1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Primary bucket allocation code 4 * 5 * Copyright 2012 Google, Inc. 6 * 7 * Allocation in bcache is done in terms of buckets: 8 * 9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in 10 * btree pointers - they must match for the pointer to be considered valid. 11 * 12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a 13 * bucket simply by incrementing its gen. 14 * 15 * The gens (along with the priorities; it's really the gens are important but 16 * the code is named as if it's the priorities) are written in an arbitrary list 17 * of buckets on disk, with a pointer to them in the journal header. 18 * 19 * When we invalidate a bucket, we have to write its new gen to disk and wait 20 * for that write to complete before we use it - otherwise after a crash we 21 * could have pointers that appeared to be good but pointed to data that had 22 * been overwritten. 23 * 24 * Since the gens and priorities are all stored contiguously on disk, we can 25 * batch this up: We fill up the free_inc list with freshly invalidated buckets, 26 * call prio_write(), and when prio_write() finishes we pull buckets off the 27 * free_inc list and optionally discard them. 28 * 29 * free_inc isn't the only freelist - if it was, we'd often to sleep while 30 * priorities and gens were being written before we could allocate. c->free is a 31 * smaller freelist, and buckets on that list are always ready to be used. 32 * 33 * If we've got discards enabled, that happens when a bucket moves from the 34 * free_inc list to the free list. 35 * 36 * There is another freelist, because sometimes we have buckets that we know 37 * have nothing pointing into them - these we can reuse without waiting for 38 * priorities to be rewritten. These come from freed btree nodes and buckets 39 * that garbage collection discovered no longer had valid keys pointing into 40 * them (because they were overwritten). That's the unused list - buckets on the 41 * unused list move to the free list, optionally being discarded in the process. 42 * 43 * It's also important to ensure that gens don't wrap around - with respect to 44 * either the oldest gen in the btree or the gen on disk. This is quite 45 * difficult to do in practice, but we explicitly guard against it anyways - if 46 * a bucket is in danger of wrapping around we simply skip invalidating it that 47 * time around, and we garbage collect or rewrite the priorities sooner than we 48 * would have otherwise. 49 * 50 * bch_bucket_alloc() allocates a single bucket from a specific cache. 51 * 52 * bch_bucket_alloc_set() allocates one bucket from different caches 53 * out of a cache set. 54 * 55 * free_some_buckets() drives all the processes described above. It's called 56 * from bch_bucket_alloc() and a few other places that need to make sure free 57 * buckets are ready. 58 * 59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be 60 * invalidated, and then invalidate them and stick them on the free_inc list - 61 * in either lru or fifo order. 62 */ 63 64 #include "bcache.h" 65 #include "btree.h" 66 67 #include <linux/blkdev.h> 68 #include <linux/kthread.h> 69 #include <linux/random.h> 70 #include <trace/events/bcache.h> 71 72 #define MAX_OPEN_BUCKETS 128 73 74 /* Bucket heap / gen */ 75 76 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) 77 { 78 uint8_t ret = ++b->gen; 79 80 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); 81 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); 82 83 return ret; 84 } 85 86 void bch_rescale_priorities(struct cache_set *c, int sectors) 87 { 88 struct cache *ca; 89 struct