xref: /linux/drivers/md/bcache/bcache.h (revision e226e34165d6ea827fcbd6fbf4df49090c4d0dbc)
1 #ifndef _BCACHE_H
2 #define _BCACHE_H
3 
4 /*
5  * SOME HIGH LEVEL CODE DOCUMENTATION:
6  *
7  * Bcache mostly works with cache sets, cache devices, and backing devices.
8  *
9  * Support for multiple cache devices hasn't quite been finished off yet, but
10  * it's about 95% plumbed through. A cache set and its cache devices is sort of
11  * like a md raid array and its component devices. Most of the code doesn't care
12  * about individual cache devices, the main abstraction is the cache set.
13  *
14  * Multiple cache devices is intended to give us the ability to mirror dirty
15  * cached data and metadata, without mirroring clean cached data.
16  *
17  * Backing devices are different, in that they have a lifetime independent of a
18  * cache set. When you register a newly formatted backing device it'll come up
19  * in passthrough mode, and then you can attach and detach a backing device from
20  * a cache set at runtime - while it's mounted and in use. Detaching implicitly
21  * invalidates any cached data for that backing device.
22  *
23  * A cache set can have multiple (many) backing devices attached to it.
24  *
25  * There's also flash only volumes - this is the reason for the distinction
26  * between struct cached_dev and struct bcache_device. A flash only volume
27  * works much like a bcache device that has a backing device, except the
28  * "cached" data is always dirty. The end result is that we get thin
29  * provisioning with very little additional code.
30  *
31  * Flash only volumes work but they're not production ready because the moving
32  * garbage collector needs more work. More on that later.
33  *
34  * BUCKETS/ALLOCATION:
35  *
36  * Bcache is primarily designed for caching, which means that in normal
37  * operation all of our available space will be allocated. Thus, we need an
38  * efficient way of deleting things from the cache so we can write new things to
39  * it.
40  *
41  * To do this, we first divide the cache device up into buckets. A bucket is the
42  * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
43  * works efficiently.
44  *
45  * Each bucket has a 16 bit priority, and an 8 bit generation associated with
46  * it. The gens and priorities for all the buckets are stored contiguously and
47  * packed on disk (in a linked list of buckets - aside from the superblock, all
48  * of bcache's metadata is stored in buckets).
49  *
50  * The priority is used to implement an LRU. We reset a bucket's priority when
51  * we allocate it or on cache it, and every so often we decrement the priority
52  * of each bucket. It could be used to implement something more sophisticated,
53  * if anyone ever gets around to it.
54  *
55  * The generation is used for invalidating buckets. Each pointer also has an 8
56  * bit generation embedded in it; for a pointer to be considered valid, its gen
57  * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
58  * we have to do is increment its gen (and write its new gen to disk; we batch
59  * this up).
60  *
61  * Bcache is entirely COW - we never write twice to a bucket, even buckets that
62  * contain metadata (including btree nodes).
63  *
64  * THE BTREE:
65  *
66  * Bcache is in large part design around the btree.
67  *
68  * At a high level, the btree is just an index of key -> ptr tuples.
69  *
70  * Keys represent extents, and thus have a size field. Keys also have a variable
71  * number of pointers attached to them (potentially zero, which is handy for
72  * invalidating the cache).
73  *
74  * The key itself is an inode:offset pair. The inode number corresponds to a
75  * backing device or a flash only volume. The offset is the ending offset of the
76  * extent within the inode - not the starting offset; this makes lookups
77  * slightly more convenient.
78  *
79  * Pointers contain the cache device id, the offset on that device, and an 8 bit
80  * generation number. More on the gen later.
81  *
82  * Index lookups are not fully abstracted - cache lookups in particular are
83  * still somewhat mixed in with the btree code, but things are headed in that
84  * direction.
85  *
86  * Updates are fairly well abstracted, though. There are two different ways of
87  * updating the btree; insert and replace.
88  *
89  * BTREE_INSERT will just take a list of keys and insert them into the btree -
90  * overwriting (possibly only partially) any extents they overlap with. This is
91  * used to update the index after a write.
92  *
93  * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
94  * overwriting a key that matches another given key. This is used for inserting
95  * data into the cache after a cache miss, and for background writeback, and for
96  * the moving garbage collector.
97  *
98  * There is no "delete" operation; deleting things from the index is
99  * accomplished by either by invalidating pointers (by incrementing a bucket's
100  * gen) or by inserting a key with 0 pointers - which will overwrite anything
101  * previously present at that location in the index.
102  *
103  * This means that there are always stale/invalid keys in the btree. They're
104  * filtered out by the code that iterates through a btree node, and removed when
105  * a btree node is rewritten.
106  *
107  * BTREE NODES:
108  *
109  * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
110  * free smaller than a bucket - so, that's how big our btree nodes are.
111  *
112  * (If buckets are really big we'll only use part of the bucket for a btree node
113  * - no less than 1/4th - but a bucket still contains no more than a single
114  * btree node. I'd actually like to change this, but for now we rely on the
115  * bucket's gen for deleting btree nodes when we rewrite/split a node.)
116  *
117  * Anyways, btree nodes are big - big enough to be inefficient with a textbook
118  * btree implementation.
119  *
120  * The way this is solved is that btree nodes are internally log structured; we
121  * can append new keys to an existing btree node without rewriting it. This
122  * means each set of keys we write is sorted, but the node is not.
123  *
124  * We maintain this log structure in memory - keeping 1Mb of keys sorted would
125  * be expensive, and we have to distinguish between the keys we have written and
126  * the keys we haven't. So to do a lookup in a btree node, we have to search
127  * each sorted set. But we do merge written sets together lazily, so the cost of
128  * these extra searches is quite low (normally most of the keys in a btree node
129  * will be in one big set, and then there'll be one or two sets that are much
130  * smaller).
