xref: /linux/drivers/md/bcache/alloc.c (revision 2fcea44e1ba16c55f4602948d2d43f3a365d6070)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Primary bucket allocation code
4  *
5  * Copyright 2012 Google, Inc.
6  *
7  * Allocation in bcache is done in terms of buckets:
8  *
9  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
10  * btree pointers - they must match for the pointer to be considered valid.
11  *
12  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
13  * bucket simply by incrementing its gen.
14  *
15  * The gens (along with the priorities; it's really the gens are important but
16  * the code is named as if it's the priorities) are written in an arbitrary list
17  * of buckets on disk, with a pointer to them in the journal header.
18  *
19  * When we invalidate a bucket, we have to write its new gen to disk and wait
20  * for that write to complete before we use it - otherwise after a crash we
21  * could have pointers that appeared to be good but pointed to data that had
22  * been overwritten.
23  *
24  * Since the gens and priorities are all stored contiguously on disk, we can
25  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
26  * call prio_write(), and when prio_write() finishes we pull buckets off the
27  * free_inc list and optionally discard them.
28  *
29  * free_inc isn't the only freelist - if it was, we'd often to sleep while
30  * priorities and gens were being written before we could allocate. c->free is a
31  * smaller freelist, and buckets on that list are always ready to be used.
32  *
33  * If we've got discards enabled, that happens when a bucket moves from the
34  * free_inc list to the free list.
35  *
36  * There is another freelist, because sometimes we have buckets that we know
37  * have nothing pointing into them - these we can reuse without waiting for
38  * priorities to be rewritten. These come from freed btree nodes and buckets
39  * that garbage collection discovered no longer had valid keys pointing into
40  * them (because they were overwritten). That's the unused list - buckets on the
41  * unused list move to the free list, optionally being discarded in the process.
42  *
43  * It's also important to ensure that gens don't wrap around - with respect to
44  * either the oldest gen in the btree or the gen on disk. This is quite
45  * difficult to do in practice, but we explicitly guard against it anyways - if
46  * a bucket is in danger of wrapping around we simply skip invalidating it that
47  * time around, and we garbage collect or rewrite the priorities sooner than we
48  * would have otherwise.
49  *
50  * bch_bucket_alloc() allocates a single bucket from a specific cache.
51  *
52  * bch_bucket_alloc_set() allocates one  bucket from different caches
53  * out of a cache set.
54  *
55  * free_some_buckets() drives all the processes described above. It's called
56  * from bch_bucket_alloc() and a few other places that need to make sure free
57  * buckets are ready.
58  *
59  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
60  * invalidated, and then invalidate them and stick them on the free_inc list -
61  * in either lru or fifo order.
62  */
63 
64 #include "bcache.h"
65 #include "btree.h"
66 
67 #include <linux/blkdev.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
71 
72 #define MAX_OPEN_BUCKETS 128
73 
74 /* Bucket heap / gen */
75 
76 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
77 {
78 	uint8_t ret = ++b->gen;
79 
80 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
81 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
82 
83 	return ret;
84 }
85 
86 void bch_rescale_priorities(struct cache_set *c, int sectors)
87 {
88 	struct cache *ca;
89 	struct bucket *b;
90 	unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024;
91 	int r;
92 
93 	atomic_sub(sectors, &c->rescale);
94 
95 	do {
96 		r = atomic_read(&c->rescale);
97 
98 		if (r >= 0)
99 			return;
100 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
101 
102 	mutex_lock(&c->bucket_lock);
103 
104 	c->min_prio = USHRT_MAX;
105 
106 	ca = c->cache;
107 	for_each_bucket(b, ca)
108 		if (b->prio &&
109 		    b->prio != BTREE_PRIO &&
110 		    !atomic_read(&b->pin)) {
111 			b->prio--;
112 			c->min_prio = min(c->min_prio, b->prio);
113 		}
114 
115 	mutex_unlock(&c->bucket_lock);
116 }
117 
118 /*
119  * Background allocation thread: scans for buckets to be invalidated,
120  * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
121  * then optionally issues discard commands to the newly free buckets, then puts
122  * them on the various freelists.
