xref: /linux/drivers/mailbox/bcm-pdc-mailbox.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * Copyright 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation (the "GPL").
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License version 2 (GPLv2) for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * version 2 (GPLv2) along with this source code.
15  */
16 
17 /*
18  * Broadcom PDC Mailbox Driver
19  * The PDC provides a ring based programming interface to one or more hardware
20  * offload engines. For example, the PDC driver works with both SPU-M and SPU2
21  * cryptographic offload hardware. In some chips the PDC is referred to as MDE.
22  *
23  * The PDC driver registers with the Linux mailbox framework as a mailbox
24  * controller, once for each PDC instance. Ring 0 for each PDC is registered as
25  * a mailbox channel. The PDC driver uses interrupts to determine when data
26  * transfers to and from an offload engine are complete. The PDC driver uses
27  * threaded IRQs so that response messages are handled outside of interrupt
28  * context.
29  *
30  * The PDC driver allows multiple messages to be pending in the descriptor
31  * rings. The tx_msg_start descriptor index indicates where the last message
32  * starts. The txin_numd value at this index indicates how many descriptor
33  * indexes make up the message. Similar state is kept on the receive side. When
34  * an rx interrupt indicates a response is ready, the PDC driver processes numd
35  * descriptors from the tx and rx ring, thus processing one response at a time.
36  */
37 
38 #include <linux/errno.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/debugfs.h>
43 #include <linux/interrupt.h>
44 #include <linux/wait.h>
45 #include <linux/platform_device.h>
46 #include <linux/io.h>
47 #include <linux/of.h>
48 #include <linux/of_device.h>
49 #include <linux/of_address.h>
50 #include <linux/of_irq.h>
51 #include <linux/mailbox_controller.h>
52 #include <linux/mailbox/brcm-message.h>
53 #include <linux/scatterlist.h>
54 #include <linux/dma-direction.h>
55 #include <linux/dma-mapping.h>
56 #include <linux/dmapool.h>
57 
58 #define PDC_SUCCESS  0
59 
60 #define RING_ENTRY_SIZE   sizeof(struct dma64dd)
61 
62 /* # entries in PDC dma ring */
63 #define PDC_RING_ENTRIES  128
64 #define PDC_RING_SIZE    (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
65 /* Rings are 8k aligned */
66 #define RING_ALIGN_ORDER  13
67 #define RING_ALIGN        BIT(RING_ALIGN_ORDER)
68 
69 #define RX_BUF_ALIGN_ORDER  5
70 #define RX_BUF_ALIGN	    BIT(RX_BUF_ALIGN_ORDER)
71 
72 /* descriptor bumping macros */
73 #define XXD(x, max_mask)              ((x) & (max_mask))
74 #define TXD(x, max_mask)              XXD((x), (max_mask))
75 #define RXD(x, max_mask)              XXD((x), (max_mask))
76 #define NEXTTXD(i, max_mask)          TXD((i) + 1, (max_mask))
77 #define PREVTXD(i, max_mask)          TXD((i) - 1, (max_mask))
78 #define NEXTRXD(i, max_mask)          RXD((i) + 1, (max_mask))
79 #define PREVRXD(i, max_mask)          RXD((i) - 1, (max_mask))
80 #define NTXDACTIVE(h, t, max_mask)    TXD((t) - (h), (max_mask))
81 #define NRXDACTIVE(h, t, max_mask)    RXD((t) - (h), (max_mask))
82 
83 /* Length of BCM header at start of SPU msg, in bytes */
84 #define BCM_HDR_LEN  8
85 
86 /*
87  * PDC driver reserves ringset 0 on each SPU for its own use. The driver does
88  * not currently support use of multiple ringsets on a single PDC engine.
89  */
90 #define PDC_RINGSET  0
91 
92 /*
93  * Interrupt mask and status definitions. Enable interrupts for tx and rx on
94  * ring 0
95  */
96 #define PDC_XMTINT_0         (24 + PDC_RINGSET)
97 #define PDC_RCVINT_0         (16 + PDC_RINGSET)
98 #define PDC_XMTINTEN_0       BIT(PDC_XMTINT_0)
99 #define PDC_RCVINTEN_0       BIT(PDC_RCVINT_0)
100 #define PDC_INTMASK  (PDC_XMTINTEN_0 | PDC_RCVINTEN_0)
101 #define PDC_LAZY_FRAMECOUNT  1
102 #define PDC_LAZY_TIMEOUT     10000
103 #define PDC_LAZY_INT  (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
104 #define PDC_INTMASK_OFFSET   0x24
105 #define PDC_INTSTATUS_OFFSET 0x20
106 #define PDC_RCVLAZY0_OFFSET  (0x30 + 4 * PDC_RINGSET)
107 
108 /*
109  * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
110  * before frame
111  */
112 #define PDC_SPU2_RESP_HDR_LEN  17
113 #define PDC_CKSUM_CTRL         BIT(27)
114 #define PDC_CKSUM_CTRL_OFFSET  0x400
115 
116 #define PDC_SPUM_RESP_HDR_LEN  32
117 
118 /*
119  * Sets the following bits for write to transmit control reg:
120  *  0    - XmtEn - enable activity on the tx channel
121  * 11    - PtyChkDisable - parity check is disabled
122  * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
123  */
124 #define PDC_TX_CTL              0x000C0801
125 
126 /*
127  * Sets the following bits for write to receive control reg:
128  * 0     - RcvEn - enable activity on the rx channel
129  * 7:1   - RcvOffset - size in bytes of status region at start of rx frame buf
130  * 9     - SepRxHdrDescEn - place start of new frames only in descriptors
131  *                          that have StartOfFrame set
132  * 10    - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
133  *                         remaining bytes in current frame, report error
134  *                         in rx frame status for current frame
135  * 11    - PtyChkDisable - parity check is disabled
136  * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
137  */
138 #define PDC_RX_CTL              0x000C0E01
139 
140 #define CRYPTO_D64_RS0_CD_MASK   ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
141 
142 /* descriptor flags */
143 #define D64_CTRL1_EOT   BIT(28)	/* end of descriptor table */
144 #define D64_CTRL1_IOC   BIT(29)	/* interrupt on complete */
145 #define D64_CTRL1_EOF   BIT(30)	/* end of frame */
146 #define D64_CTRL1_SOF   BIT(31)	/* start of frame */
147 
148 #define RX_STATUS_OVERFLOW       0x00800000
149 #define RX_STATUS_LEN            0x0000FFFF
150 
151 #define PDC_TXREGS_OFFSET  0x200
152 #define PDC_RXREGS_OFFSET  0x220
153 
154 /* Maximum size buffer the DMA engine can handle */
155 #define PDC_DMA_BUF_MAX 16384
156 
157 struct pdc_dma_map {
158 	void *ctx;          /* opaque context associated with frame */
159 };
160 
161 /* dma descriptor */
