xref: /linux/drivers/md/bcache/bcache.h (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHE_H
3 #define _BCACHE_H
4 
5 /*
6  * SOME HIGH LEVEL CODE DOCUMENTATION:
7  *
8  * Bcache mostly works with cache sets, cache devices, and backing devices.
9  *
10  * Support for multiple cache devices hasn't quite been finished off yet, but
11  * it's about 95% plumbed through. A cache set and its cache devices is sort of
12  * like a md raid array and its component devices. Most of the code doesn't care
13  * about individual cache devices, the main abstraction is the cache set.
14  *
15  * Multiple cache devices is intended to give us the ability to mirror dirty
16  * cached data and metadata, without mirroring clean cached data.
17  *
18  * Backing devices are different, in that they have a lifetime independent of a
19  * cache set. When you register a newly formatted backing device it'll come up
20  * in passthrough mode, and then you can attach and detach a backing device from
21  * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22  * invalidates any cached data for that backing device.
23  *
24  * A cache set can have multiple (many) backing devices attached to it.
25  *
26  * There's also flash only volumes - this is the reason for the distinction
27  * between struct cached_dev and struct bcache_device. A flash only volume
28  * works much like a bcache device that has a backing device, except the
29  * "cached" data is always dirty. The end result is that we get thin
30  * provisioning with very little additional code.
31  *
32  * Flash only volumes work but they're not production ready because the moving
33  * garbage collector needs more work. More on that later.
34  *
35  * BUCKETS/ALLOCATION:
36  *
37  * Bcache is primarily designed for caching, which means that in normal
38  * operation all of our available space will be allocated. Thus, we need an
39  * efficient way of deleting things from the cache so we can write new things to
40  * it.
41  *
42  * To do this, we first divide the cache device up into buckets. A bucket is the
43  * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44  * works efficiently.
45  *
46  * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47  * it. The gens and priorities for all the buckets are stored contiguously and
48  * packed on disk (in a linked list of buckets - aside from the superblock, all
49  * of bcache's metadata is stored in buckets).
50  *
51  * The priority is used to implement an LRU. We reset a bucket's priority when
52  * we allocate it or on cache it, and every so often we decrement the priority
53  * of each bucket. It could be used to implement something more sophisticated,
54  * if anyone ever gets around to it.
55  *
56  * The generation is used for invalidating buckets. Each pointer also has an 8
57  * bit generation embedded in it; for a pointer to be considered valid, its gen
58  * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
59  * we have to do is increment its gen (and write its new gen to disk; we batch
60  * this up).
61  *
62  * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63  * contain metadata (including btree nodes).
64  *
65  * THE BTREE:
66  *
67  * Bcache is in large part design around the btree.
68  *
69  * At a high level, the btree is just an index of key -> ptr tuples.
70  *
71  * Keys represent extents, and thus have a size field. Keys also have a variable
72  * number of pointers attached to them (potentially zero, which is handy for
73  * invalidating the cache).
74  *
75  * The key itself is an inode:offset pair. The inode number corresponds to a
76  * backing device or a flash only volume. The offset is the ending offset of the
77  * extent within the inode - not the starting offset; this makes lookups
78  * slightly more convenient.
79  *
80  * Pointers contain the cache device id, the offset on that device, and an 8 bit
81  * generation number. More on the gen later.
82  *
83  * Index lookups are not fully abstracted - cache lookups in particular are
84  * still somewhat mixed in with the btree code, but things are headed in that
85  * direction.
86  *
87  * Updates are fairly well abstracted, though. There are two different ways of
88  * updating the btree; insert and replace.
89  *
90  * BTREE_INSERT will just take a list of keys and insert them into the btree -
91  * overwriting (possibly only partially) any extents they overlap with. This is
92  * used to update the index after a write.
93  *
94  * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95  * overwriting a key that matches another given key. This is used for inserting
96  * data into the cache after a cache miss, and for background writeback, and for
97  * the moving garbage collector.
98  *
99  * There is no "delete" operation; deleting things from the index is
100  * accomplished by either by invalidating pointers (by incrementing a bucket's
101  * gen) or by inserting a key with 0 pointers - which will overwrite anything
102  * previously present at that location in the index.
103  *
104  * This means that there are always stale/invalid keys in the btree. They're
105  * filtered out by the code that iterates through a btree node, and removed when
106  * a btree node is rewritten.