bucket *b; 90 unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024; 91 int r; 92 93 atomic_sub(sectors, &c->rescale); 94 95 do { 96 r = atomic_read(&c->rescale); 97 98 if (r >= 0) 99 return; 100 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); 101 102 mutex_lock(&c->bucket_lock); 103 104 c->min_prio = USHRT_MAX; 105 106 ca = c->cache; 107 for_each_bucket(b, ca) 108 if (b->prio && 109 b->prio != BTREE_PRIO && 110 !atomic_read(&b->pin)) { 111 b->prio--; 112 c->min_prio = min(c->min_prio, b->prio); 113 } 114 115 mutex_unlock(&c->bucket_lock); 116 } 117 118 /* 119 * Background allocation thread: scans for buckets to be invalidated, 120 * invalidates them, rewrites prios/gens (marking them as invalidated on disk), 121 * then optionally issues discard commands to the newly free buckets, then puts 122 * them on the various freelists. 123 */ 124 125 static inline bool can_inc_bucket_gen(struct bucket *b) 126 { 127 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; 128 } 129 130 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) 131 { 132 return (ca->set->gc_mark_valid || b->reclaimable_in_gc) && 133 ((!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) && 134 !atomic_read(&b->pin) && can_inc_bucket_gen(b)); 135 } 136 137 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 138 { 139 lockdep_assert_held(&ca->set->bucket_lock); 140 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); 141 142 if (GC_SECTORS_USED(b)) 143 trace_bcache_invalidate(ca, b - ca->buckets); 144 145 bch_inc_gen(ca, b); 146 b->prio = INITIAL_PRIO; 147 atomic_inc(&b->pin); 148 b->reclaimable_in_gc = 0; 149 } 150 151 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 152 { 153 __bch_invalidate_one_bucket(ca, b); 154 155 fifo_push(&ca->free_inc, b - ca->buckets); 156 } 157 158 /* 159 * Determines what order we're going to reuse buckets, smallest bucket_prio() 160 * first: we also take into account the number of sectors of live data in that 161 * bucket, and in order for that multiply to make sense we have to scale bucket 162 * 163 * Thus, we scale the bucket priorities so that the bucket with the smallest 164 * prio is worth 1/8th of what INITIAL_PRIO is worth. 165 */ 166 167 static inline unsigned int new_bucket_prio(struct cache *ca, struct bucket *b) 168 { 169 unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; 170 171 return (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); 172 } 173 174 static inline bool new_bucket_max_cmp(const void *l, const void *r, void *args) 175 { 176 struct bucket **lhs = (struct bucket **)l; 177 struct bucket **rhs = (struct bucket **)r; 178 struct cache *ca = args; 179 180 return new_bucket_prio(ca, *lhs) > new_bucket_prio(ca, *rhs); 181 } 182 183 static inline bool new_bucket_min_cmp(const void *l, const void *r, void *args) 184 { 185 struct bucket **lhs = (struct bucket **)l; 186 struct bucket **rhs = (struct bucket **)r; 187 struct cache *ca = args; 188 189 return new_bucket_prio(ca, *lhs) < new_bucket_prio(ca, *rhs); 190 } 191 192 static inline void new_bucket_swap(void *l, void *r, void __always_unused *args) 193 { 194 struct bucket **lhs = l, **rhs = r; 195 196 swap(*lhs, *rhs); 197 } 198 199 static void invalidate_buckets_lru(struct cache *ca) 200 { 201 struct bucket *b; 202 const struct min_heap_callbacks bucket_max_cmp_callback = { 203 .less = new_bucket_max_cmp, 204 .swp = new_bucket_swap, 205 }; 206 const struct min_heap_callbacks bucket_min_cmp_callback = { 207 .less = new_bucket_min_cmp, 208 .swp = new_bucket_swap, 209 }; 210 211 ca->heap.nr = 0; 212 213 for_each_bucket(b, ca) { 214 if (!bch_can_invalidate_bucket(ca, b)) 215 