131  *
132  * This log structure makes bcache's btree more of a hybrid between a
133  * conventional btree and a compacting data structure, with some of the
134  * advantages of both.
135  *
136  * GARBAGE COLLECTION:
137  *
138  * We can't just invalidate any bucket - it might contain dirty data or
139  * metadata. If it once contained dirty data, other writes might overwrite it
140  * later, leaving no valid pointers into that bucket in the index.
141  *
142  * Thus, the primary purpose of garbage collection is to find buckets to reuse.
143  * It also counts how much valid data it each bucket currently contains, so that
144  * allocation can reuse buckets sooner when they've been mostly overwritten.
145  *
146  * It also does some things that are really internal to the btree
147  * implementation. If a btree node contains pointers that are stale by more than
148  * some threshold, it rewrites the btree node to avoid the bucket's generation
149  * wrapping around. It also merges adjacent btree nodes if they're empty enough.
150  *
151  * THE JOURNAL:
152  *
153  * Bcache's journal is not necessary for consistency; we always strictly
154  * order metadata writes so that the btree and everything else is consistent on
155  * disk in the event of an unclean shutdown, and in fact bcache had writeback
156  * caching (with recovery from unclean shutdown) before journalling was
157  * implemented.
158  *
159  * Rather, the journal is purely a performance optimization; we can't complete a
160  * write until we've updated the index on disk, otherwise the cache would be
161  * inconsistent in the event of an unclean shutdown. This means that without the
162  * journal, on random write workloads we constantly have to update all the leaf
163  * nodes in the btree, and those writes will be mostly empty (appending at most
164  * a few keys each) - highly inefficient in terms of amount of metadata writes,
165  * and it puts more strain on the various btree resorting/compacting code.
166  *
167  * The journal is just a log of keys we've inserted; on startup we just reinsert
168  * all the keys in the open journal entries. That means that when we're updating
169  * a node in the btree, we can wait until a 4k block of keys fills up before
170  * writing them out.
171  *
172  * For simplicity, we only journal updates to leaf nodes; updates to parent
173  * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
174  * the complexity to deal with journalling them (in particular, journal replay)
175  * - updates to non leaf nodes just happen synchronously (see btree_split()).
176  */
177 
178 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
179 
180 #include <linux/bio.h>
181 #include <linux/blktrace_api.h>
182 #include <linux/kobject.h>
183 #include <linux/list.h>
184 #include <linux/mutex.h>
185 #include <linux/rbtree.h>
186 #include <linux/rwsem.h>
187 #include <linux/types.h>
188 #include <linux/workqueue.h>
189 
190 #include "util.h"
191 #include "closure.h"
192 
193 struct bucket {
194 	atomic_t	pin;
195 	uint16_t	prio;
196 	uint8_t		gen;
197 	uint8_t		disk_gen;
198 	uint8_t		last_gc; /* Most out of date gen in the btree */
199 	uint8_t		gc_gen;
200 	uint16_t	gc_mark;
201 };
202 
203 /*
204  * I'd use bitfields for these, but I don't trust the compiler not to screw me
205  * as multiple threads touch struct bucket without locking
206  */
207 
208 BITMASK(GC_MARK,	 struct bucket, gc_mark, 0, 2);
209 #define GC_MARK_RECLAIMABLE	0
210 #define GC_MARK_DIRTY		1
211 #define GC_MARK_METADATA	2
212 BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14);
213 
214 struct bkey {
215 	uint64_t	high;
216 	uint64_t	low;
217 	uint64_t	ptr[];
218 };
219 
220 /* Enough for a key with 6 pointers */
221 #define BKEY_PAD		8
222 
223 #define BKEY_PADDED(key)					\
224 	union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; }
225 
226 /* Version 1: Backing device
227  * Version 2: Seed pointer into btree node checksum
228  * Version 3: New UUID format
229  */
230 #define BCACHE_SB_VERSION	3
231 
232 #define SB_SECTOR		8
233 #define SB_SIZE			4096
234 #define SB_LABEL_SIZE		32
235 #define SB_JOURNAL_BUCKETS	256U
236 /* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */
237 #define MAX_CACHES_PER_SET	8
238 
239 #define BDEV_DATA_START		16	/* sectors */
240 
241 struct cache_sb {
242 	uint64_t		csum;
243 	uint64_t		offset;	/* sector where this sb was written */
244 	uint64_t		version;
245 #define CACHE_BACKING_DEV	1
246 
247 	uint8_t			magic[16];
248 
249 	uint8_t			uuid[16];
250 	union {
251 		uint8_t		set_uuid[16];
252 		uint64_t	set_magic;
253 	};
254 	uint8_t			label[SB_LABEL_SIZE];
255 
256 	uint64_t		flags;
257 	uint64_t		seq;
258 	uint64_t		pad[8];
259 
260 	uint64_t		nbuckets;	/* device size */
261 	uint16_t		block_size;	/* sectors */
262 	uint16_t		bucket_size;	/* sectors */
263 
264 	uint16_t		nr_in_set;
265 	uint16_t		nr_this_dev;
266 
267 	uint32_t		last_mount;	/* time_t */
268 
269 	uint16_t		first_bucket;
270 	union {
271 		uint16_t	njournal_buckets;
272 		uint16_t	keys;
273 	};
274 	uint64_t		d[SB_JOURNAL_BUCKETS];	/* journal buckets */
275 };
276 
277 BITMASK(CACHE_SYNC,		struct cache_sb, flags, 0, 1);
278 BITMASK(CACHE_DISCARD,		struct cache_sb, flags, 1, 1);
279 BITMASK(CACHE_REPLACEMENT,	struct cache_sb, flags, 2, 3);
280 #define CACHE_REPLACEMENT_LRU	0U
281 #define CACHE_REPLACEMENT_FIFO	1U
282 #define CACHE_REPLACEMENT_RANDOM 2U
283 
284 BITMASK(BDEV_CACHE_MODE,	struct cache_sb, flags, 0, 4);
285 #define CACHE_MODE_WRITETHROUGH	0U
286 #define CACHE_MODE_WRITEBACK	1U
287 #define CACHE_MODE_WRITEAROUND	2U
288 #define CACHE_MODE_NONE		3U
289 BITMASK(BDEV_STATE,		struct cache_sb, flags, 61, 2);
290 #define BDEV_STATE_NONE		0U
291 #define BDEV_STATE_CLEAN	1U
292 #define BDEV_STATE_DIRTY	2U
293 #define BDEV_STATE_STALE	3U
294 
295 /* Version 1: Seed pointer into btree node checksum
296  */
297 #define BCACHE_BSET_VERSION	1
298 
299 /*
300  * This is the on disk format for btree nodes - a btree node on disk is a list
301  * of these; within each set the keys are sorted
302  */
303 struct bset {
304 	uint64_t		csum;
305 	uint64_t		magic;
306 	uint64_t		seq;
307 	uint32_t		version;
308 	uint32_t		keys;
309 
310 	union {
311 		struct bkey	start[0];
312 		uint64_t	d[0];
313 	};
314 };
315 
316 /*
317  * On disk format for priorities and gens - see super.c near prio_write() for
318  * more.
