xref: /linux/drivers/md/bcache/bset.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #define pr_fmt(fmt) "bcache: %s() " fmt, __func__
10 
11 #include "util.h"
12 #include "bset.h"
13 
14 #include <linux/console.h>
15 #include <linux/sched/clock.h>
16 #include <linux/random.h>
17 #include <linux/prefetch.h>
18 
19 #ifdef CONFIG_BCACHE_DEBUG
20 
21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
22 {
23 	struct bkey *k, *next;
24 
25 	for (k = i->start; k < bset_bkey_last(i); k = next) {
26 		next = bkey_next(k);
27 
28 		pr_err("block %u key %u/%u: ", set,
29 		       (unsigned int) ((u64 *) k - i->d), i->keys);
30 
31 		if (b->ops->key_dump)
32 			b->ops->key_dump(b, k);
33 		else
34 			pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
35 
36 		if (next < bset_bkey_last(i) &&
37 		    bkey_cmp(k, b->ops->is_extents ?
38 			     &START_KEY(next) : next) > 0)
39 			pr_err("Key skipped backwards\n");
40 	}
41 }
42 
43 void bch_dump_bucket(struct btree_keys *b)
44 {
45 	unsigned int i;
46 
47 	console_lock();
48 	for (i = 0; i <= b->nsets; i++)
49 		bch_dump_bset(b, b->set[i].data,
50 			      bset_sector_offset(b, b->set[i].data));
51 	console_unlock();
52 }
53 
54 int __bch_count_data(struct btree_keys *b)
55 {
56 	unsigned int ret = 0;
57 	struct btree_iter iter;
58 	struct bkey *k;
59 
60 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
61 
62 	if (b->ops->is_extents)
63 		for_each_key(b, k, &iter)
64 			ret += KEY_SIZE(k);
65 	return ret;
66 }
67 
68 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
69 {
70 	va_list args;
71 	struct bkey *k, *p = NULL;
72 	struct btree_iter iter;
73 	const char *err;
74 
75 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
76 
77 	for_each_key(b, k, &iter) {
78 		if (b->ops->is_extents) {
79 			err = "Keys out of order";
80 			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
81 				goto bug;
82 
83 			if (bch_ptr_invalid(b, k))
84 				continue;
85 
86 			err =  "Overlapping keys";
87 			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
88 				goto bug;
89 		} else {
90 			if (bch_ptr_bad(b, k))
91 				continue;
92 
93 			err = "Duplicate keys";
94 			if (p && !bkey_cmp(p, k))
95 				goto bug;
96 		}
97 		p = k;
98 	}
99 #if 0
100 	err = "Key larger than btree node key";
101 	if (p && bkey_cmp(p, &b->key) > 0)
102 		goto bug;
103 #endif
104 	return;
105 bug:
106 	bch_dump_bucket(b);
107 
108 	va_start(args, fmt);
109 	vprintk(fmt, args);
110 	va_end(args);
111 
112 	panic("bch_check_keys error:  %s:\n", err);
113 }
114 
115 static void bch_btree_iter_next_check(struct btree_iter *iter)
116 {
117 	struct bkey *k = iter->heap.data->k, *next = bkey_next(k);
118 
119 	if (next < iter->heap.data->end &&
120 	    bkey_cmp(k, iter->b->ops->is_extents ?
121 		     &START_KEY(next) : next) > 0) {
122 		bch_dump_bucket(iter->b);
123 		panic("Key skipped backwards\n");
124 	}
125 }
126 
127 #else
128 
129 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
130 
131 #endif
132 
133 /* Keylists */
134 
135 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
136 {
137 	size_t oldsize = bch_keylist_nkeys(l);
138 	size_t newsize = oldsize + u64s;
139 	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
140 	uint64_t *new_keys;
141 
142 	newsize = roundup_pow_of_two(newsize);
143 
144 	if (newsize <= KEYLIST_INLINE ||
145 	    roundup_pow_of_two(oldsize) == newsize)
146 		return 0;
147 
148 	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
149 
150 	if (!new_keys)
151 		return -ENOMEM;
152 
153 	if (!old_keys)
154 		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
155 
156 	l->keys_p = new_keys;
157 	l->top_p = new_keys + oldsize;
158 
159 	return 0;
160 }
161 
162 /* Pop the top key of keylist by pointing l->top to its previous key */
163 struct bkey *bch_keylist_pop(struct keylist *l)
164 {
165 	struct bkey *k = l->keys;
166 
167 	if (k == l->top)
168 		return NULL;
169 
170 	while (bkey_next(k) != l->top)
171 		k = bkey_next(k);
172 
173 	return l->top = k;
174 }
175 
176 /* Pop the bottom key of keylist and update l->top_p */
177 void bch_keylist_pop_front(struct keylist *l)
178 {
179 	l->top_p -= bkey_u64s(l->keys);
180 
181 	memmove(l->keys,
182 		bkey_next(l->keys),
183 		bch_keylist_bytes(l));
184 }
185 
186 /* Key/pointer manipulation */
187 
188 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
189 			      unsigned int i)
190 {
191 	BUG_ON(i > KEY_PTRS(src));
192 
193 	/* Only copy the header, key, and one pointer. */
194 	memcpy(dest, src, 2 * sizeof(uint64_t));
195 	dest->ptr[0] = src->ptr[i];
196 	SET_KEY_PTRS(dest, 1);
197 	/* We didn't copy the checksum so clear that bit. */
198 	SET_KEY_CSUM(dest, 0);
199 }
200 
201 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