107  *
108  * BTREE NODES:
109  *
110  * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
111  * free smaller than a bucket - so, that's how big our btree nodes are.
112  *
113  * (If buckets are really big we'll only use part of the bucket for a btree node
114  * - no less than 1/4th - but a bucket still contains no more than a single
115  * btree node. I'd actually like to change this, but for now we rely on the
116  * bucket's gen for deleting btree nodes when we rewrite/split a node.)
117  *
118  * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119  * btree implementation.
120  *
121  * The way this is solved is that btree nodes are internally log structured; we
122  * can append new keys to an existing btree node without rewriting it. This
123  * means each set of keys we write is sorted, but the node is not.
124  *
125  * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126  * be expensive, and we have to distinguish between the keys we have written and
127  * the keys we haven't. So to do a lookup in a btree node, we have to search
128  * each sorted set. But we do merge written sets together lazily, so the cost of
129  * these extra searches is quite low (normally most of the keys in a btree node
130  * will be in one big set, and then there'll be one or two sets that are much
131  * smaller).
132  *
133  * This log structure makes bcache's btree more of a hybrid between a
134  * conventional btree and a compacting data structure, with some of the
135  * advantages of both.
136  *
137  * GARBAGE COLLECTION:
138  *
139  * We can't just invalidate any bucket - it might contain dirty data or
140  * metadata. If it once contained dirty data, other writes might overwrite it
141  * later, leaving no valid pointers into that bucket in the index.
142  *
143  * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144  * It also counts how much valid data it each bucket currently contains, so that
145  * allocation can reuse buckets sooner when they've been mostly overwritten.
146  *
147  * It also does some things that are really internal to the btree
148  * implementation. If a btree node contains pointers that are stale by more than
149  * some threshold, it rewrites the btree node to avoid the bucket's generation
150  * wrapping around. It also merges adjacent btree nodes if they're empty enough.
151  *
152  * THE JOURNAL:
153  *
154  * Bcache's journal is not necessary for consistency; we always strictly
155  * order metadata writes so that the btree and everything else is consistent on
156  * disk in the event of an unclean shutdown, and in fact bcache had writeback
157  * caching (with recovery from unclean shutdown) before journalling was
158  * implemented.
159  *
160  * Rather, the journal is purely a performance optimization; we can't complete a
161  * write until we've updated the index on disk, otherwise the cache would be
162  * inconsistent in the event of an unclean shutdown. This means that without the
163  * journal, on random write workloads we constantly have to update all the leaf
164  * nodes in the btree, and those writes will be mostly empty (appending at most
165  * a few keys each) - highly inefficient in terms of amount of metadata writes,
166  * and it puts more strain on the various btree resorting/compacting code.
167  *
168  * The journal is just a log of keys we've inserted; on startup we just reinsert
169  * all the keys in the open journal entries. That means that when we're updating
170  * a node in the btree, we can wait until a 4k block of keys fills up before
171  * writing them out.
172  *
173  * For simplicity, we only journal updates to leaf nodes; updates to parent
174  * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175  * the complexity to deal with journalling them (in particular, journal replay)
176  * - updates to non leaf nodes just happen synchronously (see btree_split()).
177  */
178 
179 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
180 
181 #include <linux/bcache.h>
182 #include <linux/bio.h>
183 #include <linux/kobject.h>
184 #include <linux/list.h>
185 #include <linux/mutex.h>
186 #include <linux/rbtree.h>
187 #include <linux/rwsem.h>
188 #include <linux/refcount.h>
189 #include <linux/types.h>
190 #include <linux/workqueue.h>
191 
192 #include "bset.h"
193 #include "util.h"
194 #include "closure.h"
195 
196 struct bucket {
197 	atomic_t	pin;
198 	uint16_t	prio;
199 	uint8_t		gen;
200 	uint8_t		last_gc; /* Most out of date gen in the btree */
201 	uint16_t	gc_mark; /* Bitfield used by GC. See below for field */
202 };
203 
204 /*
205  * I'd use bitfields for these, but I don't trust the compiler not to screw me
206  * as multiple threads touch struct bucket without locking
207  */
208 
209 BITMASK(GC_MARK,	 struct bucket, gc_mark, 0, 2);
210 #define GC_MARK_RECLAIMABLE	1
211 #define GC_MARK_DIRTY		2
212 #define GC_MARK_METADATA	3
213 #define GC_SECTORS_USED_SIZE	13
214 #define MAX_GC_SECTORS_USED	(~(~0ULL << GC_SECTORS_USED_SIZE))
215 BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
216 BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
217 
218 #include "journal.h"
219 #include "stats.h"
220 struct search;
221 struct btree;
222 struct keybuf;
223 
224 struct keybuf_key {
225 	struct rb_node		node;
226 	BKEY_PADDED(key);
227 	void			*private;
228 };
229 
230 struct keybuf {
231 	struct bkey		last_scanned;
232 	spinlock_t		lock;
233 
234 	/*
235 	 * Beginning and end of range in rb tree - so that we can skip taking
236 	 * lock and checking the rb tree when we need to check for overlapping
237 	 * keys.
