xref: /linux/drivers/md/bcache/bcache.h (revision 0e496b8e84410c96d1ffc86f0b37b0328a4234da)
1 #ifndef _BCACHE_H
2 #define _BCACHE_H
3 
4 /*
5  * SOME HIGH LEVEL CODE DOCUMENTATION:
6  *
7  * Bcache mostly works with cache sets, cache devices, and backing devices.
8  *
9  * Support for multiple cache devices hasn't quite been finished off yet, but
10  * it's about 95% plumbed through. A cache set and its cache devices is sort of
11  * like a md raid array and its component devices. Most of the code doesn't care
12  * about individual cache devices, the main abstraction is the cache set.
13  *
14  * Multiple cache devices is intended to give us the ability to mirror dirty
15  * cached data and metadata, without mirroring clean cached data.
16  *
17  * Backing devices are different, in that they have a lifetime independent of a
18  * cache set. When you register a newly formatted backing device it'll come up
19  * in passthrough mode, and then you can attach and detach a backing device from
20  * a cache set at runtime - while it's mounted and in use. Detaching implicitly
21  * invalidates any cached data for that backing device.
22  *
23  * A cache set can have multiple (many) backing devices attached to it.
24  *
25  * There's also flash only volumes - this is the reason for the distinction
26  * between struct cached_dev and struct bcache_device. A flash only volume
27  * works much like a bcache device that has a backing device, except the
28  * "cached" data is always dirty. The end result is that we get thin
29  * provisioning with very little additional code.
30  *
31  * Flash only volumes work but they're not production ready because the moving
32  * garbage collector needs more work. More on that later.
33  *
34  * BUCKETS/ALLOCATION:
35  *
36  * Bcache is primarily designed for caching, which means that in normal
37  * operation all of our available space will be allocated. Thus, we need an
38  * efficient way of deleting things from the cache so we can write new things to
39  * it.
40  *
41  * To do this, we first divide the cache device up into buckets. A bucket is the
42  * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
43  * works efficiently.
44  *
45  * Each bucket has a 16 bit priority, and an 8 bit generation associated with
46  * it. The gens and priorities for all the buckets are stored contiguously and
47  * packed on disk (in a linked list of buckets - aside from the superblock, all
48  * of bcache's metadata is stored in buckets).
49  *
50  * The priority is used to implement an LRU. We reset a bucket's priority when
51  * we allocate it or on cache it, and every so often we decrement the priority
52  * of each bucket. It could be used to implement something more sophisticated,
53  * if anyone ever gets around to it.
54  *
55  * The generation is used for invalidating buckets. Each pointer also has an 8
56  * bit generation embedded in it; for a pointer to be considered valid, its gen
57  * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
58  * we have to do is increment its gen (and write its new gen to disk; we batch
59  * this up).
60  *
61  * Bcache is entirely COW - we never write twice to a bucket, even buckets that
62  * contain metadata (including btree nodes).
63  *
64  * THE BTREE:
65  *
66  * Bcache is in large part design around the btree.
67  *
68  * At a high level, the btree is just an index of key -> ptr tuples.
69  *
70  * Keys represent extents, and thus have a size field. Keys also have a variable
71  * number of pointers attached to them (potentially zero, which is handy for
72  * invalidating the cache).
73  *
74  * The key itself is an inode:offset pair. The inode number corresponds to a
75  * backing device or a flash only volume. The offset is the ending offset of the
76  * extent within the inode - not the starting offset; this makes lookups
77  * slightly more convenient.
78  *
79  * Pointers contain the cache device id, the offset on that device, and an 8 bit
80  * generation number. More on the gen later.
81  *
82  * Index lookups are not fully abstracted - cache lookups in particular are
83  * still somewhat mixed in with the btree code, but things are headed in that
84  * direction.
85  *
86  * Updates are fairly well abstracted, though. There are two different ways of
87  * updating the btree; insert and replace.
88  *
89  * BTREE_INSERT will just take a list of keys and insert them into the btree -
90  * overwriting (possibly only partially) any extents they overlap with. This is
91  * used to update the index after a write.
92  *
93  * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
94  * overwriting a key that matches another given key. This is used for inserting
95  * data into the cache after a cache miss, and for background writeback, and for
96  * the moving garbage collector.
97  *
98  * There is no "delete" operation; deleting things from the index is
99  * accomplished by either by invalidating pointers (by incrementing a bucket's
100  * gen) or by inserting a key with 0 pointers - which will overwrite anything
101  * previously present at that location in the index.
102  *
103  * This means that there are always stale/invalid keys in the btree. They're
104  * filtered out by the code that iterates through a btree node, and removed when
105  * a btree node is rewritten.
106  *
107  * BTREE NODES:
108  *
109  * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
110  * free smaller than a bucket - so, that's how big our btree nodes are.
111  *
112  * (If buckets are really big we'll only use part of the bucket for a btree node
113  * - no less than 1/4th - but a bucket still contains no more than a single
114  * btree node. I'd actually like to change this, but for now we rely on the
115  * bucket's gen for deleting btree nodes when we rewrite/split a node.)
116  *
117  * Anyways, btree nodes are big - big enough to be inefficient with a textbook
118  * btree implementation.
119  *
120  * The way this is solved is that btree nodes are internally log structured; we
121  * can append new keys to an existing btree node without rewriting it. This
122  * means each set of keys we write is sorted, but the node is not.
123  *
124  * We maintain this log structure in memory - keeping 1Mb of keys sorted would
125  * be expensive, and we have to distinguish between the keys we have written and
126  * the keys we haven't. So to do a lookup in a btree node, we have to search
127  * each sorted set. But we do merge written sets together lazily, so the cost of
128  * these extra searches is quite low (normally most of the keys in a btree node
129  * will be in one big set, and then there'll be one or two sets that are much
130  * smaller).
