xref: /linux/drivers/md/bcache/bset.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
10 
11 #include "util.h"
12 #include "bset.h"
13 
14 #include <linux/console.h>
15 #include <linux/sched/clock.h>
16 #include <linux/random.h>
17 #include <linux/prefetch.h>
18 
19 #ifdef CONFIG_BCACHE_DEBUG
20 
21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned set)
22 {
23 	struct bkey *k, *next;
24 
25 	for (k = i->start; k < bset_bkey_last(i); k = next) {
26 		next = bkey_next(k);
27 
28 		printk(KERN_ERR "block %u key %u/%u: ", set,
29 		       (unsigned) ((u64 *) k - i->d), i->keys);
30 
31 		if (b->ops->key_dump)
32 			b->ops->key_dump(b, k);
33 		else
34 			printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
35 
36 		if (next < bset_bkey_last(i) &&
37 		    bkey_cmp(k, b->ops->is_extents ?
38 			     &START_KEY(next) : next) > 0)
39 			printk(KERN_ERR "Key skipped backwards\n");
40 	}
41 }
42 
43 void bch_dump_bucket(struct btree_keys *b)
44 {
45 	unsigned i;
46 
47 	console_lock();
48 	for (i = 0; i <= b->nsets; i++)
49 		bch_dump_bset(b, b->set[i].data,
50 			      bset_sector_offset(b, b->set[i].data));
51 	console_unlock();
52 }
53 
54 int __bch_count_data(struct btree_keys *b)
55 {
56 	unsigned ret = 0;
57 	struct btree_iter iter;
58 	struct bkey *k;
59 
60 	if (b->ops->is_extents)
61 		for_each_key(b, k, &iter)
62 			ret += KEY_SIZE(k);
63 	return ret;
64 }
65 
66 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
67 {
68 	va_list args;
69 	struct bkey *k, *p = NULL;
70 	struct btree_iter iter;
71 	const char *err;
72 
73 	for_each_key(b, k, &iter) {
74 		if (b->ops->is_extents) {
75 			err = "Keys out of order";
76 			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
77 				goto bug;
78 
79 			if (bch_ptr_invalid(b, k))
80 				continue;
81 
82 			err =  "Overlapping keys";
83 			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
84 				goto bug;
85 		} else {
86 			if (bch_ptr_bad(b, k))
87 				continue;
88 
89 			err = "Duplicate keys";
90 			if (p && !bkey_cmp(p, k))
91 				goto bug;
92 		}
93 		p = k;
94 	}
95 #if 0
96 	err = "Key larger than btree node key";
97 	if (p && bkey_cmp(p, &b->key) > 0)
98 		goto bug;
99 #endif
100 	return;
101 bug:
102 	bch_dump_bucket(b);
103 
104 	va_start(args, fmt);
105 	vprintk(fmt, args);
106 	va_end(args);
107 
108 	panic("bch_check_keys error:  %s:\n", err);
109 }
110 
111 static void bch_btree_iter_next_check(struct btree_iter *iter)
112 {
113 	struct bkey *k = iter->data->k, *next = bkey_next(k);
114 
115 	if (next < iter->data->end &&
116 	    bkey_cmp(k, iter->b->ops->is_extents ?
117 		     &START_KEY(next) : next) > 0) {
118 		bch_dump_bucket(iter->b);
119 		panic("Key skipped backwards\n");
120 	}
121 }
122 
123 #else
124 
125 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
126 
127 #endif
128 
129 /* Keylists */
130 
131 int __bch_keylist_realloc(struct keylist *l, unsigned u64s)
132 {
133 	size_t oldsize = bch_keylist_nkeys(l);
134 	size_t newsize = oldsize + u64s;
135 	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
136 	uint64_t *new_keys;
137 
138 	newsize = roundup_pow_of_two(newsize);
139 
140 	if (newsize <= KEYLIST_INLINE ||
141 	    roundup_pow_of_two(oldsize) == newsize)
142 		return 0;
143 
144 	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
145 
146 	if (!new_keys)
147 		return -ENOMEM;
148 
149 	if (!old_keys)
150 		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
151 
152 	l->keys_p = new_keys;
153 	l->top_p = new_keys + oldsize;
154 
155 	return 0;
156 }
157 
158 struct bkey *bch_keylist_pop(struct keylist *l)
159 {
160 	struct bkey *k = l->keys;
161 
162 	if (k == l->top)
163 		return NULL;
164 
165 	while (bkey_next(k) != l->top)
166 		k = bkey_next(k);
167 
168 	return l->top = k;
169 }
170 
171 void bch_keylist_pop_front(struct keylist *l)
172 {
173 	l->top_p -= bkey_u64s(l->keys);
174 
175 	memmove(l->keys,
176 		bkey_next(l->keys),
177 		bch_keylist_bytes(l));
178 }
179 
180 /* Key/pointer manipulation */
181 
182 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
183 			      unsigned i)
184 {
185 	BUG_ON(i > KEY_PTRS(src));
186 
187 	/* Only copy the header, key, and one pointer. */
188 	memcpy(dest, src, 2 * sizeof(uint64_t));
189 	dest->ptr[0] = src->ptr[i];
190 	SET_KEY_PTRS(dest, 1);
191 	/* We didn't copy the checksum so clear that bit. */
192 	SET_KEY_CSUM(dest, 0);
193 }
194 
195 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
196 {
197 	unsigned i, len = 0;
198 
199 	if (bkey_cmp(where, &START_KEY(k)) <= 0)
200 		return false;
201 
202 	if (bkey_cmp(where, k) < 0)
