1 #ifndef _BCACHE_H 2 #define _BCACHE_H 3 4 /* 5 * SOME HIGH LEVEL CODE DOCUMENTATION: 6 * 7 * Bcache mostly works with cache sets, cache devices, and backing devices. 8 * 9 * Support for multiple cache devices hasn't quite been finished off yet, but 10 * it's about 95% plumbed through. A cache set and its cache devices is sort of 11 * like a md raid array and its component devices. Most of the code doesn't care 12 * about individual cache devices, the main abstraction is the cache set. 13 * 14 * Multiple cache devices is intended to give us the ability to mirror dirty 15 * cached data and metadata, without mirroring clean cached data. 16 * 17 * Backing devices are different, in that they have a lifetime independent of a 18 * cache set. When you register a newly formatted backing device it'll come up 19 * in passthrough mode, and then you can attach and detach a backing device from 20 * a cache set at runtime - while it's mounted and in use. Detaching implicitly 21 * invalidates any cached data for that backing device. 22 * 23 * A cache set can have multiple (many) backing devices attached to it. 24 * 25 * There's also flash only volumes - this is the reason for the distinction 26 * between struct cached_dev and struct bcache_device. A flash only volume 27 * works much like a bcache device that has a backing device, except the 28 * "cached" data is always dirty. The end result is that we get thin 29 * provisioning with very little additional code. 30 * 31 * Flash only volumes work but they're not production ready because the moving 32 * garbage collector needs more work. More on that later. 33 * 34 * BUCKETS/ALLOCATION: 35 * 36 * Bcache is primarily designed for caching, which means that in normal 37 * operation all of our available space will be allocated. Thus, we need an 38 * efficient way of deleting things from the cache so we can write new things to 39 * it. 40 * 41 * To do this, we first divide the cache device up into buckets. A bucket is the 42 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ 43 * works efficiently. 44 * 45 * Each bucket has a 16 bit priority, and an 8 bit generation associated with 46 * it. The gens and priorities for all the buckets are stored contiguously and 47 * packed on disk (in a linked list of buckets - aside from the superblock, all 48 * of bcache's metadata is stored in buckets). 49 * 50 * The priority is used to implement an LRU. We reset a bucket's priority when 51 * we allocate it or on cache it, and every so often we decrement the priority 52 * of each bucket. It could be used to implement something more sophisticated, 53 * if anyone ever gets around to it. 54 * 55 * The generation is used for invalidating buckets. Each pointer also has an 8 56 * bit generation embedded in it; for a pointer to be considered valid, its gen 57 * must match the gen of the bucket it points into. Thus, to reuse a bucket all 58 * we have to do is increment its gen (and write its new gen to disk; we batch 59 * this up). 60 * 61 * Bcache is entirely COW - we never write twice to a bucket, even buckets that 62 * contain metadata (including btree nodes). 63 * 64 * THE BTREE: 65 * 66 * Bcache is in large part design around the btree. 67 * 68 * At a high level, the btree is just an index of key -> ptr tuples. 69 * 70 * Keys represent extents, and thus have a size field. Keys also have a variable 71 * number of pointers attached to them (potentially zero, which is handy for 72 * invalidating the cache). 73 * 74 * The key itself is an inode:offset pair. The inode number corresponds to a 75 * backing device or a flash only volume. The offset is the ending offset of the 76 * extent within the inode - not the starting offset; this makes lookups 77 * slightly more convenient. 78 * 79 * Pointers contain the cache device id, the offset on that device, and an 8 bit 80 * generation number. More on the gen later. 81 * 82 * Index lookups are not fully abstracted - cache lookups in particular are 83 * still somewhat mixed in with the btree code, but things are headed in that 84 * direction. 85 * 86 * Updates are fairly well abstracted, though. There are two different ways of 87 * updating the btree; insert and replace. 88 * 89 * BTREE_INSERT will just take a list of keys and insert them into the btree - 90 * overwriting (possibly only partially) any extents they overlap with. This is 91 * used to update the index after a write. 92 * 93 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is 94 * overwriting a key that matches another given key. This is used for inserting 95 * data into the cache after a cache miss, and for background writeback, and for 96 * the moving garbage collector. 97 * 98 * There is no "delete" operation; deleting things from the index is 99 * accomplished by either by invalidating pointers (by incrementing a bucket's 100 * gen) or by inserting a key with 0 pointers - which will overwrite anything 101 * previously present at that location in the index. 