123  */
124 
125 static inline bool can_inc_bucket_gen(struct bucket *b)
126 {
127 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
128 }
129 
130 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
131 {
132 	return (ca->set->gc_mark_valid || b->reclaimable_in_gc) &&
133 	       ((!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
134 	       !atomic_read(&b->pin) && can_inc_bucket_gen(b));
135 }
136 
137 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
138 {
139 	lockdep_assert_held(&ca->set->bucket_lock);
140 	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
141 
142 	if (GC_SECTORS_USED(b))
143 		trace_bcache_invalidate(ca, b - ca->buckets);
144 
145 	bch_inc_gen(ca, b);
146 	b->prio = INITIAL_PRIO;
147 	atomic_inc(&b->pin);
148 	b->reclaimable_in_gc = 0;
149 }
150 
151 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
152 {
153 	__bch_invalidate_one_bucket(ca, b);
154 
155 	fifo_push(&ca->free_inc, b - ca->buckets);
156 }
157 
158 /*
159  * Determines what order we're going to reuse buckets, smallest bucket_prio()
160  * first: we also take into account the number of sectors of live data in that
161  * bucket, and in order for that multiply to make sense we have to scale bucket
162  *
163  * Thus, we scale the bucket priorities so that the bucket with the smallest
164  * prio is worth 1/8th of what INITIAL_PRIO is worth.
165  */
166 
167 static inline unsigned int new_bucket_prio(struct cache *ca, struct bucket *b)
168 {
169 	unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;
170 
171 	return (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);
172 }
173 
174 static inline bool new_bucket_max_cmp(const void *l, const void *r, void *args)
175 {
176 	struct bucket **lhs = (struct bucket **)l;
177 	struct bucket **rhs = (struct bucket **)r;
178 	struct cache *ca = args;
179 
180 	return new_bucket_prio(ca, *lhs) > new_bucket_prio(ca, *rhs);
181 }
182 
183 static inline bool new_bucket_min_cmp(const void *l, const void *r, void *args)
184 {
185 	struct bucket **lhs = (struct bucket **)l;
186 	struct bucket **rhs = (struct bucket **)r;
187 	struct cache *ca = args;
188 
189 	return new_bucket_prio(ca, *lhs) < new_bucket_prio(ca, *rhs);
190 }
191 
192 static inline void new_bucket_swap(void *l, void *r, void __always_unused *args)
193 {
194 	struct bucket **lhs = l, **rhs = r;
195 
196 	swap(*lhs, *rhs);
197 }
198 
199 static void invalidate_buckets_lru(struct cache *ca)
200 {
201 	struct bucket *b;
202 	const struct min_heap_callbacks bucket_max_cmp_callback = {
203 		.less = new_bucket_max_cmp,
204 		.swp = new_bucket_swap,
205 	};
206 	const struct min_heap_callbacks bucket_min_cmp_callback = {
207 		.less = new_bucket_min_cmp,
208 		.swp = new_bucket_swap,
209 	};
210 
211 	ca->heap.nr = 0;
212 
213 	for_each_bucket(b, ca) {
214 		if (!bch_can_invalidate_bucket(ca, b))
215 			continue;
216 
217 		if (!min_heap_full(&ca->heap))
218 			min_heap_push(&ca->heap, &b, &bucket_max_cmp_callback, ca);
219 		else if (!new_bucket_max_cmp(&b, min_heap_peek(&ca->heap), ca)) {
220 			ca->heap.data[0] = b;
221 			min_heap_sift_down(&ca->heap, 0, &bucket_max_cmp_callback, ca);
222 		}
223 	}
224 
225 	min_heapify_all(&ca->heap, &bucket_min_cmp_callback, ca);
226 
227 	while (!fifo_full(&ca->free_inc)) {
228 		if (!ca->heap.nr) {
229 			/*
230 			 * We don't want to be calling invalidate_buckets()
231 			 * multiple times when it can't do anything
232 			 */
233 			ca->invalidate_needs_gc = 1;
234 			wake_up_gc(ca->set);
235 			return;
236 		}
237 		b = min_heap_peek(&ca->heap)[0];
238 		min_heap_pop(&ca->heap, &bucket_min_cmp_callback, ca);
239 
240 		bch_invalidate_one_bucket(ca, b);
241 	}
242 }
243 
244 static void invalidate_buckets_fifo(struct cache *ca)
245 {
246 	struct bucket *b;
247 	size_t checked = 0;
248 
249 	while (!fifo_full(&ca->free_inc)) {
250 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
251 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