203 		len = KEY_OFFSET(k) - KEY_OFFSET(where);
204 	else
205 		bkey_copy_key(k, where);
206 
207 	for (i = 0; i < KEY_PTRS(k); i++)
208 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
209 
210 	BUG_ON(len > KEY_SIZE(k));
211 	SET_KEY_SIZE(k, len);
212 	return true;
213 }
214 
215 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
216 {
217 	unsigned len = 0;
218 
219 	if (bkey_cmp(where, k) >= 0)
220 		return false;
221 
222 	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
223 
224 	if (bkey_cmp(where, &START_KEY(k)) > 0)
225 		len = KEY_OFFSET(where) - KEY_START(k);
226 
227 	bkey_copy_key(k, where);
228 
229 	BUG_ON(len > KEY_SIZE(k));
230 	SET_KEY_SIZE(k, len);
231 	return true;
232 }
233 
234 /* Auxiliary search trees */
235 
236 /* 32 bits total: */
237 #define BKEY_MID_BITS		3
238 #define BKEY_EXPONENT_BITS	7
239 #define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
240 #define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
241 
242 struct bkey_float {
243 	unsigned	exponent:BKEY_EXPONENT_BITS;
244 	unsigned	m:BKEY_MID_BITS;
245 	unsigned	mantissa:BKEY_MANTISSA_BITS;
246 } __packed;
247 
248 /*
249  * BSET_CACHELINE was originally intended to match the hardware cacheline size -
250  * it used to be 64, but I realized the lookup code would touch slightly less
251  * memory if it was 128.
252  *
253  * It definites the number of bytes (in struct bset) per struct bkey_float in
254  * the auxiliar search tree - when we're done searching the bset_float tree we
255  * have this many bytes left that we do a linear search over.
256  *
257  * Since (after level 5) every level of the bset_tree is on a new cacheline,
258  * we're touching one fewer cacheline in the bset tree in exchange for one more
259  * cacheline in the linear search - but the linear search might stop before it
260  * gets to the second cacheline.
261  */
262 
263 #define BSET_CACHELINE		128
264 
265 /* Space required for the btree node keys */
266 static inline size_t btree_keys_bytes(struct btree_keys *b)
267 {
268 	return PAGE_SIZE << b->page_order;
269 }
270 
271 static inline size_t btree_keys_cachelines(struct btree_keys *b)
272 {
273 	return btree_keys_bytes(b) / BSET_CACHELINE;
274 }
275 
276 /* Space required for the auxiliary search trees */
277 static inline size_t bset_tree_bytes(struct btree_keys *b)
278 {
279 	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
280 }
281 
282 /* Space required for the prev pointers */
283 static inline size_t bset_prev_bytes(struct btree_keys *b)
284 {
285 	return btree_keys_cachelines(b) * sizeof(uint8_t);
286 }
287 
288 /* Memory allocation */
289 
290 void bch_btree_keys_free(struct btree_keys *b)
291 {
292 	struct bset_tree *t = b->set;
293 
294 	if (bset_prev_bytes(b) < PAGE_SIZE)
295 		kfree(t->prev);
296 	else
297 		free_pages((unsigned long) t->prev,
298 			   get_order(bset_prev_bytes(b)));
299 
300 	if (bset_tree_bytes(b) < PAGE_SIZE)
301 		kfree(t->tree);
302 	else
303 		free_pages((unsigned long) t->tree,
304 			   get_order(bset_tree_bytes(b)));
305 
306 	free_pages((unsigned long) t->data, b->page_order);
307 
308 	t->prev = NULL;
309 	t->tree = NULL;
310 	t->data = NULL;
311 }
312 EXPORT_SYMBOL(bch_btree_keys_free);
313 
314 int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp)
315 {
316 	struct bset_tree *t = b->set;
317 
318 	BUG_ON(t->data);
319 
320 	b->page_order = page_order;
321 
322 	t->data = (void *) __get_free_pages(gfp, b->page_order);
323 	if (!t->data)
324 		goto err;
325 
326 	t->tree = bset_tree_bytes(b) < PAGE_SIZE
327 		? kmalloc(bset_tree_bytes(b), gfp)
328 		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
329 	if (!t->tree)
330 		goto err;
331 
332 	t->prev = bset_prev_bytes(b) < PAGE_SIZE
333 		? kmalloc(bset_prev_bytes(b), gfp)
334 		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
335 	if (!t->prev)
336 		goto err;
337 
338 	return 0;
339 err:
340 	bch_btree_keys_free(b);
341 	return -ENOMEM;
342 }
343 EXPORT_SYMBOL(bch_btree_keys_alloc);
344 
345 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
346 			 bool *expensive_debug_checks)
347 {
348 	unsigned i;
349 
350 	b->ops = ops;
351 	b->expensive_debug_checks = expensive_debug_checks;
352 	b->nsets = 0;
353 	b->last_set_unwritten = 0;
354 
355 	/* XXX: shouldn't be needed */
356 	for (i = 0; i < MAX_BSETS; i++)
357 		b->set[i].size = 0;
358 	/*
359 	 * Second loop starts at 1 because b->keys[0]->data is the memory we
360 	 * allocated
361 	 */
362 	for (i = 1; i < MAX_BSETS; i++)
363 		b->set[i].data = NULL;
364 }
365 EXPORT_SYMBOL(bch_btree_keys_init);
366 