319  */
320 struct prio_set {
321 	uint64_t		csum;
322 	uint64_t		magic;
323 	uint64_t		seq;
324 	uint32_t		version;
325 	uint32_t		pad;
326 
327 	uint64_t		next_bucket;
328 
329 	struct bucket_disk {
330 		uint16_t	prio;
331 		uint8_t		gen;
332 	} __attribute((packed)) data[];
333 };
334 
335 struct uuid_entry {
336 	union {
337 		struct {
338 			uint8_t		uuid[16];
339 			uint8_t		label[32];
340 			uint32_t	first_reg;
341 			uint32_t	last_reg;
342 			uint32_t	invalidated;
343 
344 			uint32_t	flags;
345 			/* Size of flash only volumes */
346 			uint64_t	sectors;
347 		};
348 
349 		uint8_t	pad[128];
350 	};
351 };
352 
353 BITMASK(UUID_FLASH_ONLY,	struct uuid_entry, flags, 0, 1);
354 
355 #include "journal.h"
356 #include "stats.h"
357 struct search;
358 struct btree;
359 struct keybuf;
360 
361 struct keybuf_key {
362 	struct rb_node		node;
363 	BKEY_PADDED(key);
364 	void			*private;
365 };
366 
367 typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *);
368 
369 struct keybuf {
370 	keybuf_pred_fn		*key_predicate;
371 
372 	struct bkey		last_scanned;
373 	spinlock_t		lock;
374 
375 	/*
376 	 * Beginning and end of range in rb tree - so that we can skip taking
377 	 * lock and checking the rb tree when we need to check for overlapping
378 	 * keys.
379 	 */
380 	struct bkey		start;
381 	struct bkey		end;
382 
383 	struct rb_root		keys;
384 
385 #define KEYBUF_NR		100
386 	DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
387 };
388 
389 struct bio_split_pool {
390 	struct bio_set		*bio_split;
391 	mempool_t		*bio_split_hook;
392 };
393 
394 struct bio_split_hook {
395 	struct closure		cl;
396 	struct bio_split_pool	*p;
397 	struct bio		*bio;
398 	bio_end_io_t		*bi_end_io;
399 	void			*bi_private;
400 };
401 
402 struct bcache_device {
403 	struct closure		cl;
404 
405 	struct kobject		kobj;
406 
407 	struct cache_set	*c;
408 	unsigned		id;
409 #define BCACHEDEVNAME_SIZE	12
410 	char			name[BCACHEDEVNAME_SIZE];
411 
412 	struct gendisk		*disk;
413 
414 	/* If nonzero, we're closing */
415 	atomic_t		closing;
416 
417 	/* If nonzero, we're detaching/unregistering from cache set */
418 	atomic_t		detaching;
419 
420 	atomic_long_t		sectors_dirty;
421 	unsigned long		sectors_dirty_gc;
422 	unsigned long		sectors_dirty_last;
423 	long			sectors_dirty_derivative;
424 
425 	mempool_t		*unaligned_bvec;
426 	struct bio_set		*bio_split;
427 
428 	unsigned		data_csum:1;
429 
430 	int (*cache_miss)(struct btree *, struct search *,
431 			  struct bio *, unsigned);
432 	int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
433 
434 	struct bio_split_pool	bio_split_hook;
435 };
436 
437 struct io {
438 	/* Used to track sequential IO so it can be skipped */
439 	struct hlist_node	hash;
440 	struct list_head	lru;
441 
442 	unsigned long		jiffies;
443 	unsigned		sequential;
444 	sector_t		last;
445 };
446 
447 struct cached_dev {
448 	struct list_head	list;
449 	struct bcache_device	disk;
450 	struct block_device	*bdev;
451 
452 	struct cache_sb		sb;
453 	struct bio		sb_bio;
454 	struct bio_vec		sb_bv[1];
455 	struct closure_with_waitlist sb_write;
456 
457 	/* Refcount on the cache set. Always nonzero when we're caching. */
458 	atomic_t		count;
459 	struct work_struct	detach;
460 
461 	/*
462 	 * Device might not be running if it's dirty and the cache set hasn't
463 	 * showed up yet.
