1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2016 Broadcom 4 */ 5 6 /* 7 * Broadcom PDC Mailbox Driver 8 * The PDC provides a ring based programming interface to one or more hardware 9 * offload engines. For example, the PDC driver works with both SPU-M and SPU2 10 * cryptographic offload hardware. In some chips the PDC is referred to as MDE, 11 * and in others the FA2/FA+ hardware is used with this PDC driver. 12 * 13 * The PDC driver registers with the Linux mailbox framework as a mailbox 14 * controller, once for each PDC instance. Ring 0 for each PDC is registered as 15 * a mailbox channel. The PDC driver uses interrupts to determine when data 16 * transfers to and from an offload engine are complete. The PDC driver uses 17 * threaded IRQs so that response messages are handled outside of interrupt 18 * context. 19 * 20 * The PDC driver allows multiple messages to be pending in the descriptor 21 * rings. The tx_msg_start descriptor index indicates where the last message 22 * starts. The txin_numd value at this index indicates how many descriptor 23 * indexes make up the message. Similar state is kept on the receive side. When 24 * an rx interrupt indicates a response is ready, the PDC driver processes numd 25 * descriptors from the tx and rx ring, thus processing one response at a time. 26 */ 27 28 #include <linux/errno.h> 29 #include <linux/module.h> 30 #include <linux/init.h> 31 #include <linux/slab.h> 32 #include <linux/debugfs.h> 33 #include <linux/interrupt.h> 34 #include <linux/wait.h> 35 #include <linux/platform_device.h> 36 #include <linux/property.h> 37 #include <linux/io.h> 38 #include <linux/of.h> 39 #include <linux/of_irq.h> 40 #include <linux/mailbox_controller.h> 41 #include <linux/mailbox/brcm-message.h> 42 #include <linux/scatterlist.h> 43 #include <linux/dma-direction.h> 44 #include <linux/dma-mapping.h> 45 #include <linux/dmapool.h> 46 47 #define PDC_SUCCESS 0 48 49 #define RING_ENTRY_SIZE sizeof(struct dma64dd) 50 51 /* # entries in PDC dma ring */ 52 #define PDC_RING_ENTRIES 512 53 /* 54 * Minimum number of ring descriptor entries that must be free to tell mailbox 55 * framework that it can submit another request 56 */ 57 #define PDC_RING_SPACE_MIN 15 58 59 #define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE) 60 /* Rings are 8k aligned */ 61 #define RING_ALIGN_ORDER 13 62 #define RING_ALIGN BIT(RING_ALIGN_ORDER) 63 64 #define RX_BUF_ALIGN_ORDER 5 65 #define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER) 66 67 /* descriptor bumping macros */ 68 #define XXD(x, max_mask) ((x) & (max_mask)) 69 #define TXD(x, max_mask) XXD((x), (max_mask)) 70 #define RXD(x, max_mask) XXD((x), (max_mask)) 71 #define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask)) 72 #define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask)) 73 #define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask)) 74 #define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask)) 75 #define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask)) 76 #define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask)) 77 78 /* Length of BCM header at start of SPU msg, in bytes */ 79 #define BCM_HDR_LEN 8 80 81 /* 82 * PDC driver reserves ringset 0 on each SPU for its own use. The driver does 83 * not currently support use of multiple ringsets on a single PDC engine. 84 */ 85 #define PDC_RINGSET 0 86 87 /* 88 * Interrupt mask and status definitions. Enable interrupts for tx and rx on 89 * ring 0 90 */ 91 #define PDC_RCVINT_0 (16 + PDC_RINGSET) 92 #define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0) 93 #define PDC_INTMASK (PDC_RCVINTEN_0) 94 #define PDC_LAZY_FRAMECOUNT 1 95 #define PDC_LAZY_TIMEOUT 10000 96 #define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24)) 97 #define PDC_INTMASK_OFFSET 0x24 98 #define PDC_INTSTATUS_OFFSET 0x20 99 #define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET) 100 #define FA_RCVLAZY0_OFFSET 0x100 101 102 /* 103 * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata 104 * before frame 105 */ 106 #define PDC_SPU2_RESP_HDR_LEN 17 107 #define PDC_CKSUM_CTRL BIT(27) 108 #define PDC_CKSUM_CTRL_OFFSET 0x400 109 110 #define PDC_SPUM_RESP_HDR_LEN 32 111 112 /* 113 * Sets the following bits for write to transmit control reg: 114 * 11 - PtyChkDisable - parity check is disabled 115 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory 116 */ 117 #define PDC_TX_CTL 0x000C0800 118 119 /* Bit in tx control reg to enable tx channel */ 120 #define PDC_TX_ENABLE 0x1 121 122 /* 123 * Sets the following bits for write to receive control reg: 124 * 7:1 - RcvOffset - size in bytes of status region at start of rx frame buf 125 * 9 - SepRxHdrDescEn - place start of new frames only in descriptors 126 * that have StartOfFrame set 127 * 10 - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all 128 * remaining bytes in current frame, report error 129 * in rx frame status for current frame 130 * 11 - PtyChkDisable - parity check is disabled 131 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory 132 */ 133 #define PDC_RX_CTL 0x000C0E00 134 135 /* Bit in rx control reg to enable rx channel */ 136 #define PDC_RX_ENABLE 0x1 137 138 #define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1) 139 140 /* descriptor flags */ 141 #define D64_CTRL1_EOT BIT(28) /* end of descriptor table */ 142 #define D64_CTRL1_IOC BIT(29) /* interrupt on complete */ 143 #define D64_CTRL1_EOF BIT(30) /* end of frame */ 144 #define D64_CTRL1_SOF BIT(31) /* start of frame */ 145 146 #define RX_STATUS_OVERFLOW 0x00800000 147 #define RX_STATUS_LEN 0x0000FFFF 148 149 #define PDC_TXREGS_OFFSET 0x200 150 #define PDC_RXREGS_OFFSET 0x220 151 152 /* Maximum size buffer the DMA engine can handle */ 153 #define PDC_DMA_BUF_MAX 16384 154 155 enum pdc_hw { 156 FA_HW, /* FA2/FA+ hardware (i.e. Northstar Plus) */ 157 PDC_HW /* PDC/MDE hardware (i.e. Northstar 2, Pegasus) */ 158 }; 159 160 struct pdc_dma_map { 161 void *ctx; /* opaque context associated with frame */ 162 }; 163 164 /* dma descriptor */ 165 struct dma64dd { 166 u32 ctrl1; /* misc control bits */ 167 u32 ctrl2; /* buffer count and address extension */ 168 u32 addrlow; /* memory address of the date buffer, bits 31:0 */ 169 u32 addrhigh; /* memory address of the date buffer, bits 63:32 */ 170 }; 171 172 /* dma registers per channel(xmt or rcv) */ 173 struct dma64_regs { 174 u32 control; /* enable, et al */ 175 u32 ptr; /* last descriptor posted to chip */ 176 u32 addrlow; /* descriptor ring base address low 32-bits */ 177 u32 addrhigh; /* descriptor ring base address bits 63:32 */ 178 u32 status0; /* last rx descriptor written by hw */ 179 u32 status1; /* driver does not use */ 180 }; 181 182 /* cpp contortions to concatenate w/arg prescan */ 183 #ifndef PAD 184 #define _PADLINE(line) pad ## line 185 #define _XSTR(line) _PADLINE(line) 186 #define PAD _XSTR(__LINE__) 187 #endif /* PAD */ 188 189 /* dma registers. matches hw layout. */ 190 struct dma64 { 191 struct dma64_regs dmaxmt; /* dma tx */ 192 u32 PAD[2]; 193 struct dma64_regs dmarcv; /* dma rx */ 194 u32 PAD[2]; 195 }; 196 197 /* PDC registers */ 198 struct pdc_regs { 199 u32 devcontrol; /* 0x000 */ 200 u32 devstatus; /* 0x004 */ 201 u32 PAD; 202 u32 biststatus; /* 0x00c */ 203 u32 PAD[4]; 204 u32 intstatus; /* 0x020 */ 205 u32 intmask; /* 0x024 */ 206 u32 gptimer; /* 0x028 */ 207 208 u32 PAD; 209 u32 intrcvlazy_0; /* 0x030 (Only in PDC, not FA2) */ 210 u32 intrcvlazy_1; /* 0x034 (Only in PDC, not FA2) */ 211 u32 intrcvlazy_2; /* 0x038 (Only in PDC, not FA2) */ 212 u32 intrcvlazy_3; /* 0x03c (Only in PDC, not FA2) */ 213 214 u32 PAD[48]; 215 u32 fa_intrecvlazy; /* 0x100 (Only in FA2, not PDC) */ 216 u32 flowctlthresh; /* 0x104 */ 217 u32 wrrthresh; /* 0x108 */ 218 u32 gmac_idle_cnt_thresh; /* 0x10c */ 219 220 u32 PAD[4]; 221 u32 ifioaccessaddr; /* 0x120 */ 222 u32 ifioaccessbyte; /* 0x124 */ 223 u32 ifioaccessdata; /* 0x128 */ 224 225 u32 PAD[21]; 226 u32 phyaccess; /* 0x180 */ 227 u32 PAD; 228 u32 phycontrol; /* 0x188 */ 229 u32 txqctl; /* 0x18c */ 230 u32 rxqctl; /* 0x190 */ 231 u32 gpioselect; /* 0x194 */ 232 u32 gpio_output_en; /* 0x198 */ 233 u32 PAD; /* 0x19c */ 234 u32 txq_rxq_mem_ctl; /* 0x1a0 */ 235 u32 memory_ecc_status; /* 0x1a4 */ 236 u32 serdes_ctl; /* 0x1a8 */ 237 u32 serdes_status0; /* 0x1ac */ 238 u32 serdes_status1; /* 0x1b0 */ 239 u32 PAD[11]; /* 0x1b4-1dc */ 240 u32 clk_ctl_st; /* 0x1e0 */ 241 u32 hw_war; /* 0x1e4 (Only in PDC, not FA2) */ 242 u32 pwrctl; /* 0x1e8 */ 243 u32 PAD[5]; 244 245 #define PDC_NUM_DMA_RINGS 4 246 struct dma64 dmaregs[PDC_NUM_DMA_RINGS]; /* 0x0200 - 0x2fc */ 247 248 /* more registers follow, but we don't use them */ 249 }; 250 251 /* structure for allocating/freeing DMA rings */ 252 struct pdc_ring_alloc { 253 dma_addr_t dmabase; /* DMA address of start of ring */ 254 void *vbase; /* base kernel virtual address of ring */ 255 u32 size; /* ring allocation size in bytes */ 256 }; 257 258 /* 259 * context associated with a receive descriptor. 