238 	 */
239 	struct bkey		start;
240 	struct bkey		end;
241 
242 	struct rb_root		keys;
243 
244 #define KEYBUF_NR		500
245 	DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
246 };
247 
248 struct bcache_device {
249 	struct closure		cl;
250 
251 	struct kobject		kobj;
252 
253 	struct cache_set	*c;
254 	unsigned		id;
255 #define BCACHEDEVNAME_SIZE	12
256 	char			name[BCACHEDEVNAME_SIZE];
257 
258 	struct gendisk		*disk;
259 
260 	unsigned long		flags;
261 #define BCACHE_DEV_CLOSING	0
262 #define BCACHE_DEV_DETACHING	1
263 #define BCACHE_DEV_UNLINK_DONE	2
264 
265 	unsigned		nr_stripes;
266 	unsigned		stripe_size;
267 	atomic_t		*stripe_sectors_dirty;
268 	unsigned long		*full_dirty_stripes;
269 
270 	struct bio_set		*bio_split;
271 
272 	unsigned		data_csum:1;
273 
274 	int (*cache_miss)(struct btree *, struct search *,
275 			  struct bio *, unsigned);
276 	int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
277 };
278 
279 struct io {
280 	/* Used to track sequential IO so it can be skipped */
281 	struct hlist_node	hash;
282 	struct list_head	lru;
283 
284 	unsigned long		jiffies;
285 	unsigned		sequential;
286 	sector_t		last;
287 };
288 
289 struct cached_dev {
290 	struct list_head	list;
291 	struct bcache_device	disk;
292 	struct block_device	*bdev;
293 
294 	struct cache_sb		sb;
295 	struct bio		sb_bio;
296 	struct bio_vec		sb_bv[1];
297 	struct closure		sb_write;
298 	struct semaphore	sb_write_mutex;
299 
300 	/* Refcount on the cache set. Always nonzero when we're caching. */
301 	refcount_t		count;
302 	struct work_struct	detach;
303 
304 	/*
305 	 * Device might not be running if it's dirty and the cache set hasn't
306 	 * showed up yet.
307 	 */
308 	atomic_t		running;
309 
310 	/*
311 	 * Writes take a shared lock from start to finish; scanning for dirty
312 	 * data to refill the rb tree requires an exclusive lock.
313 	 */
314 	struct rw_semaphore	writeback_lock;
315 
316 	/*
317 	 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
318 	 * data in the cache. Protected by writeback_lock; must have an
319 	 * shared lock to set and exclusive lock to clear.
320 	 */
321 	atomic_t		has_dirty;
322 
323 	/*
324 	 * Set to zero by things that touch the backing volume-- except
325 	 * writeback.  Incremented by writeback.  Used to determine when to
326 	 * accelerate idle writeback.
327 	 */
328 	atomic_t		backing_idle;
329 
330 	struct bch_ratelimit	writeback_rate;
331 	struct delayed_work	writeback_rate_update;
332 
333 	/* Limit number of writeback bios in flight */
334 	struct semaphore	in_flight;
335 	struct task_struct	*writeback_thread;
336 	struct workqueue_struct	*writeback_write_wq;
337 
338 	struct keybuf		writeback_keys;
339 
340 	/*
341 	 * Order the write-half of writeback operations strongly in dispatch
342 	 * order.  (Maintain LBA order; don't allow reads completing out of
343 	 * order to re-order the writes...)