202 {
203 	unsigned int i, len = 0;
204 
205 	if (bkey_cmp(where, &START_KEY(k)) <= 0)
206 		return false;
207 
208 	if (bkey_cmp(where, k) < 0)
209 		len = KEY_OFFSET(k) - KEY_OFFSET(where);
210 	else
211 		bkey_copy_key(k, where);
212 
213 	for (i = 0; i < KEY_PTRS(k); i++)
214 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
215 
216 	BUG_ON(len > KEY_SIZE(k));
217 	SET_KEY_SIZE(k, len);
218 	return true;
219 }
220 
221 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
222 {
223 	unsigned int len = 0;
224 
225 	if (bkey_cmp(where, k) >= 0)
226 		return false;
227 
228 	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
229 
230 	if (bkey_cmp(where, &START_KEY(k)) > 0)
231 		len = KEY_OFFSET(where) - KEY_START(k);
232 
233 	bkey_copy_key(k, where);
234 
235 	BUG_ON(len > KEY_SIZE(k));
236 	SET_KEY_SIZE(k, len);
237 	return true;
238 }
239 
240 /* Auxiliary search trees */
241 
242 /* 32 bits total: */
243 #define BKEY_MID_BITS		3
244 #define BKEY_EXPONENT_BITS	7
245 #define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
246 #define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
247 
248 struct bkey_float {
249 	unsigned int	exponent:BKEY_EXPONENT_BITS;
250 	unsigned int	m:BKEY_MID_BITS;
251 	unsigned int	mantissa:BKEY_MANTISSA_BITS;
252 } __packed;
253 
254 /*
255  * BSET_CACHELINE was originally intended to match the hardware cacheline size -
256  * it used to be 64, but I realized the lookup code would touch slightly less
257  * memory if it was 128.
258  *
259  * It definites the number of bytes (in struct bset) per struct bkey_float in
260  * the auxiliar search tree - when we're done searching the bset_float tree we
261  * have this many bytes left that we do a linear search over.
262  *
263  * Since (after level 5) every level of the bset_tree is on a new cacheline,
264  * we're touching one fewer cacheline in the bset tree in exchange for one more
265  * cacheline in the linear search - but the linear search might stop before it
266  * gets to the second cacheline.
267  */
268 
269 #define BSET_CACHELINE		128
270 
271 /* Space required for the btree node keys */
272 static inline size_t btree_keys_bytes(struct btree_keys *b)
273 {
274 	return PAGE_SIZE << b->page_order;
275 }
276 
277 static inline size_t btree_keys_cachelines(struct btree_keys *b)
278 {
279 	return btree_keys_bytes(b) / BSET_CACHELINE;
280 }
281 
282 /* Space required for the auxiliary search trees */
283 static inline size_t bset_tree_bytes(struct btree_keys *b)
284 {
285 	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
286 }
287 
288 /* Space required for the prev pointers */
289 static inline size_t bset_prev_bytes(struct btree_keys *b)
290 {
291 	return btree_keys_cachelines(b) * sizeof(uint8_t);
292 }
293 
294 /* Memory allocation */
295 
296 void bch_btree_keys_free(struct btree_keys *b)
297 {
298 	struct bset_tree *t = b->set;
299 
300 	if (bset_prev_bytes(b) < PAGE_SIZE)
301 		kfree(t->prev);
302 	else
303 		free_pages((unsigned long) t->prev,
304 			   get_order(bset_prev_bytes(b)));
305 
306 	if (bset_tree_bytes(b) < PAGE_SIZE)
307 		kfree(t->tree);
308 	else
309 		free_pages((unsigned long) t->tree,
310 			   get_order(bset_tree_bytes(b)));
311 
312 	free_pages((unsigned long) t->data, b->page_order);
313 
314 	t->prev = NULL;
315 	t->tree = NULL;
316 	t->data = NULL;
317 }
318 
319 int bch_btree_keys_alloc(struct btree_keys *b,
320 			 unsigned int page_order,
321 			 gfp_t gfp)
322 {
323 	struct bset_tree *t = b->set;
324 
325 	BUG_ON(t->data);
326 
327 	b->page_order = page_order;
328 
329 	t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order);
330 	if (!t->data)
331 		goto err;
332 
333 	t->tree = bset_tree_bytes(b) < PAGE_SIZE
334 		? kmalloc(bset_tree_bytes(b), gfp)
335 		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
336 	if (!t->tree)
337 		goto err;
338 
339 	t->prev = bset_prev_bytes(b) < PAGE_SIZE
340 		? kmalloc(bset_prev_bytes(b), gfp)
341 		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
342 	if (!t->prev)
343 		goto err;
344 
345 	return 0;
346 err:
347 	bch_btree_keys_free(b);
348 	return -ENOMEM;
349 }
350 
351 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
352 			 bool *expensive_debug_checks)
353 {
354 	b->ops = ops;
355 	b->expensive_debug_checks = expensive_debug_checks;
356 	b->nsets = 0;
357 	b->last_set_unwritten = 0;
358 
359 	/*
360 	 * struct btree_keys in embedded in struct btree, and struct
361 	 * bset_tree is embedded into struct btree_keys. They are all
362 	 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
363 	 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
364 	 * don't have to initiate b->set[].size and b->set[].data here
365 	 * any more.