102 * 103 * This means that there are always stale/invalid keys in the btree. They're 104 * filtered out by the code that iterates through a btree node, and removed when 105 * a btree node is rewritten. 106 * 107 * BTREE NODES: 108 * 109 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and 110 * free smaller than a bucket - so, that's how big our btree nodes are. 111 * 112 * (If buckets are really big we'll only use part of the bucket for a btree node 113 * - no less than 1/4th - but a bucket still contains no more than a single 114 * btree node. I'd actually like to change this, but for now we rely on the 115 * bucket's gen for deleting btree nodes when we rewrite/split a node.) 116 * 117 * Anyways, btree nodes are big - big enough to be inefficient with a textbook 118 * btree implementation. 119 * 120 * The way this is solved is that btree nodes are internally log structured; we 121 * can append new keys to an existing btree node without rewriting it. This 122 * means each set of keys we write is sorted, but the node is not. 123 * 124 * We maintain this log structure in memory - keeping 1Mb of keys sorted would 125 * be expensive, and we have to distinguish between the keys we have written and 126 * the keys we haven't. So to do a lookup in a btree node, we have to search 127 * each sorted set. But we do merge written sets together lazily, so the cost of 128 * these extra searches is quite low (normally most of the keys in a btree node 129 * will be in one big set, and then there'll be one or two sets that are much 130 * smaller). 131 * 132 * This log structure makes bcache's btree more of a hybrid between a 133 * conventional btree and a compacting data structure, with some of the 134 * advantages of both. 135 * 136 * GARBAGE COLLECTION: 137 * 138 * We can't just invalidate any bucket - it might contain dirty data or 139 * metadata. If it once contained dirty data, other writes might overwrite it 140 * later, leaving no valid pointers into that bucket in the index. 141 * 142 * Thus, the primary purpose of garbage collection is to find buckets to reuse. 143 * It also counts how much valid data it each bucket currently contains, so that 144 * allocation can reuse buckets sooner when they've been mostly overwritten. 145 * 146 * It also does some things that are really internal to the btree 147 * implementation. If a btree node contains pointers that are stale by more than 148 * some threshold, it rewrites the btree node to avoid the bucket's generation 149 * wrapping around. It also merges adjacent btree nodes if they're empty enough. 150 * 151 * THE JOURNAL: 152 * 153 * Bcache's journal is not necessary for consistency; we always strictly 154 * order metadata writes so that the btree and everything else is consistent on 155 * disk in the event of an unclean shutdown, and in fact bcache had writeback 156 * caching (with recovery from unclean shutdown) before journalling was 157 * implemented. 158 * 159 * Rather, the journal is purely a performance optimization; we can't complete a 160 * write until we've updated the index on disk, otherwise the cache would be 161 * inconsistent in the event of an unclean shutdown. This means that without the 162 * journal, on random write workloads we constantly have to update all the leaf 163 * nodes in the btree, and those writes will be mostly empty (appending at most 164 * a few keys each) - highly inefficient in terms of amount of metadata writes, 165 * and it puts more strain on the various btree resorting/compacting code. 166 * 167 * The journal is just a log of keys we've inserted; on startup we just reinsert 168 * all the keys in the open journal entries. That means that when we're updating 169 * a node in the btree, we can wait until a 4k block of keys fills up before 170 * writing them out. 171 * 172 * For simplicity, we only journal updates to leaf nodes; updates to parent 173 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth 174 * the complexity to deal with journalling them (in particular, journal replay) 175 * - updates to non leaf nodes just happen synchronously (see btree_split()). 176 */ 177 178 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__ 179 180 #include <linux/bio.h> 181 #include <linux/kobject.h> 182 #include <linux/list.h> 183 #include <linux/mutex.h> 184 #include <linux/rbtree.h> 185 #include <linux/rwsem.h> 186 #include <linux/types.h> 187 #include <linux/workqueue.h> 188 189 #include "util.h" 190 #include "closure.h" 191 192 struct bucket { 193 atomic_t pin; 194 uint16_t prio; 195 uint8_t gen; 196 uint8_t disk_gen; 197 uint8_t last_gc; /* Most out of date gen in the btree */ 198 uint8_t gc_gen; 199 uint16_t gc_mark; 200 }; 201 202 /* 203 * I'd use bitfields for these, but I don't trust the compiler not to screw me 204 * as multiple threads touch struct bucket without locking 205 */ 206 207 BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2); 208 #define GC_MARK_RECLAIMABLE 0 209 #define GC_MARK_DIRTY 1 