344 	 */
345 	struct closure_waitlist writeback_ordering_wait;
346 	atomic_t		writeback_sequence_next;
347 
348 	/* For tracking sequential IO */
349 #define RECENT_IO_BITS	7
350 #define RECENT_IO	(1 << RECENT_IO_BITS)
351 	struct io		io[RECENT_IO];
352 	struct hlist_head	io_hash[RECENT_IO + 1];
353 	struct list_head	io_lru;
354 	spinlock_t		io_lock;
355 
356 	struct cache_accounting	accounting;
357 
358 	/* The rest of this all shows up in sysfs */
359 	unsigned		sequential_cutoff;
360 	unsigned		readahead;
361 
362 	unsigned		verify:1;
363 	unsigned		bypass_torture_test:1;
364 
365 	unsigned		partial_stripes_expensive:1;
366 	unsigned		writeback_metadata:1;
367 	unsigned		writeback_running:1;
368 	unsigned char		writeback_percent;
369 	unsigned		writeback_delay;
370 
371 	uint64_t		writeback_rate_target;
372 	int64_t			writeback_rate_proportional;
373 	int64_t			writeback_rate_integral;
374 	int64_t			writeback_rate_integral_scaled;
375 	int32_t			writeback_rate_change;
376 
377 	unsigned		writeback_rate_update_seconds;
378 	unsigned		writeback_rate_i_term_inverse;
379 	unsigned		writeback_rate_p_term_inverse;
380 	unsigned		writeback_rate_minimum;
381 };
382 
383 enum alloc_reserve {
384 	RESERVE_BTREE,
385 	RESERVE_PRIO,
386 	RESERVE_MOVINGGC,
387 	RESERVE_NONE,
388 	RESERVE_NR,
389 };
390 
391 struct cache {
392 	struct cache_set	*set;
393 	struct cache_sb		sb;
394 	struct bio		sb_bio;
395 	struct bio_vec		sb_bv[1];
396 
397 	struct kobject		kobj;
398 	struct block_device	*bdev;
399 
400 	struct task_struct	*alloc_thread;
401 
402 	struct closure		prio;
403 	struct prio_set		*disk_buckets;
404 
405 	/*
406 	 * When allocating new buckets, prio_write() gets first dibs - since we
407 	 * may not be allocate at all without writing priorities and gens.
408 	 * prio_buckets[] contains the last buckets we wrote priorities to (so
409 	 * gc can mark them as metadata), prio_next[] contains the buckets
410 	 * allocated for the next prio write.
411 	 */
412 	uint64_t		*prio_buckets;
413 	uint64_t		*prio_last_buckets;
414 
415 	/*
416 	 * free: Buckets that are ready to be used
417 	 *
418 	 * free_inc: Incoming buckets - these are buckets that currently have
419 	 * cached data in them, and we can't reuse them until after we write
420 	 * their new gen to disk. After prio_write() finishes writing the new
421 	 * gens/prios, they'll be moved to the free list (and possibly discarded
422 	 * in the process)
423 	 */
424 	DECLARE_FIFO(long, free)[RESERVE_NR];
425 	DECLARE_FIFO(long, free_inc);
426 
427 	size_t			fifo_last_bucket;
428 
429 	/* Allocation stuff: */
430 	struct bucket		*buckets;
431 
432 	DECLARE_HEAP(struct bucket *, heap);
433 
434 	/*
435 	 * If nonzero, we know we aren't going to find any buckets to invalidate
436 	 * until a gc finishes - otherwise we could pointlessly burn a ton of
437 	 * cpu
438 	 */
439 	unsigned		invalidate_needs_gc;
440 
441 	bool			discard; /* Get rid of? */
442 
443 	struct journal_device	journal;
444 
445 	/* The rest of this all shows up in sysfs */
446 #define IO_ERROR_SHIFT		20
447 	atomic_t		io_errors;
448 	atomic_t		io_count;
449 
450 	atomic_long_t		meta_sectors_written;
451 	atomic_long_t		btree_sectors_written;
452 	atomic_long_t		sectors_written;
453 };
454 
455 struct gc_stat {
456 	size_t			nodes;
457 	size_t			key_bytes;
458 
459 	size_t			nkeys;
460 	uint64_t		data;	/* sectors */
461 	unsigned		in_use; /* percent */
462 };
463 
464 /*
465  * Flag bits, for how the cache set is shutting down, and what phase it's at:
466  *
467  * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
468  * all the backing devices first (their cached data gets invalidated, and they
469  * won't automatically reattach).