162 struct dma64dd {
163 	u32 ctrl1;      /* misc control bits */
164 	u32 ctrl2;      /* buffer count and address extension */
165 	u32 addrlow;    /* memory address of the date buffer, bits 31:0 */
166 	u32 addrhigh;   /* memory address of the date buffer, bits 63:32 */
167 };
168 
169 /* dma registers per channel(xmt or rcv) */
170 struct dma64_regs {
171 	u32  control;   /* enable, et al */
172 	u32  ptr;       /* last descriptor posted to chip */
173 	u32  addrlow;   /* descriptor ring base address low 32-bits */
174 	u32  addrhigh;  /* descriptor ring base address bits 63:32 */
175 	u32  status0;   /* last rx descriptor written by hw */
176 	u32  status1;   /* driver does not use */
177 };
178 
179 /* cpp contortions to concatenate w/arg prescan */
180 #ifndef PAD
181 #define _PADLINE(line)  pad ## line
182 #define _XSTR(line)     _PADLINE(line)
183 #define PAD             _XSTR(__LINE__)
184 #endif  /* PAD */
185 
186 /* dma registers. matches hw layout. */
187 struct dma64 {
188 	struct dma64_regs dmaxmt;  /* dma tx */
189 	u32          PAD[2];
190 	struct dma64_regs dmarcv;  /* dma rx */
191 	u32          PAD[2];
192 };
193 
194 /* PDC registers */
195 struct pdc_regs {
196 	u32  devcontrol;             /* 0x000 */
197 	u32  devstatus;              /* 0x004 */
198 	u32  PAD;
199 	u32  biststatus;             /* 0x00c */
200 	u32  PAD[4];
201 	u32  intstatus;              /* 0x020 */
202 	u32  intmask;                /* 0x024 */
203 	u32  gptimer;                /* 0x028 */
204 
205 	u32  PAD;
206 	u32  intrcvlazy_0;           /* 0x030 */
207 	u32  intrcvlazy_1;           /* 0x034 */
208 	u32  intrcvlazy_2;           /* 0x038 */
209 	u32  intrcvlazy_3;           /* 0x03c */
210 
211 	u32  PAD[48];
212 	u32  removed_intrecvlazy;    /* 0x100 */
213 	u32  flowctlthresh;          /* 0x104 */
214 	u32  wrrthresh;              /* 0x108 */
215 	u32  gmac_idle_cnt_thresh;   /* 0x10c */
216 
217 	u32  PAD[4];
218 	u32  ifioaccessaddr;         /* 0x120 */
219 	u32  ifioaccessbyte;         /* 0x124 */
220 	u32  ifioaccessdata;         /* 0x128 */
221 
222 	u32  PAD[21];
223 	u32  phyaccess;              /* 0x180 */
224 	u32  PAD;
225 	u32  phycontrol;             /* 0x188 */
226 	u32  txqctl;                 /* 0x18c */
227 	u32  rxqctl;                 /* 0x190 */
228 	u32  gpioselect;             /* 0x194 */
229 	u32  gpio_output_en;         /* 0x198 */
230 	u32  PAD;                    /* 0x19c */
231 	u32  txq_rxq_mem_ctl;        /* 0x1a0 */
232 	u32  memory_ecc_status;      /* 0x1a4 */
233 	u32  serdes_ctl;             /* 0x1a8 */
234 	u32  serdes_status0;         /* 0x1ac */
235 	u32  serdes_status1;         /* 0x1b0 */
236 	u32  PAD[11];                /* 0x1b4-1dc */
237 	u32  clk_ctl_st;             /* 0x1e0 */
238 	u32  hw_war;                 /* 0x1e4 */
239 	u32  pwrctl;                 /* 0x1e8 */
240 	u32  PAD[5];
241 
242 #define PDC_NUM_DMA_RINGS   4
243 	struct dma64 dmaregs[PDC_NUM_DMA_RINGS];  /* 0x0200 - 0x2fc */
244 
245 	/* more registers follow, but we don't use them */
246 };
247 
248 /* structure for allocating/freeing DMA rings */
249 struct pdc_ring_alloc {
250 	dma_addr_t  dmabase; /* DMA address of start of ring */
251 	void	   *vbase;   /* base kernel virtual address of ring */
252 	u32	    size;    /* ring allocation size in bytes */
253 };
254 
255 /* PDC state structure */
256 struct pdc_state {
257 	/* synchronize access to this PDC state structure */
258 	spinlock_t pdc_lock;
259 
260 	/* Index of the PDC whose state is in this structure instance */
261 	u8 pdc_idx;
262 
263 	/* Platform device for this PDC instance */
264 	struct platform_device *pdev;
265 
266 	/*
267 	 * Each PDC instance has a mailbox controller. PDC receives request
268 	 * messages through mailboxes, and sends response messages through the
269 	 * mailbox framework.
270 	 */
271 	struct mbox_controller mbc;
272 
273 	unsigned int pdc_irq;
274 
275 	/*
276 	 * Last interrupt status read from PDC device. Saved in interrupt
277 	 * handler so the handler can clear the interrupt in the device,
278 	 * and the interrupt thread called later can know which interrupt
279 	 * bits are active.
280 	 */
281 	unsigned long intstatus;
282 
283 	/* Number of bytes of receive status prior to each rx frame */
284 	u32 rx_status_len;
285 	/* Whether a BCM header is prepended to each frame */
286 	bool use_bcm_hdr;
287 	/* Sum of length of BCM header and rx status header */
288 	u32 pdc_resp_hdr_len;
289 
290 	/* The base virtual address of DMA hw registers */
291 	void __iomem *pdc_reg_vbase;
292 
293 	/* Pool for allocation of DMA rings */
294 	struct dma_pool *ring_pool;
295 
296 	/* Pool for allocation of metadata buffers for response messages */
297 	struct dma_pool *rx_buf_pool;
298 
299 	/*
300 	 * The base virtual address of DMA tx/rx descriptor rings. Corresponding
301 	 * DMA address and size of ring allocation.
302 	 */
303 	struct pdc_ring_alloc tx_ring_alloc;
304 	struct pdc_ring_alloc rx_ring_alloc;
305 
306 	struct pdc_regs *regs;    /* start of PDC registers */
307 
308 	struct dma64_regs *txregs_64; /* dma tx engine registers */
309 	struct dma64_regs *rxregs_64; /* dma rx engine registers */
310 
311 	/*
312 	 * Arrays of PDC_RING_ENTRIES descriptors
313 	 * To use multiple ringsets, this needs to be extended
314 	 */
315 	struct dma64dd   *txd_64;  /* tx descriptor ring */
316 	struct dma64dd   *rxd_64;  /* rx descriptor ring */
317 
318 	/* descriptor ring sizes */
319 	u32      ntxd;       /* # tx descriptors */
320 	u32      nrxd;       /* # rx descriptors */
321 	u32      nrxpost;    /* # rx buffers to keep posted */
322 	u32      ntxpost;    /* max number of tx buffers that can be posted */
323 
324 	/*
325 	 * Index of next tx descriptor to reclaim. That is, the descriptor
326 	 * index of the oldest tx buffer for which the host has yet to process
327 	 * the corresponding response.
328 	 */
329 	u32  txin;
330 
331 	/*
332 	 * Index of the first receive descriptor for the sequence of
333 	 * message fragments currently under construction. Used to build up
334 	 * the rxin_numd count for a message. Updated to rxout when the host
335 	 * starts a new sequence of rx buffers for a new message.