464 	 */
465 	atomic_t		running;
466 
467 	/*
468 	 * Writes take a shared lock from start to finish; scanning for dirty
469 	 * data to refill the rb tree requires an exclusive lock.
470 	 */
471 	struct rw_semaphore	writeback_lock;
472 
473 	/*
474 	 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
475 	 * data in the cache. Protected by writeback_lock; must have an
476 	 * shared lock to set and exclusive lock to clear.
477 	 */
478 	atomic_t		has_dirty;
479 
480 	struct ratelimit	writeback_rate;
481 	struct delayed_work	writeback_rate_update;
482 
483 	/*
484 	 * Internal to the writeback code, so read_dirty() can keep track of
485 	 * where it's at.
486 	 */
487 	sector_t		last_read;
488 
489 	/* Number of writeback bios in flight */
490 	atomic_t		in_flight;
491 	struct closure_with_timer writeback;
492 	struct closure_waitlist	writeback_wait;
493 
494 	struct keybuf		writeback_keys;
495 
496 	/* For tracking sequential IO */
497 #define RECENT_IO_BITS	7
498 #define RECENT_IO	(1 << RECENT_IO_BITS)
499 	struct io		io[RECENT_IO];
500 	struct hlist_head	io_hash[RECENT_IO + 1];
501 	struct list_head	io_lru;
502 	spinlock_t		io_lock;
503 
504 	struct cache_accounting	accounting;
505 
506 	/* The rest of this all shows up in sysfs */
507 	unsigned		sequential_cutoff;
508 	unsigned		readahead;
509 
510 	unsigned		sequential_merge:1;
511 	unsigned		verify:1;
512 
513 	unsigned		writeback_metadata:1;
514 	unsigned		writeback_running:1;
515 	unsigned char		writeback_percent;
516 	unsigned		writeback_delay;
517 
518 	int			writeback_rate_change;
519 	int64_t			writeback_rate_derivative;
520 	uint64_t		writeback_rate_target;
521 
522 	unsigned		writeback_rate_update_seconds;
523 	unsigned		writeback_rate_d_term;
524 	unsigned		writeback_rate_p_term_inverse;
525 	unsigned		writeback_rate_d_smooth;
526 };
527 
528 enum alloc_watermarks {
529 	WATERMARK_PRIO,
530 	WATERMARK_METADATA,
531 	WATERMARK_MOVINGGC,
532 	WATERMARK_NONE,
533 	WATERMARK_MAX
534 };
535 
536 struct cache {
537 	struct cache_set	*set;
538 	struct cache_sb		sb;
539 	struct bio		sb_bio;
540 	struct bio_vec		sb_bv[1];
541 
542 	struct kobject		kobj;
543 	struct block_device	*bdev;
544 
545 	unsigned		watermark[WATERMARK_MAX];
546 
547 	struct closure		alloc;
548 	struct workqueue_struct	*alloc_workqueue;
549 
550 	struct closure		prio;
551 	struct prio_set		*disk_buckets;
552 
553 	/*
554 	 * When allocating new buckets, prio_write() gets first dibs - since we
555 	 * may not be allocate at all without writing priorities and gens.
556 	 * prio_buckets[] contains the last buckets we wrote priorities to (so
557 	 * gc can mark them as metadata), prio_next[] contains the buckets
558 	 * allocated for the next prio write.
559 	 */
560 	uint64_t		*prio_buckets;
561 	uint64_t		*prio_last_buckets;
562 
563 	/*
564 	 * free: Buckets that are ready to be used
565 	 *
566 	 * free_inc: Incoming buckets - these are buckets that currently have
567 	 * cached data in them, and we can't reuse them until after we write
568 	 * their new gen to disk. After prio_write() finishes writing the new
569 	 * gens/prios, they'll be moved to the free list (and possibly discarded
570 	 * in the process)
571 	 *
572 	 * unused: GC found nothing pointing into these buckets (possibly
573 	 * because all the data they contained was overwritten), so we only
574 	 * need to discard them before they can be moved to the free list.
575 	 */
576 	DECLARE_FIFO(long, free);
577 	DECLARE_FIFO(long, free_inc);
578 	DECLARE_FIFO(long, unused);
579 
580 	size_t			fifo_last_bucket;
581 
582 	/* Allocation stuff: */
583 	struct bucket		*buckets;
584 
585 	DECLARE_HEAP(struct bucket *, heap);
586 
587 	/*
588 	 * max(gen - disk_gen) for all buckets. When it gets too big we have to
589 	 * call prio_write() to keep gens from wrapping.
590 	 */
591 	uint8_t			need_save_prio;
592 	unsigned		gc_move_threshold;
593 
594 	/*
595 	 * If nonzero, we know we aren't going to find any buckets to invalidate
596 	 * until a gc finishes - otherwise we could pointlessly burn a ton of
597 	 * cpu
598 	 */
599 	unsigned		invalidate_needs_gc:1;
600 
601 	bool			discard; /* Get rid of? */
602 
603 	/*
604 	 * We preallocate structs for issuing discards to buckets, and keep them
605 	 * on this list when they're not in use; do_discard() issues discards
606 	 * whenever there's work to do and is called by free_some_buckets() and
607 	 * when a discard finishes.
608 	 */
609 	atomic_t		discards_in_flight;
610 	struct list_head	discards;
611 
612 	struct journal_device	journal;
613 
614 	/* The rest of this all shows up in sysfs */
615 #define IO_ERROR_SHIFT		20
616 	atomic_t		io_errors;
617 	atomic_t		io_count;
618 
619 	atomic_long_t		meta_sectors_written;
620 	atomic_long_t		btree_sectors_written;
621 	atomic_long_t		sectors_written;
622 
623 	struct bio_split_pool	bio_split_hook;
624 };
625 
626 struct gc_stat {
627 	size_t			nodes;
628 	size_t			key_bytes;
629 
630 	size_t			nkeys;
631 	uint64_t		data;	/* sectors */
632 	uint64_t		dirty;	/* sectors */
633 	unsigned		in_use; /* percent */
634 };
635 
636 /*
637  * Flag bits, for how the cache set is shutting down, and what phase it's at:
638  *
639  * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
640  * all the backing devices first (their cached data gets invalidated, and they
641  * won't automatically reattach).