367 /* Binary tree stuff for auxiliary search trees */
368 
369 static unsigned inorder_next(unsigned j, unsigned size)
370 {
371 	if (j * 2 + 1 < size) {
372 		j = j * 2 + 1;
373 
374 		while (j * 2 < size)
375 			j *= 2;
376 	} else
377 		j >>= ffz(j) + 1;
378 
379 	return j;
380 }
381 
382 static unsigned inorder_prev(unsigned j, unsigned size)
383 {
384 	if (j * 2 < size) {
385 		j = j * 2;
386 
387 		while (j * 2 + 1 < size)
388 			j = j * 2 + 1;
389 	} else
390 		j >>= ffs(j);
391 
392 	return j;
393 }
394 
395 /* I have no idea why this code works... and I'm the one who wrote it
396  *
397  * However, I do know what it does:
398  * Given a binary tree constructed in an array (i.e. how you normally implement
399  * a heap), it converts a node in the tree - referenced by array index - to the
400  * index it would have if you did an inorder traversal.
401  *
402  * Also tested for every j, size up to size somewhere around 6 million.
403  *
404  * The binary tree starts at array index 1, not 0
405  * extra is a function of size:
406  *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
407  */
408 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
409 {
410 	unsigned b = fls(j);
411 	unsigned shift = fls(size - 1) - b;
412 
413 	j  ^= 1U << (b - 1);
414 	j <<= 1;
415 	j  |= 1;
416 	j <<= shift;
417 
418 	if (j > extra)
419 		j -= (j - extra) >> 1;
420 
421 	return j;
422 }
423 
424 static unsigned to_inorder(unsigned j, struct bset_tree *t)
425 {
426 	return __to_inorder(j, t->size, t->extra);
427 }
428 
429 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
430 {
431 	unsigned shift;
432 
433 	if (j > extra)
434 		j += j - extra;
435 
436 	shift = ffs(j);
437 
438 	j >>= shift;
439 	j  |= roundup_pow_of_two(size) >> shift;
440 
441 	return j;
442 }
443 
444 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
445 {
446 	return __inorder_to_tree(j, t->size, t->extra);
447 }
448 
449 #if 0
450 void inorder_test(void)
451 {
452 	unsigned long done = 0;
453 	ktime_t start = ktime_get();
454 
455 	for (unsigned size = 2;
456 	     size < 65536000;
457 	     size++) {
458 		unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
459 		unsigned i = 1, j = rounddown_pow_of_two(size - 1);
460 
461 		if (!(size % 4096))
462 			printk(KERN_NOTICE "loop %u, %llu per us\n", size,
463 			       done / ktime_us_delta(ktime_get(), start));
464 
465 		while (1) {
466 			if (__inorder_to_tree(i, size, extra) != j)
467 				panic("size %10u j %10u i %10u", size, j, i);
468 
469 			if (__to_inorder(j, size, extra) != i)
470 				panic("size %10u j %10u i %10u", size, j, i);
471 
472 			if (j == rounddown_pow_of_two(size) - 1)
473 				break;
474 
475 			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
476 
477 			j = inorder_next(j, size);
478 			i++;
479 		}
480 
481 		done += size - 1;
482 	}
483 }
484 #endif
485 
486 /*
487  * Cacheline/offset <-> bkey pointer arithmetic:
488  *
489  * t->tree is a binary search tree in an array; each node corresponds to a key
490  * in one cacheline in t->set (BSET_CACHELINE bytes).
491  *
492  * This means we don't have to store the full index of the key that a node in
493  * the binary tree points to; to_inorder() gives us the cacheline, and then
494  * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
495  *
496  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
497  * make this work.
498  *
499  * To construct the bfloat for an arbitrary key we need to know what the key
500  * immediately preceding it is: we have to check if the two keys differ in the
501  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
502  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
503  */
504 
505 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
506 				      unsigned offset)
507 {
508 	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
509 }
510 
511 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
512 {
513 	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
514 }
515 
516 static unsigned bkey_to_cacheline_offset(struct bset_tree *t,
517 					 unsigned cacheline,
518 					 struct bkey *k)
519 {
520 	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
521 }
522 
523 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
524 {
525 	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
526 }
527 
528 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
529 {
530 	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
531 }
532 
533 /*
534  * For the write set - the one we're currently inserting keys into - we don't
535  * maintain a full search tree, we just keep a simple lookup table in t->prev.