366 	 */
367 }
368 
369 /* Binary tree stuff for auxiliary search trees */
370 
371 /*
372  * return array index next to j when does in-order traverse
373  * of a binary tree which is stored in a linear array
374  */
375 static unsigned int inorder_next(unsigned int j, unsigned int size)
376 {
377 	if (j * 2 + 1 < size) {
378 		j = j * 2 + 1;
379 
380 		while (j * 2 < size)
381 			j *= 2;
382 	} else
383 		j >>= ffz(j) + 1;
384 
385 	return j;
386 }
387 
388 /*
389  * return array index previous to j when does in-order traverse
390  * of a binary tree which is stored in a linear array
391  */
392 static unsigned int inorder_prev(unsigned int j, unsigned int size)
393 {
394 	if (j * 2 < size) {
395 		j = j * 2;
396 
397 		while (j * 2 + 1 < size)
398 			j = j * 2 + 1;
399 	} else
400 		j >>= ffs(j);
401 
402 	return j;
403 }
404 
405 /*
406  * I have no idea why this code works... and I'm the one who wrote it
407  *
408  * However, I do know what it does:
409  * Given a binary tree constructed in an array (i.e. how you normally implement
410  * a heap), it converts a node in the tree - referenced by array index - to the
411  * index it would have if you did an inorder traversal.
412  *
413  * Also tested for every j, size up to size somewhere around 6 million.
414  *
415  * The binary tree starts at array index 1, not 0
416  * extra is a function of size:
417  *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
418  */
419 static unsigned int __to_inorder(unsigned int j,
420 				  unsigned int size,
421 				  unsigned int extra)
422 {
423 	unsigned int b = fls(j);
424 	unsigned int shift = fls(size - 1) - b;
425 
426 	j  ^= 1U << (b - 1);
427 	j <<= 1;
428 	j  |= 1;
429 	j <<= shift;
430 
431 	if (j > extra)
432 		j -= (j - extra) >> 1;
433 
434 	return j;
435 }
436 
437 /*
438  * Return the cacheline index in bset_tree->data, where j is index
439  * from a linear array which stores the auxiliar binary tree
440  */
441 static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
442 {
443 	return __to_inorder(j, t->size, t->extra);
444 }
445 
446 static unsigned int __inorder_to_tree(unsigned int j,
447 				      unsigned int size,
448 				      unsigned int extra)
449 {
450 	unsigned int shift;
451 
452 	if (j > extra)
453 		j += j - extra;
454 
455 	shift = ffs(j);
456 
457 	j >>= shift;
458 	j  |= roundup_pow_of_two(size) >> shift;
459 
460 	return j;
461 }
462 
463 /*
464  * Return an index from a linear array which stores the auxiliar binary
465  * tree, j is the cacheline index of t->data.
466  */
467 static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
468 {
469 	return __inorder_to_tree(j, t->size, t->extra);
470 }
471 
472 #if 0
473 void inorder_test(void)
474 {
475 	unsigned long done = 0;
476 	ktime_t start = ktime_get();
477 
478 	for (unsigned int size = 2;
479 	     size < 65536000;
480 	     size++) {
481 		unsigned int extra =
482 			(size - rounddown_pow_of_two(size - 1)) << 1;
483 		unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
484 
485 		if (!(size % 4096))
486 			pr_notice("loop %u, %llu per us\n", size,
487 			       done / ktime_us_delta(ktime_get(), start));
488 
489 		while (1) {
490 			if (__inorder_to_tree(i, size, extra) != j)
491 				panic("size %10u j %10u i %10u", size, j, i);
492 
493 			if (__to_inorder(j, size, extra) != i)
494 				panic("size %10u j %10u i %10u", size, j, i);
495 
496 			if (j == rounddown_pow_of_two(size) - 1)
497 				break;
498 
499 			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
500 
501 			j = inorder_next(j, size);
502 			i++;
503 		}
504 
505 		done += size - 1;
506 	}
507 }
508 #endif
509 
510 /*
511  * Cacheline/offset <-> bkey pointer arithmetic:
512  *
513  * t->tree is a binary search tree in an array; each node corresponds to a key
514  * in one cacheline in t->set (BSET_CACHELINE bytes).
515  *
516  * This means we don't have to store the full index of the key that a node in
517  * the binary tree points to; to_inorder() gives us the cacheline, and then
518  * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
519  *
520  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
521  * make this work.
522  *
523  * To construct the bfloat for an arbitrary key we need to know what the key
524  * immediately preceding it is: we have to check if the two keys differ in the
525  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
526  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
527  */
528 
529 static struct bkey *cacheline_to_bkey(struct bset_tree *t,
530 				      unsigned int cacheline,
531 				      unsigned int offset)
532 {
533 	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
534 }
535 
536 static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
537 {
538 	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
539 }
540 
541 static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
542 					 unsigned int cacheline,
543 					 struct bkey *k)
544 {
545 	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
546 }
547 
548 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
549 {
550 	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
551 }
552 
553 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
554 {
555 	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
556 }
557 
558 /*
559  * For the write set - the one we're currently inserting keys into - we don't
560  * maintain a full search tree, we just keep a simple lookup table in t->prev.
561  */
562 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
563 {
564 	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
565 }
566 
567 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
568 {
569 	low >>= shift;
570 	low  |= (high << 1) << (63U - shift);
571 	return low;
572 }
573 
574 /*
575  * Calculate mantissa value for struct bkey_float.
576  * If most significant bit of f->exponent is not set, then
577  *  - f->exponent >> 6 is 0
578  *  - p[0] points to bkey->low
579  *  - p[-1] borrows bits from KEY_INODE() of bkey->high
580  * if most isgnificant bits of f->exponent is set, then
581  *  - f->exponent >> 6 is 1
582  *  - p[0] points to bits from KEY_INODE() of bkey->high
583  *  - p[-1] points to other bits from KEY_INODE() of
584  *    bkey->high too.