336 	 */
337 	u32  tx_msg_start;
338 
339 	/* Index of next tx descriptor to post. */
340 	u32  txout;
341 
342 	/*
343 	 * Number of tx descriptors associated with the message that starts
344 	 * at this tx descriptor index.
345 	 */
346 	u32      txin_numd[PDC_RING_ENTRIES];
347 
348 	/*
349 	 * Index of next rx descriptor to reclaim. This is the index of
350 	 * the next descriptor whose data has yet to be processed by the host.
351 	 */
352 	u32  rxin;
353 
354 	/*
355 	 * Index of the first receive descriptor for the sequence of
356 	 * message fragments currently under construction. Used to build up
357 	 * the rxin_numd count for a message. Updated to rxout when the host
358 	 * starts a new sequence of rx buffers for a new message.
359 	 */
360 	u32  rx_msg_start;
361 
362 	/*
363 	 * Saved value of current hardware rx descriptor index.
364 	 * The last rx buffer written by the hw is the index previous to
365 	 * this one.
366 	 */
367 	u32  last_rx_curr;
368 
369 	/* Index of next rx descriptor to post. */
370 	u32  rxout;
371 
372 	/*
373 	 * opaque context associated with frame that starts at each
374 	 * rx ring index.
375 	 */
376 	void *rxp_ctx[PDC_RING_ENTRIES];
377 
378 	/*
379 	 * Scatterlists used to form request and reply frames beginning at a
380 	 * given ring index. Retained in order to unmap each sg after reply
381 	 * is processed
382 	 */
383 	struct scatterlist *src_sg[PDC_RING_ENTRIES];
384 	struct scatterlist *dst_sg[PDC_RING_ENTRIES];
385 
386 	/*
387 	 * Number of rx descriptors associated with the message that starts
388 	 * at this descriptor index. Not set for every index. For example,
389 	 * if descriptor index i points to a scatterlist with 4 entries, then
390 	 * the next three descriptor indexes don't have a value set.
391 	 */
392 	u32  rxin_numd[PDC_RING_ENTRIES];
393 
394 	void *resp_hdr[PDC_RING_ENTRIES];
395 	dma_addr_t resp_hdr_daddr[PDC_RING_ENTRIES];
396 
397 	struct dentry *debugfs_stats;  /* debug FS stats file for this PDC */
398 
399 	/* counters */
400 	u32  pdc_requests;    /* number of request messages submitted */
401 	u32  pdc_replies;     /* number of reply messages received */
402 	u32  txnobuf;         /* count of tx ring full */
403 	u32  rxnobuf;         /* count of rx ring full */
404 	u32  rx_oflow;        /* count of rx overflows */
405 };
406 
407 /* Global variables */
408 
409 struct pdc_globals {
410 	/* Actual number of SPUs in hardware, as reported by device tree */
411 	u32 num_spu;
412 };
413 
414 static struct pdc_globals pdcg;
415 
416 /* top level debug FS directory for PDC driver */
417 static struct dentry *debugfs_dir;
418 
419 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
420 				size_t count, loff_t *offp)
421 {
422 	struct pdc_state *pdcs;
423 	char *buf;
424 	ssize_t ret, out_offset, out_count;
425 
426 	out_count = 512;
427 
428 	buf = kmalloc(out_count, GFP_KERNEL);
429 	if (!buf)
430 		return -ENOMEM;
431 
432 	pdcs = filp->private_data;
433 	out_offset = 0;
434 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
435 			       "SPU %u stats:\n", pdcs->pdc_idx);
436 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
437 			       "PDC requests............%u\n",
438 			       pdcs->pdc_requests);
439 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
440 			       "PDC responses...........%u\n",
441 			       pdcs->pdc_replies);
442 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
443 			       "Tx err ring full........%u\n",
444 			       pdcs->txnobuf);
445 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
446 			       "Rx err ring full........%u\n",
447 			       pdcs->rxnobuf);
448 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
449 			       "Receive overflow........%u\n",
450 			       pdcs->rx_oflow);
451 
452 	if (out_offset > out_count)
453 		out_offset = out_count;
454 
455 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
456 	kfree(buf);
457 	return ret;
458 }
459 
460 static const struct file_operations pdc_debugfs_stats = {
461 	.owner = THIS_MODULE,
462 	.open = simple_open,
463 	.read = pdc_debugfs_read,
464 };
465 
466 /**
467  * pdc_setup_debugfs() - Create the debug FS directories. If the top-level
468  * directory has not yet been created, create it now. Create a stats file in
469  * this directory for a SPU.
470  * @pdcs: PDC state structure
471  */
472 static void pdc_setup_debugfs(struct pdc_state *pdcs)
473 {
474 	char spu_stats_name[16];
475 
476 	if (!debugfs_initialized())
477 		return;
478 
479 	snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
480 	if (!debugfs_dir)
481 		debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
482 
483 	pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, S_IRUSR,
484 						  debugfs_dir, pdcs,
485 						  &pdc_debugfs_stats);
486 }
487 
488 static void pdc_free_debugfs(void)
489 {
490 	if (debugfs_dir && simple_empty(debugfs_dir)) {
491 		debugfs_remove_recursive(debugfs_dir);
492 		debugfs_dir = NULL;
493 	}
494 }
495 
496 /**
497  * pdc_build_rxd() - Build DMA descriptor to receive SPU result.
498  * @pdcs:      PDC state for SPU that will generate result
499  * @dma_addr:  DMA address of buffer that descriptor is being built for
500  * @buf_len:   Length of the receive buffer, in bytes
501  * @flags:     Flags to be stored in descriptor
502  */
503 static inline void
504 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
505 	      u32 buf_len, u32 flags)
506 {
507 	struct device *dev = &pdcs->pdev->dev;
508 
509 	dev_dbg(dev,
510 		"Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
511 		pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
512 
513 	iowrite32(lower_32_bits(dma_addr),
514 		  (void *)&pdcs->rxd_64[pdcs->rxout].addrlow);
515 	iowrite32(upper_32_bits(dma_addr),
516 		  (void *)&pdcs->rxd_64[pdcs->rxout].addrhigh);
517 	iowrite32(flags, (void *)&pdcs->rxd_64[pdcs->rxout].ctrl1);
518 	iowrite32(buf_len, (void *)&pdcs->rxd_64[pdcs->rxout].ctrl2);
519 	/* bump ring index and return */
520 	pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
521 }
522 
523 /**
524  * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
525  * hardware.
526  * @pdcs:        PDC state for the SPU that will process this request
527  * @dma_addr:    DMA address of packet to be transmitted
528  * @buf_len:     Length of tx buffer, in bytes
529  * @flags:       Flags to be stored in descriptor
530  */
531 static inline void
532 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
533 	      u32 flags)
534 {
535 	struct device *dev = &pdcs->pdev->dev;
536 
537 	dev_dbg(dev,
538 		"Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
539 		pdcs->pdc_idx, pdcs->txout, buf_len, flags);
540 
541 	iowrite32(lower_32_bits(dma_addr),
542 		  (void *)&pdcs->txd_64[pdcs->txout].addrlow);
543 	iowrite32(upper_32_bits(dma_addr),
544 		  (void *)&pdcs->txd_64[pdcs->txout].addrhigh);
545 	iowrite32(flags, (void *)&pdcs->txd_64[pdcs->txout].ctrl1);
546 	iowrite32(buf_len, (void *)&pdcs->txd_64[pdcs->txout].ctrl2);
547 
548 	/* bump ring index and return */
549 	pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
550 }
551 
552 /**
553  * pdc_receive() - Receive a response message from a given SPU.