131  *
132  * This log structure makes bcache's btree more of a hybrid between a
133  * conventional btree and a compacting data structure, with some of the
134  * advantages of both.
135  *
136  * GARBAGE COLLECTION:
137  *
138  * We can't just invalidate any bucket - it might contain dirty data or
139  * metadata. If it once contained dirty data, other writes might overwrite it
140  * later, leaving no valid pointers into that bucket in the index.
141  *
142  * Thus, the primary purpose of garbage collection is to find buckets to reuse.
143  * It also counts how much valid data it each bucket currently contains, so that
144  * allocation can reuse buckets sooner when they've been mostly overwritten.
145  *
146  * It also does some things that are really internal to the btree
147  * implementation. If a btree node contains pointers that are stale by more than
148  * some threshold, it rewrites the btree node to avoid the bucket's generation
149  * wrapping around. It also merges adjacent btree nodes if they're empty enough.
150  *
151  * THE JOURNAL:
152  *
153  * Bcache's journal is not necessary for consistency; we always strictly
154  * order metadata writes so that the btree and everything else is consistent on
155  * disk in the event of an unclean shutdown, and in fact bcache had writeback
156  * caching (with recovery from unclean shutdown) before journalling was
157  * implemented.
158  *
159  * Rather, the journal is purely a performance optimization; we can't complete a
160  * write until we've updated the index on disk, otherwise the cache would be
161  * inconsistent in the event of an unclean shutdown. This means that without the
162  * journal, on random write workloads we constantly have to update all the leaf
163  * nodes in the btree, and those writes will be mostly empty (appending at most
164  * a few keys each) - highly inefficient in terms of amount of metadata writes,
165  * and it puts more strain on the various btree resorting/compacting code.
166  *
167  * The journal is just a log of keys we've inserted; on startup we just reinsert
168  * all the keys in the open journal entries. That means that when we're updating
169  * a node in the btree, we can wait until a 4k block of keys fills up before
170  * writing them out.
171  *
172  * For simplicity, we only journal updates to leaf nodes; updates to parent
173  * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
174  * the complexity to deal with journalling them (in particular, journal replay)
175  * - updates to non leaf nodes just happen synchronously (see btree_split()).
176  */
177 
178 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
179 
180 #include <linux/bio.h>
181 #include <linux/blktrace_api.h>
182 #include <linux/kobject.h>
183 #include <linux/list.h>
184 #include <linux/mutex.h>
185 #include <linux/rbtree.h>
186 #include <linux/rwsem.h>
187 #include <linux/types.h>
188 #include <linux/workqueue.h>
189 
190 #include "util.h"
191 #include "closure.h"
192 
193 struct bucket {
194 	atomic_t	pin;
195 	uint16_t	prio;
196 	uint8_t		gen;
197 	uint8_t		disk_gen;
198 	uint8_t		last_gc; /* Most out of date gen in the btree */
199 	uint8_t		gc_gen;
200 	uint16_t	gc_mark;
201 };
202 
203 /*
204  * I'd use bitfields for these, but I don't trust the compiler not to screw me
205  * as multiple threads touch struct bucket without locking
206  */
207 
208 BITMASK(GC_MARK,	 struct bucket, gc_mark, 0, 2);
209 #define GC_MARK_RECLAIMABLE	0
210 #define GC_MARK_DIRTY		1
211 #define GC_MARK_METADATA	2
212 BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14);
213 
214 struct bkey {
215 	uint64_t	high;
216 	uint64_t	low;
217 	uint64_t	ptr[];
218 };
219 
220 /* Enough for a key with 6 pointers */
221 #define BKEY_PAD		8
222 
223 #define BKEY_PADDED(key)					\
224 	union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; }
225 
226 /* Version 0: Cache device
227  * Version 1: Backing device
228  * Version 2: Seed pointer into btree node checksum
229  * Version 3: Cache device with new UUID format
230  * Version 4: Backing device with data offset
231  */
232 #define BCACHE_SB_VERSION_CDEV			0
233 #define BCACHE_SB_VERSION_BDEV			1
234 #define BCACHE_SB_VERSION_CDEV_WITH_UUID	3
235 #define BCACHE_SB_VERSION_BDEV_WITH_OFFSET	4
236 #define BCACHE_SB_MAX_VERSION			4
237 
238 #define SB_SECTOR		8
239 #define SB_SIZE			4096
240 #define SB_LABEL_SIZE		32
241 #define SB_JOURNAL_BUCKETS	256U
242 /* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */
243 #define MAX_CACHES_PER_SET	8
244 
245 #define BDEV_DATA_START_DEFAULT	16	/* sectors */
246 
247 struct cache_sb {
248 	uint64_t		csum;
249 	uint64_t		offset;	/* sector where this sb was written */
250 	uint64_t		version;
251 
252 	uint8_t			magic[16];
253 
254 	uint8_t			uuid[16];
255 	union {
256 		uint8_t		set_uuid[16];
257 		uint64_t	set_magic;
258 	};
259 	uint8_t			label[SB_LABEL_SIZE];
260 
261 	uint64_t		flags;
262 	uint64_t		seq;
263 	uint64_t		pad[8];
264 
265 	union {
266 	struct {
267 		/* Cache devices */
268 		uint64_t	nbuckets;	/* device size */
269 
270 		uint16_t	block_size;	/* sectors */
271 		uint16_t	bucket_size;	/* sectors */
272 
273 		uint16_t	nr_in_set;