642  *
643  * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
644  * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
645  * flushing dirty data).
646  *
647  * CACHE_SET_STOPPING_2 gets set at the last phase, when it's time to shut down the
648  * allocation thread.
649  */
650 #define CACHE_SET_UNREGISTERING		0
651 #define	CACHE_SET_STOPPING		1
652 #define	CACHE_SET_STOPPING_2		2
653 
654 struct cache_set {
655 	struct closure		cl;
656 
657 	struct list_head	list;
658 	struct kobject		kobj;
659 	struct kobject		internal;
660 	struct dentry		*debug;
661 	struct cache_accounting accounting;
662 
663 	unsigned long		flags;
664 
665 	struct cache_sb		sb;
666 
667 	struct cache		*cache[MAX_CACHES_PER_SET];
668 	struct cache		*cache_by_alloc[MAX_CACHES_PER_SET];
669 	int			caches_loaded;
670 
671 	struct bcache_device	**devices;
672 	struct list_head	cached_devs;
673 	uint64_t		cached_dev_sectors;
674 	struct closure		caching;
675 
676 	struct closure_with_waitlist sb_write;
677 
678 	mempool_t		*search;
679 	mempool_t		*bio_meta;
680 	struct bio_set		*bio_split;
681 
682 	/* For the btree cache */
683 	struct shrinker		shrink;
684 
685 	/* For the allocator itself */
686 	wait_queue_head_t	alloc_wait;
687 
688 	/* For the btree cache and anything allocation related */
689 	struct mutex		bucket_lock;
690 
691 	/* log2(bucket_size), in sectors */
692 	unsigned short		bucket_bits;
693 
694 	/* log2(block_size), in sectors */
695 	unsigned short		block_bits;
696 
697 	/*
698 	 * Default number of pages for a new btree node - may be less than a
699 	 * full bucket
700 	 */
701 	unsigned		btree_pages;
702 
703 	/*
704 	 * Lists of struct btrees; lru is the list for structs that have memory
705 	 * allocated for actual btree node, freed is for structs that do not.
706 	 *
707 	 * We never free a struct btree, except on shutdown - we just put it on
708 	 * the btree_cache_freed list and reuse it later. This simplifies the
709 	 * code, and it doesn't cost us much memory as the memory usage is
710 	 * dominated by buffers that hold the actual btree node data and those
711 	 * can be freed - and the number of struct btrees allocated is
712 	 * effectively bounded.
713 	 *
714 	 * btree_cache_freeable effectively is a small cache - we use it because
715 	 * high order page allocations can be rather expensive, and it's quite
716 	 * common to delete and allocate btree nodes in quick succession. It
717 	 * should never grow past ~2-3 nodes in practice.
718 	 */
719 	struct list_head	btree_cache;
720 	struct list_head	btree_cache_freeable;
721 	struct list_head	btree_cache_freed;
722 
723 	/* Number of elements in btree_cache + btree_cache_freeable lists */
724 	unsigned		bucket_cache_used;
725 
726 	/*
727 	 * If we need to allocate memory for a new btree node and that
728 	 * allocation fails, we can cannibalize another node in the btree cache
729 	 * to satisfy the allocation. However, only one thread can be doing this
730 	 * at a time, for obvious reasons - try_harder and try_wait are
731 	 * basically a lock for this that we can wait on asynchronously. The
732 	 * btree_root() macro releases the lock when it returns.
733 	 */
734 	struct closure		*try_harder;
735 	struct closure_waitlist	try_wait;
736 	uint64_t		try_harder_start;
737 
738 	/*
739 	 * When we free a btree node, we increment the gen of the bucket the
740 	 * node is in - but we can't rewrite the prios and gens until we
741 	 * finished whatever it is we were doing, otherwise after a crash the
742 	 * btree node would be freed but for say a split, we might not have the
743 	 * pointers to the new nodes inserted into the btree yet.
744 	 *
745 	 * This is a refcount that blocks prio_write() until the new keys are
746 	 * written.
747 	 */
748 	atomic_t		prio_blocked;
749 	struct closure_waitlist	bucket_wait;
750 
751 	/*
752 	 * For any bio we don't skip we subtract the number of sectors from
753 	 * rescale; when it hits 0 we rescale all the bucket priorities.
754 	 */
755 	atomic_t		rescale;
756 	/*
757 	 * When we invalidate buckets, we use both the priority and the amount
758 	 * of good data to determine which buckets to reuse first - to weight
759 	 * those together consistently we keep track of the smallest nonzero
760 	 * priority of any bucket.
761 	 */
762 	uint16_t		min_prio;
763 
764 	/*
765 	 * max(gen - gc_gen) for all buckets. When it gets too big we have to gc
766 	 * to keep gens from wrapping around.
767 	 */
768 	uint8_t			need_gc;
769 	struct gc_stat		gc_stats;
770 	size_t			nbuckets;
771 
772 	struct closure_with_waitlist gc;
773 	/* Where in the btree gc currently is */
774 	struct bkey		gc_done;
775 
776 	/*
777 	 * The allocation code needs gc_mark in struct bucket to be correct, but
778 	 * it's not while a gc is in progress. Protected by bucket_lock.