260 * @rxp_ctx: opaque context associated with frame that starts at each 261 * rx ring index. 262 * @dst_sg: Scatterlist used to form reply frames beginning at a given ring 263 * index. Retained in order to unmap each sg after reply is processed. 264 * @rxin_numd: Number of rx descriptors associated with the message that starts 265 * at a descriptor index. Not set for every index. For example, 266 * if descriptor index i points to a scatterlist with 4 entries, 267 * then the next three descriptor indexes don't have a value set. 268 * @resp_hdr: Virtual address of buffer used to catch DMA rx status 269 * @resp_hdr_daddr: physical address of DMA rx status buffer 270 */ 271 struct pdc_rx_ctx { 272 void *rxp_ctx; 273 struct scatterlist *dst_sg; 274 u32 rxin_numd; 275 void *resp_hdr; 276 dma_addr_t resp_hdr_daddr; 277 }; 278 279 /* PDC state structure */ 280 struct pdc_state { 281 /* Index of the PDC whose state is in this structure instance */ 282 u8 pdc_idx; 283 284 /* Platform device for this PDC instance */ 285 struct platform_device *pdev; 286 287 /* 288 * Each PDC instance has a mailbox controller. PDC receives request 289 * messages through mailboxes, and sends response messages through the 290 * mailbox framework. 291 */ 292 struct mbox_controller mbc; 293 294 unsigned int pdc_irq; 295 296 /* tasklet for deferred processing after DMA rx interrupt */ 297 struct tasklet_struct rx_tasklet; 298 299 /* Number of bytes of receive status prior to each rx frame */ 300 u32 rx_status_len; 301 /* Whether a BCM header is prepended to each frame */ 302 bool use_bcm_hdr; 303 /* Sum of length of BCM header and rx status header */ 304 u32 pdc_resp_hdr_len; 305 306 /* The base virtual address of DMA hw registers */ 307 void __iomem *pdc_reg_vbase; 308 309 /* Pool for allocation of DMA rings */ 310 struct dma_pool *ring_pool; 311 312 /* Pool for allocation of metadata buffers for response messages */ 313 struct dma_pool *rx_buf_pool; 314 315 /* 316 * The base virtual address of DMA tx/rx descriptor rings. Corresponding 317 * DMA address and size of ring allocation. 318 */ 319 struct pdc_ring_alloc tx_ring_alloc; 320 struct pdc_ring_alloc rx_ring_alloc; 321 322 struct pdc_regs *regs; /* start of PDC registers */ 323 324 struct dma64_regs *txregs_64; /* dma tx engine registers */ 325 struct dma64_regs *rxregs_64; /* dma rx engine registers */ 326 327 /* 328 * Arrays of PDC_RING_ENTRIES descriptors 329 * To use multiple ringsets, this needs to be extended 330 */ 331 struct dma64dd *txd_64; /* tx descriptor ring */ 332 struct dma64dd *rxd_64; /* rx descriptor ring */ 333 334 /* descriptor ring sizes */ 335 u32 ntxd; /* # tx descriptors */ 336 u32 nrxd; /* # rx descriptors */ 337 u32 nrxpost; /* # rx buffers to keep posted */ 338 u32 ntxpost; /* max number of tx buffers that can be posted */ 339 340 /* 341 * Index of next tx descriptor to reclaim. That is, the descriptor 342 * index of the oldest tx buffer for which the host has yet to process 343 * the corresponding response. 344 */ 345 u32 txin; 346 347 /* 348 * Index of the first receive descriptor for the sequence of 349 * message fragments currently under construction. Used to build up 350 * the rxin_numd count for a message. Updated to rxout when the host 351 * starts a new sequence of rx buffers for a new message. 352 */ 353 u32 tx_msg_start; 354 355 /* Index of next tx descriptor to post. */ 356 u32 txout; 357 358 /* 359 * Number of tx descriptors associated with the message that starts 360 * at this tx descriptor index. 361 */ 362 u32 txin_numd[PDC_RING_ENTRIES]; 363 364 /* 365 * Index of next rx descriptor to reclaim. This is the index of 366 * the next descriptor whose data has yet to be processed by the host. 367 */ 368 u32 rxin; 369 370 /* 371 * Index of the first receive descriptor for the sequence of 372 * message fragments currently under construction. Used to build up 373 * the rxin_numd count for a message. Updated to rxout when the host 374 * starts a new sequence of rx buffers for a new message. 375 */ 376 u32 rx_msg_start; 377 378 /* 379 * Saved value of current hardware rx descriptor index. 