210 #define GC_MARK_METADATA 2 211 BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14); 212 213 struct bkey { 214 uint64_t high; 215 uint64_t low; 216 uint64_t ptr[]; 217 }; 218 219 /* Enough for a key with 6 pointers */ 220 #define BKEY_PAD 8 221 222 #define BKEY_PADDED(key) \ 223 union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; } 224 225 /* Version 0: Cache device 226 * Version 1: Backing device 227 * Version 2: Seed pointer into btree node checksum 228 * Version 3: Cache device with new UUID format 229 * Version 4: Backing device with data offset 230 */ 231 #define BCACHE_SB_VERSION_CDEV 0 232 #define BCACHE_SB_VERSION_BDEV 1 233 #define BCACHE_SB_VERSION_CDEV_WITH_UUID 3 234 #define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4 235 #define BCACHE_SB_MAX_VERSION 4 236 237 #define SB_SECTOR 8 238 #define SB_SIZE 4096 239 #define SB_LABEL_SIZE 32 240 #define SB_JOURNAL_BUCKETS 256U 241 /* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */ 242 #define MAX_CACHES_PER_SET 8 243 244 #define BDEV_DATA_START_DEFAULT 16 /* sectors */ 245 246 struct cache_sb { 247 uint64_t csum; 248 uint64_t offset; /* sector where this sb was written */ 249 uint64_t version; 250 251 uint8_t magic[16]; 252 253 uint8_t uuid[16]; 254 union { 255 uint8_t set_uuid[16]; 256 uint64_t set_magic; 257 }; 258 uint8_t label[SB_LABEL_SIZE]; 259 260 uint64_t flags; 261 uint64_t seq; 262 uint64_t pad[8]; 263 264 union { 265 struct { 266 /* Cache devices */ 267 uint64_t nbuckets; /* device size */ 268 269 uint16_t block_size; /* sectors */ 270 uint16_t bucket_size; /* sectors */ 271 272 uint16_t nr_in_set; 273 uint16_t nr_this_dev; 274 }; 275 struct { 276 /* Backing devices */ 277 uint64_t data_offset; 278 279 /* 280 * block_size from the cache device section is still used by 281 * backing devices, so don't add anything here until we fix 282 * things to not need it for backing devices anymore 283 */ 284 }; 285 }; 286 287 uint32_t last_mount; /* time_t */ 288 289 uint16_t first_bucket; 290 union { 291 uint16_t njournal_buckets; 292 uint16_t keys; 293 }; 294 uint64_t d[SB_JOURNAL_BUCKETS]; /* journal buckets */ 295 }; 296 297 BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1); 298 BITMASK(CACHE_DISCARD, struct cache_sb, flags, 1, 1); 299 BITMASK(CACHE_REPLACEMENT, struct cache_sb, flags, 2, 3); 300 #define CACHE_REPLACEMENT_LRU 0U 301 #define CACHE_REPLACEMENT_FIFO 1U 302 #define CACHE_REPLACEMENT_RANDOM 2U 303 304 BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4); 305 #define CACHE_MODE_WRITETHROUGH 0U 306 #define CACHE_MODE_WRITEBACK 1U 307 #define CACHE_MODE_WRITEAROUND 2U 308 #define CACHE_MODE_NONE 3U 309 BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 2); 310 #define BDEV_STATE_NONE 0U 311 #define BDEV_STATE_CLEAN 1U 312 #define BDEV_STATE_DIRTY 2U 313 #define BDEV_STATE_STALE 3U 314 315 /* Version 1: Seed pointer into btree node checksum 316 */ 317 #define BCACHE_BSET_VERSION 1 318 319 /* 320 * This is the on disk format for btree nodes - a btree node on disk is a list 321 * of these; within each set the keys are sorted 322 */ 323 struct bset { 324 uint64_t csum; 325 uint64_t magic; 326 uint64_t seq; 327 uint32_t version; 328 uint32_t keys; 329 330 union { 331 struct bkey start[0]; 332 uint64_t d[0]; 333 }; 334 }; 335 336 /* 337 * On disk format for priorities and gens - see super.c near prio_write() for 338 * more. 339 */ 340 struct prio_set { 341 uint64_t csum; 342 uint64_t magic; 343 uint64_t seq; 344 uint32_t version; 345 uint32_t pad; 346 347 uint64_t next_bucket; 348 349 struct bucket_disk { 350 uint16_t prio; 351 uint8_t gen; 352 } __attribute((packed)) data[]; 353 }; 354 355 struct uuid_entry { 356 union { 357 struct { 358 uint8_t uuid[16]; 359 uint8_t label[32]; 360 uint32_t first_reg; 361 uint32_t last_reg; 362 uint32_t invalidated; 363 364 uint32_t flags; 365 /* Size of flash only volumes */ 366 uint64_t sectors; 367 }; 368 369 uint8_t pad[128]; 370 }; 371 }; 372 373 BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1); 374 375 #include "journal.h" 376 #include "stats.h" 377 struct search; 378 struct btree; 379 struct keybuf; 380 381 struct keybuf_key { 382 struct rb_node node; 383 BKEY_PADDED(key); 384 void *private; 385 }; 386 387 typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *); 388 389 struct keybuf { 390 struct bkey last_scanned; 391 spinlock_t lock; 392 393 /* 394 * Beginning and end of range in rb tree - so that we can skip taking 395 * lock and checking the rb tree when we need to check for overlapping 396 * keys. 397 */ 398 struct bkey start; 399 struct bkey end; 400 401 struct rb_root keys; 402 403 #define KEYBUF_NR 100 404 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR); 405 }; 406 407 struct bio_split_pool { 408 struct bio_set *bio_split; 409 mempool_t *bio_split_hook; 410 }; 411 412 struct bio_split_hook { 413 struct closure cl; 414 struct bio_split_pool *p; 415 struct bio *bio; 416 bio_end_io_t *bi_end_io; 417 void *bi_private; 