585  * See make_bfloat() to check when most significant bit of f->exponent
586  * is set or not.
587  */
588 static inline unsigned int bfloat_mantissa(const struct bkey *k,
589 				       struct bkey_float *f)
590 {
591 	const uint64_t *p = &k->low - (f->exponent >> 6);
592 
593 	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
594 }
595 
596 static void make_bfloat(struct bset_tree *t, unsigned int j)
597 {
598 	struct bkey_float *f = &t->tree[j];
599 	struct bkey *m = tree_to_bkey(t, j);
600 	struct bkey *p = tree_to_prev_bkey(t, j);
601 
602 	struct bkey *l = is_power_of_2(j)
603 		? t->data->start
604 		: tree_to_prev_bkey(t, j >> ffs(j));
605 
606 	struct bkey *r = is_power_of_2(j + 1)
607 		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
608 		: tree_to_bkey(t, j >> (ffz(j) + 1));
609 
610 	BUG_ON(m < l || m > r);
611 	BUG_ON(bkey_next(p) != m);
612 
613 	/*
614 	 * If l and r have different KEY_INODE values (different backing
615 	 * device), f->exponent records how many least significant bits
616 	 * are different in KEY_INODE values and sets most significant
617 	 * bits to 1 (by +64).
618 	 * If l and r have same KEY_INODE value, f->exponent records
619 	 * how many different bits in least significant bits of bkey->low.
620 	 * See bfloat_mantiss() how the most significant bit of
621 	 * f->exponent is used to calculate bfloat mantissa value.
622 	 */
623 	if (KEY_INODE(l) != KEY_INODE(r))
624 		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
625 	else
626 		f->exponent = fls64(r->low ^ l->low);
627 
628 	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
629 
630 	/*
631 	 * Setting f->exponent = 127 flags this node as failed, and causes the
632 	 * lookup code to fall back to comparing against the original key.
633 	 */
634 
635 	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
636 		f->mantissa = bfloat_mantissa(m, f) - 1;
637 	else
638 		f->exponent = 127;
639 }
640 
641 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
642 {
643 	if (t != b->set) {
644 		unsigned int j = roundup(t[-1].size,
645 				     64 / sizeof(struct bkey_float));
646 
647 		t->tree = t[-1].tree + j;
648 		t->prev = t[-1].prev + j;
649 	}
650 
651 	while (t < b->set + MAX_BSETS)
652 		t++->size = 0;
653 }
654 
655 static void bch_bset_build_unwritten_tree(struct btree_keys *b)
656 {
657 	struct bset_tree *t = bset_tree_last(b);
658 
659 	BUG_ON(b->last_set_unwritten);
660 	b->last_set_unwritten = 1;
661 
662 	bset_alloc_tree(b, t);
663 
664 	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
665 		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
666 		t->size = 1;
667 	}
668 }
669 
670 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
671 {
672 	if (i != b->set->data) {
673 		b->set[++b->nsets].data = i;
674 		i->seq = b->set->data->seq;
675 	} else
676 		get_random_bytes(&i->seq, sizeof(uint64_t));
677 
678 	i->magic	= magic;
679 	i->version	= 0;
680 	i->keys		= 0;
681 
682 	bch_bset_build_unwritten_tree(b);
683 }
684 
685 /*
686  * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
687  * accelerate bkey search in a btree node (pointed by bset_tree->data in
688  * memory). After search in the auxiliar tree by calling bset_search_tree(),
689  * a struct bset_search_iter is returned which indicates range [l, r] from
690  * bset_tree->data where the searching bkey might be inside. Then a followed
691  * linear comparison does the exact search, see __bch_bset_search() for how
692  * the auxiliary tree is used.