380 * The last rx buffer written by the hw is the index previous to 381 * this one. 382 */ 383 u32 last_rx_curr; 384 385 /* Index of next rx descriptor to post. */ 386 u32 rxout; 387 388 struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES]; 389 390 /* 391 * Scatterlists used to form request and reply frames beginning at a 392 * given ring index. Retained in order to unmap each sg after reply 393 * is processed 394 */ 395 struct scatterlist *src_sg[PDC_RING_ENTRIES]; 396 397 /* counters */ 398 u32 pdc_requests; /* number of request messages submitted */ 399 u32 pdc_replies; /* number of reply messages received */ 400 u32 last_tx_not_done; /* too few tx descriptors to indicate done */ 401 u32 tx_ring_full; /* unable to accept msg because tx ring full */ 402 u32 rx_ring_full; /* unable to accept msg because rx ring full */ 403 u32 txnobuf; /* unable to create tx descriptor */ 404 u32 rxnobuf; /* unable to create rx descriptor */ 405 u32 rx_oflow; /* count of rx overflows */ 406 407 /* hardware type - FA2 or PDC/MDE */ 408 enum pdc_hw hw_type; 409 }; 410 411 /* Global variables */ 412 413 struct pdc_globals { 414 /* Actual number of SPUs in hardware, as reported by device tree */ 415 u32 num_spu; 416 }; 417 418 static struct pdc_globals pdcg; 419 420 /* top level debug FS directory for PDC driver */ 421 static struct dentry *debugfs_dir; 422 423 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf, 424 size_t count, loff_t *offp) 425 { 426 struct pdc_state *pdcs; 427 char *buf; 428 ssize_t ret, out_offset, out_count; 429 430 out_count = 512; 431 432 buf = kmalloc(out_count, GFP_KERNEL); 433 if (!buf) 434 return -ENOMEM; 435 436 pdcs = filp->private_data; 437 out_offset = 0; 438 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 439 "SPU %u stats:\n", pdcs->pdc_idx); 440 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 441 "PDC requests....................%u\n", 442 pdcs->pdc_requests); 443 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 444 "PDC responses...................%u\n", 445 pdcs->pdc_replies); 446 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 447 "Tx not done.....................%u\n", 448 pdcs->last_tx_not_done); 449 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 450 "Tx ring full....................%u\n", 451 pdcs->tx_ring_full); 452 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 453 "Rx ring full....................%u\n", 454 pdcs->rx_ring_full); 455 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 456 "Tx desc write fail. Ring full...%u\n", 457 pdcs->txnobuf); 458 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 459 "Rx desc write fail. Ring full...%u\n", 460 pdcs->rxnobuf); 461 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 462 "Receive overflow................%u\n", 463 pdcs->rx_oflow); 464 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 465 "Num frags in rx ring............%u\n", 466 NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, 467 pdcs->nrxpost)); 468 469 if (out_offset > out_count) 470 out_offset = out_count; 471 472 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); 473 kfree(buf); 474 return ret; 475 } 476 477 static const struct file_operations pdc_debugfs_stats = { 478 .owner = THIS_MODULE, 479 .open = simple_open, 480 .read = pdc_debugfs_read, 481 }; 482 483 /** 484 * pdc_setup_debugfs() - Create the debug FS directories. If the top-level 485 * directory has not yet been created, create it now. Create a stats file in 486 * this directory for a SPU. 487 * @pdcs: PDC state structure 488 */ 489 static void pdc_setup_debugfs(struct pdc_state *pdcs) 490 { 491 char spu_stats_name[16]; 492 493 if (!debugfs_initialized()) 494 return; 495 496 snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx); 497 if (!debugfs_dir) 498 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); 499 500 /* S_IRUSR == 0400 */ 501 debugfs_create_file(spu_stats_name, 0400, debugfs_dir, pdcs, 502 &pdc_debugfs_stats); 503 } 504 505 static void pdc_free_debugfs(void) 506 { 507 debugfs_remove_recursive(debugfs_dir); 508 debugfs_dir = NULL; 509 } 510 511 /** 512 * pdc_build_rxd() - Build DMA descriptor to receive SPU result. 