1 /* 2 * Code for working with individual keys, and sorted sets of keys with in a 3 * btree node 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__ 9 10 #include "util.h" 11 #include "bset.h" 12 13 #include <linux/console.h> 14 #include <linux/sched/clock.h> 15 #include <linux/random.h> 16 #include <linux/prefetch.h> 17 18 #ifdef CONFIG_BCACHE_DEBUG 19 20 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned set) 21 { 22 struct bkey *k, *next; 23 24 for (k = i->start; k < bset_bkey_last(i); k = next) { 25 next = bkey_next(k); 26 27 printk(KERN_ERR "block %u key %u/%u: ", set, 28 (unsigned) ((u64 *) k - i->d), i->keys); 29 30 if (b->ops->key_dump) 31 b->ops->key_dump(b, k); 32 else 33 printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k)); 34 35 if (next < bset_bkey_last(i) && 36 bkey_cmp(k, b->ops->is_extents ? 37 &START_KEY(next) : next) > 0) 38 printk(KERN_ERR "Key skipped backwards\n"); 39 } 40 } 41 42 void bch_dump_bucket(struct btree_keys *b) 43 { 44 unsigned i; 45 46 console_lock(); 47 for (i = 0; i <= b->nsets; i++) 48 bch_dump_bset(b, b->set[i].data, 49 bset_sector_offset(b, b->set[i].data)); 50 console_unlock(); 51 } 52 53 int __bch_count_data(struct btree_keys *b) 54 { 55 unsigned ret = 0; 56 struct btree_iter iter; 57 struct bkey *k; 58 59 if (b->ops->is_extents) 60 for_each_key(b, k, &iter) 61 ret += KEY_SIZE(k); 62 return ret; 63 } 64 65 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) 66 { 67 va_list args; 68 struct bkey *k, *p = NULL; 69 struct btree_iter iter; 70 const char *err; 71 72 for_each_key(b, k, &iter) { 73 if (b->ops->is_extents) { 74 err = "Keys out of order"; 75 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0) 76 goto bug; 77 78 if (bch_ptr_invalid(b, k)) 79 continue; 80 81 err = "Overlapping keys"; 82 if (p && bkey_cmp(p, &START_KEY(k)) > 0) 83 goto bug; 84 } else { 85 if (bch_ptr_bad(b, k)) 86 continue; 87 88 err = "Duplicate keys"; 89 if (p && !bkey_cmp(p, k)) 90 goto bug; 91 } 92 p = k; 93 } 94 #if 0 95 err = "Key larger than btree node key"; 96 if (p && bkey_cmp(p, &b->key) > 0) 97 goto bug; 98 #endif 99 return; 100 bug: 101 bch_dump_bucket(b); 102 103 va_start(args, fmt); 104 vprintk(fmt, args); 105 va_end(args); 106 107 panic("bch_check_keys error: %s:\n", err); 108 } 109 110 static void bch_btree_iter_next_check(struct btree_iter *iter) 111 { 112 struct bkey *k = iter->data->k, *next = bkey_next(k); 113 114 if (next < iter->data->end && 115 bkey_cmp(k, iter->b->ops->is_extents ? 116 &START_KEY(next) : next) > 0) { 117 bch_dump_bucket(iter->b); 118 panic("Key skipped backwards\n"); 119 } 120 } 121 122 #else 123 124 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {} 125 126 #endif 127 128 /* Keylists */ 129 130 int __bch_keylist_realloc(struct keylist *l, unsigned u64s) 131 { 132 size_t oldsize = bch_keylist_nkeys(l); 133 size_t newsize = oldsize + u64s; 134 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p; 135 uint64_t *new_keys; 136 137 newsize = roundup_pow_of_two(newsize); 138 139 if (newsize <= KEYLIST_INLINE || 140 roundup_pow_of_two(oldsize) == newsize) 141 return 0; 142 143 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO); 144 145 if (!new_keys) 146 return -ENOMEM; 147 148 if (!old_keys) 149 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize); 150 151 l->keys_p = new_keys; 152 l->top_p = new_keys + oldsize; 153 154 return 0; 155 } 156 157 struct bkey *bch_keylist_pop(struct keylist *l) 158 { 159 struct bkey *k = l->keys; 160 161 if (k == l->top) 162 return NULL; 163 164 while (bkey_next(k) != l->top) 165 k = bkey_next(k); 166 167 return l->top = k; 168 } 169 170 void bch_keylist_pop_front(struct keylist *l) 171 { 172 l->top_p -= bkey_u64s(l->keys); 173 174 memmove(l->keys, 175 bkey_next(l->keys), 176 bch_keylist_bytes(l)); 177 } 178 179 /* Key/pointer manipulation */ 180 181 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, 182 unsigned i) 183 { 184 BUG_ON(i > KEY_PTRS(src)); 185 186 /* Only copy the header, key, and one pointer. */ 187 memcpy(dest, src, 2 * sizeof(uint64_t)); 188 dest->ptr[0] = src->ptr[i]; 189 SET_KEY_PTRS(dest, 1); 190 /* We didn't copy the checksum so clear that bit. */ 191 SET_KEY_CSUM(dest, 0); 192 } 193 194 bool __bch_cut_front(const struct bkey *where, struct bkey *k) 195 { 196 unsigned i, len = 0; 197 198 if (bkey_cmp(where, &START_KEY(k)) <= 0) 199 return false; 200 201 if (bkey_cmp(where, k) < 0) 202 len = KEY_OFFSET(k) - KEY_OFFSET(where); 203 else 204 bkey_copy_key(k, where); 205 206 for (i = 0; i < KEY_PTRS(k); i++) 207 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); 208 209 BUG_ON(len > KEY_SIZE(k)); 210 SET_KEY_SIZE(k, len); 211 return true; 212 } 213 214 bool __bch_cut_back(const struct bkey *where, struct bkey *k) 215 { 216 unsigned len = 0; 217 218 if (bkey_cmp(where, k) >= 0) 219 return false; 220 221 BUG_ON(KEY_INODE(where) != KEY_INODE(k)); 222 223 if (bkey_cmp(where, &START_KEY(k)) > 0) 224 len = KEY_OFFSET(where) - KEY_START(k); 225 226 bkey_copy_key(k, where); 227 228 BUG_ON(len > KEY_SIZE(k)); 229 SET_KEY_SIZE(k, len); 230 return true; 231 } 232 233 /* Auxiliary search trees */ 234 235 /* 32 bits total: */ 236 #define BKEY_MID_BITS 3 237 #define BKEY_EXPONENT_BITS 7 238 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS) 239 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1) 240 241 struct bkey_float { 242 unsigned exponent:BKEY_EXPONENT_BITS; 243 unsigned m:BKEY_MID_BITS; 244 unsigned mantissa:BKEY_MANTISSA_BITS; 245 } __packed; 246 247 /* 248 * BSET_CACHELINE was originally intended to match the hardware cacheline size - 249 * it used to be 64, but I realized the lookup code would touch slightly less 250 * memory if it was 128. 251 * 252 * It definites the number of bytes (in struct bset) per struct bkey_float in 253 * the auxiliar search tree - when we're done searching the bset_float tree we 254 * have this many bytes left that we do a linear search over. 255 * 256 * Since (after level 5) every level of the bset_tree is on a new cacheline, 257 * we're touching one fewer cacheline in the bset tree in exchange for one more 258 * cacheline in the linear search - but the linear search might stop before it 259 * gets to the second cacheline. 260 */ 261 262 #define BSET_CACHELINE 128 263 264 /* Space required for the btree node keys */ 265 static inline size_t btree_keys_bytes(struct btree_keys *b) 266 { 267 return PAGE_SIZE << b->page_order; 268 } 269 270 static inline size_t btree_keys_cachelines(struct btree_keys *b) 271 { 272 return btree_keys_bytes(b) / BSET_CACHELINE; 273 } 274 275 /* Space required for the auxiliary search trees */ 276 static inline size_t bset_tree_bytes(struct btree_keys *b) 277 { 278 return btree_keys_cachelines(b) * sizeof(struct bkey_float); 279 } 280 281 /* Space required for the prev pointers */ 282 static inline size_t bset_prev_bytes(struct btree_keys *b) 283 { 284 return btree_keys_cachelines(b) * sizeof(uint8_t); 285 } 286 287 /* Memory allocation */ 288 289 void bch_btree_keys_free(struct btree_keys *b) 290 { 291 struct bset_tree *t = b->set; 292 293 if (bset_prev_bytes(b) < PAGE_SIZE) 294 kfree(t->prev); 295 else 296 free_pages((unsigned long) t->prev, 297 get_order(bset_prev_bytes(b))); 298 299 if (bset_tree_bytes(b) < PAGE_SIZE) 300 kfree(t->tree); 301 else 302 free_pages((unsigned long) t->tree, 303 get_order(bset_tree_bytes(b))); 304 305 free_pages((unsigned long) t->data, b->page_order); 306 307 t->prev = NULL; 308 t->tree = NULL; 309 t->data = NULL; 310 } 311 EXPORT_SYMBOL(bch_btree_keys_free); 312 313 int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp) 314 { 315 struct bset_tree *t = b->set; 316 317 BUG_ON(t->data); 318 319 b->page_order = page_order; 320 321 t->data = (void *) __get_free_pages(gfp, b->page_order); 322 if (!t->data) 323 goto err; 324 325 t->tree = bset_tree_bytes(b) < PAGE_SIZE 326 ? kmalloc(bset_tree_bytes(b), gfp) 327 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); 328 if (!t->tree) 329 goto err; 330 331 t->prev = bset_prev_bytes(b) < PAGE_SIZE 332 ? kmalloc(bset_prev_bytes(b), gfp) 333 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); 334 if (!t->prev) 335 goto err; 336 337 return 0; 338 err: 339 bch_btree_keys_free(b); 340 return -ENOMEM; 341 } 342 EXPORT_SYMBOL(bch_btree_keys_alloc); 343 344 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops, 345 bool *expensive_debug_checks) 346 { 347 unsigned i; 348 349 b->ops = ops; 350 b->expensive_debug_checks = expensive_debug_checks; 351 b->nsets = 0; 352 b->last_set_unwritten = 0; 353 354 /* XXX: shouldn't be needed */ 355 for (i = 0; i < MAX_BSETS; i++) 356 b->set[i].size = 0; 357 /* 358 * Second loop starts at 1 because b->keys[0]->data is the memory we 359 * allocated 360 */ 361 for (i = 1; i < MAX_BSETS; i++) 362 b->set[i].data = NULL; 363 } 364 EXPORT_SYMBOL(bch_btree_keys_init); 365 366 /* Binary tree stuff for auxiliary search trees */ 367 368 static unsigned inorder_next(unsigned j, unsigned size) 369 { 370 if (j * 2 + 1 < size) { 371 j = j * 2 + 1; 372 373 while (j * 2 < size) 374 j *= 2; 375 } else 376 j >>= ffz(j) + 1; 377 378 return j; 379 } 380 381 static unsigned inorder_prev(unsigned j, unsigned size) 382 { 383 if (j * 2 < size) { 384 j = j * 2; 385 386 while (j * 2 + 1 < size) 387 j = j * 2 + 1; 388 } else 389 j >>= ffs(j); 390 391 return j; 392 } 393 394 /* I have no idea why this code works... and I'm the one who wrote it 395 * 396 * However, I do know what it does: 397 * Given a binary tree constructed in an array (i.e. how you normally implement 398 * a heap), it converts a node in the tree - referenced by array index - to the 399 * index it would have if you did an inorder traversal. 400 * 401 * Also tested for every j, size up to size somewhere around 6 million. 402 * 403 * The binary tree starts at array index 1, not 0 404 * extra is a function of size: 405 * extra = (size - rounddown_pow_of_two(size - 1)) << 1; 406 */ 407 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) 408 { 409 unsigned b = fls(j); 410 unsigned shift = fls(size - 1) - b; 411 412 j ^= 1U << (b - 1); 413 j <<= 1; 414 j |= 1; 415 j <<= shift; 416 417 if (j > extra) 418 j -= (j - extra) >> 1; 419 420 return j; 421 } 422 423 static unsigned to_inorder(unsigned j, struct bset_tree *t) 424 { 425 return __to_inorder(j, t->size, t->extra); 426 } 427 428 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) 429 { 430 unsigned shift; 431 432 if (j > extra) 433 j += j - extra; 434 435 shift = ffs(j); 436 437 j >>= shift; 438 j |= roundup_pow_of_two(size) >> shift; 439 440 return j; 441 } 442 443 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) 444 { 445 return __inorder_to_tree(j, t->size, t->extra); 446 } 447 448 #if 0 449 void inorder_test(void) 450 { 451 unsigned long done = 0; 452 ktime_t start = ktime_get(); 453 454 for (unsigned size = 2; 455 size < 65536000; 456 size++) { 457 unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; 458 unsigned i = 1, j = rounddown_pow_of_two(size - 1); 459 460 if (!(size % 4096)) 461 printk(KERN_NOTICE "loop %u, %llu per us\n", size, 462 done / ktime_us_delta(ktime_get(), start)); 463 464 while (1) { 465 if (__inorder_to_tree(i, size, extra) != j) 466 panic("size %10u j %10u i %10u", size, j, i); 467 468 if (__to_inorder(j, size, extra) != i) 469 panic("size %10u j %10u i %10u", size, j, i); 470 471 if (j == rounddown_pow_of_two(size) - 1) 472 break; 473 474 BUG_ON(inorder_prev(inorder_next(j, size), size) != j); 475 476 j = inorder_next(j, size); 477 i++; 478 } 479 480 done += size - 1; 481 } 482 } 483 #endif 484 485 /* 486 * Cacheline/offset <-> bkey pointer arithmetic: 487 * 488 * t->tree is a binary search tree in an array; each node corresponds to a key 489 * in one cacheline in t->set (BSET_CACHELINE bytes). 490 * 491 * This means we don't have to store the full index of the key that a node in 492 * the binary tree points to; to_inorder() gives us the cacheline, and then 493 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. 494 * 495 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 496 * make this work. 497 * 498 * To construct the bfloat for an arbitrary key we need to know what the key 499 * immediately preceding it is: we have to check if the two keys differ in the 500 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 501 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 502 */ 503 504 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, 505 unsigned offset) 506 { 507 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; 508 } 509 510 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) 511 { 512 return ((void *) k - (void *) t->data) / BSET_CACHELINE; 513 } 514 515 static unsigned bkey_to_cacheline_offset(struct bset_tree *t, 516 unsigned