470  *
471  * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
472  * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
473  * flushing dirty data).
474  *
475  * CACHE_SET_RUNNING means all cache devices have been registered and journal
476  * replay is complete.
477  */
478 #define CACHE_SET_UNREGISTERING		0
479 #define	CACHE_SET_STOPPING		1
480 #define	CACHE_SET_RUNNING		2
481 
482 struct cache_set {
483 	struct closure		cl;
484 
485 	struct list_head	list;
486 	struct kobject		kobj;
487 	struct kobject		internal;
488 	struct dentry		*debug;
489 	struct cache_accounting accounting;
490 
491 	unsigned long		flags;
492 
493 	struct cache_sb		sb;
494 
495 	struct cache		*cache[MAX_CACHES_PER_SET];
496 	struct cache		*cache_by_alloc[MAX_CACHES_PER_SET];
497 	int			caches_loaded;
498 
499 	struct bcache_device	**devices;
500 	unsigned		devices_max_used;
501 	struct list_head	cached_devs;
502 	uint64_t		cached_dev_sectors;
503 	struct closure		caching;
504 
505 	struct closure		sb_write;
506 	struct semaphore	sb_write_mutex;
507 
508 	mempool_t		*search;
509 	mempool_t		*bio_meta;
510 	struct bio_set		*bio_split;
511 
512 	/* For the btree cache */
513 	struct shrinker		shrink;
514 
515 	/* For the btree cache and anything allocation related */
516 	struct mutex		bucket_lock;
517 
518 	/* log2(bucket_size), in sectors */
519 	unsigned short		bucket_bits;
520 
521 	/* log2(block_size), in sectors */
522 	unsigned short		block_bits;
523 
524 	/*
525 	 * Default number of pages for a new btree node - may be less than a
526 	 * full bucket
527 	 */
528 	unsigned		btree_pages;
529 
530 	/*
531 	 * Lists of struct btrees; lru is the list for structs that have memory
532 	 * allocated for actual btree node, freed is for structs that do not.
533 	 *
534 	 * We never free a struct btree, except on shutdown - we just put it on
535 	 * the btree_cache_freed list and reuse it later. This simplifies the
536 	 * code, and it doesn't cost us much memory as the memory usage is
537 	 * dominated by buffers that hold the actual btree node data and those
538 	 * can be freed - and the number of struct btrees allocated is
539 	 * effectively bounded.
540 	 *
541 	 * btree_cache_freeable effectively is a small cache - we use it because
542 	 * high order page allocations can be rather expensive, and it's quite
543 	 * common to delete and allocate btree nodes in quick succession. It
544 	 * should never grow past ~2-3 nodes in practice.
545 	 */
546 	struct list_head	btree_cache;
547 	struct list_head	btree_cache_freeable;
548 	struct list_head	btree_cache_freed;
549 
550 	/* Number of elements in btree_cache + btree_cache_freeable lists */
551 	unsigned		btree_cache_used;
552 
553 	/*
554 	 * If we need to allocate memory for a new btree node and that
555 	 * allocation fails, we can cannibalize another node in the btree cache
556 	 * to satisfy the allocation - lock to guarantee only one thread does
557 	 * this at a time:
558 	 */
559 	wait_queue_head_t	btree_cache_wait;
560 	struct task_struct	*btree_cache_alloc_lock;
561 
562 	/*
563 	 * When we free a btree node, we increment the gen of the bucket the
564 	 * node is in - but we can't rewrite the prios and gens until we
565 	 * finished whatever it is we were doing, otherwise after a crash the
566 	 * btree node would be freed but for say a split, we might not have the
567 	 * pointers to the new nodes inserted into the btree yet.
568 	 *
569 	 * This is a refcount that blocks prio_write() until the new keys are
570 	 * written.
571 	 */
572 	atomic_t		prio_blocked;
573 	wait_queue_head_t	bucket_wait;
574 
575 	/*
576 	 * For any bio we don't skip we subtract the number of sectors from
577 	 * rescale; when it hits 0 we rescale all the bucket priorities.
578 	 */
579 	atomic_t		rescale;
580 	/*
581 	 * When we invalidate buckets, we use both the priority and the amount
582 	 * of good data to determine which buckets to reuse first - to weight
583 	 * those together consistently we keep track of the smallest nonzero
584 	 * priority of any bucket.