252 			ca->fifo_last_bucket = ca->sb.first_bucket;
253 
254 		b = ca->buckets + ca->fifo_last_bucket++;
255 
256 		if (bch_can_invalidate_bucket(ca, b))
257 			bch_invalidate_one_bucket(ca, b);
258 
259 		if (++checked >= ca->sb.nbuckets) {
260 			ca->invalidate_needs_gc = 1;
261 			wake_up_gc(ca->set);
262 			return;
263 		}
264 	}
265 }
266 
267 static void invalidate_buckets_random(struct cache *ca)
268 {
269 	struct bucket *b;
270 	size_t checked = 0;
271 
272 	while (!fifo_full(&ca->free_inc)) {
273 		size_t n;
274 
275 		get_random_bytes(&n, sizeof(n));
276 
277 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
278 		n += ca->sb.first_bucket;
279 
280 		b = ca->buckets + n;
281 
282 		if (bch_can_invalidate_bucket(ca, b))
283 			bch_invalidate_one_bucket(ca, b);
284 
285 		if (++checked >= ca->sb.nbuckets / 2) {
286 			ca->invalidate_needs_gc = 1;
287 			wake_up_gc(ca->set);
288 			return;
289 		}
290 	}
291 }
292 
293 static void invalidate_buckets(struct cache *ca)
294 {
295 	BUG_ON(ca->invalidate_needs_gc);
296 
297 	switch (CACHE_REPLACEMENT(&ca->sb)) {
298 	case CACHE_REPLACEMENT_LRU:
299 		invalidate_buckets_lru(ca);
300 		break;
301 	case CACHE_REPLACEMENT_FIFO:
302 		invalidate_buckets_fifo(ca);
303 		break;
304 	case CACHE_REPLACEMENT_RANDOM:
305 		invalidate_buckets_random(ca);
306 		break;
307 	}
308 }
309 
310 #define allocator_wait(ca, cond)					\
311 do {									\
312 	while (1) {							\
313 		set_current_state(TASK_INTERRUPTIBLE);			\
314 		if (cond)						\
315 			break;						\
316 									\
317 		mutex_unlock(&(ca)->set->bucket_lock);			\
318 		if (kthread_should_stop() ||				\
319 		    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\
320 			set_current_state(TASK_RUNNING);		\
321 			goto out;					\
322 		}							\
323 									\
324 		schedule();						\
325 		mutex_lock(&(ca)->set->bucket_lock);			\
326 	}								\
327 	__set_current_state(TASK_RUNNING);				\
328 } while (0)
329 
330 static int bch_allocator_push(struct cache *ca, long bucket)
331 {
332 	unsigned int i;
333 
334 	/* Prios/gens are actually the most important reserve */
335 	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
336 		return true;
337 
338 	for (i = 0; i < RESERVE_NR; i++)
339 		if (fifo_push(&ca->free[i], bucket))
340 			return true;
341 
342 	return false;
343 }
344 
345 static int bch_allocator_thread(void *arg)
346 {
347 	struct cache *ca = arg;
348 
349 	mutex_lock(&ca->set->bucket_lock);
350 
351 	while (1) {
352 		/*
353 		 * First, we pull buckets off of the unused and free_inc lists,
354 		 * possibly issue discards to them, then we add the bucket to
355 		 * the free list:
356 		 */
357 		while (1) {
358 			long bucket;
359 
360 			if (!fifo_pop(&ca->free_inc, bucket))
361 				break;
362 
363 			if (ca->discard) {
364 				mutex_unlock(&ca->set->bucket_lock);
365 				blkdev_issue_discard(ca->bdev,
366 					bucket_to_sector(ca->set, bucket),
367 					ca->sb.bucket_size, GFP_KERNEL);
368 				mutex_lock(&ca->set->bucket_lock);
369 			}
370 
371 			allocator_wait(ca, bch_allocator_push(ca, bucket));
372 			wake_up(&ca->set->btree_cache_wait);
373 			wake_up(&ca->set->bucket_wait);
374 		}
375 
376 		/*
377 		 * We've run out of free buckets, we need to find some buckets
378 		 * we can invalidate. First, invalidate them in memory and add
379 		 * them to the free_inc list:
380 		 */
381 
382 retry_invalidate:
383 		allocator_wait(ca, !ca->invalidate_needs_gc);
384 		invalidate_buckets(ca);
385 
386 		/*
387 		 * Now, we write their new gens to disk so we can start writing
388 		 * new stuff to them:
389 		 */
390 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
391 		if (CACHE_SYNC(&ca->sb)) {
392 			/*
393 			 * This could deadlock if an allocation with a btree
394 			 * node locked ever blocked - having the btree node
395 			 * locked would block garbage collection, but here we're
396 			 * waiting on garbage collection before we invalidate
397 			 * and free anything.