continue; 216 217 if (!min_heap_full(&ca->heap)) 218 min_heap_push(&ca->heap, &b, &bucket_max_cmp_callback, ca); 219 else if (!new_bucket_max_cmp(&b, min_heap_peek(&ca->heap), ca)) { 220 ca->heap.data[0] = b; 221 min_heap_sift_down(&ca->heap, 0, &bucket_max_cmp_callback, ca); 222 } 223 } 224 225 min_heapify_all(&ca->heap, &bucket_min_cmp_callback, ca); 226 227 while (!fifo_full(&ca->free_inc)) { 228 if (!ca->heap.nr) { 229 /* 230 * We don't want to be calling invalidate_buckets() 231 * multiple times when it can't do anything 232 */ 233 ca->invalidate_needs_gc = 1; 234 wake_up_gc(ca->set); 235 return; 236 } 237 b = min_heap_peek(&ca->heap)[0]; 238 min_heap_pop(&ca->heap, &bucket_min_cmp_callback, ca); 239 240 bch_invalidate_one_bucket(ca, b); 241 } 242 } 243 244 static void invalidate_buckets_fifo(struct cache *ca) 245 { 246 struct bucket *b; 247 size_t checked = 0; 248 249 while (!fifo_full(&ca->free_inc)) { 250 if (ca->fifo_last_bucket < ca->sb.first_bucket || 251 ca->fifo_last_bucket >= ca->sb.nbuckets) 252 ca->fifo_last_bucket = ca->sb.first_bucket; 253 254 b = ca->buckets + ca->fifo_last_bucket++; 255 256 if (bch_can_invalidate_bucket(ca, b)) 257 bch_invalidate_one_bucket(ca, b); 258 259 if (++checked >= ca->sb.nbuckets) { 260 ca->invalidate_needs_gc = 1; 261 wake_up_gc(ca->set); 262 return; 263 } 264 } 265 } 266 267 static void invalidate_buckets_random(struct cache *ca) 268 { 269 struct bucket *b; 270 size_t checked = 0; 271 272 while (!fifo_full(&ca->free_inc)) { 273 size_t n; 274 275 get_random_bytes(&n, sizeof(n)); 276 277 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); 278 n += ca->sb.first_bucket; 279 280 b = ca->buckets + n; 281 282 if (bch_can_invalidate_bucket(ca, b)) 283 bch_invalidate_one_bucket(ca, b); 284 285 if (++checked >= ca->sb.nbuckets / 2) { 286 ca->invalidate_needs_gc = 1; 287 wake_up_gc(ca->set); 288 return; 289 } 290 } 291 } 292 293 static void invalidate_buckets(struct cache *ca) 294 { 295 BUG_ON(ca->invalidate_needs_gc); 296 297 switch (CACHE_REPLACEMENT(&ca->sb)) { 298 case CACHE_REPLACEMENT_LRU: 299 invalidate_buckets_lru(ca); 300 break; 301 case CACHE_REPLACEMENT_FIFO: 302 invalidate_buckets_fifo(ca); 303 break; 304 case CACHE_REPLACEMENT_RANDOM: 305 invalidate_buckets_random(ca); 306 break; 307 } 308 } 309 310 #define allocator_wait(ca, cond) \ 311 do { \ 312 while (1) { \ 313 set_current_state(TASK_INTERRUPTIBLE); \ 314 if (cond) \ 315 break; \ 316 \ 317 mutex_unlock(&(ca)->set->bucket_lock); \ 318 if (kthread_should_stop() || \ 319 test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) { \ 320 set_current_state(TASK_RUNNING); \ 321 goto out; \ 322 } \ 323 \ 324 schedule(); \ 325 mutex_lock(&(ca)->set->bucket_lock); \ 326 } \ 327 __set_current_state(TASK_RUNNING); \ 328 } while (0) 329 330 static int bch_allocator_push(struct cache *ca, long bucket) 331 { 332 unsigned int i; 333 334 /* Prios/gens are actually the most important reserve */ 335 if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) 336 return true; 337 338 for (i = 0; i < RESERVE_NR; i++) 339 if (fifo_push(&ca->free[i], bucket)) 340 return true; 341 342 return false; 343 } 344 345 static int bch_allocator_thread(void *arg) 346 { 347 struct cache *ca = arg; 348 349 mutex_lock(&ca->set->bucket_lock); 350 351 while (1) { 352 /* 353 * First, we pull buckets off of the unused and free_inc lists, 354 * possibly issue discards to them, then we add the bucket to 355 * the free list: 356 */ 357 while (1) { 358 long bucket; 359 360 if (!fifo_pop(&ca->free_inc, bucket)) 361 break; 362 363 if (ca->discard) { 364 mutex_unlock(&ca->set->bucket_lock); 365 blkdev_issue_discard(ca->bdev, 