274 		uint16_t	nr_this_dev;
275 	};
276 	struct {
277 		/* Backing devices */
278 		uint64_t	data_offset;
279 
280 		/*
281 		 * block_size from the cache device section is still used by
282 		 * backing devices, so don't add anything here until we fix
283 		 * things to not need it for backing devices anymore
284 		 */
285 	};
286 	};
287 
288 	uint32_t		last_mount;	/* time_t */
289 
290 	uint16_t		first_bucket;
291 	union {
292 		uint16_t	njournal_buckets;
293 		uint16_t	keys;
294 	};
295 	uint64_t		d[SB_JOURNAL_BUCKETS];	/* journal buckets */
296 };
297 
298 BITMASK(CACHE_SYNC,		struct cache_sb, flags, 0, 1);
299 BITMASK(CACHE_DISCARD,		struct cache_sb, flags, 1, 1);
300 BITMASK(CACHE_REPLACEMENT,	struct cache_sb, flags, 2, 3);
301 #define CACHE_REPLACEMENT_LRU	0U
302 #define CACHE_REPLACEMENT_FIFO	1U
303 #define CACHE_REPLACEMENT_RANDOM 2U
304 
305 BITMASK(BDEV_CACHE_MODE,	struct cache_sb, flags, 0, 4);
306 #define CACHE_MODE_WRITETHROUGH	0U
307 #define CACHE_MODE_WRITEBACK	1U
308 #define CACHE_MODE_WRITEAROUND	2U
309 #define CACHE_MODE_NONE		3U
310 BITMASK(BDEV_STATE,		struct cache_sb, flags, 61, 2);
311 #define BDEV_STATE_NONE		0U
312 #define BDEV_STATE_CLEAN	1U
313 #define BDEV_STATE_DIRTY	2U
314 #define BDEV_STATE_STALE	3U
315 
316 /* Version 1: Seed pointer into btree node checksum
317  */
318 #define BCACHE_BSET_VERSION	1
319 
320 /*
321  * This is the on disk format for btree nodes - a btree node on disk is a list
322  * of these; within each set the keys are sorted
323  */
324 struct bset {
325 	uint64_t		csum;
326 	uint64_t		magic;
327 	uint64_t		seq;
328 	uint32_t		version;
329 	uint32_t		keys;
330 
331 	union {
332 		struct bkey	start[0];
333 		uint64_t	d[0];
334 	};
335 };
336 
337 /*
338  * On disk format for priorities and gens - see super.c near prio_write() for
339  * more.
340  */
341 struct prio_set {
342 	uint64_t		csum;
343 	uint64_t		magic;
344 	uint64_t		seq;
345 	uint32_t		version;
346 	uint32_t		pad;
347 
348 	uint64_t		next_bucket;
349 
350 	struct bucket_disk {
351 		uint16_t	prio;
352 		uint8_t		gen;
353 	} __attribute((packed)) data[];
354 };
355 
356 struct uuid_entry {
357 	union {
358 		struct {
359 			uint8_t		uuid[16];
360 			uint8_t		label[32];
361 			uint32_t	first_reg;
362 			uint32_t	last_reg;
363 			uint32_t	invalidated;
364 
365 			uint32_t	flags;
366 			/* Size of flash only volumes */
367 			uint64_t	sectors;
368 		};
369 
370 		uint8_t	pad[128];
371 	};
372 };
373 
374 BITMASK(UUID_FLASH_ONLY,	struct uuid_entry, flags, 0, 1);
375 
376 #include "journal.h"
377 #include "stats.h"
378 struct search;
379 struct btree;
380 struct keybuf;
381 
382 struct keybuf_key {
383 	struct rb_node		node;
384 	BKEY_PADDED(key);
385 	void			*private;
386 };
387 
388 typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *);
389 
390 struct keybuf {
391 	keybuf_pred_fn		*key_predicate;
392 
393 	struct bkey		last_scanned;
394 	spinlock_t		lock;
395 
396 	/*
397 	 * Beginning and end of range in rb tree - so that we can skip taking
398 	 * lock and checking the rb tree when we need to check for overlapping
399 	 * keys.
400 	 */
401 	struct bkey		start;
402 	struct bkey		end;
403 
404 	struct rb_root		keys;
405 
406 #define KEYBUF_NR		100
407 	DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
408 };
409 
410 struct bio_split_pool {
411 	struct bio_set		*bio_split;
412 	mempool_t		*bio_split_hook;
413 };
414 
415 struct bio_split_hook {
416 	struct closure		cl;
417 	struct bio_split_pool	*p;
418 	struct bio		*bio;
419 	bio_end_io_t		*bi_end_io;
420 	void			*bi_private;
421 };
422 
423 struct bcache_device {
424 	struct closure		cl;
425 
426 	struct kobject		kobj;
427 
428 	struct cache_set	*c;
429 	unsigned		id;
430 #define BCACHEDEVNAME_SIZE	12
431 	char			name[BCACHEDEVNAME_SIZE];
432 
433 	struct gendisk		*disk;
434 
435 	/* If nonzero, we're closing */
436 	atomic_t		closing;
437 
438 	/* If nonzero, we're detaching/unregistering from cache set */
439 	atomic_t		detaching;
440 
441 	atomic_long_t		sectors_dirty;
442 	unsigned long		sectors_dirty_gc;
443 	unsigned long		sectors_dirty_last;
444 	long			sectors_dirty_derivative;
445 
446 	mempool_t		*unaligned_bvec;
447 	struct bio_set		*bio_split;
448 
449 	unsigned		data_csum:1;
450 
451 	int (*cache_miss)(struct btree *, struct search *,
452 			  struct bio *, unsigned);
453 	int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
454 
455 	struct bio_split_pool	bio_split_hook;
456 };
457 
458 struct io {
459 	/* Used to track sequential IO so it can be skipped */
460 	struct hlist_node	hash;
461 	struct list_head	lru;
462 
463 	unsigned long		jiffies;
464 	unsigned		sequential;
465 	sector_t		last;
466 };
467 
468 struct cached_dev {
469 	struct list_head	list;
470 	struct bcache_device	disk;
471 	struct block_device	*bdev;
472 
473 	struct cache_sb		sb;
474 	struct bio		sb_bio;
475 	struct bio_vec		sb_bv[1];
476 	struct closure_with_waitlist sb_write;
477 
478 	/* Refcount on the cache set. Always nonzero when we're caching. */
479 	atomic_t		count;
480 	struct work_struct	detach;
481 
482 	/*
483 	 * Device might not be running if it's dirty and the cache set hasn't
484 	 * showed up yet.