536  */
537 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
538 {
539 	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
540 }
541 
542 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
543 {
544 	low >>= shift;
545 	low  |= (high << 1) << (63U - shift);
546 	return low;
547 }
548 
549 static inline unsigned bfloat_mantissa(const struct bkey *k,
550 				       struct bkey_float *f)
551 {
552 	const uint64_t *p = &k->low - (f->exponent >> 6);
553 	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
554 }
555 
556 static void make_bfloat(struct bset_tree *t, unsigned j)
557 {
558 	struct bkey_float *f = &t->tree[j];
559 	struct bkey *m = tree_to_bkey(t, j);
560 	struct bkey *p = tree_to_prev_bkey(t, j);
561 
562 	struct bkey *l = is_power_of_2(j)
563 		? t->data->start
564 		: tree_to_prev_bkey(t, j >> ffs(j));
565 
566 	struct bkey *r = is_power_of_2(j + 1)
567 		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
568 		: tree_to_bkey(t, j >> (ffz(j) + 1));
569 
570 	BUG_ON(m < l || m > r);
571 	BUG_ON(bkey_next(p) != m);
572 
573 	if (KEY_INODE(l) != KEY_INODE(r))
574 		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
575 	else
576 		f->exponent = fls64(r->low ^ l->low);
577 
578 	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
579 
580 	/*
581 	 * Setting f->exponent = 127 flags this node as failed, and causes the
582 	 * lookup code to fall back to comparing against the original key.
583 	 */
584 
585 	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
586 		f->mantissa = bfloat_mantissa(m, f) - 1;
587 	else
588 		f->exponent = 127;
589 }
590 
591 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
592 {
593 	if (t != b->set) {
594 		unsigned j = roundup(t[-1].size,
595 				     64 / sizeof(struct bkey_float));
596 
597 		t->tree = t[-1].tree + j;
598 		t->prev = t[-1].prev + j;
599 	}
600 
601 	while (t < b->set + MAX_BSETS)
602 		t++->size = 0;
603 }
604 
605 static void bch_bset_build_unwritten_tree(struct btree_keys *b)
606 {
607 	struct bset_tree *t = bset_tree_last(b);
608 
609 	BUG_ON(b->last_set_unwritten);
610 	b->last_set_unwritten = 1;
611 
612 	bset_alloc_tree(b, t);
613 
614 	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
615 		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
616 		t->size = 1;
617 	}
618 }
619 
620 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
621 {
622 	if (i != b->set->data) {
623 		b->set[++b->nsets].data = i;
624 		i->seq = b->set->data->seq;
625 	} else
626 		get_random_bytes(&i->seq, sizeof(uint64_t));
627 
628 	i->magic	= magic;
629 	i->version	= 0;
630 	i->keys		= 0;
631 
632 	bch_bset_build_unwritten_tree(b);
633 }
634 EXPORT_SYMBOL(bch_bset_init_next);
635 
636 void bch_bset_build_written_tree(struct btree_keys *b)
637 {
638 	struct bset_tree *t = bset_tree_last(b);
639 	struct bkey *prev = NULL, *k = t->data->start;
640 	unsigned j, cacheline = 1;
641 
642 	b->last_set_unwritten = 0;
643 
644 	bset_alloc_tree(b, t);
645 
646 	t->size = min_t(unsigned,
647 			bkey_to_cacheline(t, bset_bkey_last(t->data)),
648 			b->set->tree + btree_keys_cachelines(b) - t->tree);
649 
650 	if (t->size < 2) {
651 		t->size = 0;
652 		return;
653 	}
654 
655 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
656 
657 	/* First we figure out where the first key in each cacheline is */
658 	for (j = inorder_next(0, t->size);
659 	     j;
660 	     j = inorder_next(j, t->size)) {
661 		while (bkey_to_cacheline(t, k) < cacheline)
662 			prev = k, k = bkey_next(k);
663 
664 		t->prev[j] = bkey_u64s(prev);
665 		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
666 	}
667 
668 	while (bkey_next(k) != bset_bkey_last(t->data))
669 		k = bkey_next(k);
670 
671 	t->end = *k;
672 
673 	/* Then we build the tree */
674 	for (j = inorder_next(0, t->size);
675 	     j;
676 	     j = inorder_next(j, t->size))
677 		make_bfloat(t, j);
678 }
679 EXPORT_SYMBOL(bch_bset_build_written_tree);
680 
681 /* Insert */
682 
683 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