398 			 *
399 			 * But this should be safe since the btree code always
400 			 * uses btree_check_reserve() before allocating now, and
401 			 * if it fails it blocks without btree nodes locked.
402 			 */
403 			if (!fifo_full(&ca->free_inc))
404 				goto retry_invalidate;
405 
406 			if (bch_prio_write(ca, false) < 0) {
407 				ca->invalidate_needs_gc = 1;
408 				wake_up_gc(ca->set);
409 			}
410 		}
411 	}
412 out:
413 	wait_for_kthread_stop();
414 	return 0;
415 }
416 
417 /* Allocation */
418 
419 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
420 {
421 	DEFINE_WAIT(w);
422 	struct bucket *b;
423 	long r;
424 
425 
426 	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
427 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
428 		return -1;
429 
430 	/* fastpath */
431 	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
432 	    fifo_pop(&ca->free[reserve], r))
433 		goto out;
434 
435 	if (!wait) {
436 		trace_bcache_alloc_fail(ca, reserve);
437 		return -1;
438 	}
439 
440 	do {
441 		prepare_to_wait(&ca->set->bucket_wait, &w,
442 				TASK_UNINTERRUPTIBLE);
443 
444 		mutex_unlock(&ca->set->bucket_lock);
445 		schedule();
446 		mutex_lock(&ca->set->bucket_lock);
447 	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
448 		 !fifo_pop(&ca->free[reserve], r));
449 
450 	finish_wait(&ca->set->bucket_wait, &w);
451 out:
452 	if (ca->alloc_thread)
453 		wake_up_process(ca->alloc_thread);
454 
455 	trace_bcache_alloc(ca, reserve);
456 
457 	if (expensive_debug_checks(ca->set)) {
458 		size_t iter;
459 		long i;
460 		unsigned int j;
461 
462 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
463 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
464 
465 		for (j = 0; j < RESERVE_NR; j++)
466 			fifo_for_each(i, &ca->free[j], iter)
467 				BUG_ON(i == r);
468 		fifo_for_each(i, &ca->free_inc, iter)
469 			BUG_ON(i == r);
470 	}
471 
472 	b = ca->buckets + r;
473 
474 	BUG_ON(atomic_read(&b->pin) != 1);
475 
476 	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
477 
478 	if (reserve <= RESERVE_PRIO) {
479 		SET_GC_MARK(b, GC_MARK_METADATA);
480 		SET_GC_MOVE(b, 0);
481 		b->prio = BTREE_PRIO;
482 	} else {
483 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
484 		SET_GC_MOVE(b, 0);
485 		b->prio = INITIAL_PRIO;
486 	}
487 
488 	if (ca->set->avail_nbuckets > 0) {
489 		ca->set->avail_nbuckets--;
490 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
491 	}
492 
493 	return r;
494 }
495 
496 void __bch_bucket_free(struct cache *ca, struct bucket *b)
497 {
498 	SET_GC_MARK(b, 0);
499 	SET_GC_SECTORS_USED(b, 0);
500 
501 	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
502 		ca->set->avail_nbuckets++;
503 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
504 	}
505 }
506 
507 void bch_bucket_free(struct cache_set *c, struct bkey *k)
508 {
509 	unsigned int i;
510 
511 	for (i = 0; i < KEY_PTRS(k); i++)
512 		__bch_bucket_free(c->cache, PTR_BUCKET(c, k, i));
513 }
514 
515 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
516 			   struct bkey *k, bool wait)
517 {
518 	struct cache *ca;
519 	long b;
520 
521 	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
522 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
523 		return -1;
524 
525 	lockdep_assert_held(&c->bucket_lock);
526 
527 	bkey_init(k);
528 
529 	ca = c->cache;
530 	b = bch_bucket_alloc(ca, reserve, wait);