485 	 */
486 	atomic_t		running;
487 
488 	/*
489 	 * Writes take a shared lock from start to finish; scanning for dirty
490 	 * data to refill the rb tree requires an exclusive lock.
491 	 */
492 	struct rw_semaphore	writeback_lock;
493 
494 	/*
495 	 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
496 	 * data in the cache. Protected by writeback_lock; must have an
497 	 * shared lock to set and exclusive lock to clear.
498 	 */
499 	atomic_t		has_dirty;
500 
501 	struct ratelimit	writeback_rate;
502 	struct delayed_work	writeback_rate_update;
503 
504 	/*
505 	 * Internal to the writeback code, so read_dirty() can keep track of
506 	 * where it's at.
507 	 */
508 	sector_t		last_read;
509 
510 	/* Number of writeback bios in flight */
511 	atomic_t		in_flight;
512 	struct closure_with_timer writeback;
513 	struct closure_waitlist	writeback_wait;
514 
515 	struct keybuf		writeback_keys;
516 
517 	/* For tracking sequential IO */
518 #define RECENT_IO_BITS	7
519 #define RECENT_IO	(1 << RECENT_IO_BITS)
520 	struct io		io[RECENT_IO];
521 	struct hlist_head	io_hash[RECENT_IO + 1];
522 	struct list_head	io_lru;
523 	spinlock_t		io_lock;
524 
525 	struct cache_accounting	accounting;
526 
527 	/* The rest of this all shows up in sysfs */
528 	unsigned		sequential_cutoff;
529 	unsigned		readahead;
530 
531 	unsigned		sequential_merge:1;
532 	unsigned		verify:1;
533 
534 	unsigned		writeback_metadata:1;
535 	unsigned		writeback_running:1;
536 	unsigned char		writeback_percent;
537 	unsigned		writeback_delay;
538 
539 	int			writeback_rate_change;
540 	int64_t			writeback_rate_derivative;
541 	uint64_t		writeback_rate_target;
542 
543 	unsigned		writeback_rate_update_seconds;
544 	unsigned		writeback_rate_d_term;
545 	unsigned		writeback_rate_p_term_inverse;
546 	unsigned		writeback_rate_d_smooth;
547 };
548 
549 enum alloc_watermarks {
550 	WATERMARK_PRIO,
551 	WATERMARK_METADATA,
552 	WATERMARK_MOVINGGC,
553 	WATERMARK_NONE,
554 	WATERMARK_MAX
555 };
556 
557 struct cache {
558 	struct cache_set	*set;
559 	struct cache_sb		sb;
560 	struct bio		sb_bio;
561 	struct bio_vec		sb_bv[1];
562 
563 	struct kobject		kobj;
564 	struct block_device	*bdev;
565 
566 	unsigned		watermark[WATERMARK_MAX];
567 
568 	struct closure		alloc;
569 	struct workqueue_struct	*alloc_workqueue;
570 
571 	struct closure		prio;
572 	struct prio_set		*disk_buckets;
573 
574 	/*
575 	 * When allocating new buckets, prio_write() gets first dibs - since we
576 	 * may not be allocate at all without writing priorities and gens.
577 	 * prio_buckets[] contains the last buckets we wrote priorities to (so
578 	 * gc can mark them as metadata), prio_next[] contains the buckets
579 	 * allocated for the next prio write.
580 	 */
581 	uint64_t		*prio_buckets;
582 	uint64_t		*prio_last_buckets;
583 
584 	/*
585 	 * free: Buckets that are ready to be used
586 	 *
587 	 * free_inc: Incoming buckets - these are buckets that currently have
588 	 * cached data in them, and we can't reuse them until after we write
589 	 * their new gen to disk. After prio_write() finishes writing the new
590 	 * gens/prios, they'll be moved to the free list (and possibly discarded
591 	 * in the process)
592 	 *
593 	 * unused: GC found nothing pointing into these buckets (possibly
594 	 * because all the data they contained was overwritten), so we only
595 	 * need to discard them before they can be moved to the free list.
596 	 */
597 	DECLARE_FIFO(long, free);
598 	DECLARE_FIFO(long, free_inc);
599 	DECLARE_FIFO(long, unused);
600 
601 	size_t			fifo_last_bucket;
602 
603 	/* Allocation stuff: */
604 	struct bucket		*buckets;
605 
606 	DECLARE_HEAP(struct bucket *, heap);
607 
608 	/*
609 	 * max(gen - disk_gen) for all buckets. When it gets too big we have to
610 	 * call prio_write() to keep gens from wrapping.
611 	 */
612 	uint8_t			need_save_prio;
613 	unsigned		gc_move_threshold;
614 
615 	/*
616 	 * If nonzero, we know we aren't going to find any buckets to invalidate
617 	 * until a gc finishes - otherwise we could pointlessly burn a ton of
618 	 * cpu
619 	 */
620 	unsigned		invalidate_needs_gc:1;
621 
622 	bool			discard; /* Get rid of? */
623 
624 	/*
625 	 * We preallocate structs for issuing discards to buckets, and keep them
626 	 * on this list when they're not in use; do_discard() issues discards
627 	 * whenever there's work to do and is called by free_some_buckets() and
628 	 * when a discard finishes.