cacheline, 517 struct bkey *k) 518 { 519 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0); 520 } 521 522 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) 523 { 524 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); 525 } 526 527 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) 528 { 529 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); 530 } 531 532 /* 533 * For the write set - the one we're currently inserting keys into - we don't 534 * maintain a full search tree, we just keep a simple lookup table in t->prev. 535 */ 536 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) 537 { 538 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); 539 } 540 541 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) 542 { 543 low >>= shift; 544 low |= (high << 1) << (63U - shift); 545 return low; 546 } 547 548 static inline unsigned bfloat_mantissa(const struct bkey *k, 549 struct bkey_float *f) 550 { 551 const uint64_t *p = &k->low - (f->exponent >> 6); 552 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; 553 } 554 555 static void make_bfloat(struct bset_tree *t, unsigned j) 556 { 557 struct bkey_float *f = &t->tree[j]; 558 struct bkey *m = tree_to_bkey(t, j); 559 struct bkey *p = tree_to_prev_bkey(t, j); 560 561 struct bkey *l = is_power_of_2(j) 562 ? t->data->start 563 : tree_to_prev_bkey(t, j >> ffs(j)); 564 565 struct bkey *r = is_power_of_2(j + 1) 566 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end)) 567 : tree_to_bkey(t, j >> (ffz(j) + 1)); 568 569 BUG_ON(m < l || m > r); 570 BUG_ON(bkey_next(p) != m); 571 572 if (KEY_INODE(l) != KEY_INODE(r)) 573 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; 574 else 575 f->exponent = fls64(r->low ^ l->low); 576 577 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); 578 579 /* 580 * Setting f->exponent = 127 flags this node as failed, and causes the 581 * lookup code to fall back to comparing against the original key. 582 */ 583 584 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) 585 f->mantissa = bfloat_mantissa(m, f) - 1; 586 else 587 f->exponent = 127; 588 } 589 590 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t) 591 { 592 if (t != b->set) { 593 unsigned j = roundup(t[-1].size, 594 64 / sizeof(struct bkey_float)); 595 596 t->tree = t[-1].tree + j; 597 t->prev = t[-1].prev + j; 598 } 599 600 while (t < b->set + MAX_BSETS) 601 t++->size = 0; 602 } 603 604 static void bch_bset_build_unwritten_tree(struct btree_keys *b) 605 { 606 struct bset_tree *t = bset_tree_last(b); 607 608 BUG_ON(b->last_set_unwritten); 609 b->last_set_unwritten = 1; 610 611 bset_alloc_tree(b, t); 612 613 if (t->tree != b->set->tree + btree_keys_cachelines(b)) { 614 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start); 615 t->size = 1; 616 } 617 } 618 619 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic) 620 { 621 if (i != b->set->data) { 622 b->set[++b->nsets].data = i; 623 i->seq = b->set->data->seq; 624 } else 625 get_random_bytes(&i->seq, sizeof(uint64_t)); 626 627 i->magic = magic; 628 i->version = 0; 629 i->keys = 0; 630 631 bch_bset_build_unwritten_tree(b); 632 } 633 EXPORT_SYMBOL(bch_bset_init_next); 634 635 void bch_bset_build_written_tree(struct btree_keys *b) 636 { 637 struct bset_tree *t = bset_tree_last(b); 638 struct bkey *prev = NULL, *k = t->data->start; 639 unsigned j, cacheline = 1; 640 641 b->last_set_unwritten = 0; 642 643 bset_alloc_tree(b, t); 644 645 t->size = min_t(unsigned, 646 bkey_to_cacheline(t, bset_bkey_last(t->data)), 647 b->set->tree + btree_keys_cachelines(b) - t->tree); 648 649 if (t->size < 2) { 650 t->size = 0; 651 return; 652 } 653 654 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; 655 656 /* First we figure out where the first key in each cacheline is */ 657 for (j = inorder_next(0, t->size); 658 j; 659 j = inorder_next(j, t->size)) { 660 while (bkey_to_cacheline(t, k) < cacheline) 661 prev = k, k = bkey_next(k); 662 663 t->prev[j] = bkey_u64s(prev); 664 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k); 665 } 666 667 while (bkey_next(k) != bset_bkey_last(t->data)) 668 k = bkey_next(k); 669 670 t->end = *k; 671 672 /* Then we build the tree */ 673 for (j = inorder_next(0, t->size); 674 j; 675 j = inorder_next(j, t->size)) 