513 * @pdcs: PDC state for SPU that will generate result 514 * @dma_addr: DMA address of buffer that descriptor is being built for 515 * @buf_len: Length of the receive buffer, in bytes 516 * @flags: Flags to be stored in descriptor 517 */ 518 static inline void 519 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr, 520 u32 buf_len, u32 flags) 521 { 522 struct device *dev = &pdcs->pdev->dev; 523 struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout]; 524 525 dev_dbg(dev, 526 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n", 527 pdcs->pdc_idx, pdcs->rxout, buf_len, flags); 528 529 rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr)); 530 rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr)); 531 rxd->ctrl1 = cpu_to_le32(flags); 532 rxd->ctrl2 = cpu_to_le32(buf_len); 533 534 /* bump ring index and return */ 535 pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost); 536 } 537 538 /** 539 * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to 540 * hardware. 541 * @pdcs: PDC state for the SPU that will process this request 542 * @dma_addr: DMA address of packet to be transmitted 543 * @buf_len: Length of tx buffer, in bytes 544 * @flags: Flags to be stored in descriptor 545 */ 546 static inline void 547 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len, 548 u32 flags) 549 { 550 struct device *dev = &pdcs->pdev->dev; 551 struct dma64dd *txd = &pdcs->txd_64[pdcs->txout]; 552 553 dev_dbg(dev, 554 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n", 555 pdcs->pdc_idx, pdcs->txout, buf_len, flags); 556 557 txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr)); 558 txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr)); 559 txd->ctrl1 = cpu_to_le32(flags); 560 txd->ctrl2 = cpu_to_le32(buf_len); 561 562 /* bump ring index and return */ 563 pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost); 564 } 565 566 /** 567 * pdc_receive_one() - Receive a response message from a given SPU. 568 * @pdcs: PDC state for the SPU to receive from 569 * 570 * When the return code indicates success, the response message is available in 571 * the receive buffers provided prior to submission of the request. 572 * 573 * Return: PDC_SUCCESS if one or more receive descriptors was processed 574 * -EAGAIN indicates that no response message is available 575 * -EIO an error occurred 576 */ 577 static int 578 pdc_receive_one(struct pdc_state *pdcs) 579 { 580 struct device *dev = &pdcs->pdev->dev; 581 struct mbox_controller *mbc; 582 struct mbox_chan *chan; 583 struct brcm_message mssg; 584 u32 len, rx_status; 585 u32 num_frags; 586 u8 *resp_hdr; /* virtual addr of start of resp message DMA header */ 587 u32 frags_rdy; /* number of fragments ready to read */ 588 u32 rx_idx; /* ring index of start of receive frame */ 589 dma_addr_t resp_hdr_daddr; 590 struct pdc_rx_ctx *rx_ctx; 591 592 mbc = &pdcs->mbc; 593 chan = &mbc->chans[0]; 594 mssg.type = BRCM_MESSAGE_SPU; 595 596 /* 597 * return if a complete response message is not yet ready. 598 * rxin_numd[rxin] is the number of fragments in the next msg 599 * to read. 600 */ 601 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost); 602 if ((frags_rdy == 0) || 603 (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd)) 604 /* No response ready */ 605 return -EAGAIN; 606 607 num_frags = pdcs->txin_numd[pdcs->txin]; 608 WARN_ON(num_frags == 0); 609 610 dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin], 611 sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE); 612 613 pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost; 614 615 dev_dbg(dev, "PDC %u reclaimed %d tx descriptors", 616 pdcs->pdc_idx, num_frags); 617 618 rx_idx = pdcs->rxin; 619 rx_ctx = &pdcs->rx_ctx[rx_idx]; 620 num_frags = rx_ctx->rxin_numd; 621 /* Return opaque context with result */ 622 mssg.ctx = rx_ctx->rxp_ctx; 623 rx_ctx->rxp_ctx = NULL; 624 resp_hdr = rx_ctx->resp_hdr; 625 resp_hdr_daddr = rx_ctx->resp_hdr_daddr; 626 dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg), 627 DMA_FROM_DEVICE); 628 629 pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost; 630 631 dev_dbg(dev, "PDC %u reclaimed %d rx descriptors", 632 pdcs->pdc_idx, num_frags); 633 634 dev_dbg(dev, 635 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n", 636 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin, 637 pdcs->rxout, pdcs->last_rx_curr); 638 639 if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) { 640 /* 641 * For SPU-M, get length of response msg and rx overflow status. 