531 	if (b < 0)
532 		return -1;
533 
534 	k->ptr[0] = MAKE_PTR(ca->buckets[b].gen,
535 			     bucket_to_sector(c, b),
536 			     ca->sb.nr_this_dev);
537 
538 	SET_KEY_PTRS(k, 1);
539 
540 	return 0;
541 }
542 
543 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
544 			 struct bkey *k, bool wait)
545 {
546 	int ret;
547 
548 	mutex_lock(&c->bucket_lock);
549 	ret = __bch_bucket_alloc_set(c, reserve, k, wait);
550 	mutex_unlock(&c->bucket_lock);
551 	return ret;
552 }
553 
554 /* Sector allocator */
555 
556 struct open_bucket {
557 	struct list_head	list;
558 	unsigned int		last_write_point;
559 	unsigned int		sectors_free;
560 	BKEY_PADDED(key);
561 };
562 
563 /*
564  * We keep multiple buckets open for writes, and try to segregate different
565  * write streams for better cache utilization: first we try to segregate flash
566  * only volume write streams from cached devices, secondly we look for a bucket
567  * where the last write to it was sequential with the current write, and
568  * failing that we look for a bucket that was last used by the same task.
569  *
570  * The ideas is if you've got multiple tasks pulling data into the cache at the
571  * same time, you'll get better cache utilization if you try to segregate their
572  * data and preserve locality.
573  *
574  * For example, dirty sectors of flash only volume is not reclaimable, if their
575  * dirty sectors mixed with dirty sectors of cached device, such buckets will
576  * be marked as dirty and won't be reclaimed, though the dirty data of cached
577  * device have been written back to backend device.
578  *
579  * And say you've starting Firefox at the same time you're copying a
580  * bunch of files. Firefox will likely end up being fairly hot and stay in the
581  * cache awhile, but the data you copied might not be; if you wrote all that
582  * data to the same buckets it'd get invalidated at the same time.
583  *
584  * Both of those tasks will be doing fairly random IO so we can't rely on
585  * detecting sequential IO to segregate their data, but going off of the task
586  * should be a sane heuristic.
587  */
588 static struct open_bucket *pick_data_bucket(struct cache_set *c,
589 					    const struct bkey *search,
590 					    unsigned int write_point,
591 					    struct bkey *alloc)
592 {
593 	struct open_bucket *ret, *ret_task = NULL;
594 
595 	list_for_each_entry_reverse(ret, &c->data_buckets, list)
596 		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
597 		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
598 			continue;
599 		else if (!bkey_cmp(&ret->key, search))
600 			goto found;
601 		else if (ret->last_write_point == write_point)
602 			ret_task = ret;
603 
604 	ret = ret_task ?: list_first_entry(&c->data_buckets,
605 					   struct open_bucket, list);
606 found:
607 	if (!ret->sectors_free && KEY_PTRS(alloc)) {
608 		ret->sectors_free = c->cache->sb.bucket_size;
609 		bkey_copy(&ret->key, alloc);
610 		bkey_init(alloc);
611 	}
612 
613 	if (!ret->sectors_free)
614 		ret = NULL;
615 
616 	return ret;
617 }
618 
619 /*
620  * Allocates some space in the cache to write to, and k to point to the newly
621  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
622  * end of the newly allocated space).
623  *
624  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
625  * sectors were actually allocated.