676 make_bfloat(t, j); 677 } 678 EXPORT_SYMBOL(bch_bset_build_written_tree); 679 680 /* Insert */ 681 682 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k) 683 { 684 struct bset_tree *t; 685 unsigned inorder, j = 1; 686 687 for (t = b->set; t <= bset_tree_last(b); t++) 688 if (k < bset_bkey_last(t->data)) 689 goto found_set; 690 691 BUG(); 692 found_set: 693 if (!t->size || !bset_written(b, t)) 694 return; 695 696 inorder = bkey_to_cacheline(t, k); 697 698 if (k == t->data->start) 699 goto fix_left; 700 701 if (bkey_next(k) == bset_bkey_last(t->data)) { 702 t->end = *k; 703 goto fix_right; 704 } 705 706 j = inorder_to_tree(inorder, t); 707 708 if (j && 709 j < t->size && 710 k == tree_to_bkey(t, j)) 711 fix_left: do { 712 make_bfloat(t, j); 713 j = j * 2; 714 } while (j < t->size); 715 716 j = inorder_to_tree(inorder + 1, t); 717 718 if (j && 719 j < t->size && 720 k == tree_to_prev_bkey(t, j)) 721 fix_right: do { 722 make_bfloat(t, j); 723 j = j * 2 + 1; 724 } while (j < t->size); 725 } 726 EXPORT_SYMBOL(bch_bset_fix_invalidated_key); 727 728 static void bch_bset_fix_lookup_table(struct btree_keys *b, 729 struct bset_tree *t, 730 struct bkey *k) 731 { 732 unsigned shift = bkey_u64s(k); 733 unsigned j = bkey_to_cacheline(t, k); 734 735 /* We're getting called from btree_split() or btree_gc, just bail out */ 736 if (!t->size) 737 return; 738 739 /* k is the key we just inserted; we need to find the entry in the 740 * lookup table for the first key that is strictly greater than k: 741 * it's either k's cacheline or the next one 742 */ 743 while (j < t->size && 744 table_to_bkey(t, j) <= k) 745 j++; 746 747 /* Adjust all the lookup table entries, and find a new key for any that 748 * have gotten too big 749 */ 750 for (; j < t->size; j++) { 751 t->prev[j] += shift; 752 753 if (t->prev[j] > 7) { 754 k = table_to_bkey(t, j - 1); 755 756 while (k < cacheline_to_bkey(t, j, 0)) 757 k = bkey_next(k); 758 759 t->prev[j] = bkey_to_cacheline_offset(t, j, k); 760 } 761 } 762 763 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree) 764 return; 765 766 /* Possibly add a new entry to the end of the lookup table */ 767 768 for (k = table_to_bkey(t, t->size - 1); 769 k != bset_bkey_last(t->data); 770 k = bkey_next(k)) 771 if (t->size == bkey_to_cacheline(t, k)) { 772 t->prev[t->size] = bkey_to_cacheline_offset(t, t->size, k); 773 t->size++; 774 } 775 } 776 777 /* 778 * Tries to merge l and r: l should be lower than r 779 * Returns true if we were able to merge. If we did merge, l will be the merged 780 * key, r will be untouched. 781 */ 782 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r) 783 { 784 if (!b->ops->key_merge) 785 return false; 786 787 /* 788 * Generic header checks 789 * Assumes left and right are in order 790 * Left and right must be exactly aligned 791 */ 792 if (!bch_bkey_equal_header(l, r) || 793 bkey_cmp(l, &START_KEY(r))) 794 return false; 795 796 return b->ops->key_merge(b, l, r); 797 } 798 EXPORT_SYMBOL(bch_bkey_try_merge); 799 800 void bch_bset_insert(struct btree_keys *b, struct bkey *where, 801 struct bkey *insert) 802 { 803 struct bset_tree *t = bset_tree_last(b); 804 805 BUG_ON(!b->last_set_unwritten); 806 BUG_ON(bset_byte_offset(b, t->data) + 807 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) > 808 PAGE_SIZE << b->page_order); 809 810 memmove((uint64_t *) where + bkey_u64s(insert), 811 where, 812 (void *) bset_bkey_last(t->data) - (void *) where); 813 814 t->data->keys += bkey_u64s(insert); 815 bkey_copy(where, insert); 816 bch_bset_fix_lookup_table(b, t, where); 817 } 818 EXPORT_SYMBOL(bch_bset_insert); 819 820 unsigned bch_btree_insert_key(struct btree_keys *b, struct bkey *k, 821 struct bkey *replace_key) 822 { 823 unsigned status = BTREE_INSERT_STATUS_NO_INSERT; 824 struct bset *i = bset_tree_last(b)->data; 825 struct bkey *m, *prev = NULL; 826 struct btree_iter iter; 827 828 BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); 829 830 m = bch_btree_iter_init(b, &iter, b->ops->is_extents 831 ? PRECEDING_KEY(&START_KEY(k)) 832 : PRECEDING_KEY(k)); 833 834 if (b->ops->insert_fixup(b, k, &iter, replace_key)) 835 return status; 836 837 status = BTREE_INSERT_STATUS_INSERT; 838 839 while (m != bset_bkey_last(i) && 840 