366 bucket_to_sector(ca->set, bucket), 367 ca->sb.bucket_size, GFP_KERNEL); 368 mutex_lock(&ca->set->bucket_lock); 369 } 370 371 allocator_wait(ca, bch_allocator_push(ca, bucket)); 372 wake_up(&ca->set->btree_cache_wait); 373 wake_up(&ca->set->bucket_wait); 374 } 375 376 /* 377 * We've run out of free buckets, we need to find some buckets 378 * we can invalidate. First, invalidate them in memory and add 379 * them to the free_inc list: 380 */ 381 382 retry_invalidate: 383 allocator_wait(ca, !ca->invalidate_needs_gc); 384 invalidate_buckets(ca); 385 386 /* 387 * Now, we write their new gens to disk so we can start writing 388 * new stuff to them: 389 */ 390 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); 391 if (CACHE_SYNC(&ca->sb)) { 392 /* 393 * This could deadlock if an allocation with a btree 394 * node locked ever blocked - having the btree node 395 * locked would block garbage collection, but here we're 396 * waiting on garbage collection before we invalidate 397 * and free anything. 398 * 399 * But this should be safe since the btree code always 400 * uses btree_check_reserve() before allocating now, and 401 * if it fails it blocks without btree nodes locked. 402 */ 403 if (!fifo_full(&ca->free_inc)) 404 goto retry_invalidate; 405 406 if (bch_prio_write(ca, false) < 0) { 407 ca->invalidate_needs_gc = 1; 408 wake_up_gc(ca->set); 409 } 410 } 411 } 412 out: 413 wait_for_kthread_stop(); 414 return 0; 415 } 416 417 /* Allocation */ 418 419 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait) 420 { 421 DEFINE_WAIT(w); 422 struct bucket *b; 423 long r; 424 425 426 /* No allocation if CACHE_SET_IO_DISABLE bit is set */ 427 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags))) 428 return -1; 429 430 /* fastpath */ 431 if (fifo_pop(&ca->free[RESERVE_NONE], r) || 432 fifo_pop(&ca->free[reserve], r)) 433 goto out; 434 435 if (!wait) { 436 trace_bcache_alloc_fail(ca, reserve); 437 return -1; 438 } 439 440 do { 441 prepare_to_wait(&ca->set->bucket_wait, &w, 442 TASK_UNINTERRUPTIBLE); 443 444 mutex_unlock(&ca->set->bucket_lock); 445 schedule(); 446 mutex_lock(&ca->set->bucket_lock); 447 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && 448 !fifo_pop(&ca->free[reserve], r)); 449 450 finish_wait(&ca->set->bucket_wait, &w); 451 out: 452 if (ca->alloc_thread) 453 wake_up_process(ca->alloc_thread); 454 455 trace_bcache_alloc(ca, reserve); 456 457 if (expensive_debug_checks(ca->set)) { 458 size_t iter; 459 long i; 460 unsigned int j; 461 462 for (iter = 0; iter < prio_buckets(ca) * 2; iter++) 463 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); 464 465 for (j = 0; j < RESERVE_NR; j++) 466 fifo_for_each(i, &ca->free[j], iter) 467 BUG_ON(i == r); 468 fifo_for_each(i, &ca->free_inc, iter) 469 BUG_ON(i == r); 470 } 471 472 b = ca->buckets + r; 473 474 BUG_ON(atomic_read(&b->pin) != 1); 475 476 SET_GC_SECTORS_USED(b, ca->sb.bucket_size); 477 478 if (reserve <= RESERVE_PRIO) { 479 SET_GC_MARK(b, GC_MARK_METADATA); 480 SET_GC_MOVE(b, 0); 481 b->prio = BTREE_PRIO; 482 } else { 483 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 484 SET_GC_MOVE(b, 0); 485 b->prio = INITIAL_PRIO; 486 } 487 488 if (ca->set->avail_nbuckets > 0) { 489 ca->set->avail_nbuckets--; 490 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 491 } 492 493 return r; 494 } 495 496 void __bch_bucket_free(struct cache *ca, struct bucket *b) 497 { 498 SET_GC_MARK(b, 0); 499 SET_GC_SECTORS_USED(b, 0); 500 501 if (ca->set->avail_nbuckets < ca->set->nbuckets) { 502 ca->set->avail_nbuckets++; 503 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 504 } 505 } 506 507 void