554  * @pdcs:    PDC state for the SPU to receive from
555  * @mssg:    mailbox message to be returned to client
556  *
557  * When the return code indicates success, the response message is available in
558  * the receive buffers provided prior to submission of the request.
559  *
560  * Input:
561  *   pdcs - PDC state structure for the SPU to be polled
562  *   mssg - mailbox message to be returned to client. This function sets the
563  *	    context pointer on the message to help the client associate the
564  *	    response with a request.
565  *
566  * Return:  PDC_SUCCESS if one or more receive descriptors was processed
567  *          -EAGAIN indicates that no response message is available
568  *          -EIO an error occurred
569  */
570 static int
571 pdc_receive(struct pdc_state *pdcs, struct brcm_message *mssg)
572 {
573 	struct device *dev = &pdcs->pdev->dev;
574 	u32 len, rx_status;
575 	u32 num_frags;
576 	int i;
577 	u8 *resp_hdr;    /* virtual addr of start of resp message DMA header */
578 	u32 frags_rdy;   /* number of fragments ready to read */
579 	u32 rx_idx;      /* ring index of start of receive frame */
580 	dma_addr_t resp_hdr_daddr;
581 
582 	spin_lock(&pdcs->pdc_lock);
583 
584 	/*
585 	 * return if a complete response message is not yet ready.
586 	 * rxin_numd[rxin] is the number of fragments in the next msg
587 	 * to read.
588 	 */
589 	frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
590 	if ((frags_rdy == 0) || (frags_rdy < pdcs->rxin_numd[pdcs->rxin])) {
591 		/* See if the hw has written more fragments than we know */
592 		pdcs->last_rx_curr =
593 		    (ioread32((void *)&pdcs->rxregs_64->status0) &
594 		     CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
595 		frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
596 				       pdcs->nrxpost);
597 		if ((frags_rdy == 0) ||
598 		    (frags_rdy < pdcs->rxin_numd[pdcs->rxin])) {
599 			/* No response ready */
600 			spin_unlock(&pdcs->pdc_lock);
601 			return -EAGAIN;
602 		}
603 		/* can't read descriptors/data until write index is read */
604 		rmb();
605 	}
606 
607 	num_frags = pdcs->txin_numd[pdcs->txin];
608 	dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
609 		     sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
610 
611 	for (i = 0; i < num_frags; i++)
612 		pdcs->txin = NEXTTXD(pdcs->txin, pdcs->ntxpost);
613 
614 	dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
615 		pdcs->pdc_idx, num_frags);
616 
617 	rx_idx = pdcs->rxin;
618 	num_frags = pdcs->rxin_numd[rx_idx];
619 	/* Return opaque context with result */
620 	mssg->ctx = pdcs->rxp_ctx[rx_idx];
621 	pdcs->rxp_ctx[rx_idx] = NULL;
622 	resp_hdr = pdcs->resp_hdr[rx_idx];
623 	resp_hdr_daddr = pdcs->resp_hdr_daddr[rx_idx];
624 	dma_unmap_sg(dev, pdcs->dst_sg[rx_idx],
625 		     sg_nents(pdcs->dst_sg[rx_idx]), DMA_FROM_DEVICE);
626 
627 	for (i = 0; i < num_frags; i++)
628 		pdcs->rxin = NEXTRXD(pdcs->rxin, pdcs->nrxpost);
629 
630 	spin_unlock(&pdcs->pdc_lock);
631 
632 	dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
633 		pdcs->pdc_idx, num_frags);
634 
635 	dev_dbg(dev,
636 		"PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
637 		pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
638 		pdcs->rxout, pdcs->last_rx_curr);
639 
640 	if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
641 		/*
642 		 * For SPU-M, get length of response msg and rx overflow status.
643 		 */
644 		rx_status = *((u32 *)resp_hdr);
645 		len = rx_status & RX_STATUS_LEN;
646 		dev_dbg(dev,
647 			"SPU response length %u bytes", len);
648 		if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
649 			if (rx_status & RX_STATUS_OVERFLOW) {
650 				dev_err_ratelimited(dev,
651 						    "crypto receive overflow");
652 				pdcs->rx_oflow++;
653 			} else {
654 				dev_info_ratelimited(dev, "crypto rx len = 0");
655 			}
656 			return -EIO;
657 		}
658 	}
659 
660 	dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
661 
662 	pdcs->pdc_replies++;
663 	/* if we read one or more rx descriptors, claim success */
664 	if (num_frags > 0)
665 		return PDC_SUCCESS;
666 	else
667 		return -EIO;
668 }
669 
670 /**
671  * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
672  * descriptors for a given SPU. The scatterlist buffers contain the data for a
673  * SPU request message.
674  * @spu_idx:   The index of the SPU to submit the request to, [0, max_spu)
675  * @sg:        Scatterlist whose buffers contain part of the SPU request
676  *
677  * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
678  * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
679  *
680  * Return: PDC_SUCCESS if successful
681  *         < 0 otherwise
682  */
683 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
684 {
685 	u32 flags = 0;
686 	u32 eot;
687 	u32 tx_avail;
688 
689 	/*
690 	 * Num descriptors needed. Conservatively assume we need a descriptor
691 	 * for every entry in sg.
692 	 */
693 	u32 num_desc;
694 	u32 desc_w = 0;	/* Number of tx descriptors written */
695 	u32 bufcnt;	/* Number of bytes of buffer pointed to by descriptor */
696 	dma_addr_t databufptr;	/* DMA address to put in descriptor */
697 
698 	num_desc = (u32)sg_nents(sg);
699 
700 	/* check whether enough tx descriptors are available */
701 	tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
702 					      pdcs->ntxpost);
703 	if (unlikely(num_desc > tx_avail)) {
704 		pdcs->txnobuf++;
705 		return -ENOSPC;
706 	}
707 
708 	/* build tx descriptors */
709 	if (pdcs->tx_msg_start == pdcs->txout) {
710 		/* Start of frame */
711 		pdcs->txin_numd[pdcs->tx_msg_start] = 0;
712 		pdcs->src_sg[pdcs->txout] = sg;
713 		flags = D64_CTRL1_SOF;
714 	}
715 
716 	while (sg) {
717 		if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
718 			eot = D64_CTRL1_EOT;
719 		else
720 			eot = 0;
721 
722 		/*
723 		 * If sg buffer larger than PDC limit, split across
724 		 * multiple descriptors
725 		 */
726 		bufcnt = sg_dma_len(sg);
727 		databufptr = sg_dma_address(sg);
728 		while (bufcnt > PDC_DMA_BUF_MAX) {
729 			pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
730 				      flags | eot);
731 			desc_w++;
732 			bufcnt -= PDC_DMA_BUF_MAX;
733 			databufptr += PDC_DMA_BUF_MAX;
734 			if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
735 				eot = D64_CTRL1_EOT;
736 			else
737 				eot = 0;
738 		}
739 		sg = sg_next(sg);
740 		if (!sg)
741 			/* Writing last descriptor for frame */
742 			flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
743 		pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
744 		desc_w++;
745 		/* Clear start of frame after first descriptor */
746 		flags &= ~D64_CTRL1_SOF;
747 	}
748 	pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
749 
750 	return PDC_SUCCESS;
751 }
752 
753 /**
754  * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
755  * ring.