693  */
694 void bch_bset_build_written_tree(struct btree_keys *b)
695 {
696 	struct bset_tree *t = bset_tree_last(b);
697 	struct bkey *prev = NULL, *k = t->data->start;
698 	unsigned int j, cacheline = 1;
699 
700 	b->last_set_unwritten = 0;
701 
702 	bset_alloc_tree(b, t);
703 
704 	t->size = min_t(unsigned int,
705 			bkey_to_cacheline(t, bset_bkey_last(t->data)),
706 			b->set->tree + btree_keys_cachelines(b) - t->tree);
707 
708 	if (t->size < 2) {
709 		t->size = 0;
710 		return;
711 	}
712 
713 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
714 
715 	/* First we figure out where the first key in each cacheline is */
716 	for (j = inorder_next(0, t->size);
717 	     j;
718 	     j = inorder_next(j, t->size)) {
719 		while (bkey_to_cacheline(t, k) < cacheline) {
720 			prev = k;
721 			k = bkey_next(k);
722 		}
723 
724 		t->prev[j] = bkey_u64s(prev);
725 		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
726 	}
727 
728 	while (bkey_next(k) != bset_bkey_last(t->data))
729 		k = bkey_next(k);
730 
731 	t->end = *k;
732 
733 	/* Then we build the tree */
734 	for (j = inorder_next(0, t->size);
735 	     j;
736 	     j = inorder_next(j, t->size))
737 		make_bfloat(t, j);
738 }
739 
740 /* Insert */
741 
742 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
743 {
744 	struct bset_tree *t;
745 	unsigned int inorder, j = 1;
746 
747 	for (t = b->set; t <= bset_tree_last(b); t++)
748 		if (k < bset_bkey_last(t->data))
749 			goto found_set;
750 
751 	BUG();
752 found_set:
753 	if (!t->size || !bset_written(b, t))
754 		return;
755 
756 	inorder = bkey_to_cacheline(t, k);
757 
758 	if (k == t->data->start)
759 		goto fix_left;
760 
761 	if (bkey_next(k) == bset_bkey_last(t->data)) {
762 		t->end = *k;
763 		goto fix_right;
764 	}
765 
766 	j = inorder_to_tree(inorder, t);
767 
768 	if (j &&
769 	    j < t->size &&
770 	    k == tree_to_bkey(t, j))
771 fix_left:	do {
772 			make_bfloat(t, j);
773 			j = j * 2;
774 		} while (j < t->size);
775 
776 	j = inorder_to_tree(inorder + 1, t);
777 
778 	if (j &&
779 	    j < t->size &&
780 	    k == tree_to_prev_bkey(t, j))
781 fix_right:	do {
782 			make_bfloat(t, j);
783 			j = j * 2 + 1;
784 		} while (j < t->size);
785 }
786 
787 static void bch_bset_fix_lookup_table(struct btree_keys *b,
788 				      struct bset_tree *t,
789 				      struct bkey *k)
790 {
791 	unsigned int shift = bkey_u64s(k);
792 	unsigned int j = bkey_to_cacheline(t, k);
793 
794 	/* We're getting called from btree_split() or btree_gc, just bail out */
795 	if (!t->size)
796 		return;
797 
798 	/*
799 	 * k is the key we just inserted; we need to find the entry in the
800 	 * lookup table for the first key that is strictly greater than k:
801 	 * it's either k's cacheline or the next one
802 	 */
803 	while (j < t->size &&
804 	       table_to_bkey(t, j) <= k)
805 		j++;
806 
807 	/*
808 	 * Adjust all the lookup table entries, and find a new key for any that
809 	 * have gotten too big
810 	 */
811 	for (; j < t->size; j++) {
812 		t->prev[j] += shift;
813 
814 		if (t->prev[j] > 7) {
815 			k = table_to_bkey(t, j - 1);
816 
817 			while (k < cacheline_to_bkey(t, j, 0))
818 				k = bkey_next(k);
819 
820 			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
821 		}
822 	}
823 
824 	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
825 		return;
826 
827 	/* Possibly add a new entry to the end of the lookup table */
828 
829 	for (k = table_to_bkey(t, t->size - 1);
830 	     k != bset_bkey_last(t->data);
831 	     k = bkey_next(k))
832 		if (t->size == bkey_to_cacheline(t, k)) {
833 			t->prev[t->size] =
834 				bkey_to_cacheline_offset(t, t->size, k);
835 			t->size++;
836 		}
837 }
838 
839 /*
840  * Tries to merge l and r: l should be lower than r
841  * Returns true if we were able to merge. If we did merge, l will be the merged
842  * key, r will be untouched.
843  */
844 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
845 {
846 	if (!b->ops->key_merge)
847 		return false;
848 
849 	/*
850 	 * Generic header checks
851 	 * Assumes left and right are in order
852 	 * Left and right must be exactly aligned
853 	 */
854 	if (!bch_bkey_equal_header(l, r) ||
855 	     bkey_cmp(l, &START_KEY(r)))
856 		return false;
857 
858 	return b->ops->key_merge(b, l, r);
859 }
860 
861 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
862 		     struct bkey *insert)
863 {
864 	struct bset_tree *t = bset_tree_last(b);
865 
866 	BUG_ON(!b->last_set_unwritten);
867 	BUG_ON(bset_byte_offset(b, t->data) +
868 	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
869 	       PAGE_SIZE << b->page_order);
870 
871 	memmove((uint64_t *) where + bkey_u64s(insert),
872 		where,
873 		(void *) bset_bkey_last(t->data) - (void *) where);
874 
875 	t->data->keys += bkey_u64s(insert);
876 	bkey_copy(where, insert);
877 	bch_bset_fix_lookup_table(b, t, where);
878 }
879 
880 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
881 			      struct bkey *replace_key)
882 {
883 	unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
884 	struct bset *i = bset_tree_last(b)->data;
885 	struct bkey *m, *prev = NULL;
886 	struct btree_iter iter;
887 	struct bkey preceding_key_on_stack = ZERO_KEY;
888 	struct bkey *preceding_key_p = &preceding_key_on_stack;
889 
890 	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
891 
892 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
893 
894 	/*
895 	 * If k has preceding key, preceding_key_p will be set to address
896 	 *  of k's preceding key; otherwise preceding_key_p will be set
897 	 * to NULL inside preceding_key().