bch_bucket_free(struct cache_set *c, struct bkey *k) 508 { 509 unsigned int i; 510 511 for (i = 0; i < KEY_PTRS(k); i++) 512 __bch_bucket_free(c->cache, PTR_BUCKET(c, k, i)); 513 } 514 515 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, 516 struct bkey *k, bool wait) 517 { 518 struct cache *ca; 519 long b; 520 521 /* No allocation if CACHE_SET_IO_DISABLE bit is set */ 522 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 523 return -1; 524 525 lockdep_assert_held(&c->bucket_lock); 526 527 bkey_init(k); 528 529 ca = c->cache; 530 b = bch_bucket_alloc(ca, reserve, wait); 531 if (b < 0) 532 return -1; 533 534 k->ptr[0] = MAKE_PTR(ca->buckets[b].gen, 535 bucket_to_sector(c, b), 536 ca->sb.nr_this_dev); 537 538 SET_KEY_PTRS(k, 1); 539 540 return 0; 541 } 542 543 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, 544 struct bkey *k, bool wait) 545 { 546 int ret; 547 548 mutex_lock(&c->bucket_lock); 549 ret = __bch_bucket_alloc_set(c, reserve, k, wait); 550 mutex_unlock(&c->bucket_lock); 551 return ret; 552 } 553 554 /* Sector allocator */ 555 556 struct open_bucket { 557 struct list_head list; 558 unsigned int last_write_point; 559 unsigned int sectors_free; 560 BKEY_PADDED(key); 561 }; 562 563 /* 564 * We keep multiple buckets open for writes, and try to segregate different 565 * write streams for better cache utilization: first we try to segregate flash 566 * only volume write streams from cached devices, secondly we look for a bucket 567 * where the last write to it was sequential with the current write, and 568 * failing that we look for a bucket that was last used by the same task. 569 * 570 * The ideas is if you've got multiple tasks pulling data into the cache at the 571 * same time, you'll get better cache utilization if you try to segregate their 572 * data and preserve locality. 573 * 574 * For example, dirty sectors of flash only volume is not reclaimable, if their 575 * dirty sectors mixed with dirty sectors of cached device, such buckets will 576 * be marked as dirty and won't be reclaimed, though the dirty data of cached 577 * device have been written back to backend device. 578 * 579 * And say you've starting Firefox at the same time you're copying a 580 * bunch of files. Firefox will likely end up being fairly hot and stay in the 581 * cache awhile, but the data you copied might not be; if you wrote all that 582 * data to the same buckets it'd get invalidated at the same time. 583 * 584 * Both of those tasks will be doing fairly random IO so we can't rely on 585 * detecting sequential IO to segregate their data, but going off of the task 586 * should be a sane heuristic. 587 */ 588 static struct open_bucket *pick_data_bucket(struct cache_set *c, 589 const struct bkey *search, 590 unsigned int write_point, 591 struct bkey *alloc) 592 { 593 struct open_bucket *ret, *ret_task = NULL; 594 595 list_for_each_entry_reverse(ret, &c->data_buckets, list) 596 if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) != 597 UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)])) 598 continue; 599 else if (!bkey_cmp(&ret->key, search)) 600 goto found; 601 else if (ret->last_write_point == write_point) 602 ret_task = ret; 603 604 ret = ret_task ?: list_first_entry(&c->data_buckets, 605 struct open_bucket, list); 606 found: 607 if (!ret->sectors_free && KEY_PTRS(alloc)) { 608 ret->sectors_free = c->cache->sb.bucket_size; 609 bkey_copy(&ret->key, alloc); 610 bkey_init(alloc); 611 } 612 613 if (!ret->sectors_free) 614 ret = NULL; 615 616 return ret; 617 } 618 619 /* 620 * Allocates some space in the cache to write to, and k to point to the newly 621 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 622 * end of the newly allocated space). 