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) 841 prev = m, m = bkey_next(m); 842 843 /* prev is in the tree, if we merge we're done */ 844 status = BTREE_INSERT_STATUS_BACK_MERGE; 845 if (prev && 846 bch_bkey_try_merge(b, prev, k)) 847 goto merged; 848 #if 0 849 status = BTREE_INSERT_STATUS_OVERWROTE; 850 if (m != bset_bkey_last(i) && 851 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) 852 goto copy; 853 #endif 854 status = BTREE_INSERT_STATUS_FRONT_MERGE; 855 if (m != bset_bkey_last(i) && 856 bch_bkey_try_merge(b, k, m)) 857 goto copy; 858 859 bch_bset_insert(b, m, k); 860 copy: bkey_copy(m, k); 861 merged: 862 return status; 863 } 864 EXPORT_SYMBOL(bch_btree_insert_key); 865 866 /* Lookup */ 867 868 struct bset_search_iter { 869 struct bkey *l, *r; 870 }; 871 872 static struct bset_search_iter bset_search_write_set(struct bset_tree *t, 873 const struct bkey *search) 874 { 875 unsigned li = 0, ri = t->size; 876 877 while (li + 1 != ri) { 878 unsigned m = (li + ri) >> 1; 879 880 if (bkey_cmp(table_to_bkey(t, m), search) > 0) 881 ri = m; 882 else 883 li = m; 884 } 885 886 return (struct bset_search_iter) { 887 table_to_bkey(t, li), 888 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data) 889 }; 890 } 891 892 static struct bset_search_iter bset_search_tree(struct bset_tree *t, 893 const struct bkey *search) 894 { 895 struct bkey *l, *r; 896 struct bkey_float *f; 897 unsigned inorder, j, n = 1; 898 899 do { 900 unsigned p = n << 4; 901 p &= ((int) (p - t->size)) >> 31; 902 903 prefetch(&t->tree[p]); 904 905 j = n; 906 f = &t->tree[j]; 907 908 /* 909 * n = (f->mantissa > bfloat_mantissa()) 910 * ? j * 2 911 * : j * 2 + 1; 912 * 913 * We need to subtract 1 from f->mantissa for the sign bit trick 914 * to work - that's done in make_bfloat() 915 */ 916 if (likely(f->exponent != 127)) 917 n = j * 2 + (((unsigned) 918 (f->mantissa - 919 bfloat_mantissa(search, f))) >> 31); 920 else 921 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) 922 ? j * 2 923 : j * 2 + 1; 924 } while (n < t->size); 925 926 inorder = to_inorder(j, t); 927 928 /* 929 * n would have been the node we recursed to - the low bit tells us if 930 * we recursed left or recursed right. 931 */ 932 if (n & 1) { 933 l = cacheline_to_bkey(t, inorder, f->m); 934 935 if (++inorder != t->size) { 936 f = &t->tree[inorder_next(j, t->size)]; 937 r = cacheline_to_bkey(t, inorder, f->m); 938 } else 939 r = bset_bkey_last(t->data); 940 } else { 941 r = cacheline_to_bkey(t, inorder, f->m); 942 943 if (--inorder) { 944 f = &t->tree[inorder_prev(j, t->size)]; 945 l = cacheline_to_bkey(t, inorder, f->m); 946 } else 947 l = t->data->start; 948 } 949 950 return (struct bset_search_iter) {l, r}; 951 } 952 953 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, 954 const struct bkey *search) 955 { 956 struct bset_search_iter i; 957 958 /* 959 * First, we search for a cacheline, then lastly we do a linear search 960 * within that cacheline. 961 * 962 * To search for the cacheline, there's three different possibilities: 963 * * The set is too small to have a search tree, so we just do a linear 964 * search over the whole set. 965 * * The set is the one we're currently inserting into; keeping a full 966 * auxiliary search tree up to date would be too expensive, so we 967 * use a much simpler lookup table to do a binary search - 968 * bset_search_write_set(). 969 * * Or we use the auxiliary search tree we constructed earlier - 970 * bset_search_tree() 971 */ 972 973 if (unlikely(!t->size)) { 974 i.l = t->data->start; 975 i.r = bset_bkey_last(t->data); 976 } else if (bset_written(b, t)) { 977 /* 978 * Each node in the auxiliary search tree covers a certain range 979 * of bits, and keys above and below the set it covers might 980 * differ outside those bits - so we have to special case the 981 * start and end - handle that here: 982 */ 983 984 if (unlikely(bkey_cmp(search, &t->end) >= 0)) 985 return bset_bkey_last(t->data); 986 987 if (unlikely(bkey_cmp(search, t->data->start) < 0)) 988 return t->data->start; 989 990 i = bset_search_tree(t, search); 991 } else { 992 BUG_ON(!b->nsets && 993 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data))); 994 995 i = bset_search_write_set(t, search); 996 } 997 998 if (btree_keys_expensive_checks(b)) { 999 BUG_ON(bset_written(b, t) && 1000 i.l != t->data->start && 1001 bkey_cmp(tree_to_prev_bkey(t, 1002 inorder_to_tree(bkey_to_cacheline(t, i.l), t)), 1003 search) > 0); 1004 1005 BUG_ON(i.r != bset_bkey_last(t->data) && 1006 bkey_cmp(i.r, search) <= 0); 1007 } 1008 1009 while (likely(i.l != i.r) && 1010 bkey_cmp(i.l, search) <= 0) 1011 i.l = bkey_next(i.l); 1012 1013 return i.l; 1014 } 1015 EXPORT_SYMBOL(__bch_bset_search); 1016 1017 /* Btree iterator */ 1018 1019 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set, 1020 struct btree_iter_set); 1021 1022 static inline bool btree_iter_cmp(struct btree_iter_set l, 1023 struct btree_iter_set r) 1024 { 1025 return bkey_cmp(l.k, r.k) > 0; 1026 } 1027 1028 static inline bool btree_iter_end(struct btree_iter *iter) 1029 { 1030 return !iter->used; 1031 } 1032 1033 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, 1034 struct bkey *end) 1035 { 1036 if (k != end) 1037 BUG_ON(!heap_add(iter, 1038 ((struct btree_iter_set) { k, end }), 1039 btree_iter_cmp)); 1040 } 1041 1042 static struct bkey *__bch_btree_iter_init(struct btree_keys *b, 1043 struct btree_iter *iter, 1044 struct bkey *search, 1045 struct bset_tree *start) 1046 { 1047 struct bkey *ret = NULL; 1048 iter->size = ARRAY_SIZE(iter->data); 1049 iter->used = 0; 1050 1051 #ifdef CONFIG_BCACHE_DEBUG 1052 iter->b = b; 1053 #endif 1054 1055 for (; start <= bset_tree_last(b); start++) { 1056 ret = bch_bset_search(b, start, search); 1057 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data)); 1058 } 1059 1060 return ret; 1061 } 1062 1063 struct bkey *bch_btree_iter_init(struct btree_keys *b, 1064 struct btree_iter *iter, 1065 struct bkey *search) 1066 { 1067 return __bch_btree_iter_init(b, iter, search, b->set); 1068 } 1069 EXPORT_SYMBOL(bch_btree_iter_init); 1070 1071 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter, 1072 btree_iter_cmp_fn *cmp) 1073 { 1074 struct btree_iter_set unused; 1075 struct bkey *ret = NULL; 1076 1077 if (!btree_iter_end(iter)) { 1078 bch_btree_iter_next_check(iter); 1079 1080 ret = iter->data->k; 1081 iter->data->k = bkey_next(iter->data->k); 1082 1083 if (iter->data->k > iter->data->end) { 1084 WARN_ONCE(1, "bset was corrupt!\n"); 1085 iter->data->k = iter->data->end; 1086 } 1087 1088 if (iter->data->k == iter->data->end) 1089 heap_pop(iter, unused, cmp); 1090 else 1091 heap_sift(iter, 0, cmp); 1092 } 1093 1094 return ret; 1095 } 1096 1097 struct bkey *bch_btree_iter_next(struct btree_iter *iter) 1098 { 1099 return __bch_btree_iter_next(iter, btree_iter_cmp); 1100 1101 } 1102 EXPORT_SYMBOL(bch_btree_iter_next); 1103 1104 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, 1105 struct btree_keys *b, ptr_filter_fn fn) 1106 { 1107 struct bkey *ret; 1108 1109 do { 1110 ret = bch_btree_iter_next(iter); 1111 } while (ret && fn(b, ret)); 1112 1113 return ret; 1114 } 1115 1116 /* Mergesort */ 1117 1118 void bch_bset_sort_state_free(struct bset_sort_state *state) 1119 { 1120 if (state->pool) 1121 mempool_destroy(state->pool); 1122 } 1123 1124 int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order) 1125 { 1126 spin_lock_init(&state->time.lock); 1127 1128 state->page_order = page_order; 1129 state->crit_factor = int_sqrt(1 << page_order); 1130 1131 state->pool = mempool_create_page_pool(1, page_order); 1132 if (!state->pool) 1133 return -ENOMEM; 1134 1135 return 0; 1136 } 1137 EXPORT_SYMBOL(bch_bset_sort_state_init); 1138 1139 static void btree_mergesort(struct btree_keys *b, struct bset *out, 1140 struct btree_iter *iter, 1141 bool fixup, bool remove_stale) 1142 { 1143 int i; 1144 struct bkey *k, *last = NULL; 1145 BKEY_PADDED(k) tmp; 1146 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale 1147 ? bch_ptr_bad 1148 : bch_ptr_invalid; 1149 1150 /* Heapify the iterator, using our comparison function */ 1151 for (i = iter->used / 2 - 1; i >= 0; --i) 1152 heap_sift(iter, i, b->ops->sort_cmp); 1153 1154 while (!btree_iter_end(iter)) { 1155 if (b->ops->sort_fixup && fixup) 1156 k = b->ops->sort_fixup(iter, &tmp.k); 1157 else 1158 k = NULL; 1159 1160 if (!k) 1161 k = __bch_btree_iter_next(iter, b->ops->sort_cmp); 1162 1163 if (bad(b, k)) 1164 continue; 1165 1166 if (!last) { 1167 last = out->start; 1168 