898 	 */
899 	if (b->ops->is_extents)
900 		preceding_key(&START_KEY(k), &preceding_key_p);
901 	else
902 		preceding_key(k, &preceding_key_p);
903 
904 	m = bch_btree_iter_init(b, &iter, preceding_key_p);
905 
906 	if (b->ops->insert_fixup(b, k, &iter, replace_key))
907 		return status;
908 
909 	status = BTREE_INSERT_STATUS_INSERT;
910 
911 	while (m != bset_bkey_last(i) &&
912 	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) {
913 		prev = m;
914 		m = bkey_next(m);
915 	}
916 
917 	/* prev is in the tree, if we merge we're done */
918 	status = BTREE_INSERT_STATUS_BACK_MERGE;
919 	if (prev &&
920 	    bch_bkey_try_merge(b, prev, k))
921 		goto merged;
922 #if 0
923 	status = BTREE_INSERT_STATUS_OVERWROTE;
924 	if (m != bset_bkey_last(i) &&
925 	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
926 		goto copy;
927 #endif
928 	status = BTREE_INSERT_STATUS_FRONT_MERGE;
929 	if (m != bset_bkey_last(i) &&
930 	    bch_bkey_try_merge(b, k, m))
931 		goto copy;
932 
933 	bch_bset_insert(b, m, k);
934 copy:	bkey_copy(m, k);
935 merged:
936 	return status;
937 }
938 
939 /* Lookup */
940 
941 struct bset_search_iter {
942 	struct bkey *l, *r;
943 };
944 
945 static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
946 						     const struct bkey *search)
947 {
948 	unsigned int li = 0, ri = t->size;
949 
950 	while (li + 1 != ri) {
951 		unsigned int m = (li + ri) >> 1;
952 
953 		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
954 			ri = m;
955 		else
956 			li = m;
957 	}
958 
959 	return (struct bset_search_iter) {
960 		table_to_bkey(t, li),
961 		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
962 	};
963 }
964 
965 static struct bset_search_iter bset_search_tree(struct bset_tree *t,
966 						const struct bkey *search)
967 {
968 	struct bkey *l, *r;
969 	struct bkey_float *f;
970 	unsigned int inorder, j, n = 1;
971 
972 	do {
973 		unsigned int p = n << 4;
974 
975 		if (p < t->size)
976 			prefetch(&t->tree[p]);
977 
978 		j = n;
979 		f = &t->tree[j];
980 
981 		if (likely(f->exponent != 127)) {
982 			if (f->mantissa >= bfloat_mantissa(search, f))
983 				n = j * 2;
984 			else
985 				n = j * 2 + 1;
986 		} else {
987 			if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
988 				n = j * 2;
989 			else
990 				n = j * 2 + 1;
991 		}
992 	} while (n < t->size);
993 
994 	inorder = to_inorder(j, t);
995 
996 	/*
997 	 * n would have been the node we recursed to - the low bit tells us if
998 	 * we recursed left or recursed right.
999 	 */
1000 	if (n & 1) {
1001 		l = cacheline_to_bkey(t, inorder, f->m);
1002 
1003 		if (++inorder != t->size) {
1004 			f = &t->tree[inorder_next(j, t->size)];
1005 			r = cacheline_to_bkey(t, inorder, f->m);
1006 		} else
1007 			r = bset_bkey_last(t->data);
1008 	} else {
1009 		r = cacheline_to_bkey(t, inorder, f->m);
1010 
1011 		if (--inorder) {
1012 			f = &t->tree[inorder_prev(j, t->size)];
1013 			l = cacheline_to_bkey(t, inorder, f->m);
1014 		} else
1015 			l = t->data->start;
1016 	}
1017 
1018 	return (struct bset_search_iter) {l, r};
1019 }
1020 
1021 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1022 			       const struct bkey *search)
1023 {
1024 	struct bset_search_iter i;
1025 
1026 	/*
1027 	 * First, we search for a cacheline, then lastly we do a linear search
1028 	 * within that cacheline.
1029 	 *
1030 	 * To search for the cacheline, there's three different possibilities:
1031 	 *  * The set is too small to have a search tree, so we just do a linear
1032 	 *    search over the whole set.
1033 	 *  * The set is the one we're currently inserting into; keeping a full
1034 	 *    auxiliary search tree up to date would be too expensive, so we
1035 	 *    use a much simpler lookup table to do a binary search -
1036 	 *    bset_search_write_set().
1037 	 *  * Or we use the auxiliary search tree we constructed earlier -
1038 	 *    bset_search_tree()
1039 	 */
1040 
1041 	if (unlikely(!t->size)) {
1042 		i.l = t->data->start;
1043 		i.r = bset_bkey_last(t->data);
1044 	} else if (bset_written(b, t)) {
1045 		/*
1046 		 * Each node in the auxiliary search tree covers a certain range
1047 		 * of bits, and keys above and below the set it covers might
1048 		 * differ outside those bits - so we have to special case the
1049 		 * start and end - handle that here:
1050 		 */
1051 
1052 		if (unlikely(bkey_cmp(search, &t->end) >= 0))
1053 			return bset_bkey_last(t->data);
1054 
1055 		if (unlikely(bkey_cmp(search, t->data->start) < 0))
1056 			return t->data->start;
1057 
1058 		i = bset_search_tree(t, search);
1059 	} else {
1060 		BUG_ON(!b->nsets &&
1061 		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1062 
1063 		i = bset_search_write_set(t, search);
1064 	}
1065 
1066 	if (btree_keys_expensive_checks(b)) {
1067 		BUG_ON(bset_written(b, t) &&
1068 		       i.l != t->data->start &&
1069 		       bkey_cmp(tree_to_prev_bkey(t,
1070 			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1071 				search) > 0);
1072 
1073 		BUG_ON(i.r != bset_bkey_last(t->data) &&
1074 		       bkey_cmp(i.r, search) <= 0);
1075 	}
1076 
1077 	while (likely(i.l != i.r) &&
1078 	       bkey_cmp(i.l, search) <= 0)
1079 		i.l = bkey_next(i.l);
1080 
1081 	return i.l;
1082 }
1083 
1084 /* Btree iterator */
1085 
1086 typedef bool (new_btree_iter_cmp_fn)(const void *, const void *, void *);
1087 
1088 static inline bool new_btree_iter_cmp(const void *l, const void *r, void __always_unused *args)
1089 {
1090 	const struct btree_iter_set *_l = l;
1091 	const struct btree_iter_set *_r = r;
1092 
1093 	return bkey_cmp(_l->k, _r->k) <= 0;
1094 }
1095 
1096 static inline void new_btree_iter_swap(void *iter1, void *iter2, void __always_unused *args)