684 {
685 	struct bset_tree *t;
686 	unsigned inorder, j = 1;
687 
688 	for (t = b->set; t <= bset_tree_last(b); t++)
689 		if (k < bset_bkey_last(t->data))
690 			goto found_set;
691 
692 	BUG();
693 found_set:
694 	if (!t->size || !bset_written(b, t))
695 		return;
696 
697 	inorder = bkey_to_cacheline(t, k);
698 
699 	if (k == t->data->start)
700 		goto fix_left;
701 
702 	if (bkey_next(k) == bset_bkey_last(t->data)) {
703 		t->end = *k;
704 		goto fix_right;
705 	}
706 
707 	j = inorder_to_tree(inorder, t);
708 
709 	if (j &&
710 	    j < t->size &&
711 	    k == tree_to_bkey(t, j))
712 fix_left:	do {
713 			make_bfloat(t, j);
714 			j = j * 2;
715 		} while (j < t->size);
716 
717 	j = inorder_to_tree(inorder + 1, t);
718 
719 	if (j &&
720 	    j < t->size &&
721 	    k == tree_to_prev_bkey(t, j))
722 fix_right:	do {
723 			make_bfloat(t, j);
724 			j = j * 2 + 1;
725 		} while (j < t->size);
726 }
727 EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
728 
729 static void bch_bset_fix_lookup_table(struct btree_keys *b,
730 				      struct bset_tree *t,
731 				      struct bkey *k)
732 {
733 	unsigned shift = bkey_u64s(k);
734 	unsigned j = bkey_to_cacheline(t, k);
735 
736 	/* We're getting called from btree_split() or btree_gc, just bail out */
737 	if (!t->size)
738 		return;
739 
740 	/* k is the key we just inserted; we need to find the entry in the
741 	 * lookup table for the first key that is strictly greater than k:
742 	 * it's either k's cacheline or the next one
743 	 */
744 	while (j < t->size &&
745 	       table_to_bkey(t, j) <= k)
746 		j++;
747 
748 	/* Adjust all the lookup table entries, and find a new key for any that
749 	 * have gotten too big
750 	 */
751 	for (; j < t->size; j++) {
752 		t->prev[j] += shift;
753 
754 		if (t->prev[j] > 7) {
755 			k = table_to_bkey(t, j - 1);
756 
757 			while (k < cacheline_to_bkey(t, j, 0))
758 				k = bkey_next(k);
759 
760 			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
761 		}
762 	}
763 
764 	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
765 		return;
766 
767 	/* Possibly add a new entry to the end of the lookup table */
768 
769 	for (k = table_to_bkey(t, t->size - 1);
770 	     k != bset_bkey_last(t->data);
771 	     k = bkey_next(k))
772 		if (t->size == bkey_to_cacheline(t, k)) {
773 			t->prev[t->size] = bkey_to_cacheline_offset(t, t->size, k);
774 			t->size++;
775 		}
776 }
777 
778 /*
779  * Tries to merge l and r: l should be lower than r
780  * Returns true if we were able to merge. If we did merge, l will be the merged
781  * key, r will be untouched.
782  */
783 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
784 {
785 	if (!b->ops->key_merge)
786 		return false;
787 
788 	/*
789 	 * Generic header checks
790 	 * Assumes left and right are in order
791 	 * Left and right must be exactly aligned
792 	 */
793 	if (!bch_bkey_equal_header(l, r) ||
794 	     bkey_cmp(l, &START_KEY(r)))
795 		return false;
796 
797 	return b->ops->key_merge(b, l, r);
798 }
799 EXPORT_SYMBOL(bch_bkey_try_merge);
800 
801 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
802 		     struct bkey *insert)
803 {
804 	struct bset_tree *t = bset_tree_last(b);
805 
806 	BUG_ON(!b->last_set_unwritten);
807 	BUG_ON(bset_byte_offset(b, t->data) +
808 	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
809 	       PAGE_SIZE << b->page_order);
810 
811 	memmove((uint64_t *) where + bkey_u64s(insert),
812 		where,
813 		(void *) bset_bkey_last(t->data) - (void *) where);
814 
815 	t->data->keys += bkey_u64s(insert);
816 	bkey_copy(where, insert);
817 	bch_bset_fix_lookup_table(b, t, where);
818 }
819 EXPORT_SYMBOL(bch_bset_insert);
820 
821 unsigned bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
822 			      struct bkey *replace_key)
823 {
824 	unsigned status = BTREE_INSERT_STATUS_NO_INSERT;
825 	struct bset *i = bset_tree_last(b)->data;
826 	struct bkey *m, *prev = NULL;
827 	struct btree_iter iter;
828 