bkey_copy(last, k); 1169 } else if (!bch_bkey_try_merge(b, last, k)) { 1170 last = bkey_next(last); 1171 bkey_copy(last, k); 1172 } 1173 } 1174 1175 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; 1176 1177 pr_debug("sorted %i keys", out->keys); 1178 } 1179 1180 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter, 1181 unsigned start, unsigned order, bool fixup, 1182 struct bset_sort_state *state) 1183 { 1184 uint64_t start_time; 1185 bool used_mempool = false; 1186 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, 1187 order); 1188 if (!out) { 1189 struct page *outp; 1190 1191 BUG_ON(order > state->page_order); 1192 1193 outp = mempool_alloc(state->pool, GFP_NOIO); 1194 out = page_address(outp); 1195 used_mempool = true; 1196 order = state->page_order; 1197 } 1198 1199 start_time = local_clock(); 1200 1201 btree_mergesort(b, out, iter, fixup, false); 1202 b->nsets = start; 1203 1204 if (!start && order == b->page_order) { 1205 /* 1206 * Our temporary buffer is the same size as the btree node's 1207 * buffer, we can just swap buffers instead of doing a big 1208 * memcpy() 1209 */ 1210 1211 out->magic = b->set->data->magic; 1212 out->seq = b->set->data->seq; 1213 out->version = b->set->data->version; 1214 swap(out, b->set->data); 1215 } else { 1216 b->set[start].data->keys = out->keys; 1217 memcpy(b->set[start].data->start, out->start, 1218 (void *) bset_bkey_last(out) - (void *) out->start); 1219 } 1220 1221 if (used_mempool) 1222 mempool_free(virt_to_page(out), state->pool); 1223 else 1224 free_pages((unsigned long) out, order); 1225 1226 bch_bset_build_written_tree(b); 1227 1228 if (!start) 1229 bch_time_stats_update(&state->time, start_time); 1230 } 1231 1232 void bch_btree_sort_partial(struct btree_keys *b, unsigned start, 1233 struct bset_sort_state *state) 1234 { 1235 size_t order = b->page_order, keys = 0; 1236 struct btree_iter iter; 1237 int oldsize = bch_count_data(b); 1238 1239 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]); 1240 1241 if (start) { 1242 unsigned i; 1243 1244 for (i = start; i <= b->nsets; i++) 1245 keys += b->set[i].data->keys; 1246 1247 order = get_order(__set_bytes(b->set->data, keys)); 1248 } 1249 1250 __btree_sort(b, &iter, start, order, false, state); 1251 1252 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize); 1253 } 1254 EXPORT_SYMBOL(bch_btree_sort_partial); 1255 1256 void bch_btree_sort_and_fix_extents(struct btree_keys *b, 1257 struct btree_iter *iter, 1258 struct bset_sort_state *state) 1259 { 1260 __btree_sort(b, iter, 0, b->page_order, true, state); 1261 } 1262 1263 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new, 1264 struct bset_sort_state *state) 1265 { 1266 uint64_t start_time = local_clock(); 1267 1268 struct btree_iter iter; 1269 bch_btree_iter_init(b, &iter, NULL); 1270 1271 btree_mergesort(b, new->set->data, &iter, false, true); 1272 1273 bch_time_stats_update(&state->time, start_time); 1274 1275 new->set->size = 0; // XXX: why? 1276 } 1277 1278 #define SORT_CRIT (4096 / sizeof(uint64_t)) 1279 1280 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state) 1281 { 1282 unsigned crit = SORT_CRIT; 1283 int i; 1284 1285 /* Don't sort if nothing to do */ 1286 if (!b->nsets) 1287 goto out; 1288 1289 for (i = b->nsets - 1; i >= 0; --i) { 1290 crit *= state->crit_factor; 1291 1292 if (b->set[i].data->keys < crit) { 1293 bch_btree_sort_partial(b, i, state); 1294 return; 1295 } 1296 } 1297 1298 /* Sort if we'd overflow */ 1299 if (b->nsets + 1 == MAX_BSETS) { 1300 bch_btree_sort(b, state); 1301 return; 1302 } 1303 1304 out: 1305 bch_bset_build_written_tree(b); 1306 } 1307 EXPORT_SYMBOL(bch_btree_sort_lazy); 1308 1309 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats) 1310 { 1311 unsigned i; 1312 1313 for (i = 0; i <= b->nsets; i++) { 1314 struct bset_tree *t = &b->set[i]; 1315 size_t bytes = t->data->keys * sizeof(uint64_t); 1316 size_t j; 1317 1318 if (bset_written(b, t)) { 1319 stats->sets_written++; 1320 stats->bytes_written += bytes; 1321 1322 stats->floats += t->size - 1; 1323 1324 for (j = 1; j < t->size; j++) 1325 if (t->tree[j].exponent == 127) 1326 stats->failed++; 1327 } else { 1328 stats->sets_unwritten++; 1329 stats->bytes_unwritten += bytes; 1330 } 1331 } 1332 } 1333