i.l != i.r) && 1078 bkey_cmp(i.l, search) <= 0) 1079 i.l = bkey_next(i.l); 1080 1081 return i.l; 1082 } 1083 1084 /* Btree iterator */ 1085 1086 typedef bool (new_btree_iter_cmp_fn)(const void *, const void *, void *); 1087 1088 static inline bool new_btree_iter_cmp(const void *l, const void *r, void __always_unused *args) 1089 { 1090 const struct btree_iter_set *_l = l; 1091 const struct btree_iter_set *_r = r; 1092 1093 return bkey_cmp(_l->k, _r->k) <= 0; 1094 } 1095 1096 static inline void new_btree_iter_swap(void *iter1, void *iter2, void __always_unused *args) 1097 { 1098 struct btree_iter_set *_iter1 = iter1; 1099 struct btree_iter_set *_iter2 = iter2; 1100 1101 swap(*_iter1, *_iter2); 1102 } 1103 1104 static inline bool btree_iter_end(struct btree_iter *iter) 1105 { 1106 return !iter->heap.nr; 1107 } 1108 1109 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, 1110 struct bkey *end) 1111 { 1112 const struct min_heap_callbacks callbacks = { 1113 .less = new_btree_iter_cmp, 1114 .swp = new_btree_iter_swap, 1115 }; 1116 1117 if (k != end) 1118 BUG_ON(!min_heap_push(&iter->heap, 1119 &((struct btree_iter_set) { k, end }), 1120 &callbacks, 1121 NULL)); 1122 } 1123 1124 static struct bkey *__bch_btree_iter_init(struct btree_keys *b, 1125 struct btree_iter *iter, 1126 struct bkey *search, 1127 struct bset_tree *start) 1128 { 1129 struct bkey *ret = NULL; 1130 1131 iter->heap.size = ARRAY_SIZE(iter->heap.preallocated); 1132 iter->heap.nr = 0; 1133 1134 #ifdef CONFIG_BCACHE_DEBUG 1135 iter->b = b; 1136 #endif 1137 1138 for (; start <= bset_tree_last(b); start++) { 1139 ret = bch_bset_search(b, start, search); 1140 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data)); 1141 } 1142 1143 return ret; 1144 } 1145 1146 struct bkey *bch_btree_iter_init(struct btree_keys *b, 1147 struct btree_iter *iter, 1148 struct bkey *search) 1149 { 1150 return __bch_btree_iter_init(b, iter, search, b->set); 1151 } 1152 1153 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter, 1154 new_btree_iter_cmp_fn *cmp) 1155 { 1156 struct btree_iter_set b __maybe_unused; 1157 struct bkey *ret = NULL; 1158 const struct min_heap_callbacks callbacks = { 1159 .less = cmp, 1160 .swp = new_btree_iter_swap, 1161 }; 1162 1163 if (!btree_iter_end(iter)) { 1164 bch_btree_iter_next_check(iter); 1165 1166 ret = iter->heap.data->k; 1167 iter->heap.data->k = bkey_next(iter->heap.data->k); 1168 1169 if (iter->heap.data->k > iter->heap.data->end) { 1170 WARN_ONCE(1, "bset was corrupt!\n"); 1171 iter->heap.data->k = iter->heap.data->end; 1172 } 1173 1174 if (iter->heap.data->k == iter->heap.data->end) { 1175 if (iter->heap.nr) { 1176 b = min_heap_peek(&iter->heap)[0]; 1177 min_heap_pop(&iter->heap, &callbacks, NULL); 1178 } 1179 } 1180 else 1181 min_heap_sift_down(&iter->heap, 0, &callbacks, NULL); 1182 } 1183 1184 return ret; 1185 } 1186 1187 struct bkey *bch_btree_iter_next(struct btree_iter *iter) 1188 { 1189 return __bch_btree_iter_next(iter, new_btree_iter_cmp); 1190 1191 } 1192 1193 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, 1194 struct btree_keys *b, ptr_filter_fn fn) 1195 { 1196 struct bkey *ret; 1197 1198 do { 1199 ret = bch_btree_iter_next(iter); 1200 } while (ret && fn(b, ret)); 1201 1202 return ret; 1203 } 1204 1205 /* Mergesort */ 1206 1207 void bch_bset_sort_state_free(struct bset_sort_state *state) 1208 { 1209 mempool_exit(&state->pool); 1210 } 1211 1212 int bch_bset_sort_state_init(struct bset_sort_state *state, 1213 unsigned int page_order) 1214 { 1215 spin_lock_init(&state->time.lock); 1216 1217 state->page_order = page_order; 1218 state->crit_factor = int_sqrt(1 << page_order); 1219 1220 return mempool_init_page_pool(&state->pool, 1, page_order); 1221 } 1222 1223 static void btree_mergesort(struct btree_keys *b, struct bset *out, 1224 struct btree_iter *iter, 1225 bool fixup, bool remove_stale) 1226 { 1227 struct bkey *k, *last = NULL; 1228 BKEY_PADDED(k) tmp; 1229 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale 1230 ? bch_ptr_bad 1231 : bch_ptr_invalid; 1232 const struct min_heap_callbacks callbacks = { 1233 .less = b->ops->sort_cmp, 1234 .swp = new_btree_iter_swap, 1235 }; 1236 1237 /* Heapify the iterator, using our comparison function */ 1238 min_heapify_all(&iter->heap, &callbacks, NULL); 1239 1240 while (!btree_iter_end(iter)) { 1241 if (b->ops->sort_fixup && fixup) 1242 k = b->ops->sort_fixup(iter, &tmp.k); 1243 else 1244 k = NULL; 1245 1246 if (!k) 1247 k = __bch_btree_iter_next(iter, b->ops->sort_cmp); 1248 1249 if (bad(b, k)) 1250 continue; 1251 1252 if (!last) { 1253 last = out->start; 1254 bkey_copy(last, k); 1255 } else if (!bch_bkey_try_merge(b, last, k)) { 1256 last = bkey_next(last); 1257 bkey_copy(last, k); 1258 } 1259 } 1260 1261 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; 1262 1263 pr_debug("sorted %i keys\n", out->keys); 1264 } 1265 1266 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter, 1267 unsigned int start, unsigned int order, bool fixup, 1268 struct bset_sort_state *state) 1269 { 1270 uint64_t start_time; 1271 bool used_mempool = false; 1272 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, 1273 order); 1274 if (!out) { 1275 struct page *outp; 1276 1277 BUG_ON(order > state->page_order); 1278 1279 outp = mempool_alloc(&state->pool, GFP_NOIO); 1280 out = page_address(outp); 1281 used_mempool = true; 1282 order = state->page_order; 1283 } 1284 1285 start_time = local_clock(); 1286 1287 btree_mergesort(b, out, iter, fixup, false); 1288 b->nsets = start; 1289 1290 if (!start && order == b->page_order) { 1291 /* 1292 * Our temporary buffer is the same size as the btree node's 1293 * buffer, we can just swap buffers instead of doing a big 1294 * memcpy() 1295 * 1296 * Don't worry event 'out' is allocated from mempool, it can 1297 * still be swapped here. Because state->pool is a page mempool 1298 * created by mempool_init_page_pool(), which allocates 1299 * pages by alloc_pages() indeed. 1300 */ 1301 1302 out->magic = b->set->data->magic; 1303 out->seq = b->set->data->seq; 1304 out->version = b->set->data->version; 1305 swap(out, b->set->data); 1306 } else { 1307 b->set[start].data->keys = out->keys; 1308 memcpy(b->set[start].data->start, out->start, 1309 (void *) bset_bkey_last(out) - (void *) out->start); 1310 } 1311 1312 if (used_mempool) 1313 mempool_free(virt_to_page(out), &state->pool); 1314 else 1315 free_pages((unsigned long) out, order); 1316 1317 bch_bset_build_written_tree(b); 1318 1319 if (!start) 1320 bch_time_stats_update(&state->time, start_time); 1321 } 1322 1323 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start, 1324 struct bset_sort_state *state) 1325 { 1326 size_t order = b->page_order, keys = 0; 1327 struct btree_iter iter; 1328 int oldsize = bch_count_data(b); 1329 1330 min_heap_init(&iter.heap, NULL, MAX_BSETS); 1331 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]); 1332 1333 if (start) { 1334 unsigned int i; 1335 1336 for (i = start; i <= b->nsets; i++) 1337 keys += b->set[i].data->keys; 1338 1339 order = get_order(__set_bytes(b->set->data, keys)); 1340 } 1341 1342 __btree_sort(b, &iter, start, order, false, state); 1343 1344 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize); 1345 } 1346 1347 void bch_btree_sort_and_fix_extents(struct btree_keys *b, 1348 struct btree_iter *iter, 1349 struct bset_sort_state *state) 1350 { 1351 __btree_sort(b, iter, 0, b->page_order, true, state); 1352 } 1353 1354 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new, 1355 struct bset_sort_state *state) 1356 { 1357 uint64_t start_time = local_clock(); 1358 struct btree_iter iter; 1359 1360 min_heap_init(&iter.heap, NULL, MAX_BSETS); 1361 1362 bch_btree_iter_init(b, &iter, NULL); 1363 1364 btree_mergesort(b, new->set->data, &iter, false, true); 1365 1366 bch_time_stats_update(&state->time, start_time); 1367 1368 new->set->size = 0; // XXX: why? 1369 } 1370 1371 #define SORT_CRIT (4096 / sizeof(uint64_t)) 1372 1373 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state) 1374 { 1375 unsigned int crit = SORT_CRIT; 1376 int i; 1377 1378 /* Don't sort if nothing to do */ 1379 if (!b->nsets) 1380 goto out; 1381 1382 for (i = b->nsets - 1; i >= 0; --i) { 1383 crit *= state->crit_factor; 1384 1385 if (b->set[i].data->keys < crit) { 1386 bch_btree_sort_partial(b, i, state); 1387 return; 1388 } 1389 } 1390 1391 /* Sort if we'd overflow */ 1392 if (b->nsets + 1 == MAX_BSETS) { 1393 bch_btree_sort(b, state); 1394 return; 1395 } 1396 1397 out: 1398 bch_bset_build_written_tree(b); 1399 } 1400 1401 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats) 1402 { 1403 unsigned int i; 1404 1405 for (i = 0; i <= b->nsets; i++) { 1406 struct bset_tree *t = &b->set[i]; 1407 size_t bytes = t->data->keys * sizeof(uint64_t); 1408 size_t j; 1409 1410 if (bset_written(b, t)) { 1411 stats->sets_written++; 1412 stats->bytes_written += bytes; 1413 1414 stats->floats += t->size - 1; 1415 1416 for (j = 1; j < t->size; j++) 1417 if (t->tree[j].exponent == 127) 1418 stats->failed++; 1419 } else { 1420 stats->sets_unwritten++; 1421 stats->bytes_unwritten += bytes; 1422 } 1423 } 1424 } 1425