779 	 */
780 	int			gc_mark_valid;
781 
782 	/* Counts how many sectors bio_insert has added to the cache */
783 	atomic_t		sectors_to_gc;
784 
785 	struct closure		moving_gc;
786 	struct closure_waitlist	moving_gc_wait;
787 	struct keybuf		moving_gc_keys;
788 	/* Number of moving GC bios in flight */
789 	atomic_t		in_flight;
790 
791 	struct btree		*root;
792 
793 #ifdef CONFIG_BCACHE_DEBUG
794 	struct btree		*verify_data;
795 	struct mutex		verify_lock;
796 #endif
797 
798 	unsigned		nr_uuids;
799 	struct uuid_entry	*uuids;
800 	BKEY_PADDED(uuid_bucket);
801 	struct closure_with_waitlist uuid_write;
802 
803 	/*
804 	 * A btree node on disk could have too many bsets for an iterator to fit
805 	 * on the stack - this is a single element mempool for btree_read_work()
806 	 */
807 	struct mutex		fill_lock;
808 	struct btree_iter	*fill_iter;
809 
810 	/*
811 	 * btree_sort() is a merge sort and requires temporary space - single
812 	 * element mempool
813 	 */
814 	struct mutex		sort_lock;
815 	struct bset		*sort;
816 
817 	/* List of buckets we're currently writing data to */
818 	struct list_head	data_buckets;
819 	spinlock_t		data_bucket_lock;
820 
821 	struct journal		journal;
822 
823 #define CONGESTED_MAX		1024
824 	unsigned		congested_last_us;
825 	atomic_t		congested;
826 
827 	/* The rest of this all shows up in sysfs */
828 	unsigned		congested_read_threshold_us;
829 	unsigned		congested_write_threshold_us;
830 
831 	spinlock_t		sort_time_lock;
832 	struct time_stats	sort_time;
833 	struct time_stats	btree_gc_time;
834 	struct time_stats	btree_split_time;
835 	spinlock_t		btree_read_time_lock;
836 	struct time_stats	btree_read_time;
837 	struct time_stats	try_harder_time;
838 
839 	atomic_long_t		cache_read_races;
840 	atomic_long_t		writeback_keys_done;
841 	atomic_long_t		writeback_keys_failed;
842 	unsigned		error_limit;
843 	unsigned		error_decay;
844 	unsigned short		journal_delay_ms;
845 	unsigned		verify:1;
846 	unsigned		key_merging_disabled:1;
847 	unsigned		gc_always_rewrite:1;
848 	unsigned		shrinker_disabled:1;
849 	unsigned		copy_gc_enabled:1;
850 
851 #define BUCKET_HASH_BITS	12
852 	struct hlist_head	bucket_hash[1 << BUCKET_HASH_BITS];
853 };
854 
855 static inline bool key_merging_disabled(struct cache_set *c)
856 {
857 #ifdef CONFIG_BCACHE_DEBUG
858 	return c->key_merging_disabled;
859 #else
860 	return 0;
861 #endif
862 }
863 
864 struct bbio {
865 	unsigned		submit_time_us;
866 	union {
867 		struct bkey	key;
868 		uint64_t	_pad[3];
869 		/*
870 		 * We only need pad = 3 here because we only ever carry around a
871 		 * single pointer - i.e. the pointer we're doing io to/from.
872 		 */
873 	};
874 	struct bio		bio;
875 };
876 
877 static inline unsigned local_clock_us(void)
878 {
879 	return local_clock() >> 10;
880 }
881 
882 #define MAX_BSETS		4U
883 
884 #define BTREE_PRIO		USHRT_MAX
885 #define INITIAL_PRIO		32768
886 
887 #define btree_bytes(c)		((c)->btree_pages * PAGE_SIZE)
888 #define btree_blocks(b)							\
889 	((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
890 
891 #define btree_default_blocks(c)						\
892 	((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
893 
894 #define bucket_pages(c)		((c)->sb.bucket_size / PAGE_SECTORS)
895 #define bucket_bytes(c)		((c)->sb.bucket_size << 9)
896 #define block_bytes(c)		((c)->sb.block_size << 9)
897 
898 #define __set_bytes(i, k)	(sizeof(*(i)) + (k) * sizeof(uint64_t))
899 #define set_bytes(i)		__set_bytes(i, i->keys)
900 
901 #define __set_blocks(i, k, c)	DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c))
902 #define set_blocks(i, c)	__set_blocks(i, (i)->keys, c)
903 
904 #define node(i, j)		((struct bkey *) ((i)->d + (j)))
905 #define end(i)			node(i, (i)->keys)
906 
907 #define index(i, b)							\
908 	((size_t) (((void *) i - (void *) (b)->sets[0].data) /		\
909 		   block_bytes(b->c)))
910 
911 #define btree_data_space(b)	(PAGE_SIZE << (b)->page_order)
912 
913 #define prios_per_bucket(c)				\
914 	((bucket_bytes(c) - sizeof(struct prio_set)) /	\
915 	 sizeof(struct bucket_disk))
916 #define prio_buckets(c)					\
917 	DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
918 
919 #define JSET_MAGIC		0x245235c1a3625032ULL
920 #define PSET_MAGIC		0x6750e15f87337f91ULL
921 #define BSET_MAGIC		0x90135c78b99e07f5ULL
922 
923 #define jset_magic(c)		((c)->sb.set_magic ^ JSET_MAGIC)
924 #define pset_magic(c)		((c)->sb.set_magic ^ PSET_MAGIC)
925 #define bset_magic(c)		((c)->sb.set_magic ^ BSET_MAGIC)
926 
927 /* Bkey fields: all units are in sectors */
928 
929 #define KEY_FIELD(name, field, offset, size)				\
930 	BITMASK(name, struct bkey, field, offset, size)
931 
932 #define PTR_FIELD(name, offset, size)					\
933 	static inline uint64_t name(const struct bkey *k, unsigned i)	\
934 	{ return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); }	\
935 									\
936 	static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\
937 	{								\
938 		k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset);	\
939 		k->ptr[i] |= v << offset;				\
940 	}
941 
942 KEY_FIELD(KEY_PTRS,	high, 60, 3)
943 KEY_FIELD(HEADER_SIZE,	high, 58, 2)
944 KEY_FIELD(KEY_CSUM,	high, 56, 2)