629 	 */
630 	atomic_t		discards_in_flight;
631 	struct list_head	discards;
632 
633 	struct journal_device	journal;
634 
635 	/* The rest of this all shows up in sysfs */
636 #define IO_ERROR_SHIFT		20
637 	atomic_t		io_errors;
638 	atomic_t		io_count;
639 
640 	atomic_long_t		meta_sectors_written;
641 	atomic_long_t		btree_sectors_written;
642 	atomic_long_t		sectors_written;
643 
644 	struct bio_split_pool	bio_split_hook;
645 };
646 
647 struct gc_stat {
648 	size_t			nodes;
649 	size_t			key_bytes;
650 
651 	size_t			nkeys;
652 	uint64_t		data;	/* sectors */
653 	uint64_t		dirty;	/* sectors */
654 	unsigned		in_use; /* percent */
655 };
656 
657 /*
658  * Flag bits, for how the cache set is shutting down, and what phase it's at:
659  *
660  * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
661  * all the backing devices first (their cached data gets invalidated, and they
662  * won't automatically reattach).
663  *
664  * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
665  * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
666  * flushing dirty data).
667  *
668  * CACHE_SET_STOPPING_2 gets set at the last phase, when it's time to shut down
669  * the allocation thread.
670  */
671 #define CACHE_SET_UNREGISTERING		0
672 #define	CACHE_SET_STOPPING		1
673 #define	CACHE_SET_STOPPING_2		2
674 
675 struct cache_set {
676 	struct closure		cl;
677 
678 	struct list_head	list;
679 	struct kobject		kobj;
680 	struct kobject		internal;
681 	struct dentry		*debug;
682 	struct cache_accounting accounting;
683 
684 	unsigned long		flags;
685 
686 	struct cache_sb		sb;
687 
688 	struct cache		*cache[MAX_CACHES_PER_SET];
689 	struct cache		*cache_by_alloc[MAX_CACHES_PER_SET];
690 	int			caches_loaded;
691 
692 	struct bcache_device	**devices;
693 	struct list_head	cached_devs;
694 	uint64_t		cached_dev_sectors;
695 	struct closure		caching;
696 
697 	struct closure_with_waitlist sb_write;
698 
699 	mempool_t		*search;
700 	mempool_t		*bio_meta;
701 	struct bio_set		*bio_split;
702 
703 	/* For the btree cache */
704 	struct shrinker		shrink;
705 
706 	/* For the allocator itself */
707 	wait_queue_head_t	alloc_wait;
708 
709 	/* For the btree cache and anything allocation related */
710 	struct mutex		bucket_lock;
711 
712 	/* log2(bucket_size), in sectors */
713 	unsigned short		bucket_bits;
714 
715 	/* log2(block_size), in sectors */
716 	unsigned short		block_bits;
717 
718 	/*
719 	 * Default number of pages for a new btree node - may be less than a
720 	 * full bucket
721 	 */
722 	unsigned		btree_pages;
723 
724 	/*
725 	 * Lists of struct btrees; lru is the list for structs that have memory
726 	 * allocated for actual btree node, freed is for structs that do not.
727 	 *
728 	 * We never free a struct btree, except on shutdown - we just put it on
729 	 * the btree_cache_freed list and reuse it later. This simplifies the
730 	 * code, and it doesn't cost us much memory as the memory usage is
731 	 * dominated by buffers that hold the actual btree node data and those
732 	 * can be freed - and the number of struct btrees allocated is
733 	 * effectively bounded.
734 	 *
735 	 * btree_cache_freeable effectively is a small cache - we use it because
736 	 * high order page allocations can be rather expensive, and it's quite
737 	 * common to delete and allocate btree nodes in quick succession. It
738 	 * should never grow past ~2-3 nodes in practice.
739 	 */
740 	struct list_head	btree_cache;
741 	struct list_head	btree_cache_freeable;
742 	struct list_head	btree_cache_freed;
743 
744 	/* Number of elements in btree_cache + btree_cache_freeable lists */
745 	unsigned		bucket_cache_used;
746 
747 	/*
748 	 * If we need to allocate memory for a new btree node and that
749 	 * allocation fails, we can cannibalize another node in the btree cache
750 	 * to satisfy the allocation. However, only one thread can be doing this
751 	 * at a time, for obvious reasons - try_harder and try_wait are
752 	 * basically a lock for this that we can wait on asynchronously. The
753 	 * btree_root() macro releases the lock when it returns.
754 	 */
755 	struct closure		*try_harder;
756 	struct closure_waitlist	try_wait;
757 	uint64_t		try_harder_start;
758 
759 	/*
760 	 * When we free a btree node, we increment the gen of the bucket the
761 	 * node is in - but we can't rewrite the prios and gens until we
762 	 * finished whatever it is we were doing, otherwise after a crash the
763 	 * btree node would be freed but for say a split, we might not have the
764 	 * pointers to the new nodes inserted into the btree yet.
765 	 *
766 	 * This is a refcount that blocks prio_write() until the new keys are
767 	 * written.
768 	 */
769 	atomic_t		prio_blocked;
770 	struct closure_waitlist	bucket_wait;
771 
772 	/*
773 	 * For any bio we don't skip we subtract the number of sectors from
774 	 * rescale; when it hits 0 we rescale all the bucket priorities.
775 	 */
776 	atomic_t		rescale;
777 	/*
778 	 * When we invalidate buckets, we use both the priority and the amount
779 	 * of good data to determine which buckets to reuse first - to weight
780 	 * those together consistently we keep track of the smallest nonzero
781 	 * priority of any bucket.
782 	 */
783 	uint16_t		min_prio;
784 
785 	/*
786 	 * max(gen - gc_gen) for all buckets. When it gets too big we have to gc
787 	 * to keep gens from wrapping around.
788 	 */
789 	uint8_t			need_gc;
790 	struct gc_stat		gc_stats;
791 	size_t			nbuckets;
792 
793 	struct closure_with_waitlist gc;
794 	/* Where in the btree gc currently is */
795 	struct bkey		gc_done;
796 
797 	/*
798 	 * The allocation code needs gc_mark in struct bucket to be correct, but
799 	 * it's not while a gc is in progress. Protected by bucket_lock.