756  * @pdcs:  PDC state for SPU to process the request
757  *
758  * Sets the index of the last descriptor written in both the rx and tx ring.
759  *
760  * Return: PDC_SUCCESS
761  */
762 static int pdc_tx_list_final(struct pdc_state *pdcs)
763 {
764 	/*
765 	 * write barrier to ensure all register writes are complete
766 	 * before chip starts to process new request
767 	 */
768 	wmb();
769 	iowrite32(pdcs->rxout << 4, (void *)&pdcs->rxregs_64->ptr);
770 	iowrite32(pdcs->txout << 4, (void *)&pdcs->txregs_64->ptr);
771 	pdcs->pdc_requests++;
772 
773 	return PDC_SUCCESS;
774 }
775 
776 /**
777  * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
778  * @pdcs:   PDC state for SPU handling request
779  * @dst_sg: scatterlist providing rx buffers for response to be returned to
780  *	    mailbox client
781  * @ctx:    Opaque context for this request
782  *
783  * Posts a single receive descriptor to hold the metadata that precedes a
784  * response. For example, with SPU-M, the metadata is a 32-byte DMA header and
785  * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
786  * rx to indicate the start of a new message.
787  *
788  * Return:  PDC_SUCCESS if successful
789  *          < 0 if an error (e.g., rx ring is full)
790  */
791 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
792 			    void *ctx)
793 {
794 	u32 flags = 0;
795 	u32 rx_avail;
796 	u32 rx_pkt_cnt = 1;	/* Adding a single rx buffer */
797 	dma_addr_t daddr;
798 	void *vaddr;
799 
800 	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
801 					      pdcs->nrxpost);
802 	if (unlikely(rx_pkt_cnt > rx_avail)) {
803 		pdcs->rxnobuf++;
804 		return -ENOSPC;
805 	}
806 
807 	/* allocate a buffer for the dma rx status */
808 	vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
809 	if (!vaddr)
810 		return -ENOMEM;
811 
812 	/*
813 	 * Update msg_start indexes for both tx and rx to indicate the start
814 	 * of a new sequence of descriptor indexes that contain the fragments
815 	 * of the same message.
816 	 */
817 	pdcs->rx_msg_start = pdcs->rxout;
818 	pdcs->tx_msg_start = pdcs->txout;
819 
820 	/* This is always the first descriptor in the receive sequence */
821 	flags = D64_CTRL1_SOF;
822 	pdcs->rxin_numd[pdcs->rx_msg_start] = 1;
823 
824 	if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
825 		flags |= D64_CTRL1_EOT;
826 
827 	pdcs->rxp_ctx[pdcs->rxout] = ctx;
828 	pdcs->dst_sg[pdcs->rxout] = dst_sg;
829 	pdcs->resp_hdr[pdcs->rxout] = vaddr;
830 	pdcs->resp_hdr_daddr[pdcs->rxout] = daddr;
831 	pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
832 	return PDC_SUCCESS;
833 }
834 
835 /**
836  * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
837  * descriptors for a given SPU. The caller must have already DMA mapped the
838  * scatterlist.
839  * @spu_idx:    Indicates which SPU the buffers are for
840  * @sg:         Scatterlist whose buffers are added to the receive ring
841  *
842  * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
843  * multiple receive descriptors are written, each with a buffer <=
844  * PDC_DMA_BUF_MAX.
845  *
846  * Return: PDC_SUCCESS if successful
847  *         < 0 otherwise (e.g., receive ring is full)
848  */
849 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
850 {
851 	u32 flags = 0;
852 	u32 rx_avail;
853 
854 	/*
855 	 * Num descriptors needed. Conservatively assume we need a descriptor
856 	 * for every entry from our starting point in the scatterlist.
857 	 */
858 	u32 num_desc;
859 	u32 desc_w = 0;	/* Number of tx descriptors written */
860 	u32 bufcnt;	/* Number of bytes of buffer pointed to by descriptor */
861 	dma_addr_t databufptr;	/* DMA address to put in descriptor */
862 
863 	num_desc = (u32)sg_nents(sg);
864 
865 	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
866 					      pdcs->nrxpost);
867 	if (unlikely(num_desc > rx_avail)) {
868 		pdcs->rxnobuf++;
869 		return -ENOSPC;
870 	}
871 
872 	while (sg) {
873 		if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
874 			flags = D64_CTRL1_EOT;
875 		else
876 			flags = 0;
877 
878 		/*
879 		 * If sg buffer larger than PDC limit, split across
880 		 * multiple descriptors
881 		 */
882 		bufcnt = sg_dma_len(sg);
883 		databufptr = sg_dma_address(sg);
884 		while (bufcnt > PDC_DMA_BUF_MAX) {
885 			pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
886 			desc_w++;
887 			bufcnt -= PDC_DMA_BUF_MAX;
888 			databufptr += PDC_DMA_BUF_MAX;
889 			if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
890 				flags = D64_CTRL1_EOT;
891 			else
892 				flags = 0;
893 		}
894 		pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
895 		desc_w++;
896 		sg = sg_next(sg);
897 	}
898 	pdcs->rxin_numd[pdcs->rx_msg_start] += desc_w;
899 
900 	return PDC_SUCCESS;
901 }
902 
903 /**
904  * pdc_irq_handler() - Interrupt handler called in interrupt context.
905  * @irq:      Interrupt number that has fired
906  * @cookie:   PDC state for DMA engine that generated the interrupt
907  *
908  * We have to clear the device interrupt status flags here. So cache the
909  * status for later use in the thread function. Other than that, just return
910  * WAKE_THREAD to invoke the thread function.
911  *
912  * Return: IRQ_WAKE_THREAD if interrupt is ours
913  *         IRQ_NONE otherwise
914  */
915 static irqreturn_t pdc_irq_handler(int irq, void *cookie)
916 {
917 	struct pdc_state *pdcs = cookie;
918 	u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
919 
920 	if (intstatus & PDC_XMTINTEN_0)
921 		set_bit(PDC_XMTINT_0, &pdcs->intstatus);
922 	if (intstatus & PDC_RCVINTEN_0)
923 		set_bit(PDC_RCVINT_0, &pdcs->intstatus);
924 
925 	/* Clear interrupt flags in device */
926 	iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
927 
928 	/* Wakeup IRQ thread */
929 	if (pdcs && (irq == pdcs->pdc_irq) && (intstatus & PDC_INTMASK))
930 		return IRQ_WAKE_THREAD;
931 
932 	return IRQ_NONE;
933 }
934 
935 /**
936  * pdc_irq_thread() - Function invoked on deferred thread when a DMA tx has
937  * completed or data is available to receive.