623 * 624 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 625 * sectors were actually allocated. 626 * 627 * If s->writeback is true, will not fail. 628 */ 629 bool bch_alloc_sectors(struct cache_set *c, 630 struct bkey *k, 631 unsigned int sectors, 632 unsigned int write_point, 633 unsigned int write_prio, 634 bool wait) 635 { 636 struct open_bucket *b; 637 BKEY_PADDED(key) alloc; 638 unsigned int i; 639 640 /* 641 * We might have to allocate a new bucket, which we can't do with a 642 * spinlock held. So if we have to allocate, we drop the lock, allocate 643 * and then retry. KEY_PTRS() indicates whether alloc points to 644 * allocated bucket(s). 645 */ 646 647 bkey_init(&alloc.key); 648 spin_lock(&c->data_bucket_lock); 649 650 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { 651 unsigned int watermark = write_prio 652 ? RESERVE_MOVINGGC 653 : RESERVE_NONE; 654 655 spin_unlock(&c->data_bucket_lock); 656 657 if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait)) 658 return false; 659 660 spin_lock(&c->data_bucket_lock); 661 } 662 663 /* 664 * If we had to allocate, we might race and not need to allocate the 665 * second time we call pick_data_bucket(). If we allocated a bucket but 666 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 667 */ 668 if (KEY_PTRS(&alloc.key)) 669 bkey_put(c, &alloc.key); 670 671 for (i = 0; i < KEY_PTRS(&b->key); i++) 672 EBUG_ON(ptr_stale(c, &b->key, i)); 673 674 /* Set up the pointer to the space we're allocating: */ 675 676 for (i = 0; i < KEY_PTRS(&b->key); i++) 677 k->ptr[i] = b->key.ptr[i]; 678 679 sectors = min(sectors, b->sectors_free); 680 681 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 682 SET_KEY_SIZE(k, sectors); 683 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 684 685 /* 686 * Move b to the end of the lru, and keep track of what this bucket was 687 * last used for: 688 */ 689 list_move_tail(&b->list, &c->data_buckets); 690 bkey_copy_key(&b->key, k); 691 b->last_write_point = write_point; 692 693 b->sectors_free -= sectors; 694 695 for (i = 0; i < KEY_PTRS(&b->key); i++) { 696 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 697 698 atomic_long_add(sectors, 699 &c->cache->sectors_written); 700 } 701 702 if (b->sectors_free < c->cache->sb.block_size) 703 b->sectors_free = 0; 704 705 /* 706 * k takes refcounts on the buckets it points to until it's inserted 707 * into the btree, but if we're done with this bucket we just transfer 708 * get_data_bucket()'s refcount. 709 */ 710 if (b->sectors_free) 711 for (i = 0; i < KEY_PTRS(&b->key); i++) 712 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 713 714 spin_unlock(&c->data_bucket_lock); 715 return true; 716 } 717 718 /* Init */ 719 720 void bch_open_buckets_free(struct cache_set *c) 721 { 722 struct open_bucket *b; 723 724 while (!list_empty(&c->data_buckets)) { 725 b = list_first_entry(&c->data_buckets, 726 struct open_bucket, list); 727 list_del(&b->list); 728 kfree(b); 729 } 730 } 731 732 int bch_open_buckets_alloc(struct cache_set *c) 733 { 734 int i; 735 736 spin_lock_init(&c->data_bucket_lock); 737 738 for (i = 0; i < MAX_OPEN_BUCKETS; i++) { 739 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 740 741 if (!b) 742 return -ENOMEM; 743 744 list_add(&b->list, &c->data_buckets); 745 } 746 747 return 0; 748 } 749 750 int bch_cache_allocator_start(struct cache *ca) 751 { 752 struct task_struct *k = kthread_run(bch_allocator_thread, 753 ca, "bcache_allocator"); 754 if (IS_ERR(k)) 755 return PTR_ERR(k); 756 757 ca->alloc_thread = k; 758 return 0; 759 } 760