418 }; 419 420 struct bcache_device { 421 struct closure cl; 422 423 struct kobject kobj; 424 425 struct cache_set *c; 426 unsigned id; 427 #define BCACHEDEVNAME_SIZE 12 428 char name[BCACHEDEVNAME_SIZE]; 429 430 struct gendisk *disk; 431 432 /* If nonzero, we're closing */ 433 atomic_t closing; 434 435 /* If nonzero, we're detaching/unregistering from cache set */ 436 atomic_t detaching; 437 int flush_done; 438 439 uint64_t nr_stripes; 440 unsigned stripe_size_bits; 441 atomic_t *stripe_sectors_dirty; 442 443 unsigned long sectors_dirty_last; 444 long sectors_dirty_derivative; 445 446 mempool_t *unaligned_bvec; 447 struct bio_set *bio_split; 448 449 unsigned data_csum:1; 450 451 int (*cache_miss)(struct btree *, struct search *, 452 struct bio *, unsigned); 453 int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long); 454 455 struct bio_split_pool bio_split_hook; 456 }; 457 458 struct io { 459 /* Used to track sequential IO so it can be skipped */ 460 struct hlist_node hash; 461 struct list_head lru; 462 463 unsigned long jiffies; 464 unsigned sequential; 465 sector_t last; 466 }; 467 468 struct cached_dev { 469 struct list_head list; 470 struct bcache_device disk; 471 struct block_device *bdev; 472 473 struct cache_sb sb; 474 struct bio sb_bio; 475 struct bio_vec sb_bv[1]; 476 struct closure_with_waitlist sb_write; 477 478 /* Refcount on the cache set. Always nonzero when we're caching. */ 479 atomic_t count; 480 struct work_struct detach; 481 482 /* 483 * Device might not be running if it's dirty and the cache set hasn't 484 * showed up yet. 485 */ 486 atomic_t running; 487 488 /* 489 * Writes take a shared lock from start to finish; scanning for dirty 490 * data to refill the rb tree requires an exclusive lock. 491 */ 492 struct rw_semaphore writeback_lock; 493 494 /* 495 * Nonzero, and writeback has a refcount (d->count), iff there is dirty 496 * data in the cache. Protected by writeback_lock; must have an 497 * shared lock to set and exclusive lock to clear. 498 */ 499 atomic_t has_dirty; 500 501 struct ratelimit writeback_rate; 502 struct delayed_work writeback_rate_update; 503 504 /* 505 * Internal to the writeback code, so read_dirty() can keep track of 506 * where it's at. 507 */ 508 sector_t last_read; 509 510 /* Number of writeback bios in flight */ 511 atomic_t in_flight; 512 struct closure_with_timer writeback; 513 struct closure_waitlist writeback_wait; 514 515 struct keybuf writeback_keys; 516 517 /* For tracking sequential IO */ 518 #define RECENT_IO_BITS 7 519 #define RECENT_IO (1 << RECENT_IO_BITS) 520 struct io io[RECENT_IO]; 521 struct hlist_head io_hash[RECENT_IO + 1]; 522 struct list_head io_lru; 523 spinlock_t io_lock; 524 525 struct cache_accounting accounting; 526 527 /* The rest of this all shows up in sysfs */ 528 unsigned sequential_cutoff; 529 unsigned readahead; 530 531 unsigned sequential_merge:1; 532 unsigned verify:1; 533 534 unsigned partial_stripes_expensive:1; 535 unsigned writeback_metadata:1; 536 unsigned writeback_running:1; 537 unsigned char writeback_percent; 538 unsigned writeback_delay; 539 540 int writeback_rate_change; 541 int64_t writeback_rate_derivative; 542 uint64_t writeback_rate_target; 543 544 unsigned writeback_rate_update_seconds; 545 unsigned writeback_rate_d_term; 546 unsigned writeback_rate_p_term_inverse; 547 unsigned writeback_rate_d_smooth; 548 }; 549 550 enum alloc_watermarks { 551 WATERMARK_PRIO, 552 WATERMARK_METADATA, 553 WATERMARK_MOVINGGC, 554 WATERMARK_NONE, 555 WATERMARK_MAX 556 }; 557 558 struct cache { 559 struct cache_set *set; 560 struct cache_sb sb; 561 struct bio sb_bio; 562 struct bio_vec sb_bv[1]; 563 564 struct kobject kobj; 565 struct block_device *bdev; 566 567 unsigned watermark[WATERMARK_MAX]; 568 569 struct task_struct *alloc_thread; 570 571 struct closure prio; 572 struct prio_set *disk_buckets; 573 574 /* 575 * When allocating new buckets, prio_write() gets first dibs - since we 576 * may not be allocate at all without writing priorities and gens. 577 * prio_buckets[] contains the last buckets we wrote priorities to (so 578 * gc can mark them as metadata), prio_next[] contains the buckets 579 * allocated for the next prio write. 580 */ 581 uint64_t *prio_buckets; 582 uint64_t *prio_last_buckets; 583 584 /* 585 * free: Buckets that are ready to be used 586 * 587 * free_inc: Incoming buckets - these are buckets that currently have 588 * cached data in them, and we can't reuse them until after we write 589 * their new gen to disk. After prio_write() finishes writing the new 590 * gens/prios, they'll be moved to the free list (and possibly discarded 591 * in the process) 592 * 593 * unused: GC found nothing pointing into these buckets (possibly 594 * because all the data they contained was overwritten), so we only 595 * need to discard them before they can be moved to the free list. 596 */ 597 DECLARE_FIFO(long, free); 598 DECLARE_FIFO(long, free_inc); 599 DECLARE_FIFO(long, unused); 600 601 size_t fifo_last_bucket; 602 603 /* Allocation stuff: */ 604 struct bucket *buckets; 605 606 DECLARE_HEAP(struct bucket *, heap); 607 608 /* 609 * max(gen - disk_gen) for all buckets. When it gets too big we have to 610 * call prio_write() to keep gens from wrapping. 