626  *
627  * If s->writeback is true, will not fail.
628  */
629 bool bch_alloc_sectors(struct cache_set *c,
630 		       struct bkey *k,
631 		       unsigned int sectors,
632 		       unsigned int write_point,
633 		       unsigned int write_prio,
634 		       bool wait)
635 {
636 	struct open_bucket *b;
637 	BKEY_PADDED(key) alloc;
638 	unsigned int i;
639 
640 	/*
641 	 * We might have to allocate a new bucket, which we can't do with a
642 	 * spinlock held. So if we have to allocate, we drop the lock, allocate
643 	 * and then retry. KEY_PTRS() indicates whether alloc points to
644 	 * allocated bucket(s).
645 	 */
646 
647 	bkey_init(&alloc.key);
648 	spin_lock(&c->data_bucket_lock);
649 
650 	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
651 		unsigned int watermark = write_prio
652 			? RESERVE_MOVINGGC
653 			: RESERVE_NONE;
654 
655 		spin_unlock(&c->data_bucket_lock);
656 
657 		if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait))
658 			return false;
659 
660 		spin_lock(&c->data_bucket_lock);
661 	}
662 
663 	/*
664 	 * If we had to allocate, we might race and not need to allocate the
665 	 * second time we call pick_data_bucket(). If we allocated a bucket but
666 	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
667 	 */
668 	if (KEY_PTRS(&alloc.key))
669 		bkey_put(c, &alloc.key);
670 
671 	for (i = 0; i < KEY_PTRS(&b->key); i++)
672 		EBUG_ON(ptr_stale(c, &b->key, i));
673 
674 	/* Set up the pointer to the space we're allocating: */
675 
676 	for (i = 0; i < KEY_PTRS(&b->key); i++)
677 		k->ptr[i] = b->key.ptr[i];
678 
679 	sectors = min(sectors, b->sectors_free);
680 
681 	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
682 	SET_KEY_SIZE(k, sectors);
683 	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
684 
685 	/*
686 	 * Move b to the end of the lru, and keep track of what this bucket was
687 	 * last used for:
688 	 */
689 	list_move_tail(&b->list, &c->data_buckets);
690 	bkey_copy_key(&b->key, k);
691 	b->last_write_point = write_point;
692 
693 	b->sectors_free	-= sectors;
694 
695 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
696 		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
697 
698 		atomic_long_add(sectors,
699 				&c->cache->sectors_written);
700 	}
701 
702 	if (b->sectors_free < c->cache->sb.block_size)
703 		b->sectors_free = 0;
704 
705 	/*
706 	 * k takes refcounts on the buckets it points to until it's inserted
707 	 * into the btree, but if we're done with this bucket we just transfer
708 	 * get_data_bucket()'s refcount.
709 	 */
710 	if (b->sectors_free)
711 		for (i = 0; i < KEY_PTRS(&b->key); i++)
712 			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
713 
714 	spin_unlock(&c->data_bucket_lock);
715 	return true;
716 }
717 
718 /* Init */
719 
720 void bch_open_buckets_free(struct cache_set *c)
721 {
722 	struct open_bucket *b;
723 
724 	while (!list_empty(&c->data_buckets)) {
725 		b = list_first_entry(&c->data_buckets,
726 				     struct open_bucket, list);
727 		list_del(&b->list);
728 		kfree(b);
729 	}
730 }
731 
732 int bch_open_buckets_alloc(struct cache_set *c)
733 {
734 	int i;
735 
736 	spin_lock_init(&c->data_bucket_lock);
737 
738 	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
739 		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
740 
741 		if (!b)
742 			return -ENOMEM;
743 
744 		list_add(&b->list, &c->data_buckets);
745 	}
746 
747 	return 0;
748 }
749 
750 int bch_cache_allocator_start(struct cache *ca)
751 {
752 	struct task_struct *k = kthread_run(bch_allocator_thread,
753 					    ca, "bcache_allocator");
754 	if (IS_ERR(k))
755 		return PTR_ERR(k);
756 
757 	ca->alloc_thread = k;
758 	return 0;
759 }
760