1097 {
1098 	struct btree_iter_set *_iter1 = iter1;
1099 	struct btree_iter_set *_iter2 = iter2;
1100 
1101 	swap(*_iter1, *_iter2);
1102 }
1103 
1104 static inline bool btree_iter_end(struct btree_iter *iter)
1105 {
1106 	return !iter->heap.nr;
1107 }
1108 
1109 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1110 			 struct bkey *end)
1111 {
1112 	const struct min_heap_callbacks callbacks = {
1113 		.less = new_btree_iter_cmp,
1114 		.swp = new_btree_iter_swap,
1115 	};
1116 
1117 	if (k != end)
1118 		BUG_ON(!min_heap_push(&iter->heap,
1119 				 &((struct btree_iter_set) { k, end }),
1120 				 &callbacks,
1121 				 NULL));
1122 }
1123 
1124 static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1125 					  struct btree_iter *iter,
1126 					  struct bkey *search,
1127 					  struct bset_tree *start)
1128 {
1129 	struct bkey *ret = NULL;
1130 
1131 	iter->heap.size = ARRAY_SIZE(iter->heap.preallocated);
1132 	iter->heap.nr = 0;
1133 
1134 #ifdef CONFIG_BCACHE_DEBUG
1135 	iter->b = b;
1136 #endif
1137 
1138 	for (; start <= bset_tree_last(b); start++) {
1139 		ret = bch_bset_search(b, start, search);
1140 		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1141 	}
1142 
1143 	return ret;
1144 }
1145 
1146 struct bkey *bch_btree_iter_init(struct btree_keys *b,
1147 				 struct btree_iter *iter,
1148 				 struct bkey *search)
1149 {
1150 	return __bch_btree_iter_init(b, iter, search, b->set);
1151 }
1152 
1153 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1154 						 new_btree_iter_cmp_fn *cmp)
1155 {
1156 	struct btree_iter_set b __maybe_unused;
1157 	struct bkey *ret = NULL;
1158 	const struct min_heap_callbacks callbacks = {
1159 		.less = cmp,
1160 		.swp = new_btree_iter_swap,
1161 	};
1162 
1163 	if (!btree_iter_end(iter)) {
1164 		bch_btree_iter_next_check(iter);
1165 
1166 		ret = iter->heap.data->k;
1167 		iter->heap.data->k = bkey_next(iter->heap.data->k);
1168 
1169 		if (iter->heap.data->k > iter->heap.data->end) {
1170 			WARN_ONCE(1, "bset was corrupt!\n");
1171 			iter->heap.data->k = iter->heap.data->end;
1172 		}
1173 
1174 		if (iter->heap.data->k == iter->heap.data->end) {
1175 			if (iter->heap.nr) {
1176 				b = min_heap_peek(&iter->heap)[0];
1177 				min_heap_pop(&iter->heap, &callbacks, NULL);
1178 			}
1179 		}
1180 		else
1181 			min_heap_sift_down(&iter->heap, 0, &callbacks, NULL);
1182 	}
1183 
1184 	return ret;
1185 }
1186 
1187 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1188 {
1189 	return __bch_btree_iter_next(iter, new_btree_iter_cmp);
1190 
1191 }
1192 
1193 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1194 					struct btree_keys *b, ptr_filter_fn fn)
1195 {
1196 	struct bkey *ret;
1197 
1198 	do {
1199 		ret = bch_btree_iter_next(iter);
1200 	} while (ret && fn(b, ret));
1201 
1202 	return ret;
1203 }
1204 
1205 /* Mergesort */
1206 
1207 void bch_bset_sort_state_free(struct bset_sort_state *state)
1208 {
1209 	mempool_exit(&state->pool);
1210 }
1211 
1212 int bch_bset_sort_state_init(struct bset_sort_state *state,
1213 			     unsigned int page_order)
1214 {
1215 	spin_lock_init(&state->time.lock);
1216 
1217 	state->page_order = page_order;
1218 	state->crit_factor = int_sqrt(1 << page_order);
1219 
1220 	return mempool_init_page_pool(&state->pool, 1, page_order);
1221 }
1222 
1223 static void btree_mergesort(struct btree_keys *b, struct bset *out,
1224 			    struct btree_iter *iter,
1225 			    bool fixup, bool remove_stale)
1226 {
1227 	struct bkey *k, *last = NULL;
1228 	BKEY_PADDED(k) tmp;
1229 	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1230 		? bch_ptr_bad
1231 		: bch_ptr_invalid;
1232 	const struct min_heap_callbacks callbacks = {
1233 		.less = b->ops->sort_cmp,
1234 		.swp = new_btree_iter_swap,
1235 	};
1236 
1237 	/* Heapify the iterator, using our comparison function */
1238 	min_heapify_all(&iter->heap, &callbacks, NULL);
1239 
1240 	while (!btree_iter_end(iter)) {
1241 		if (b->ops->sort_fixup && fixup)
1242 			k = b->ops->sort_fixup(iter, &tmp.k);
1243 		else
1244 			k = NULL;
1245 
1246 		if (!k)
1247 			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1248 
1249 		if (bad(b, k))
1250 			continue;
1251 
1252 		if (!last) {
1253 			last = out->start;
1254 			bkey_copy(last, k);
1255 		} else if (!bch_bkey_try_merge(b, last, k)) {
1256 			last = bkey_next(last);
1257 			bkey_copy(last, k);
1258 		}
1259 	}
1260 
1261 	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1262 
1263 	pr_debug("sorted %i keys\n", out->keys);
1264 }
1265 
1266 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1267 			 unsigned int start, unsigned int order, bool fixup,
1268 			 struct bset_sort_state *state)
1269 {
1270 	uint64_t start_time;
1271 	bool used_mempool = false;
1272 	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1273 						     order);
1274 	if (!out) {
1275 		struct page *outp;
1276 
1277 		BUG_ON(order > state->page_order);
1278 
1279 		outp = mempool_alloc(&state->pool, GFP_NOIO);
1280 		out = page_address(outp);
1281 		used_mempool = true;
1282 		order = state->page_order;
1283 	}
1284 
1285 	start_time = local_clock();
1286 
1287 	btree_mergesort(b, out, iter, fixup, false);
1288 	b->nsets = start;
1289 
1290 	if (!start && order == b->page_order) {
1291 		/*
1292 		 * Our temporary buffer is the same size as the btree node's
1293 		 * buffer, we can just swap buffers instead of doing a big
1294 		 * memcpy()
1295 		 *
1296 		 * Don't worry event 'out' is allocated from mempool, it can
1297 		 * still be swapped here. Because state->pool is a page mempool
1298 		 * created by mempool_init_page_pool(), which allocates
1299 		 * pages by alloc_pages() indeed.