611 */ 612 uint8_t need_save_prio; 613 unsigned gc_move_threshold; 614 615 /* 616 * If nonzero, we know we aren't going to find any buckets to invalidate 617 * until a gc finishes - otherwise we could pointlessly burn a ton of 618 * cpu 619 */ 620 unsigned invalidate_needs_gc:1; 621 622 bool discard; /* Get rid of? */ 623 624 /* 625 * We preallocate structs for issuing discards to buckets, and keep them 626 * on this list when they're not in use; do_discard() issues discards 627 * whenever there's work to do and is called by free_some_buckets() and 628 * when a discard finishes. 629 */ 630 atomic_t discards_in_flight; 631 struct list_head discards; 632 633 struct journal_device journal; 634 635 /* The rest of this all shows up in sysfs */ 636 #define IO_ERROR_SHIFT 20 637 atomic_t io_errors; 638 atomic_t io_count; 639 640 atomic_long_t meta_sectors_written; 641 atomic_long_t btree_sectors_written; 642 atomic_long_t sectors_written; 643 644 struct bio_split_pool bio_split_hook; 645 }; 646 647 struct gc_stat { 648 size_t nodes; 649 size_t key_bytes; 650 651 size_t nkeys; 652 uint64_t data; /* sectors */ 653 uint64_t dirty; /* sectors */ 654 unsigned in_use; /* percent */ 655 }; 656 657 /* 658 * Flag bits, for how the cache set is shutting down, and what phase it's at: 659 * 660 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching 661 * all the backing devices first (their cached data gets invalidated, and they 662 * won't automatically reattach). 663 * 664 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set; 665 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e. 666 * flushing dirty data). 667 */ 668 #define CACHE_SET_UNREGISTERING 0 669 #define CACHE_SET_STOPPING 1 670 671 struct cache_set { 672 struct closure cl; 673 674 struct list_head list; 675 struct kobject kobj; 676 struct kobject internal; 677 struct dentry *debug; 678 struct cache_accounting accounting; 679 680 unsigned long flags; 681 682 struct cache_sb sb; 683 684 struct cache *cache[MAX_CACHES_PER_SET]; 685 struct cache *cache_by_alloc[MAX_CACHES_PER_SET]; 686 int caches_loaded; 687 688 struct bcache_device **devices; 689 struct list_head cached_devs; 690 uint64_t cached_dev_sectors; 691 struct closure caching; 692 693 struct closure_with_waitlist sb_write; 694 695 mempool_t *search; 696 mempool_t *bio_meta; 697 struct bio_set *bio_split; 698 699 /* For the btree cache */ 700 struct shrinker shrink; 701 702 /* For the btree cache and anything allocation related */ 703 struct mutex bucket_lock; 704 705 /* log2(bucket_size), in sectors */ 706 unsigned short bucket_bits; 707 708 /* log2(block_size), in sectors */ 709 unsigned short block_bits; 710 711 /* 712 * Default number of pages for a new btree node - may be less than a 713 * full bucket 714 */ 715 unsigned btree_pages; 716 717 /* 718 * Lists of struct btrees; lru is the list for structs that have memory 719 * allocated for actual btree node, freed is for structs that do not. 720 * 721 * We never free a struct btree, except on shutdown - we just put it on 722 * the btree_cache_freed list and reuse it later. This simplifies the 723 * code, and it doesn't cost us much memory as the memory usage is 724 * dominated by buffers that hold the actual btree node data and those 725 * can be freed - and the number of struct btrees allocated is 726 * effectively bounded. 727 * 728 * btree_cache_freeable effectively is a small cache - we use it because 729 * high order page allocations can be rather expensive, and it's quite 730 * common to delete and allocate btree nodes in quick succession. It 731 * should never grow past ~2-3 nodes in practice. 732 */ 733 struct list_head btree_cache; 734 struct list_head btree_cache_freeable; 735 struct list_head btree_cache_freed; 736 737 /* Number of elements in btree_cache + btree_cache_freeable lists */ 738 unsigned bucket_cache_used; 739 740 /* 741 * If we need to allocate memory for a new btree node and that 742 * allocation fails, we can cannibalize another node in the btree cache 743 * to satisfy the allocation. However, only one thread can be doing this 744 * at a time, for obvious reasons - try_harder and try_wait are 745 * basically a lock for this that we can wait on asynchronously. The 746 * btree_root() macro releases the lock when it returns. 747 */ 748 struct closure *try_harder; 749 struct closure_waitlist try_wait; 750 uint64_t try_harder_start; 751 752 /* 753 * When we free a btree node, we increment the gen of the bucket the 754 * node is in - but we can't rewrite the prios and gens until we 755 * finished whatever it is we were doing, otherwise after a crash the 756 * btree node would be freed but for say a split, we might not have the 757 * pointers to the new nodes inserted into the btree yet. 758 * 759 * This is a refcount that blocks prio_write() until the new keys are 760 * written. 