945 KEY_FIELD(KEY_PINNED,	high, 55, 1)
946 KEY_FIELD(KEY_DIRTY,	high, 36, 1)
947 
948 KEY_FIELD(KEY_SIZE,	high, 20, 16)
949 KEY_FIELD(KEY_INODE,	high, 0,  20)
950 
951 /* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */
952 
953 static inline uint64_t KEY_OFFSET(const struct bkey *k)
954 {
955 	return k->low;
956 }
957 
958 static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v)
959 {
960 	k->low = v;
961 }
962 
963 PTR_FIELD(PTR_DEV,		51, 12)
964 PTR_FIELD(PTR_OFFSET,		8,  43)
965 PTR_FIELD(PTR_GEN,		0,  8)
966 
967 #define PTR_CHECK_DEV		((1 << 12) - 1)
968 
969 #define PTR(gen, offset, dev)						\
970 	((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen)
971 
972 static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
973 {
974 	return s >> c->bucket_bits;
975 }
976 
977 static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
978 {
979 	return ((sector_t) b) << c->bucket_bits;
980 }
981 
982 static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
983 {
984 	return s & (c->sb.bucket_size - 1);
985 }
986 
987 static inline struct cache *PTR_CACHE(struct cache_set *c,
988 				      const struct bkey *k,
989 				      unsigned ptr)
990 {
991 	return c->cache[PTR_DEV(k, ptr)];
992 }
993 
994 static inline size_t PTR_BUCKET_NR(struct cache_set *c,
995 				   const struct bkey *k,
996 				   unsigned ptr)
997 {
998 	return sector_to_bucket(c, PTR_OFFSET(k, ptr));
999 }
1000 
1001 static inline struct bucket *PTR_BUCKET(struct cache_set *c,
1002 					const struct bkey *k,
1003 					unsigned ptr)
1004 {
1005 	return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
1006 }
1007 
1008 /* Btree key macros */
1009 
1010 /*
1011  * The high bit being set is a relic from when we used it to do binary
1012  * searches - it told you where a key started. It's not used anymore,
1013  * and can probably be safely dropped.
1014  */
1015 #define KEY(dev, sector, len)	(struct bkey)				\
1016 {									\
1017 	.high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev),	\
1018 	.low = (sector)							\
1019 }
1020 
1021 static inline void bkey_init(struct bkey *k)
1022 {
1023 	*k = KEY(0, 0, 0);
1024 }
1025 
1026 #define KEY_START(k)		(KEY_OFFSET(k) - KEY_SIZE(k))
1027 #define START_KEY(k)		KEY(KEY_INODE(k), KEY_START(k), 0)
1028 #define MAX_KEY			KEY(~(~0 << 20), ((uint64_t) ~0) >> 1, 0)
1029 #define ZERO_KEY		KEY(0, 0, 0)
1030 
1031 /*
1032  * This is used for various on disk data structures - cache_sb, prio_set, bset,
1033  * jset: The checksum is _always_ the first 8 bytes of these structs
1034  */
1035 #define csum_set(i)							\
1036 	crc64(((void *) (i)) + sizeof(uint64_t),			\
1037 	      ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t)))
1038 
1039 /* Error handling macros */
1040 
1041 #define btree_bug(b, ...)						\
1042 do {									\
1043 	if (bch_cache_set_error((b)->c, __VA_ARGS__))			\
1044 		dump_stack();						\
1045 } while (0)
1046 
1047 #define cache_bug(c, ...)						\
1048 do {									\
1049 	if (bch_cache_set_error(c, __VA_ARGS__))			\
1050 		dump_stack();						\
1051 } while (0)
1052 
1053 #define btree_bug_on(cond, b, ...)					\
1054 do {									\
1055 	if (cond)							\
1056 		btree_bug(b, __VA_ARGS__);				\
1057 } while (0)
1058 
1059 #define cache_bug_on(cond, c, ...)					\
1060 do {									\
1061 	if (cond)							\
1062 		cache_bug(c, __VA_ARGS__);				\
1063 } while (0)
1064 
1065 #define cache_set_err_on(cond, c, ...)					\
1066 do {									\
1067 	if (cond)							\
1068 		bch_cache_set_error(c, __VA_ARGS__);			\
1069 } while (0)
1070 
1071 /* Looping macros */
1072 
1073 #define for_each_cache(ca, cs, iter)					\
1074 	for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
1075 
1076 #define for_each_bucket(b, ca)						\
1077 	for (b = (ca)->buckets + (ca)->sb.first_bucket;			\
1078 	     b < (ca)->buckets + (ca)->sb.nbuckets; b++)
1079 
1080 static inline void __bkey_put(struct cache_set *c, struct bkey *k)
1081 {
1082 	unsigned i;
1083 
1084 	for (i = 0; i < KEY_PTRS(k); i++)
1085 		atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
1086 }
1087 
1088 /* Blktrace macros */
1089 
1090 #define blktrace_msg(c, fmt, ...)					\
1091 do {									\
1092 	struct request_queue *q = bdev_get_queue(c->bdev);		\
1093 	if (q)								\
1094 		blk_add_trace_msg(q, fmt, ##__VA_ARGS__);		\
1095 } while (0)
1096 
1097 #define blktrace_msg_all(s, fmt, ...)					\
1098 do {									\
1099 	struct cache *_c;						\
1100 	unsigned i;							\
1101 	for_each_cache(_c, (s), i)					\
1102 		blktrace_msg(_c, fmt, ##__VA_ARGS__);			\
1103 } while (0)
1104 
1105 static inline void cached_dev_put(struct cached_dev *dc)
1106 {
1107 	if (atomic_dec_and_test(&dc->count))
1108 		schedule_work(&dc->detach);
1109 }
1110 
1111 static inline bool cached_dev_get(struct cached_dev *dc)
1112 {
1113 	if (!atomic_inc_not_zero(&dc->count))
1114 		return false;
1115 
1116 	/* Paired with the mb in cached_dev_attach */
1117 	smp_mb__after_atomic_inc();
1118 	return true;
1119 }
1120 
1121 /*
1122  * bucket_gc_gen() returns the difference between the bucket's current gen and
1123  * the oldest gen of any pointer into that bucket in the btree (last_gc).