642 */ 643 rx_status = *((u32 *)resp_hdr); 644 len = rx_status & RX_STATUS_LEN; 645 dev_dbg(dev, 646 "SPU response length %u bytes", len); 647 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) { 648 if (rx_status & RX_STATUS_OVERFLOW) { 649 dev_err_ratelimited(dev, 650 "crypto receive overflow"); 651 pdcs->rx_oflow++; 652 } else { 653 dev_info_ratelimited(dev, "crypto rx len = 0"); 654 } 655 return -EIO; 656 } 657 } 658 659 dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr); 660 661 mbox_chan_received_data(chan, &mssg); 662 663 pdcs->pdc_replies++; 664 return PDC_SUCCESS; 665 } 666 667 /** 668 * pdc_receive() - Process as many responses as are available in the rx ring. 669 * @pdcs: PDC state 670 * 671 * Called within the hard IRQ. 672 * Return: 673 */ 674 static int 675 pdc_receive(struct pdc_state *pdcs) 676 { 677 int rx_status; 678 679 /* read last_rx_curr from register once */ 680 pdcs->last_rx_curr = 681 (ioread32((const void __iomem *)&pdcs->rxregs_64->status0) & 682 CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE; 683 684 do { 685 /* Could be many frames ready */ 686 rx_status = pdc_receive_one(pdcs); 687 } while (rx_status == PDC_SUCCESS); 688 689 return 0; 690 } 691 692 /** 693 * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit 694 * descriptors for a given SPU. The scatterlist buffers contain the data for a 695 * SPU request message. 696 * @pdcs: PDC state for the SPU that will process this request 697 * @sg: Scatterlist whose buffers contain part of the SPU request 698 * 699 * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors 700 * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length. 701 * 702 * Return: PDC_SUCCESS if successful 703 * < 0 otherwise 704 */ 705 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg) 706 { 707 u32 flags = 0; 708 u32 eot; 709 u32 tx_avail; 710 711 /* 712 * Num descriptors needed. Conservatively assume we need a descriptor 713 * for every entry in sg. 714 */ 715 u32 num_desc; 716 u32 desc_w = 0; /* Number of tx descriptors written */ 717 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */ 718 dma_addr_t databufptr; /* DMA address to put in descriptor */ 719 720 num_desc = (u32)sg_nents(sg); 721 722 /* check whether enough tx descriptors are available */ 723 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout, 724 pdcs->ntxpost); 725 if (unlikely(num_desc > tx_avail)) { 726 pdcs->txnobuf++; 727 return -ENOSPC; 728 } 729 730 /* build tx descriptors */ 731 if (pdcs->tx_msg_start == pdcs->txout) { 732 /* Start of frame */ 733 pdcs->txin_numd[pdcs->tx_msg_start] = 0; 734 pdcs->src_sg[pdcs->txout] = sg; 735 flags = D64_CTRL1_SOF; 736 } 737 738 while (sg) { 739 if (unlikely(pdcs->txout == (pdcs->ntxd - 1))) 740 eot = D64_CTRL1_EOT; 741 else 742 eot = 0; 743 744 /* 745 * If sg buffer larger than PDC limit, split across 746 * multiple descriptors 747 */ 748 bufcnt = sg_dma_len(sg); 749 databufptr = sg_dma_address(sg); 750 while (bufcnt > PDC_DMA_BUF_MAX) { 751 pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX, 752 flags | eot); 753 desc_w++; 754 bufcnt -= PDC_DMA_BUF_MAX; 755 databufptr += PDC_DMA_BUF_MAX; 756 if (unlikely(pdcs->txout == (pdcs->ntxd - 1))) 757 eot = D64_CTRL1_EOT; 758 else 759 eot = 0; 760 } 761 sg = sg_next(sg); 762 if (!sg) 763 /* Writing last descriptor for frame */ 764 flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC); 765 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot); 766 desc_w++; 767 /* Clear start of frame after first descriptor */ 768 flags &= ~D64_CTRL1_SOF; 769 } 770 pdcs->txin_numd[pdcs->tx_msg_start] += desc_w; 771 772 return PDC_SUCCESS; 773 } 774 775 /** 776 * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx 777 * ring. 778 * @pdcs: PDC state for SPU to process the request 779 * 780 * Sets the index of the last descriptor written in both the rx and tx ring. 781 * 782 * Return: PDC_SUCCESS 783 */ 784 static int pdc_tx_list_final(struct pdc_state *pdcs) 785 { 786 /* 787 * write barrier to ensure all register writes are complete 788 * before chip starts to process new request 789 */ 790 wmb(); 791 iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr); 792 iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr); 793 pdcs->pdc_requests++; 794 795 return PDC_SUCCESS; 796 } 797 798 /** 799 * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC. 800 * @pdcs: PDC state for SPU handling request 801 * @dst_sg: scatterlist providing rx buffers for response to be returned to 802 * mailbox client 803 * @ctx: Opaque context for this request 804 * 805 * Posts a single receive descriptor to hold the metadata that precedes a 806 * response. For example, with SPU-M, the metadata is a 32-byte DMA header and 807 * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and 808 * rx to indicate the start of a new message. 