761 */ 762 atomic_t prio_blocked; 763 struct closure_waitlist bucket_wait; 764 765 /* 766 * For any bio we don't skip we subtract the number of sectors from 767 * rescale; when it hits 0 we rescale all the bucket priorities. 768 */ 769 atomic_t rescale; 770 /* 771 * When we invalidate buckets, we use both the priority and the amount 772 * of good data to determine which buckets to reuse first - to weight 773 * those together consistently we keep track of the smallest nonzero 774 * priority of any bucket. 775 */ 776 uint16_t min_prio; 777 778 /* 779 * max(gen - gc_gen) for all buckets. When it gets too big we have to gc 780 * to keep gens from wrapping around. 781 */ 782 uint8_t need_gc; 783 struct gc_stat gc_stats; 784 size_t nbuckets; 785 786 struct closure_with_waitlist gc; 787 /* Where in the btree gc currently is */ 788 struct bkey gc_done; 789 790 /* 791 * The allocation code needs gc_mark in struct bucket to be correct, but 792 * it's not while a gc is in progress. Protected by bucket_lock. 793 */ 794 int gc_mark_valid; 795 796 /* Counts how many sectors bio_insert has added to the cache */ 797 atomic_t sectors_to_gc; 798 799 struct closure moving_gc; 800 struct closure_waitlist moving_gc_wait; 801 struct keybuf moving_gc_keys; 802 /* Number of moving GC bios in flight */ 803 atomic_t in_flight; 804 805 struct btree *root; 806 807 #ifdef CONFIG_BCACHE_DEBUG 808 struct btree *verify_data; 809 struct mutex verify_lock; 810 #endif 811 812 unsigned nr_uuids; 813 struct uuid_entry *uuids; 814 BKEY_PADDED(uuid_bucket); 815 struct closure_with_waitlist uuid_write; 816 817 /* 818 * A btree node on disk could have too many bsets for an iterator to fit 819 * on the stack - have to dynamically allocate them 820 */ 821 mempool_t *fill_iter; 822 823 /* 824 * btree_sort() is a merge sort and requires temporary space - single 825 * element mempool 826 */ 827 struct mutex sort_lock; 828 struct bset *sort; 829 unsigned sort_crit_factor; 830 831 /* List of buckets we're currently writing data to */ 832 struct list_head data_buckets; 833 spinlock_t data_bucket_lock; 834 835 struct journal journal; 836 837 #define CONGESTED_MAX 1024 838 unsigned congested_last_us; 839 atomic_t congested; 840 841 /* The rest of this all shows up in sysfs */ 842 unsigned congested_read_threshold_us; 843 unsigned congested_write_threshold_us; 844 845 spinlock_t sort_time_lock; 846 struct time_stats sort_time; 847 struct time_stats btree_gc_time; 848 struct time_stats btree_split_time; 849 spinlock_t btree_read_time_lock; 850 struct time_stats btree_read_time; 851 struct time_stats try_harder_time; 852 853 atomic_long_t cache_read_races; 854 atomic_long_t writeback_keys_done; 855 atomic_long_t writeback_keys_failed; 856 unsigned error_limit; 857 unsigned error_decay; 858 unsigned short journal_delay_ms; 859 unsigned verify:1; 860 unsigned key_merging_disabled:1; 861 unsigned gc_always_rewrite:1; 862 unsigned shrinker_disabled:1; 863 unsigned copy_gc_enabled:1; 864 865 #define BUCKET_HASH_BITS 12 866 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS]; 867 }; 868 869 static inline bool key_merging_disabled(struct cache_set *c) 870 { 871 #ifdef CONFIG_BCACHE_DEBUG 872 return c->key_merging_disabled; 873 #else 874 return 0; 875 #endif 876 } 877 878 static inline bool SB_IS_BDEV(const struct cache_sb *sb) 879 { 880 return sb->version == BCACHE_SB_VERSION_BDEV 881 || sb->version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET; 882 } 883 884 struct bbio { 885 unsigned submit_time_us; 886 union { 887 struct bkey key; 888 uint64_t _pad[3]; 889 /* 890 * We only need pad = 3 here because we only ever carry around a 891 * single pointer - i.e. the pointer we're doing io to/from. 892 */ 893 }; 894 struct bio bio; 895 }; 896 897 static inline unsigned local_clock_us(void) 898 { 899 return local_clock() >> 10; 900 } 901 902 #define BTREE_PRIO USHRT_MAX 903 #define INITIAL_PRIO 32768 904 905 #define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE) 906 #define btree_blocks(b) \ 907 ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits)) 908 909 #define btree_default_blocks(c) \ 910 ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits)) 911 912 #define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS) 913 #define bucket_bytes(c) ((c)->sb.bucket_size << 9) 914 #define block_bytes(c) ((c)->sb.block_size << 9) 915 916 #define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t)) 917 #define set_bytes(i) __set_bytes(i, i->keys) 918 919 #define __set_blocks(i, k, c) DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c)) 920 #define set_blocks(i, c) __set_blocks(i, (i)->keys, c) 921 922 #define node(i, j) ((struct bkey *) ((i)->d + (j))) 923 #define end(i) node(i, (i)->keys) 924 925 #define index(i, b) \ 926 ((size_t) (((void *) i - (void *) (b)->sets[0].data) / \ 927 