585 	 */
586 	uint16_t		min_prio;
587 
588 	/*
589 	 * max(gen - last_gc) for all buckets. When it gets too big we have to gc
590 	 * to keep gens from wrapping around.
591 	 */
592 	uint8_t			need_gc;
593 	struct gc_stat		gc_stats;
594 	size_t			nbuckets;
595 	size_t			avail_nbuckets;
596 
597 	struct task_struct	*gc_thread;
598 	/* Where in the btree gc currently is */
599 	struct bkey		gc_done;
600 
601 	/*
602 	 * The allocation code needs gc_mark in struct bucket to be correct, but
603 	 * it's not while a gc is in progress. Protected by bucket_lock.
604 	 */
605 	int			gc_mark_valid;
606 
607 	/* Counts how many sectors bio_insert has added to the cache */
608 	atomic_t		sectors_to_gc;
609 	wait_queue_head_t	gc_wait;
610 
611 	struct keybuf		moving_gc_keys;
612 	/* Number of moving GC bios in flight */
613 	struct semaphore	moving_in_flight;
614 
615 	struct workqueue_struct	*moving_gc_wq;
616 
617 	struct btree		*root;
618 
619 #ifdef CONFIG_BCACHE_DEBUG
620 	struct btree		*verify_data;
621 	struct bset		*verify_ondisk;
622 	struct mutex		verify_lock;
623 #endif
624 
625 	unsigned		nr_uuids;
626 	struct uuid_entry	*uuids;
627 	BKEY_PADDED(uuid_bucket);
628 	struct closure		uuid_write;
629 	struct semaphore	uuid_write_mutex;
630 
631 	/*
632 	 * A btree node on disk could have too many bsets for an iterator to fit
633 	 * on the stack - have to dynamically allocate them
634 	 */
635 	mempool_t		*fill_iter;
636 
637 	struct bset_sort_state	sort;
638 
639 	/* List of buckets we're currently writing data to */
640 	struct list_head	data_buckets;
641 	spinlock_t		data_bucket_lock;
642 
643 	struct journal		journal;
644 
645 #define CONGESTED_MAX		1024
646 	unsigned		congested_last_us;
647 	atomic_t		congested;
648 
649 	/* The rest of this all shows up in sysfs */
650 	unsigned		congested_read_threshold_us;
651 	unsigned		congested_write_threshold_us;
652 
653 	struct time_stats	btree_gc_time;
654 	struct time_stats	btree_split_time;
655 	struct time_stats	btree_read_time;
656 
657 	atomic_long_t		cache_read_races;
658 	atomic_long_t		writeback_keys_done;
659 	atomic_long_t		writeback_keys_failed;
660 
661 	atomic_long_t		reclaim;
662 	atomic_long_t		flush_write;
663 	atomic_long_t		retry_flush_write;
664 
665 	enum			{
666 		ON_ERROR_UNREGISTER,
667 		ON_ERROR_PANIC,
668 	}			on_error;
669 #define DEFAULT_IO_ERROR_LIMIT 8
670 	unsigned		error_limit;
671 	unsigned		error_decay;
672 
673 	unsigned short		journal_delay_ms;
674 	bool			expensive_debug_checks;
675 	unsigned		verify:1;
676 	unsigned		key_merging_disabled:1;
677 	unsigned		gc_always_rewrite:1;
678 	unsigned		shrinker_disabled:1;
679 	unsigned		copy_gc_enabled:1;
680 
681 #define BUCKET_HASH_BITS	12
682 	struct hlist_head	bucket_hash[1 << BUCKET_HASH_BITS];
683 
684 	DECLARE_HEAP(struct btree *, flush_btree);
685 };
686 
687 struct bbio {
688 	unsigned		submit_time_us;
689 	union {
690 		struct bkey	key;
691 		uint64_t	_pad[3];
692 		/*
693 		 * We only need pad = 3 here because we only ever carry around a
694 		 * single pointer - i.e. the pointer we're doing io to/from.