800 	 */
801 	int			gc_mark_valid;
802 
803 	/* Counts how many sectors bio_insert has added to the cache */
804 	atomic_t		sectors_to_gc;
805 
806 	struct closure		moving_gc;
807 	struct closure_waitlist	moving_gc_wait;
808 	struct keybuf		moving_gc_keys;
809 	/* Number of moving GC bios in flight */
810 	atomic_t		in_flight;
811 
812 	struct btree		*root;
813 
814 #ifdef CONFIG_BCACHE_DEBUG
815 	struct btree		*verify_data;
816 	struct mutex		verify_lock;
817 #endif
818 
819 	unsigned		nr_uuids;
820 	struct uuid_entry	*uuids;
821 	BKEY_PADDED(uuid_bucket);
822 	struct closure_with_waitlist uuid_write;
823 
824 	/*
825 	 * A btree node on disk could have too many bsets for an iterator to fit
826 	 * on the stack - this is a single element mempool for btree_read_work()
827 	 */
828 	struct mutex		fill_lock;
829 	struct btree_iter	*fill_iter;
830 
831 	/*
832 	 * btree_sort() is a merge sort and requires temporary space - single
833 	 * element mempool
834 	 */
835 	struct mutex		sort_lock;
836 	struct bset		*sort;
837 
838 	/* List of buckets we're currently writing data to */
839 	struct list_head	data_buckets;
840 	spinlock_t		data_bucket_lock;
841 
842 	struct journal		journal;
843 
844 #define CONGESTED_MAX		1024
845 	unsigned		congested_last_us;
846 	atomic_t		congested;
847 
848 	/* The rest of this all shows up in sysfs */
849 	unsigned		congested_read_threshold_us;
850 	unsigned		congested_write_threshold_us;
851 
852 	spinlock_t		sort_time_lock;
853 	struct time_stats	sort_time;
854 	struct time_stats	btree_gc_time;
855 	struct time_stats	btree_split_time;
856 	spinlock_t		btree_read_time_lock;
857 	struct time_stats	btree_read_time;
858 	struct time_stats	try_harder_time;
859 
860 	atomic_long_t		cache_read_races;
861 	atomic_long_t		writeback_keys_done;
862 	atomic_long_t		writeback_keys_failed;
863 	unsigned		error_limit;
864 	unsigned		error_decay;
865 	unsigned short		journal_delay_ms;
866 	unsigned		verify:1;
867 	unsigned		key_merging_disabled:1;
868 	unsigned		gc_always_rewrite:1;
869 	unsigned		shrinker_disabled:1;
870 	unsigned		copy_gc_enabled:1;
871 
872 #define BUCKET_HASH_BITS	12
873 	struct hlist_head	bucket_hash[1 << BUCKET_HASH_BITS];
874 };
875 
876 static inline bool key_merging_disabled(struct cache_set *c)
877 {
878 #ifdef CONFIG_BCACHE_DEBUG
879 	return c->key_merging_disabled;
880 #else
881 	return 0;
882 #endif
883 }
884 
885 static inline bool SB_IS_BDEV(const struct cache_sb *sb)
886 {
887 	return sb->version == BCACHE_SB_VERSION_BDEV
888 		|| sb->version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET;
889 }
890 
891 struct bbio {
892 	unsigned		submit_time_us;
893 	union {
894 		struct bkey	key;
895 		uint64_t	_pad[3];
896 		/*
897 		 * We only need pad = 3 here because we only ever carry around a
898 		 * single pointer - i.e. the pointer we're doing io to/from.
899 		 */
900 	};
901 	struct bio		bio;
902 };
903 
904 static inline unsigned local_clock_us(void)
905 {
906 	return local_clock() >> 10;
907 }
908 
909 #define MAX_BSETS		4U
910 
911 #define BTREE_PRIO		USHRT_MAX
912 #define INITIAL_PRIO		32768
913 
914 #define btree_bytes(c)		((c)->btree_pages * PAGE_SIZE)
915 #define btree_blocks(b)							\
916 	((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
917 
918 #define btree_default_blocks(c)						\
919 	((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
920 
921 #define bucket_pages(c)		((c)->sb.bucket_size / PAGE_SECTORS)
922 #define bucket_bytes(c)		((c)->sb.bucket_size << 9)
923 #define block_bytes(c)		((c)->sb.block_size << 9)
924 
925 #define __set_bytes(i, k)	(sizeof(*(i)) + (k) * sizeof(uint64_t))
926 #define set_bytes(i)		__set_bytes(i, i->keys)
927 
928 #define __set_blocks(i, k, c)	DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c))
929 #define set_blocks(i, c)	__set_blocks(i, (i)->keys, c)
930 
931 #define node(i, j)		((struct bkey *) ((i)->d + (j)))
932 #define end(i)			node(i, (i)->keys)
933 
934 #define index(i, b)							\
935 	((size_t) (((void *) i - (void *) (b)->sets[0].data) /		\
936 		   block_bytes(b->c)))
937 
938 #define btree_data_space(b)	(PAGE_SIZE << (b)->page_order)
939 
940 #define prios_per_bucket(c)				\
941 	((bucket_bytes(c) - sizeof(struct prio_set)) /	\
942 	 sizeof(struct bucket_disk))
943 #define prio_buckets(c)					\
944 	DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
945 
946 #define JSET_MAGIC		0x245235c1a3625032ULL
947 #define PSET_MAGIC		0x6750e15f87337f91ULL
948 #define BSET_MAGIC		0x90135c78b99e07f5ULL
949 
950 #define jset_magic(c)		((c)->sb.set_magic ^ JSET_MAGIC)
951 #define pset_magic(c)		((c)->sb.set_magic ^ PSET_MAGIC)
952 #define bset_magic(c)		((c)->sb.set_magic ^ BSET_MAGIC)
953 
954 /* Bkey fields: all units are in sectors */
955 
956 #define KEY_FIELD(name, field, offset, size)				\
957 	BITMASK(name, struct bkey, field, offset, size)
958 
959 #define PTR_FIELD(name, offset, size)					\
960 	static inline uint64_t name(const struct bkey *k, unsigned i)	\
961 	{ return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); }	\
962 									\
963 	static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\
964 	{								\
965 		k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset);	\
966 		k->ptr[i] |= v << offset;				\
967 	}
968 
969 KEY_FIELD(KEY_PTRS,	high, 60, 3)