1124  *
1125  * bucket_disk_gen() returns the difference between the current gen and the gen
1126  * on disk; they're both used to make sure gens don't wrap around.
1127  */
1128 
1129 static inline uint8_t bucket_gc_gen(struct bucket *b)
1130 {
1131 	return b->gen - b->last_gc;
1132 }
1133 
1134 static inline uint8_t bucket_disk_gen(struct bucket *b)
1135 {
1136 	return b->gen - b->disk_gen;
1137 }
1138 
1139 #define BUCKET_GC_GEN_MAX	96U
1140 #define BUCKET_DISK_GEN_MAX	64U
1141 
1142 #define kobj_attribute_write(n, fn)					\
1143 	static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
1144 
1145 #define kobj_attribute_rw(n, show, store)				\
1146 	static struct kobj_attribute ksysfs_##n =			\
1147 		__ATTR(n, S_IWUSR|S_IRUSR, show, store)
1148 
1149 /* Forward declarations */
1150 
1151 void bch_writeback_queue(struct cached_dev *);
1152 void bch_writeback_add(struct cached_dev *, unsigned);
1153 
1154 void bch_count_io_errors(struct cache *, int, const char *);
1155 void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
1156 			      int, const char *);
1157 void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
1158 void bch_bbio_free(struct bio *, struct cache_set *);
1159 struct bio *bch_bbio_alloc(struct cache_set *);
1160 
1161 struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *);
1162 void bch_generic_make_request(struct bio *, struct bio_split_pool *);
1163 void __bch_submit_bbio(struct bio *, struct cache_set *);
1164 void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
1165 
1166 uint8_t bch_inc_gen(struct cache *, struct bucket *);
1167 void bch_rescale_priorities(struct cache_set *, int);
1168 bool bch_bucket_add_unused(struct cache *, struct bucket *);
1169 void bch_allocator_thread(struct closure *);
1170 
1171 long bch_bucket_alloc(struct cache *, unsigned, struct closure *);
1172 void bch_bucket_free(struct cache_set *, struct bkey *);
1173 
1174 int __bch_bucket_alloc_set(struct cache_set *, unsigned,
1175 			   struct bkey *, int, struct closure *);
1176 int bch_bucket_alloc_set(struct cache_set *, unsigned,
1177 			 struct bkey *, int, struct closure *);
1178 
1179 __printf(2, 3)
1180 bool bch_cache_set_error(struct cache_set *, const char *, ...);
1181 
1182 void bch_prio_write(struct cache *);
1183 void bch_write_bdev_super(struct cached_dev *, struct closure *);
1184 
1185 extern struct workqueue_struct *bcache_wq, *bch_gc_wq;
1186 extern const char * const bch_cache_modes[];
1187 extern struct mutex bch_register_lock;
1188 extern struct list_head bch_cache_sets;
1189 
1190 extern struct kobj_type bch_cached_dev_ktype;
1191 extern struct kobj_type bch_flash_dev_ktype;
1192 extern struct kobj_type bch_cache_set_ktype;
1193 extern struct kobj_type bch_cache_set_internal_ktype;
1194 extern struct kobj_type bch_cache_ktype;
1195 
1196 void bch_cached_dev_release(struct kobject *);
1197 void bch_flash_dev_release(struct kobject *);
1198 void bch_cache_set_release(struct kobject *);
1199 void bch_cache_release(struct kobject *);
1200 
1201 int bch_uuid_write(struct cache_set *);
1202 void bcache_write_super(struct cache_set *);
1203 
1204 int bch_flash_dev_create(struct cache_set *c, uint64_t size);
1205 
1206 int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
1207 void bch_cached_dev_detach(struct cached_dev *);
1208 void bch_cached_dev_run(struct cached_dev *);
1209 void bcache_device_stop(struct bcache_device *);
1210 
1211 void bch_cache_set_unregister(struct cache_set *);
1212 void bch_cache_set_stop(struct cache_set *);
1213 
1214 struct cache_set *bch_cache_set_alloc(struct cache_sb *);
1215 void bch_btree_cache_free(struct cache_set *);
1216 int bch_btree_cache_alloc(struct cache_set *);
1217 void bch_writeback_init_cached_dev(struct cached_dev *);
1218 void bch_moving_init_cache_set(struct cache_set *);
1219 
1220 void bch_cache_allocator_exit(struct cache *ca);
1221 int bch_cache_allocator_init(struct cache *ca);
1222 
1223 void bch_debug_exit(void);
1224 int bch_debug_init(struct kobject *);
1225 void bch_writeback_exit(void);
1226 int bch_writeback_init(void);
1227 void bch_request_exit(void);
1228 int bch_request_init(void);
1229 void bch_btree_exit(void);
1230 int bch_btree_init(void);
1231 
1232 #endif /* _BCACHE_H */
1233