block_bytes(b->c))) 928 929 #define btree_data_space(b) (PAGE_SIZE << (b)->page_order) 930 931 #define prios_per_bucket(c) \ 932 ((bucket_bytes(c) - sizeof(struct prio_set)) / \ 933 sizeof(struct bucket_disk)) 934 #define prio_buckets(c) \ 935 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c)) 936 937 #define JSET_MAGIC 0x245235c1a3625032ULL 938 #define PSET_MAGIC 0x6750e15f87337f91ULL 939 #define BSET_MAGIC 0x90135c78b99e07f5ULL 940 941 #define jset_magic(c) ((c)->sb.set_magic ^ JSET_MAGIC) 942 #define pset_magic(c) ((c)->sb.set_magic ^ PSET_MAGIC) 943 #define bset_magic(c) ((c)->sb.set_magic ^ BSET_MAGIC) 944 945 /* Bkey fields: all units are in sectors */ 946 947 #define KEY_FIELD(name, field, offset, size) \ 948 BITMASK(name, struct bkey, field, offset, size) 949 950 #define PTR_FIELD(name, offset, size) \ 951 static inline uint64_t name(const struct bkey *k, unsigned i) \ 952 { return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); } \ 953 \ 954 static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\ 955 { \ 956 k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset); \ 957 k->ptr[i] |= v << offset; \ 958 } 959 960 KEY_FIELD(KEY_PTRS, high, 60, 3) 961 KEY_FIELD(HEADER_SIZE, high, 58, 2) 962 KEY_FIELD(KEY_CSUM, high, 56, 2) 963 KEY_FIELD(KEY_PINNED, high, 55, 1) 964 KEY_FIELD(KEY_DIRTY, high, 36, 1) 965 966 KEY_FIELD(KEY_SIZE, high, 20, 16) 967 KEY_FIELD(KEY_INODE, high, 0, 20) 968 969 /* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */ 970 971 static inline uint64_t KEY_OFFSET(const struct bkey *k) 972 { 973 return k->low; 974 } 975 976 static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v) 977 { 978 k->low = v; 979 } 980 981 PTR_FIELD(PTR_DEV, 51, 12) 982 PTR_FIELD(PTR_OFFSET, 8, 43) 983 PTR_FIELD(PTR_GEN, 0, 8) 984 985 #define PTR_CHECK_DEV ((1 << 12) - 1) 986 987 #define PTR(gen, offset, dev) \ 988 ((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen) 989 990 static inline size_t sector_to_bucket(struct cache_set *c, sector_t s) 991 { 992 return s >> c->bucket_bits; 993 } 994 995 static inline sector_t bucket_to_sector(struct cache_set *c, size_t b) 996 { 997 return ((sector_t) b) << c->bucket_bits; 998 } 999 1000 static inline sector_t bucket_remainder(struct cache_set *c, sector_t s) 1001 { 1002 return s & (c->sb.bucket_size - 1); 1003 } 1004 1005 static inline struct cache *PTR_CACHE(struct cache_set *c, 1006 const struct bkey *k, 1007 unsigned ptr) 1008 { 1009 return c->cache[PTR_DEV(k, ptr)]; 1010 } 1011 1012 static inline size_t PTR_BUCKET_NR(struct cache_set *c, 1013 const struct bkey *k, 1014 unsigned ptr) 1015 { 1016 return sector_to_bucket(c, PTR_OFFSET(k, ptr)); 1017 } 1018 1019 static inline struct bucket *PTR_BUCKET(struct cache_set *c, 1020 const struct bkey *k, 1021 unsigned ptr) 1022 { 1023 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr); 1024 } 1025 1026 /* Btree key macros */ 1027 1028 /* 1029 * The high bit being set is a relic from when we used it to do binary 1030 * searches - it told you where a key started. It's not used anymore, 1031 * and can probably be safely dropped. 1032 */ 1033 #define KEY(dev, sector, len) \ 1034 ((struct bkey) { \ 1035 .high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev), \ 1036 .low = (sector) \ 1037 }) 1038 1039 static inline void bkey_init(struct bkey *k) 1040 { 1041 *k = KEY(0, 0, 0); 1042 } 1043 1044 #define KEY_START(k) (KEY_OFFSET(k) - KEY_SIZE(k)) 1045 #define START_KEY(k) KEY(KEY_INODE(k), KEY_START(k), 0) 1046 #define MAX_KEY KEY(~(~0 << 20), ((uint64_t) ~0) >> 1, 0) 1047 #define ZERO_KEY KEY(0, 0, 0) 1048 1049 /* 1050 * This is used for various on disk data structures - cache_sb, prio_set, bset, 1051 * jset: The checksum is _always_ the first 8 bytes of these structs 1052 */ 1053 #define csum_set(i) \ 1054 bch_crc64(((void *) (i)) + sizeof(uint64_t), \ 1055 ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t))) 1056 1057 /* Error handling macros */ 1058 1059 #define btree_bug(b, ...) \ 1060 do { \ 1061 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \ 1062 dump_stack(); \ 1063 } while (0) 1064 1065 #define cache_bug(c, ...) \ 1066 do { \ 1067 if (bch_cache_set_error(c, __VA_ARGS__)) \ 1068 dump_stack(); \ 1069 } while (0) 1070 1071 #define btree_bug_on(cond, b, ...) \ 1072 do { \ 1073 if (cond) \ 1074 btree_bug(b, __VA_ARGS__); \ 1075 } while (0) 1076 1077 #define cache_bug_on(cond, c, ...) \ 1078 do { \ 1079 if (cond) \ 1080 cache_bug(c, __VA_ARGS__); \ 1081 } while (0) 1082 1083 #define cache_set_err_on(cond, c, ...) \ 1084 do { \ 1085 if (cond) \ 1086 bch_cache_set_error(c, __VA_ARGS__); \ 1087 } while (0) 1088 1089 /* Looping macros */ 1090 1091 #define for_each_cache(ca, cs, iter) \ 1092 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++) 1093 1094 #define for_each_bucket(b, ca) \ 1095 for (b = (ca)->buckets + (ca)->sb.first_bucket; \ 1096 b < (ca)->buckets + (ca)->sb.nbuckets; b++) 1097 1098 static inline void __bkey_put(struct cache_set *c, struct bkey *k) 1099 { 1100 unsigned i; 1101 1102 for (i = 0; i < KEY_PTRS(k); i++) 1103 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 1104 } 1105 1106 static inline void cached_dev_put(struct cached_dev *dc) 1107 { 1108 if (atomic_dec_and_test(&dc->count)) 1109 schedule_work(&dc->detach); 1110 } 1111 1112 static inline bool cached_dev_get(struct cached_dev *dc) 1113 { 1114 if (!atomic_inc_not_zero(&dc->count)) 1115 return false; 1116 1117 /* Paired with the mb in cached_dev_attach */ 1118 smp_mb__after_atomic_inc(); 1119 return true; 1120 } 1121 1122 /* 1123 * bucket_gc_gen() returns the difference between the bucket's current gen and 1124 * the oldest gen of any pointer into that bucket in the btree (last_gc). 