1300 		 */
1301 
1302 		out->magic	= b->set->data->magic;
1303 		out->seq	= b->set->data->seq;
1304 		out->version	= b->set->data->version;
1305 		swap(out, b->set->data);
1306 	} else {
1307 		b->set[start].data->keys = out->keys;
1308 		memcpy(b->set[start].data->start, out->start,
1309 		       (void *) bset_bkey_last(out) - (void *) out->start);
1310 	}
1311 
1312 	if (used_mempool)
1313 		mempool_free(virt_to_page(out), &state->pool);
1314 	else
1315 		free_pages((unsigned long) out, order);
1316 
1317 	bch_bset_build_written_tree(b);
1318 
1319 	if (!start)
1320 		bch_time_stats_update(&state->time, start_time);
1321 }
1322 
1323 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1324 			    struct bset_sort_state *state)
1325 {
1326 	size_t order = b->page_order, keys = 0;
1327 	struct btree_iter iter;
1328 	int oldsize = bch_count_data(b);
1329 
1330 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
1331 	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1332 
1333 	if (start) {
1334 		unsigned int i;
1335 
1336 		for (i = start; i <= b->nsets; i++)
1337 			keys += b->set[i].data->keys;
1338 
1339 		order = get_order(__set_bytes(b->set->data, keys));
1340 	}
1341 
1342 	__btree_sort(b, &iter, start, order, false, state);
1343 
1344 	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1345 }
1346 
1347 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1348 				    struct btree_iter *iter,
1349 				    struct bset_sort_state *state)
1350 {
1351 	__btree_sort(b, iter, 0, b->page_order, true, state);
1352 }
1353 
1354 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1355 			 struct bset_sort_state *state)
1356 {
1357 	uint64_t start_time = local_clock();
1358 	struct btree_iter iter;
1359 
1360 	min_heap_init(&iter.heap, NULL, MAX_BSETS);
1361 
1362 	bch_btree_iter_init(b, &iter, NULL);
1363 
1364 	btree_mergesort(b, new->set->data, &iter, false, true);
1365 
1366 	bch_time_stats_update(&state->time, start_time);
1367 
1368 	new->set->size = 0; // XXX: why?
1369 }
1370 
1371 #define SORT_CRIT	(4096 / sizeof(uint64_t))
1372 
1373 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1374 {
1375 	unsigned int crit = SORT_CRIT;
1376 	int i;
1377 
1378 	/* Don't sort if nothing to do */
1379 	if (!b->nsets)
1380 		goto out;
1381 
1382 	for (i = b->nsets - 1; i >= 0; --i) {
1383 		crit *= state->crit_factor;
1384 
1385 		if (b->set[i].data->keys < crit) {
1386 			bch_btree_sort_partial(b, i, state);
1387 			return;
1388 		}
1389 	}
1390 
1391 	/* Sort if we'd overflow */
1392 	if (b->nsets + 1 == MAX_BSETS) {
1393 		bch_btree_sort(b, state);
1394 		return;
1395 	}
1396 
1397 out:
1398 	bch_bset_build_written_tree(b);
1399 }
1400 
1401 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1402 {
1403 	unsigned int i;
1404 
1405 	for (i = 0; i <= b->nsets; i++) {
1406 		struct bset_tree *t = &b->set[i];
1407 		size_t bytes = t->data->keys * sizeof(uint64_t);
1408 		size_t j;
1409 
1410 		if (bset_written(b, t)) {
1411 			stats->sets_written++;
1412 			stats->bytes_written += bytes;
1413 
1414 			stats->floats += t->size - 1;
1415 
1416 			for (j = 1; j < t->size; j++)
1417 				if (t->tree[j].exponent == 127)
1418 					stats->failed++;
1419 		} else {
1420 			stats->sets_unwritten++;
1421 			stats->bytes_unwritten += bytes;
1422 		}
1423 	}
1424 }
1425