809 * 810 * Return: PDC_SUCCESS if successful 811 * < 0 if an error (e.g., rx ring is full) 812 */ 813 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg, 814 void *ctx) 815 { 816 u32 flags = 0; 817 u32 rx_avail; 818 u32 rx_pkt_cnt = 1; /* Adding a single rx buffer */ 819 dma_addr_t daddr; 820 void *vaddr; 821 struct pdc_rx_ctx *rx_ctx; 822 823 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 824 pdcs->nrxpost); 825 if (unlikely(rx_pkt_cnt > rx_avail)) { 826 pdcs->rxnobuf++; 827 return -ENOSPC; 828 } 829 830 /* allocate a buffer for the dma rx status */ 831 vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr); 832 if (unlikely(!vaddr)) 833 return -ENOMEM; 834 835 /* 836 * Update msg_start indexes for both tx and rx to indicate the start 837 * of a new sequence of descriptor indexes that contain the fragments 838 * of the same message. 839 */ 840 pdcs->rx_msg_start = pdcs->rxout; 841 pdcs->tx_msg_start = pdcs->txout; 842 843 /* This is always the first descriptor in the receive sequence */ 844 flags = D64_CTRL1_SOF; 845 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1; 846 847 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 848 flags |= D64_CTRL1_EOT; 849 850 rx_ctx = &pdcs->rx_ctx[pdcs->rxout]; 851 rx_ctx->rxp_ctx = ctx; 852 rx_ctx->dst_sg = dst_sg; 853 rx_ctx->resp_hdr = vaddr; 854 rx_ctx->resp_hdr_daddr = daddr; 855 pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags); 856 return PDC_SUCCESS; 857 } 858 859 /** 860 * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive 861 * descriptors for a given SPU. The caller must have already DMA mapped the 862 * scatterlist. 863 * @pdcs: PDC state for the SPU that will process this request 864 * @sg: Scatterlist whose buffers are added to the receive ring 865 * 866 * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX, 867 * multiple receive descriptors are written, each with a buffer <= 868 * PDC_DMA_BUF_MAX. 869 * 870 * Return: PDC_SUCCESS if successful 871 * < 0 otherwise (e.g., receive ring is full) 872 */ 873 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg) 874 { 875 u32 flags = 0; 876 u32 rx_avail; 877 878 /* 879 * Num descriptors needed. Conservatively assume we need a descriptor 880 * for every entry from our starting point in the scatterlist. 881 */ 882 u32 num_desc; 883 u32 desc_w = 0; /* Number of tx descriptors written */ 884 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */ 885 dma_addr_t databufptr; /* DMA address to put in descriptor */ 886 887 num_desc = (u32)sg_nents(sg); 888 889 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 890 pdcs->nrxpost); 891 if (unlikely(num_desc > rx_avail)) { 892 pdcs->rxnobuf++; 893 return -ENOSPC; 894 } 895 896 while (sg) { 897 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 898 flags = D64_CTRL1_EOT; 899 else 900 flags = 0; 901 902 /* 903 * If sg buffer larger than PDC limit, split across 904 * multiple descriptors 905 */ 906 bufcnt = sg_dma_len(sg); 907 databufptr = sg_dma_address(sg); 908 while (bufcnt > PDC_DMA_BUF_MAX) { 909 pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags); 910 desc_w++; 911 bufcnt -= PDC_DMA_BUF_MAX; 912 databufptr += PDC_DMA_BUF_MAX; 913 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 914 flags = D64_CTRL1_EOT; 915 else 916 flags = 0; 917 } 918 pdc_build_rxd(pdcs, databufptr, bufcnt, flags); 919 desc_w++; 920 sg = sg_next(sg); 921 } 922 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w; 923 924 return PDC_SUCCESS; 925 } 926 927 /** 928 * pdc_irq_handler() - Interrupt handler called in interrupt context. 929 * @irq: Interrupt number that has fired 930 * @data: device struct for DMA engine that generated the interrupt 931 * 932 * We have to clear the device interrupt status flags here. So cache the 933 * status for later use in the thread function. Other than that, just return 934 * WAKE_THREAD to invoke the thread function. 