938  * @irq:    Interrupt number
939  * @cookie: PDC state for PDC that generated the interrupt
940  *
941  * On DMA tx complete, notify the mailbox client. On DMA rx complete, process
942  * as many SPU response messages as are available and send each to the mailbox
943  * client.
944  *
945  * Return: IRQ_HANDLED if we recognized and handled the interrupt
946  *         IRQ_NONE otherwise
947  */
948 static irqreturn_t pdc_irq_thread(int irq, void *cookie)
949 {
950 	struct pdc_state *pdcs = cookie;
951 	struct mbox_controller *mbc;
952 	struct mbox_chan *chan;
953 	bool tx_int;
954 	bool rx_int;
955 	int rx_status;
956 	struct brcm_message mssg;
957 
958 	tx_int = test_and_clear_bit(PDC_XMTINT_0, &pdcs->intstatus);
959 	rx_int = test_and_clear_bit(PDC_RCVINT_0, &pdcs->intstatus);
960 
961 	if (pdcs && (tx_int || rx_int)) {
962 		dev_dbg(&pdcs->pdev->dev,
963 			"%s() got irq %d with tx_int %s, rx_int %s",
964 			__func__, irq,
965 			tx_int ? "set" : "clear", rx_int ? "set" : "clear");
966 
967 		mbc = &pdcs->mbc;
968 		chan = &mbc->chans[0];
969 
970 		if (tx_int) {
971 			dev_dbg(&pdcs->pdev->dev, "%s(): tx done", __func__);
972 			/* only one frame in flight at a time */
973 			mbox_chan_txdone(chan, PDC_SUCCESS);
974 		}
975 		if (rx_int) {
976 			while (1) {
977 				/* Could be many frames ready */
978 				memset(&mssg, 0, sizeof(mssg));
979 				mssg.type = BRCM_MESSAGE_SPU;
980 				rx_status = pdc_receive(pdcs, &mssg);
981 				if (rx_status >= 0) {
982 					dev_dbg(&pdcs->pdev->dev,
983 						"%s(): invoking client rx cb",
984 						__func__);
985 					mbox_chan_received_data(chan, &mssg);
986 				} else {
987 					dev_dbg(&pdcs->pdev->dev,
988 						"%s(): no SPU response available",
989 						__func__);
990 					break;
991 				}
992 			}
993 		}
994 		return IRQ_HANDLED;
995 	}
996 	return IRQ_NONE;
997 }
998 
999 /**
1000  * pdc_ring_init() - Allocate DMA rings and initialize constant fields of
1001  * descriptors in one ringset.
1002  * @pdcs:    PDC instance state
1003  * @ringset: index of ringset being used
1004  *
1005  * Return: PDC_SUCCESS if ring initialized
1006  *         < 0 otherwise
1007  */
1008 static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
1009 {
1010 	int i;
1011 	int err = PDC_SUCCESS;
1012 	struct dma64 *dma_reg;
1013 	struct device *dev = &pdcs->pdev->dev;
1014 	struct pdc_ring_alloc tx;
1015 	struct pdc_ring_alloc rx;
1016 
1017 	/* Allocate tx ring */
1018 	tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
1019 	if (!tx.vbase) {
1020 		err = -ENOMEM;
1021 		goto done;
1022 	}
1023 
1024 	/* Allocate rx ring */
1025 	rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1026 	if (!rx.vbase) {
1027 		err = -ENOMEM;
1028 		goto fail_dealloc;
1029 	}
1030 
1031 	dev_dbg(dev, " - base DMA addr of tx ring      %pad", &tx.dmabase);
1032 	dev_dbg(dev, " - base virtual addr of tx ring  %p", tx.vbase);
1033 	dev_dbg(dev, " - base DMA addr of rx ring      %pad", &rx.dmabase);
1034 	dev_dbg(dev, " - base virtual addr of rx ring  %p", rx.vbase);
1035 
1036 	/* lock after ring allocation to avoid scheduling while atomic */
1037 	spin_lock(&pdcs->pdc_lock);
1038 
1039 	memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1040 	memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1041 
1042 	pdcs->rxin = 0;
1043 	pdcs->rx_msg_start = 0;
1044 	pdcs->last_rx_curr = 0;
1045 	pdcs->rxout = 0;
1046 	pdcs->txin = 0;
1047 	pdcs->tx_msg_start = 0;
1048 	pdcs->txout = 0;
1049 
1050 	/* Set descriptor array base addresses */
1051 	pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1052 	pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1053 
1054 	/* Tell device the base DMA address of each ring */
1055 	dma_reg = &pdcs->regs->dmaregs[ringset];
1056 	iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1057 		  (void *)&dma_reg->dmaxmt.addrlow);
1058 	iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1059 		  (void *)&dma_reg->dmaxmt.addrhigh);
1060 
1061 	iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1062 		  (void *)&dma_reg->dmarcv.addrlow);
1063 	iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1064 		  (void *)&dma_reg->dmarcv.addrhigh);
1065 
1066 	/* Initialize descriptors */
1067 	for (i = 0; i < PDC_RING_ENTRIES; i++) {
1068 		/* Every tx descriptor can be used for start of frame. */
1069 		if (i != pdcs->ntxpost) {
1070 			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1071 				  (void *)&pdcs->txd_64[i].ctrl1);
1072 		} else {
1073 			/* Last descriptor in ringset. Set End of Table. */
1074 			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1075 				  D64_CTRL1_EOT,
1076 				  (void *)&pdcs->txd_64[i].ctrl1);
1077 		}
1078 
1079 		/* Every rx descriptor can be used for start of frame */
1080 		if (i != pdcs->nrxpost) {
1081 			iowrite32(D64_CTRL1_SOF,
1082 				  (void *)&pdcs->rxd_64[i].ctrl1);
1083 		} else {
1084 			/* Last descriptor in ringset. Set End of Table. */
1085 			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1086 				  (void *)&pdcs->rxd_64[i].ctrl1);
1087 		}
1088 	}
1089 	spin_unlock(&pdcs->pdc_lock);
1090 	return PDC_SUCCESS;
1091 
1092 fail_dealloc:
1093 	dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1094 done:
1095 	return err;
1096 }
1097 
1098 static void pdc_ring_free(struct pdc_state *pdcs)
1099 {
1100 	if (pdcs->tx_ring_alloc.vbase) {
1101 		dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1102 			      pdcs->tx_ring_alloc.dmabase);
1103 		pdcs->tx_ring_alloc.vbase = NULL;
1104 	}
1105 
1106 	if (pdcs->rx_ring_alloc.vbase) {
1107 		dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1108 			      pdcs->rx_ring_alloc.dmabase);
1109 		pdcs->rx_ring_alloc.vbase = NULL;
1110 	}
1111 }
1112 
1113 /**
1114  * pdc_send_data() - mailbox send_data function
1115  * @chan:	The mailbox channel on which the data is sent. The channel
1116  *              corresponds to a DMA ringset.
1117  * @data:	The mailbox message to be sent. The message must be a
1118  *              brcm_message structure.