970 KEY_FIELD(HEADER_SIZE,	high, 58, 2)
971 KEY_FIELD(KEY_CSUM,	high, 56, 2)
972 KEY_FIELD(KEY_PINNED,	high, 55, 1)
973 KEY_FIELD(KEY_DIRTY,	high, 36, 1)
974 
975 KEY_FIELD(KEY_SIZE,	high, 20, 16)
976 KEY_FIELD(KEY_INODE,	high, 0,  20)
977 
978 /* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */
979 
980 static inline uint64_t KEY_OFFSET(const struct bkey *k)
981 {
982 	return k->low;
983 }
984 
985 static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v)
986 {
987 	k->low = v;
988 }
989 
990 PTR_FIELD(PTR_DEV,		51, 12)
991 PTR_FIELD(PTR_OFFSET,		8,  43)
992 PTR_FIELD(PTR_GEN,		0,  8)
993 
994 #define PTR_CHECK_DEV		((1 << 12) - 1)
995 
996 #define PTR(gen, offset, dev)						\
997 	((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen)
998 
999 static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
1000 {
1001 	return s >> c->bucket_bits;
1002 }
1003 
1004 static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
1005 {
1006 	return ((sector_t) b) << c->bucket_bits;
1007 }
1008 
1009 static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
1010 {
1011 	return s & (c->sb.bucket_size - 1);
1012 }
1013 
1014 static inline struct cache *PTR_CACHE(struct cache_set *c,
1015 				      const struct bkey *k,
1016 				      unsigned ptr)
1017 {
1018 	return c->cache[PTR_DEV(k, ptr)];
1019 }
1020 
1021 static inline size_t PTR_BUCKET_NR(struct cache_set *c,
1022 				   const struct bkey *k,
1023 				   unsigned ptr)
1024 {
1025 	return sector_to_bucket(c, PTR_OFFSET(k, ptr));
1026 }
1027 
1028 static inline struct bucket *PTR_BUCKET(struct cache_set *c,
1029 					const struct bkey *k,
1030 					unsigned ptr)
1031 {
1032 	return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
1033 }
1034 
1035 /* Btree key macros */
1036 
1037 /*
1038  * The high bit being set is a relic from when we used it to do binary
1039  * searches - it told you where a key started. It's not used anymore,
1040  * and can probably be safely dropped.
1041  */
1042 #define KEY(dev, sector, len)						\
1043 ((struct bkey) {							\
1044 	.high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev),	\
1045 	.low = (sector)							\
1046 })
1047 
1048 static inline void bkey_init(struct bkey *k)
1049 {
1050 	*k = KEY(0, 0, 0);
1051 }
1052 
1053 #define KEY_START(k)		(KEY_OFFSET(k) - KEY_SIZE(k))
1054 #define START_KEY(k)		KEY(KEY_INODE(k), KEY_START(k), 0)
1055 #define MAX_KEY			KEY(~(~0 << 20), ((uint64_t) ~0) >> 1, 0)
1056 #define ZERO_KEY		KEY(0, 0, 0)
1057 
1058 /*
1059  * This is used for various on disk data structures - cache_sb, prio_set, bset,
1060  * jset: The checksum is _always_ the first 8 bytes of these structs
1061  */
1062 #define csum_set(i)							\
1063 	bch_crc64(((void *) (i)) + sizeof(uint64_t),			\
1064 	      ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t)))
1065 
1066 /* Error handling macros */
1067 
1068 #define btree_bug(b, ...)						\
1069 do {									\
1070 	if (bch_cache_set_error((b)->c, __VA_ARGS__))			\
1071 		dump_stack();						\
1072 } while (0)
1073 
1074 #define cache_bug(c, ...)						\
1075 do {									\
1076 	if (bch_cache_set_error(c, __VA_ARGS__))			\
1077 		dump_stack();						\
1078 } while (0)
1079 
1080 #define btree_bug_on(cond, b, ...)					\
1081 do {									\
1082 	if (cond)							\
1083 		btree_bug(b, __VA_ARGS__);				\
1084 } while (0)
1085 
1086 #define cache_bug_on(cond, c, ...)					\
1087 do {									\
1088 	if (cond)							\
1089 		cache_bug(c, __VA_ARGS__);				\
1090 } while (0)
1091 
1092 #define cache_set_err_on(cond, c, ...)					\
1093 do {									\
1094 	if (cond)							\
1095 		bch_cache_set_error(c, __VA_ARGS__);			\
1096 } while (0)
1097 
1098 /* Looping macros */
1099 
1100 #define for_each_cache(ca, cs, iter)					\
1101 	for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
1102 
1103 #define for_each_bucket(b, ca)						\
1104 	for (b = (ca)->buckets + (ca)->sb.first_bucket;			\
1105 	     b < (ca)->buckets + (ca)->sb.nbuckets; b++)
1106 
1107 static inline void __bkey_put(struct cache_set *c, struct bkey *k)
1108 {
1109 	unsigned i;
1110 
1111 	for (i = 0; i < KEY_PTRS(k); i++)
1112 		atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
1113 }
1114 
1115 /* Blktrace macros */
1116 
1117 #define blktrace_msg(c, fmt, ...)					\
1118 do {									\
1119 	struct request_queue *q = bdev_get_queue(c->bdev);		\
1120 	if (q)								\
1121 		blk_add_trace_msg(q, fmt, ##__VA_ARGS__);		\
1122 } while (0)
1123 
1124 #define blktrace_msg_all(s, fmt, ...)					\
1125 do {									\
1126 	struct cache *_c;						\
1127 	unsigned i;							\
1128 	for_each_cache(_c, (s), i)					\
1129 		blktrace_msg(_c, fmt, ##__VA_ARGS__);			\
1130 } while (0)
1131 
1132 static inline void cached_dev_put(struct cached_dev *dc)
1133 {
1134 	if (atomic_dec_and_test(&dc->count))
1135 		schedule_work(&dc->detach);
1136 }
1137 
1138 static inline bool cached_dev_get(struct cached_dev *dc)
1139 {
1140 	if (!atomic_inc_not_zero(&dc->count))
1141 		return false;
1142 
1143 	/* Paired with the mb in cached_dev_attach */
1144 	smp_mb__after_atomic_inc();
1145 	return true;
1146 }
1147 
1148 /*
1149  * bucket_gc_gen() returns the difference between the bucket's current gen and
1150  * the oldest gen of any pointer into that bucket in the btree (last_gc).