829 	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
830 
831 	m = bch_btree_iter_init(b, &iter, b->ops->is_extents
832 				? PRECEDING_KEY(&START_KEY(k))
833 				: PRECEDING_KEY(k));
834 
835 	if (b->ops->insert_fixup(b, k, &iter, replace_key))
836 		return status;
837 
838 	status = BTREE_INSERT_STATUS_INSERT;
839 
840 	while (m != bset_bkey_last(i) &&
841 	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
842 		prev = m, m = bkey_next(m);
843 
844 	/* prev is in the tree, if we merge we're done */
845 	status = BTREE_INSERT_STATUS_BACK_MERGE;
846 	if (prev &&
847 	    bch_bkey_try_merge(b, prev, k))
848 		goto merged;
849 #if 0
850 	status = BTREE_INSERT_STATUS_OVERWROTE;
851 	if (m != bset_bkey_last(i) &&
852 	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
853 		goto copy;
854 #endif
855 	status = BTREE_INSERT_STATUS_FRONT_MERGE;
856 	if (m != bset_bkey_last(i) &&
857 	    bch_bkey_try_merge(b, k, m))
858 		goto copy;
859 
860 	bch_bset_insert(b, m, k);
861 copy:	bkey_copy(m, k);
862 merged:
863 	return status;
864 }
865 EXPORT_SYMBOL(bch_btree_insert_key);
866 
867 /* Lookup */
868 
869 struct bset_search_iter {
870 	struct bkey *l, *r;
871 };
872 
873 static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
874 						     const struct bkey *search)
875 {
876 	unsigned li = 0, ri = t->size;
877 
878 	while (li + 1 != ri) {
879 		unsigned m = (li + ri) >> 1;
880 
881 		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
882 			ri = m;
883 		else
884 			li = m;
885 	}
886 
887 	return (struct bset_search_iter) {
888 		table_to_bkey(t, li),
889 		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
890 	};
891 }
892 
893 static struct bset_search_iter bset_search_tree(struct bset_tree *t,
894 						const struct bkey *search)
895 {
896 	struct bkey *l, *r;
897 	struct bkey_float *f;
898 	unsigned inorder, j, n = 1;
899 
900 	do {
901 		unsigned p = n << 4;
902 		p &= ((int) (p - t->size)) >> 31;
903 
904 		prefetch(&t->tree[p]);
905 
906 		j = n;
907 		f = &t->tree[j];
908 
909 		/*
910 		 * n = (f->mantissa > bfloat_mantissa())
911 		 *	? j * 2
912 		 *	: j * 2 + 1;
913 		 *
914 		 * We need to subtract 1 from f->mantissa for the sign bit trick
915 		 * to work  - that's done in make_bfloat()
916 		 */
917 		if (likely(f->exponent != 127))
918 			n = j * 2 + (((unsigned)
919 				      (f->mantissa -
920 				       bfloat_mantissa(search, f))) >> 31);
921 		else
922 			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
923 				? j * 2
924 				: j * 2 + 1;
925 	} while (n < t->size);
926 
927 	inorder = to_inorder(j, t);
928 
929 	/*
930 	 * n would have been the node we recursed to - the low bit tells us if
931 	 * we recursed left or recursed right.
932 	 */
933 	if (n & 1) {
934 		l = cacheline_to_bkey(t, inorder, f->m);
935 
936 		if (++inorder != t->size) {
937 			f = &t->tree[inorder_next(j, t->size)];
938 			r = cacheline_to_bkey(t, inorder, f->m);
939 		} else
940 			r = bset_bkey_last(t->data);
941 	} else {
942 		r = cacheline_to_bkey(t, inorder, f->m);
943 
944 		if (--inorder) {
945 			f = &t->tree[inorder_prev(j, t->size)];
946 			l = cacheline_to_bkey(t, inorder, f->m);
947 		} else
948 			l = t->data->start;
949 	}
950 
951 	return (struct bset_search_iter) {l, r};
952 }
953 
954 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
955 			       const struct bkey *search)
956 {
957 	struct bset_search_iter i;
958 
959 	/*
960 	 * First, we search for a cacheline, then lastly we do a linear search
961 	 * within that cacheline.
962 	 *
963 	 * To search for the cacheline, there's three different possibilities:
964 	 *  * The set is too small to have a search tree, so we just do a linear
965 	 *    search over the whole set.
966 	 *  * The set is the one we're currently inserting into; keeping a full
967 	 *    auxiliary search tree up to date would be too expensive, so we
968 	 *    use a much simpler lookup table to do a binary search -
969 	 *    bset_search_write_set().