695 		 */
696 	};
697 	struct bio		bio;
698 };
699 
700 #define BTREE_PRIO		USHRT_MAX
701 #define INITIAL_PRIO		32768U
702 
703 #define btree_bytes(c)		((c)->btree_pages * PAGE_SIZE)
704 #define btree_blocks(b)							\
705 	((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
706 
707 #define btree_default_blocks(c)						\
708 	((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
709 
710 #define bucket_pages(c)		((c)->sb.bucket_size / PAGE_SECTORS)
711 #define bucket_bytes(c)		((c)->sb.bucket_size << 9)
712 #define block_bytes(c)		((c)->sb.block_size << 9)
713 
714 #define prios_per_bucket(c)				\
715 	((bucket_bytes(c) - sizeof(struct prio_set)) /	\
716 	 sizeof(struct bucket_disk))
717 #define prio_buckets(c)					\
718 	DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
719 
720 static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
721 {
722 	return s >> c->bucket_bits;
723 }
724 
725 static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
726 {
727 	return ((sector_t) b) << c->bucket_bits;
728 }
729 
730 static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
731 {
732 	return s & (c->sb.bucket_size - 1);
733 }
734 
735 static inline struct cache *PTR_CACHE(struct cache_set *c,
736 				      const struct bkey *k,
737 				      unsigned ptr)
738 {
739 	return c->cache[PTR_DEV(k, ptr)];
740 }
741 
742 static inline size_t PTR_BUCKET_NR(struct cache_set *c,
743 				   const struct bkey *k,
744 				   unsigned ptr)
745 {
746 	return sector_to_bucket(c, PTR_OFFSET(k, ptr));
747 }
748 
749 static inline struct bucket *PTR_BUCKET(struct cache_set *c,
750 					const struct bkey *k,
751 					unsigned ptr)
752 {
753 	return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
754 }
755 
756 static inline uint8_t gen_after(uint8_t a, uint8_t b)
757 {
758 	uint8_t r = a - b;
759 	return r > 128U ? 0 : r;
760 }
761 
762 static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
763 				unsigned i)
764 {
765 	return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
766 }
767 
768 static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
769 				 unsigned i)
770 {
771 	return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
772 }
773 
774 /* Btree key macros */
775 
776 /*
777  * This is used for various on disk data structures - cache_sb, prio_set, bset,
778  * jset: The checksum is _always_ the first 8 bytes of these structs
779  */
780 #define csum_set(i)							\
781 	bch_crc64(((void *) (i)) + sizeof(uint64_t),			\
782 		  ((void *) bset_bkey_last(i)) -			\
783 		  (((void *) (i)) + sizeof(uint64_t)))
784 
785 /* Error handling macros */
786 
787 #define btree_bug(b, ...)						\
788 do {									\
789 	if (bch_cache_set_error((b)->c, __VA_ARGS__))			\
790 		dump_stack();						\
791 } while (0)
792 
793 #define cache_bug(c, ...)						\
794 do {									\
795 	if (bch_cache_set_error(c, __VA_ARGS__))			\
796 		dump_stack();						\
797 } while (0)
798 
799 #define btree_bug_on(cond, b, ...)					\
800 do {									\
801 	if (cond)							\
802 		btree_bug(b, __VA_ARGS__);				\
803 } while (0)
804 
805 #define cache_bug_on(cond, c, ...)					\
806 do {									\
807 	if (cond)							\
808 		cache_bug(c, __VA_ARGS__);				\
809 } while (0)
810 
811 #define cache_set_err_on(cond, c, ...)					\
812 do {									\
813 	if (cond)							\
814 		bch_cache_set_error(c, __VA_ARGS__);			\
815 } while (0)
816 
817 /* Looping macros */
818 
819 #define for_each_cache(ca, cs, iter)					\
820 	for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
821 
822 #define for_each_bucket(b, ca)						\
823 	for (b = (ca)->buckets + (ca)->sb.first_bucket;			\
824 	     b < (ca)->buckets + (ca)->sb.nbuckets; b++)
825 
826 static inline void cached_dev_put(struct cached_dev *dc)
827 {
828 	if (refcount_dec_and_test(&dc->count))
829 		schedule_work(&dc->detach);
830 }
831 
832 static inline bool cached_dev_get(struct cached_dev *dc)
833 {
834 	if (!refcount_inc_not_zero(&dc->count))
835 		return false;
836 
837 	/* Paired with the mb in cached_dev_attach */
838 	smp_mb__after_atomic();
839 	return true;
840 }
841 
842 /*
843  * bucket_gc_gen() returns the difference between the bucket's current gen and
844  * the oldest gen of any pointer into that bucket in the btree (last_gc).