1151  *
1152  * bucket_disk_gen() returns the difference between the current gen and the gen
1153  * on disk; they're both used to make sure gens don't wrap around.
1154  */
1155 
1156 static inline uint8_t bucket_gc_gen(struct bucket *b)
1157 {
1158 	return b->gen - b->last_gc;
1159 }
1160 
1161 static inline uint8_t bucket_disk_gen(struct bucket *b)
1162 {
1163 	return b->gen - b->disk_gen;
1164 }
1165 
1166 #define BUCKET_GC_GEN_MAX	96U
1167 #define BUCKET_DISK_GEN_MAX	64U
1168 
1169 #define kobj_attribute_write(n, fn)					\
1170 	static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
1171 
1172 #define kobj_attribute_rw(n, show, store)				\
1173 	static struct kobj_attribute ksysfs_##n =			\
1174 		__ATTR(n, S_IWUSR|S_IRUSR, show, store)
1175 
1176 /* Forward declarations */
1177 
1178 void bch_writeback_queue(struct cached_dev *);
1179 void bch_writeback_add(struct cached_dev *, unsigned);
1180 
1181 void bch_count_io_errors(struct cache *, int, const char *);
1182 void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
1183 			      int, const char *);
1184 void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
1185 void bch_bbio_free(struct bio *, struct cache_set *);
1186 struct bio *bch_bbio_alloc(struct cache_set *);
1187 
1188 struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *);
1189 void bch_generic_make_request(struct bio *, struct bio_split_pool *);
1190 void __bch_submit_bbio(struct bio *, struct cache_set *);
1191 void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
1192 
1193 uint8_t bch_inc_gen(struct cache *, struct bucket *);
1194 void bch_rescale_priorities(struct cache_set *, int);
1195 bool bch_bucket_add_unused(struct cache *, struct bucket *);
1196 void bch_allocator_thread(struct closure *);
1197 
1198 long bch_bucket_alloc(struct cache *, unsigned, struct closure *);
1199 void bch_bucket_free(struct cache_set *, struct bkey *);
1200 
1201 int __bch_bucket_alloc_set(struct cache_set *, unsigned,
1202 			   struct bkey *, int, struct closure *);
1203 int bch_bucket_alloc_set(struct cache_set *, unsigned,
1204 			 struct bkey *, int, struct closure *);
1205 
1206 __printf(2, 3)
1207 bool bch_cache_set_error(struct cache_set *, const char *, ...);
1208 
1209 void bch_prio_write(struct cache *);
1210 void bch_write_bdev_super(struct cached_dev *, struct closure *);
1211 
1212 extern struct workqueue_struct *bcache_wq, *bch_gc_wq;
1213 extern const char * const bch_cache_modes[];
1214 extern struct mutex bch_register_lock;
1215 extern struct list_head bch_cache_sets;
1216 
1217 extern struct kobj_type bch_cached_dev_ktype;
1218 extern struct kobj_type bch_flash_dev_ktype;
1219 extern struct kobj_type bch_cache_set_ktype;
1220 extern struct kobj_type bch_cache_set_internal_ktype;
1221 extern struct kobj_type bch_cache_ktype;
1222 
1223 void bch_cached_dev_release(struct kobject *);
1224 void bch_flash_dev_release(struct kobject *);
1225 void bch_cache_set_release(struct kobject *);
1226 void bch_cache_release(struct kobject *);
1227 
1228 int bch_uuid_write(struct cache_set *);
1229 void bcache_write_super(struct cache_set *);
1230 
1231 int bch_flash_dev_create(struct cache_set *c, uint64_t size);
1232 
1233 int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
1234 void bch_cached_dev_detach(struct cached_dev *);
1235 void bch_cached_dev_run(struct cached_dev *);
1236 void bcache_device_stop(struct bcache_device *);
1237 
1238 void bch_cache_set_unregister(struct cache_set *);
1239 void bch_cache_set_stop(struct cache_set *);
1240 
1241 struct cache_set *bch_cache_set_alloc(struct cache_sb *);
1242 void bch_btree_cache_free(struct cache_set *);
1243 int bch_btree_cache_alloc(struct cache_set *);
1244 void bch_cached_dev_writeback_init(struct cached_dev *);
1245 void bch_moving_init_cache_set(struct cache_set *);
1246 
1247 void bch_cache_allocator_exit(struct cache *ca);
1248 int bch_cache_allocator_init(struct cache *ca);
1249 
1250 void bch_debug_exit(void);
1251 int bch_debug_init(struct kobject *);
1252 void bch_writeback_exit(void);
1253 int bch_writeback_init(void);
1254 void bch_request_exit(void);
1255 int bch_request_init(void);
1256 void bch_btree_exit(void);
1257 int bch_btree_init(void);
1258 
1259 #endif /* _BCACHE_H */
1260