970 	 *  * Or we use the auxiliary search tree we constructed earlier -
971 	 *    bset_search_tree()
972 	 */
973 
974 	if (unlikely(!t->size)) {
975 		i.l = t->data->start;
976 		i.r = bset_bkey_last(t->data);
977 	} else if (bset_written(b, t)) {
978 		/*
979 		 * Each node in the auxiliary search tree covers a certain range
980 		 * of bits, and keys above and below the set it covers might
981 		 * differ outside those bits - so we have to special case the
982 		 * start and end - handle that here:
983 		 */
984 
985 		if (unlikely(bkey_cmp(search, &t->end) >= 0))
986 			return bset_bkey_last(t->data);
987 
988 		if (unlikely(bkey_cmp(search, t->data->start) < 0))
989 			return t->data->start;
990 
991 		i = bset_search_tree(t, search);
992 	} else {
993 		BUG_ON(!b->nsets &&
994 		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
995 
996 		i = bset_search_write_set(t, search);
997 	}
998 
999 	if (btree_keys_expensive_checks(b)) {
1000 		BUG_ON(bset_written(b, t) &&
1001 		       i.l != t->data->start &&
1002 		       bkey_cmp(tree_to_prev_bkey(t,
1003 			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1004 				search) > 0);
1005 
1006 		BUG_ON(i.r != bset_bkey_last(t->data) &&
1007 		       bkey_cmp(i.r, search) <= 0);
1008 	}
1009 
1010 	while (likely(i.l != i.r) &&
1011 	       bkey_cmp(i.l, search) <= 0)
1012 		i.l = bkey_next(i.l);
1013 
1014 	return i.l;
1015 }
1016 EXPORT_SYMBOL(__bch_bset_search);
1017 
1018 /* Btree iterator */
1019 
1020 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1021 				 struct btree_iter_set);
1022 
1023 static inline bool btree_iter_cmp(struct btree_iter_set l,
1024 				  struct btree_iter_set r)
1025 {
1026 	return bkey_cmp(l.k, r.k) > 0;
1027 }
1028 
1029 static inline bool btree_iter_end(struct btree_iter *iter)
1030 {
1031 	return !iter->used;
1032 }
1033 
1034 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1035 			 struct bkey *end)
1036 {
1037 	if (k != end)
1038 		BUG_ON(!heap_add(iter,
1039 				 ((struct btree_iter_set) { k, end }),
1040 				 btree_iter_cmp));
1041 }
1042 
1043 static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1044 					  struct btree_iter *iter,
1045 					  struct bkey *search,
1046 					  struct bset_tree *start)
1047 {
1048 	struct bkey *ret = NULL;
1049 	iter->size = ARRAY_SIZE(iter->data);
1050 	iter->used = 0;
1051 
1052 #ifdef CONFIG_BCACHE_DEBUG
1053 	iter->b = b;
1054 #endif
1055 
1056 	for (; start <= bset_tree_last(b); start++) {
1057 		ret = bch_bset_search(b, start, search);
1058 		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1059 	}
1060 
1061 	return ret;
1062 }
1063 
1064 struct bkey *bch_btree_iter_init(struct btree_keys *b,
1065 				 struct btree_iter *iter,
1066 				 struct bkey *search)
1067 {
1068 	return __bch_btree_iter_init(b, iter, search, b->set);
1069 }
1070 EXPORT_SYMBOL(bch_btree_iter_init);
1071 
1072 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1073 						 btree_iter_cmp_fn *cmp)
1074 {
1075 	struct btree_iter_set b __maybe_unused;
1076 	struct bkey *ret = NULL;
1077 
1078 	if (!btree_iter_end(iter)) {
1079 		bch_btree_iter_next_check(iter);
1080 
1081 		ret = iter->data->k;
1082 		iter->data->k = bkey_next(iter->data->k);
1083 
1084 		if (iter->data->k > iter->data->end) {
1085 			WARN_ONCE(1, "bset was corrupt!\n");
1086 			iter->data->k = iter->data->end;
1087 		}
1088 
1089 		if (iter->data->k == iter->data->end)
1090 			heap_pop(iter, b, cmp);
1091 		else
1092 			heap_sift(iter, 0, cmp);
1093 	}
1094 
1095 	return ret;
1096 }
1097 
1098 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1099 {
1100 	return __bch_btree_iter_next(iter, btree_iter_cmp);
1101 
1102 }
1103 EXPORT_SYMBOL(bch_btree_iter_next);
1104 
1105 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1106 					struct btree_keys *b, ptr_filter_fn fn)
1107 {
1108 	struct bkey *ret;
1109 
1110 	do {
1111 		ret = bch_btree_iter_next(iter);
1112 	} while (ret && fn(b, ret));
1113 
1114 	return ret;
1115 }
1116 
1117 /* Mergesort */
1118 
1119 void bch_bset_sort_state_free(struct bset_sort_state *state)
1120 {
1121 	mempool_exit(&state->pool);
1122 }
1123 
1124 int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order)
1125 {
1126 	spin_lock_init(&state->time.lock);
1127 
1128 	state->page_order = page_order;
1129 	state->crit_factor = int_sqrt(1 << page_order);
1130 
1131 	return mempool_init_page_pool(&state->pool, 1, page_order);
1132 }
1133 EXPORT_SYMBOL(bch_bset_sort_state_init);
1134 
1135 static void btree_mergesort(struct btree_keys *b, struct bset *out,
1136 			    struct btree_iter *iter,
1137 			    bool fixup, bool remove_stale)
1138 {
1139 	int i;
1140 	struct bkey *k, *last = NULL;
1141 	BKEY_PADDED(k) tmp;
1142 	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1143 		? bch_ptr_bad
1144 		: bch_ptr_invalid;
1145 
1146 	/* Heapify the iterator, using our comparison function */