845  */
846 
847 static inline uint8_t bucket_gc_gen(struct bucket *b)
848 {
849 	return b->gen - b->last_gc;
850 }
851 
852 #define BUCKET_GC_GEN_MAX	96U
853 
854 #define kobj_attribute_write(n, fn)					\
855 	static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
856 
857 #define kobj_attribute_rw(n, show, store)				\
858 	static struct kobj_attribute ksysfs_##n =			\
859 		__ATTR(n, S_IWUSR|S_IRUSR, show, store)
860 
861 static inline void wake_up_allocators(struct cache_set *c)
862 {
863 	struct cache *ca;
864 	unsigned i;
865 
866 	for_each_cache(ca, c, i)
867 		wake_up_process(ca->alloc_thread);
868 }
869 
870 /* Forward declarations */
871 
872 void bch_count_io_errors(struct cache *, blk_status_t, int, const char *);
873 void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
874 			      blk_status_t, const char *);
875 void bch_bbio_endio(struct cache_set *, struct bio *, blk_status_t,
876 		const char *);
877 void bch_bbio_free(struct bio *, struct cache_set *);
878 struct bio *bch_bbio_alloc(struct cache_set *);
879 
880 void __bch_submit_bbio(struct bio *, struct cache_set *);
881 void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
882 
883 uint8_t bch_inc_gen(struct cache *, struct bucket *);
884 void bch_rescale_priorities(struct cache_set *, int);
885 
886 bool bch_can_invalidate_bucket(struct cache *, struct bucket *);
887 void __bch_invalidate_one_bucket(struct cache *, struct bucket *);
888 
889 void __bch_bucket_free(struct cache *, struct bucket *);
890 void bch_bucket_free(struct cache_set *, struct bkey *);
891 
892 long bch_bucket_alloc(struct cache *, unsigned, bool);
893 int __bch_bucket_alloc_set(struct cache_set *, unsigned,
894 			   struct bkey *, int, bool);
895 int bch_bucket_alloc_set(struct cache_set *, unsigned,
896 			 struct bkey *, int, bool);
897 bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned,
898 		       unsigned, unsigned, bool);
899 
900 __printf(2, 3)
901 bool bch_cache_set_error(struct cache_set *, const char *, ...);
902 
903 void bch_prio_write(struct cache *);
904 void bch_write_bdev_super(struct cached_dev *, struct closure *);
905 
906 extern struct workqueue_struct *bcache_wq;
907 extern const char * const bch_cache_modes[];
908 extern struct mutex bch_register_lock;
909 extern struct list_head bch_cache_sets;
910 
911 extern struct kobj_type bch_cached_dev_ktype;
912 extern struct kobj_type bch_flash_dev_ktype;
913 extern struct kobj_type bch_cache_set_ktype;
914 extern struct kobj_type bch_cache_set_internal_ktype;
915 extern struct kobj_type bch_cache_ktype;
916 
917 void bch_cached_dev_release(struct kobject *);
918 void bch_flash_dev_release(struct kobject *);
919 void bch_cache_set_release(struct kobject *);
920 void bch_cache_release(struct kobject *);
921 
922 int bch_uuid_write(struct cache_set *);
923 void bcache_write_super(struct cache_set *);
924 
925 int bch_flash_dev_create(struct cache_set *c, uint64_t size);
926 
927 int bch_cached_dev_attach(struct cached_dev *, struct cache_set *, uint8_t *);
928 void bch_cached_dev_detach(struct cached_dev *);
929 void bch_cached_dev_run(struct cached_dev *);
930 void bcache_device_stop(struct bcache_device *);
931 
932 void bch_cache_set_unregister(struct cache_set *);
933 void bch_cache_set_stop(struct cache_set *);
934 
935 struct cache_set *bch_cache_set_alloc(struct cache_sb *);
936 void bch_btree_cache_free(struct cache_set *);
937 int bch_btree_cache_alloc(struct cache_set *);
938 void bch_moving_init_cache_set(struct cache_set *);
939 int bch_open_buckets_alloc(struct cache_set *);
940 void bch_open_buckets_free(struct cache_set *);
941 
942 int bch_cache_allocator_start(struct cache *ca);
943 
944 void bch_debug_exit(void);
945 int bch_debug_init(struct kobject *);
946 void bch_request_exit(void);
947 int bch_request_init(void);
948 
949 #endif /* _BCACHE_H */
950