1119  *
1120  * This function is registered as the send_data function for the mailbox
1121  * controller. From the destination scatterlist in the mailbox message, it
1122  * creates a sequence of receive descriptors in the rx ring. From the source
1123  * scatterlist, it creates a sequence of transmit descriptors in the tx ring.
1124  * After creating the descriptors, it writes the rx ptr and tx ptr registers to
1125  * initiate the DMA transfer.
1126  *
1127  * This function does the DMA map and unmap of the src and dst scatterlists in
1128  * the mailbox message.
1129  *
1130  * Return: 0 if successful
1131  *	   -ENOTSUPP if the mailbox message is a type this driver does not
1132  *			support
1133  *         < 0 if an error
1134  */
1135 static int pdc_send_data(struct mbox_chan *chan, void *data)
1136 {
1137 	struct pdc_state *pdcs = chan->con_priv;
1138 	struct device *dev = &pdcs->pdev->dev;
1139 	struct brcm_message *mssg = data;
1140 	int err = PDC_SUCCESS;
1141 	int src_nent;
1142 	int dst_nent;
1143 	int nent;
1144 
1145 	if (mssg->type != BRCM_MESSAGE_SPU)
1146 		return -ENOTSUPP;
1147 
1148 	src_nent = sg_nents(mssg->spu.src);
1149 	if (src_nent) {
1150 		nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1151 		if (nent == 0)
1152 			return -EIO;
1153 	}
1154 
1155 	dst_nent = sg_nents(mssg->spu.dst);
1156 	if (dst_nent) {
1157 		nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1158 				  DMA_FROM_DEVICE);
1159 		if (nent == 0) {
1160 			dma_unmap_sg(dev, mssg->spu.src, src_nent,
1161 				     DMA_TO_DEVICE);
1162 			return -EIO;
1163 		}
1164 	}
1165 
1166 	spin_lock(&pdcs->pdc_lock);
1167 
1168 	/* Create rx descriptors to SPU catch response */
1169 	err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1170 	err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1171 
1172 	/* Create tx descriptors to submit SPU request */
1173 	err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1174 	err |= pdc_tx_list_final(pdcs);	/* initiate transfer */
1175 
1176 	spin_unlock(&pdcs->pdc_lock);
1177 
1178 	if (err)
1179 		dev_err(&pdcs->pdev->dev,
1180 			"%s failed with error %d", __func__, err);
1181 
1182 	return err;
1183 }
1184 
1185 static int pdc_startup(struct mbox_chan *chan)
1186 {
1187 	return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1188 }
1189 
1190 static void pdc_shutdown(struct mbox_chan *chan)
1191 {
1192 	struct pdc_state *pdcs = chan->con_priv;
1193 
1194 	if (!pdcs)
1195 		return;
1196 
1197 	dev_dbg(&pdcs->pdev->dev,
1198 		"Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
1199 	pdc_ring_free(pdcs);
1200 }
1201 
1202 /**
1203  * pdc_hw_init() - Use the given initialization parameters to initialize the
1204  * state for one of the PDCs.
1205  * @pdcs:  state of the PDC
1206  */
1207 static
1208 void pdc_hw_init(struct pdc_state *pdcs)
1209 {
1210 	struct platform_device *pdev;
1211 	struct device *dev;
1212 	struct dma64 *dma_reg;
1213 	int ringset = PDC_RINGSET;
1214 
1215 	pdev = pdcs->pdev;
1216 	dev = &pdev->dev;
1217 
1218 	dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1219 	dev_dbg(dev, "state structure:                   %p",
1220 		pdcs);
1221 	dev_dbg(dev, " - base virtual addr of hw regs    %p",
1222 		pdcs->pdc_reg_vbase);
1223 
1224 	/* initialize data structures */
1225 	pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1226 	pdcs->txregs_64 = (struct dma64_regs *)
1227 	    (void *)(((u8 *)pdcs->pdc_reg_vbase) +
1228 		     PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1229 	pdcs->rxregs_64 = (struct dma64_regs *)
1230 	    (void *)(((u8 *)pdcs->pdc_reg_vbase) +
1231 		     PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1232 
1233 	pdcs->ntxd = PDC_RING_ENTRIES;
1234 	pdcs->nrxd = PDC_RING_ENTRIES;
1235 	pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1236 	pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1237 	pdcs->regs->intmask = 0;
1238 
1239 	dma_reg = &pdcs->regs->dmaregs[ringset];
1240 	iowrite32(0, (void *)&dma_reg->dmaxmt.ptr);
1241 	iowrite32(0, (void *)&dma_reg->dmarcv.ptr);
1242 
1243 	iowrite32(PDC_TX_CTL, (void *)&dma_reg->dmaxmt.control);
1244 
1245 	iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1246 		  (void *)&dma_reg->dmarcv.control);
1247 
1248 	if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1249 		iowrite32(PDC_CKSUM_CTRL,
1250 			  pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1251 }
1252 
1253 /**
1254  * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
1255  * header returned with each response message.
1256  * @pdcs: PDC state structure
1257  *
1258  * The metadata is not returned to the mailbox client. So the PDC driver
1259  * manages these buffers.
1260  *
1261  * Return: PDC_SUCCESS
1262  *         -ENOMEM if pool creation fails
1263  */
1264 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1265 {
1266 	struct platform_device *pdev;
1267 	struct device *dev;
1268 
1269 	pdev = pdcs->pdev;
1270 	dev = &pdev->dev;
1271 
1272 	pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1273 	if (pdcs->use_bcm_hdr)
1274 		pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1275 
1276 	pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1277 					    pdcs->pdc_resp_hdr_len,
1278 					    RX_BUF_ALIGN, 0);
1279 	if (!pdcs->rx_buf_pool)
1280 		return -ENOMEM;
1281 
1282 	return PDC_SUCCESS;
1283 }
1284 
1285 /**
1286  * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
1287  * specify a threaded IRQ handler for deferred handling of interrupts outside of
1288  * interrupt context.
1289  * @pdcs:   PDC state
1290  *
1291  * Set the interrupt mask for transmit and receive done.
1292  * Set the lazy interrupt frame count to generate an interrupt for just one pkt.
1293  *
1294  * Return:  PDC_SUCCESS
1295  *          <0 if threaded irq request fails
1296  */
1297 static int pdc_interrupts_init(struct pdc_state *pdcs)
1298 {
1299 	struct platform_device *pdev = pdcs->pdev;
1300 	struct device *dev = &pdev->dev;
1301 	struct device_node *dn = pdev->dev.of_node;
1302 	int err;
1303 
1304 	pdcs->intstatus = 0;
1305 
1306 	/* interrupt configuration */
1307 	iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1308 	iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + PDC_RCVLAZY0_OFFSET);
1309 
1310 	/* read irq from device tree */
1311 	pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1312 	dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1313 		dev_name(dev), pdcs->pdc_irq, pdcs);
1314 	err = devm_request_threaded_irq(dev, pdcs->pdc_irq,
1315 					pdc_irq_handler,
1316 					pdc_irq_thread, 0, dev_name(dev), pdcs);
1317 	if (err) {
1318 		dev_err(dev, "threaded tx IRQ %u request failed with err %d\n",
1319 			pdcs->pdc_irq, err);
1320 		return err;
1321 	}
1322 	return PDC_SUCCESS;
1323 }
1324 
1325 static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1326 	.send_data = pdc_send_data,
1327 	.startup = pdc_startup,
1328 	.shutdown = pdc_shutdown
1329 };
1330 
1331 /**
1332  * pdc_mb_init() - Initialize the mailbox controller.