1147 	for (i = iter->used / 2 - 1; i >= 0; --i)
1148 		heap_sift(iter, i, b->ops->sort_cmp);
1149 
1150 	while (!btree_iter_end(iter)) {
1151 		if (b->ops->sort_fixup && fixup)
1152 			k = b->ops->sort_fixup(iter, &tmp.k);
1153 		else
1154 			k = NULL;
1155 
1156 		if (!k)
1157 			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1158 
1159 		if (bad(b, k))
1160 			continue;
1161 
1162 		if (!last) {
1163 			last = out->start;
1164 			bkey_copy(last, k);
1165 		} else if (!bch_bkey_try_merge(b, last, k)) {
1166 			last = bkey_next(last);
1167 			bkey_copy(last, k);
1168 		}
1169 	}
1170 
1171 	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1172 
1173 	pr_debug("sorted %i keys", out->keys);
1174 }
1175 
1176 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1177 			 unsigned start, unsigned order, bool fixup,
1178 			 struct bset_sort_state *state)
1179 {
1180 	uint64_t start_time;
1181 	bool used_mempool = false;
1182 	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1183 						     order);
1184 	if (!out) {
1185 		struct page *outp;
1186 
1187 		BUG_ON(order > state->page_order);
1188 
1189 		outp = mempool_alloc(&state->pool, GFP_NOIO);
1190 		out = page_address(outp);
1191 		used_mempool = true;
1192 		order = state->page_order;
1193 	}
1194 
1195 	start_time = local_clock();
1196 
1197 	btree_mergesort(b, out, iter, fixup, false);
1198 	b->nsets = start;
1199 
1200 	if (!start && order == b->page_order) {
1201 		/*
1202 		 * Our temporary buffer is the same size as the btree node's
1203 		 * buffer, we can just swap buffers instead of doing a big
1204 		 * memcpy()
1205 		 */
1206 
1207 		out->magic	= b->set->data->magic;
1208 		out->seq	= b->set->data->seq;
1209 		out->version	= b->set->data->version;
1210 		swap(out, b->set->data);
1211 	} else {
1212 		b->set[start].data->keys = out->keys;
1213 		memcpy(b->set[start].data->start, out->start,
1214 		       (void *) bset_bkey_last(out) - (void *) out->start);
1215 	}
1216 
1217 	if (used_mempool)
1218 		mempool_free(virt_to_page(out), &state->pool);
1219 	else
1220 		free_pages((unsigned long) out, order);
1221 
1222 	bch_bset_build_written_tree(b);
1223 
1224 	if (!start)
1225 		bch_time_stats_update(&state->time, start_time);
1226 }
1227 
1228 void bch_btree_sort_partial(struct btree_keys *b, unsigned start,
1229 			    struct bset_sort_state *state)
1230 {
1231 	size_t order = b->page_order, keys = 0;
1232 	struct btree_iter iter;
1233 	int oldsize = bch_count_data(b);
1234 
1235 	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1236 
1237 	if (start) {
1238 		unsigned i;
1239 
1240 		for (i = start; i <= b->nsets; i++)
1241 			keys += b->set[i].data->keys;
1242 
1243 		order = get_order(__set_bytes(b->set->data, keys));
1244 	}
1245 
1246 	__btree_sort(b, &iter, start, order, false, state);
1247 
1248 	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1249 }
1250 EXPORT_SYMBOL(bch_btree_sort_partial);
1251 
1252 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1253 				    struct btree_iter *iter,
1254 				    struct bset_sort_state *state)
1255 {
1256 	__btree_sort(b, iter, 0, b->page_order, true, state);
1257 }
1258 
1259 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1260 			 struct bset_sort_state *state)
1261 {
1262 	uint64_t start_time = local_clock();
1263 
1264 	struct btree_iter iter;
1265 	bch_btree_iter_init(b, &iter, NULL);
1266 
1267 	btree_mergesort(b, new->set->data, &iter, false, true);
1268 
1269 	bch_time_stats_update(&state->time, start_time);
1270 
1271 	new->set->size = 0; // XXX: why?
1272 }
1273 
1274 #define SORT_CRIT	(4096 / sizeof(uint64_t))
1275 
1276 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1277 {
1278 	unsigned crit = SORT_CRIT;
1279 	int i;
1280 
1281 	/* Don't sort if nothing to do */
1282 	if (!b->nsets)
1283 		goto out;
1284 
1285 	for (i = b->nsets - 1; i >= 0; --i) {
1286 		crit *= state->crit_factor;
1287 
1288 		if (b->set[i].data->keys < crit) {
1289 			bch_btree_sort_partial(b, i, state);
1290 			return;
1291 		}
1292 	}
1293 
1294 	/* Sort if we'd overflow */
1295 	if (b->nsets + 1 == MAX_BSETS) {
1296 		bch_btree_sort(b, state);
1297 		return;
1298 	}
1299 
1300 out:
1301 	bch_bset_build_written_tree(b);
1302 }
1303 EXPORT_SYMBOL(bch_btree_sort_lazy);
1304 
1305 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1306 {
1307 	unsigned i;
1308 
1309 	for (i = 0; i <= b->nsets; i++) {
1310 		struct bset_tree *t = &b->set[i];
1311 		size_t bytes = t->data->keys * sizeof(uint64_t);
1312 		size_t j;
1313 
1314 		if (bset_written(b, t)) {
1315 			stats->sets_written++;
1316 			stats->bytes_written += bytes;
1317 
1318 			stats->floats += t->size - 1;
1319 
1320 			for (j = 1; j < t->size; j++)
1321 				if (t->tree[j].exponent == 127)
1322 					stats->failed++;
1323 		} else {
1324 			stats->sets_unwritten++;
1325 			stats->bytes_unwritten += bytes;
1326 		}
1327 	}
1328 }
1329