1125 * 1126 * bucket_disk_gen() returns the difference between the current gen and the gen 1127 * on disk; they're both used to make sure gens don't wrap around. 1128 */ 1129 1130 static inline uint8_t bucket_gc_gen(struct bucket *b) 1131 { 1132 return b->gen - b->last_gc; 1133 } 1134 1135 static inline uint8_t bucket_disk_gen(struct bucket *b) 1136 { 1137 return b->gen - b->disk_gen; 1138 } 1139 1140 #define BUCKET_GC_GEN_MAX 96U 1141 #define BUCKET_DISK_GEN_MAX 64U 1142 1143 #define kobj_attribute_write(n, fn) \ 1144 static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn) 1145 1146 #define kobj_attribute_rw(n, show, store) \ 1147 static struct kobj_attribute ksysfs_##n = \ 1148 __ATTR(n, S_IWUSR|S_IRUSR, show, store) 1149 1150 static inline void wake_up_allocators(struct cache_set *c) 1151 { 1152 struct cache *ca; 1153 unsigned i; 1154 1155 for_each_cache(ca, c, i) 1156 wake_up_process(ca->alloc_thread); 1157 } 1158 1159 /* Forward declarations */ 1160 1161 void bch_count_io_errors(struct cache *, int, const char *); 1162 void bch_bbio_count_io_errors(struct cache_set *, struct bio *, 1163 int, const char *); 1164 void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *); 1165 void bch_bbio_free(struct bio *, struct cache_set *); 1166 struct bio *bch_bbio_alloc(struct cache_set *); 1167 1168 struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *); 1169 void bch_generic_make_request(struct bio *, struct bio_split_pool *); 1170 void __bch_submit_bbio(struct bio *, struct cache_set *); 1171 void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned); 1172 1173 uint8_t bch_inc_gen(struct cache *, struct bucket *); 1174 void bch_rescale_priorities(struct cache_set *, int); 1175 bool bch_bucket_add_unused(struct cache *, struct bucket *); 1176 1177 long bch_bucket_alloc(struct cache *, unsigned, struct closure *); 1178 void bch_bucket_free(struct cache_set *, struct bkey *); 1179 1180 int __bch_bucket_alloc_set(struct cache_set *, unsigned, 1181 struct bkey *, int, struct closure *); 1182 int bch_bucket_alloc_set(struct cache_set *, unsigned, 1183 struct bkey *, int, struct closure *); 1184 1185 __printf(2, 3) 1186 bool bch_cache_set_error(struct cache_set *, const char *, ...); 1187 1188 void bch_prio_write(struct cache *); 1189 void bch_write_bdev_super(struct cached_dev *, struct closure *); 1190 1191 extern struct workqueue_struct *bcache_wq, *bch_gc_wq; 1192 extern const char * const bch_cache_modes[]; 1193 extern struct mutex bch_register_lock; 1194 extern struct list_head bch_cache_sets; 1195 1196 extern struct kobj_type bch_cached_dev_ktype; 1197 extern struct kobj_type bch_flash_dev_ktype; 1198 extern struct kobj_type bch_cache_set_ktype; 1199 extern struct kobj_type bch_cache_set_internal_ktype; 1200 extern struct kobj_type bch_cache_ktype; 1201 1202 void bch_cached_dev_release(struct kobject *); 1203 void bch_flash_dev_release(struct kobject *); 1204 void bch_cache_set_release(struct kobject *); 1205 void bch_cache_release(struct kobject *); 1206 1207 int bch_uuid_write(struct cache_set *); 1208 void bcache_write_super(struct cache_set *); 1209 1210 int bch_flash_dev_create(struct cache_set *c, uint64_t size); 1211 1212 int bch_cached_dev_attach(struct cached_dev *, struct cache_set *); 1213 void bch_cached_dev_detach(struct cached_dev *); 1214 void bch_cached_dev_run(struct cached_dev *); 1215 void bcache_device_stop(struct bcache_device *); 1216 1217 void bch_cache_set_unregister(struct cache_set *); 1218 void bch_cache_set_stop(struct cache_set *); 1219 1220 struct cache_set *bch_cache_set_alloc(struct cache_sb *); 1221 void bch_btree_cache_free(struct cache_set *); 1222 int bch_btree_cache_alloc(struct cache_set *); 1223 void bch_moving_init_cache_set(struct cache_set *); 1224 1225 int bch_cache_allocator_start(struct cache *ca); 1226 void bch_cache_allocator_exit(struct cache *ca); 1227 int bch_cache_allocator_init(struct cache *ca); 1228 1229 void bch_debug_exit(void); 1230 int bch_debug_init(struct kobject *); 1231 void bch_writeback_exit(void); 1232 int bch_writeback_init(void); 1233 void bch_request_exit(void); 1234 int bch_request_init(void); 1235 void bch_btree_exit(void); 1236 int bch_btree_init(void); 1237 1238 #endif /* _BCACHE_H */ 1239