1333  * @pdcs:  PDC state
1334  *
1335  * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
1336  * driver only uses one ringset and thus one mb channel. PDC uses the transmit
1337  * complete interrupt to determine when a mailbox message has successfully been
1338  * transmitted.
1339  *
1340  * Return: 0 on success
1341  *         < 0 if there is an allocation or registration failure
1342  */
1343 static int pdc_mb_init(struct pdc_state *pdcs)
1344 {
1345 	struct device *dev = &pdcs->pdev->dev;
1346 	struct mbox_controller *mbc;
1347 	int chan_index;
1348 	int err;
1349 
1350 	mbc = &pdcs->mbc;
1351 	mbc->dev = dev;
1352 	mbc->ops = &pdc_mbox_chan_ops;
1353 	mbc->num_chans = 1;
1354 	mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1355 				  GFP_KERNEL);
1356 	if (!mbc->chans)
1357 		return -ENOMEM;
1358 
1359 	mbc->txdone_irq = true;
1360 	mbc->txdone_poll = false;
1361 	for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1362 		mbc->chans[chan_index].con_priv = pdcs;
1363 
1364 	/* Register mailbox controller */
1365 	err = mbox_controller_register(mbc);
1366 	if (err) {
1367 		dev_crit(dev,
1368 			 "Failed to register PDC mailbox controller. Error %d.",
1369 			 err);
1370 		return err;
1371 	}
1372 	return 0;
1373 }
1374 
1375 /**
1376  * pdc_dt_read() - Read application-specific data from device tree.
1377  * @pdev:  Platform device
1378  * @pdcs:  PDC state
1379  *
1380  * Reads the number of bytes of receive status that precede each received frame.
1381  * Reads whether transmit and received frames should be preceded by an 8-byte
1382  * BCM header.
1383  *
1384  * Return: 0 if successful
1385  *         -ENODEV if device not available
1386  */
1387 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1388 {
1389 	struct device *dev = &pdev->dev;
1390 	struct device_node *dn = pdev->dev.of_node;
1391 	int err;
1392 
1393 	err = of_property_read_u32(dn, "brcm,rx-status-len",
1394 				   &pdcs->rx_status_len);
1395 	if (err < 0)
1396 		dev_err(dev,
1397 			"%s failed to get DMA receive status length from device tree",
1398 			__func__);
1399 
1400 	pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  * pdc_probe() - Probe function for PDC driver.
1407  * @pdev:   PDC platform device
1408  *
1409  * Reserve and map register regions defined in device tree.
1410  * Allocate and initialize tx and rx DMA rings.
1411  * Initialize a mailbox controller for each PDC.
1412  *
1413  * Return: 0 if successful
1414  *         < 0 if an error
1415  */
1416 static int pdc_probe(struct platform_device *pdev)
1417 {
1418 	int err = 0;
1419 	struct device *dev = &pdev->dev;
1420 	struct resource *pdc_regs;
1421 	struct pdc_state *pdcs;
1422 
1423 	/* PDC state for one SPU */
1424 	pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1425 	if (!pdcs) {
1426 		err = -ENOMEM;
1427 		goto cleanup;
1428 	}
1429 
1430 	spin_lock_init(&pdcs->pdc_lock);
1431 	pdcs->pdev = pdev;
1432 	platform_set_drvdata(pdev, pdcs);
1433 	pdcs->pdc_idx = pdcg.num_spu;
1434 	pdcg.num_spu++;
1435 
1436 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1437 	if (err) {
1438 		dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1439 		goto cleanup;
1440 	}
1441 
1442 	/* Create DMA pool for tx ring */
1443 	pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1444 					  RING_ALIGN, 0);
1445 	if (!pdcs->ring_pool) {
1446 		err = -ENOMEM;
1447 		goto cleanup;
1448 	}
1449 
1450 	err = pdc_dt_read(pdev, pdcs);
1451 	if (err)
1452 		goto cleanup_ring_pool;
1453 
1454 	pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1455 	if (!pdc_regs) {
1456 		err = -ENODEV;
1457 		goto cleanup_ring_pool;
1458 	}
1459 	dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1460 		&pdc_regs->start, &pdc_regs->end);
1461 
1462 	pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
1463 	if (IS_ERR(pdcs->pdc_reg_vbase)) {
1464 		err = PTR_ERR(pdcs->pdc_reg_vbase);
1465 		dev_err(&pdev->dev, "Failed to map registers: %d\n", err);
1466 		goto cleanup_ring_pool;
1467 	}
1468 
1469 	/* create rx buffer pool after dt read to know how big buffers are */
1470 	err = pdc_rx_buf_pool_create(pdcs);
1471 	if (err)
1472 		goto cleanup_ring_pool;
1473 
1474 	pdc_hw_init(pdcs);
1475 
1476 	err = pdc_interrupts_init(pdcs);
1477 	if (err)
1478 		goto cleanup_buf_pool;
1479 
1480 	/* Initialize mailbox controller */
1481 	err = pdc_mb_init(pdcs);
1482 	if (err)
1483 		goto cleanup_buf_pool;
1484 
1485 	pdcs->debugfs_stats = NULL;
1486 	pdc_setup_debugfs(pdcs);
1487 
1488 	dev_dbg(dev, "pdc_probe() successful");
1489 	return PDC_SUCCESS;
1490 
1491 cleanup_buf_pool:
1492 	dma_pool_destroy(pdcs->rx_buf_pool);
1493 
1494 cleanup_ring_pool:
1495 	dma_pool_destroy(pdcs->ring_pool);
1496 
1497 cleanup:
1498 	return err;
1499 }
1500 
1501 static int pdc_remove(struct platform_device *pdev)
1502 {
1503 	struct pdc_state *pdcs = platform_get_drvdata(pdev);
1504 
1505 	pdc_free_debugfs();
1506 
1507 	mbox_controller_unregister(&pdcs->mbc);
1508 
1509 	dma_pool_destroy(pdcs->rx_buf_pool);
1510 	dma_pool_destroy(pdcs->ring_pool);
1511 	return 0;
1512 }
1513 
1514 static const struct of_device_id pdc_mbox_of_match[] = {
1515 	{.compatible = "brcm,iproc-pdc-mbox"},
1516 	{ /* sentinel */ }
1517 };
1518 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1519 
1520 static struct platform_driver pdc_mbox_driver = {
1521 	.probe = pdc_probe,
1522 	.remove = pdc_remove,
1523 	.driver = {
1524 		   .name = "brcm-iproc-pdc-mbox",
1525 		   .of_match_table = of_match_ptr(pdc_mbox_of_match),
1526 		   },
1527 };
1528 module_platform_driver(pdc_mbox_driver);
1529 
1530 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1531 MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1532 MODULE_LICENSE("GPL v2");
1533