935 * 936 * Return: IRQ_WAKE_THREAD if interrupt is ours 937 * IRQ_NONE otherwise 938 */ 939 static irqreturn_t pdc_irq_handler(int irq, void *data) 940 { 941 struct device *dev = (struct device *)data; 942 struct pdc_state *pdcs = dev_get_drvdata(dev); 943 u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET); 944 945 if (unlikely(intstatus == 0)) 946 return IRQ_NONE; 947 948 /* Disable interrupts until soft handler runs */ 949 iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 950 951 /* Clear interrupt flags in device */ 952 iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET); 953 954 /* Wakeup IRQ thread */ 955 tasklet_schedule(&pdcs->rx_tasklet); 956 return IRQ_HANDLED; 957 } 958 959 /** 960 * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after 961 * a DMA receive interrupt. Reenables the receive interrupt. 962 * @t: Pointer to the Altera sSGDMA channel structure 963 */ 964 static void pdc_tasklet_cb(struct tasklet_struct *t) 965 { 966 struct pdc_state *pdcs = from_tasklet(pdcs, t, rx_tasklet); 967 968 pdc_receive(pdcs); 969 970 /* reenable interrupts */ 971 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 972 } 973 974 /** 975 * pdc_ring_init() - Allocate DMA rings and initialize constant fields of 976 * descriptors in one ringset. 977 * @pdcs: PDC instance state 978 * @ringset: index of ringset being used 979 * 980 * Return: PDC_SUCCESS if ring initialized 981 * < 0 otherwise 982 */ 983 static int pdc_ring_init(struct pdc_state *pdcs, int ringset) 984 { 985 int i; 986 int err = PDC_SUCCESS; 987 struct dma64 *dma_reg; 988 struct device *dev = &pdcs->pdev->dev; 989 struct pdc_ring_alloc tx; 990 struct pdc_ring_alloc rx; 991 992 /* Allocate tx ring */ 993 tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase); 994 if (unlikely(!tx.vbase)) { 995 err = -ENOMEM; 996 goto done; 997 } 998 999 /* Allocate rx ring */ 1000 rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase); 1001 if (unlikely(!rx.vbase)) { 1002 err = -ENOMEM; 1003 goto fail_dealloc; 1004 } 1005 1006 dev_dbg(dev, " - base DMA addr of tx ring %pad", &tx.dmabase); 1007 dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase); 1008 dev_dbg(dev, " - base DMA addr of rx ring %pad", &rx.dmabase); 1009 dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase); 1010 1011 memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx)); 1012 memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx)); 1013 1014 pdcs->rxin = 0; 1015 pdcs->rx_msg_start = 0; 1016 pdcs->last_rx_curr = 0; 1017 pdcs->rxout = 0; 1018 pdcs->txin = 0; 1019 pdcs->tx_msg_start = 0; 1020 pdcs->txout = 0; 1021 1022 /* Set descriptor array base addresses */ 1023 pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase; 1024 pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase; 1025 1026 /* Tell device the base DMA address of each ring */ 1027 dma_reg = &pdcs->regs->dmaregs[ringset]; 1028 1029 /* But first disable DMA and set curptr to 0 for both TX & RX */ 1030 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1031 iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)), 1032 &dma_reg->dmarcv.control); 1033 iowrite32(0, &dma_reg->dmaxmt.ptr); 1034 iowrite32(0, &dma_reg->dmarcv.ptr); 1035 1036 /* Set base DMA addresses */ 1037 iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase), 1038 &dma_reg->dmaxmt.addrlow); 1039 iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase), 1040 &dma_reg->dmaxmt.addrhigh); 1041 1042 iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase), 1043 &dma_reg->dmarcv.addrlow); 1044 iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase), 1045 &dma_reg->dmarcv.addrhigh); 1046 1047 /* Re-enable DMA */ 1048 iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control); 1049 iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)), 1050 &dma_reg->dmarcv.control); 1051 1052 /* Initialize descriptors */ 1053 for (i = 0; i < PDC_RING_ENTRIES; i++) { 1054 /* Every tx descriptor can be used for start of frame. */ 1055 if (i != pdcs->ntxpost) { 1056 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF, 1057 &pdcs->txd_64[i].ctrl1); 1058 } else { 1059 /* Last descriptor in ringset. Set End of Table. */ 1060 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF | 1061 D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1); 1062 } 1063 1064 /* Every rx descriptor can be used for start of frame */ 1065 if (i != pdcs->nrxpost) { 1066 iowrite32(D64_CTRL1_SOF, 1067 &pdcs->rxd_64[i].ctrl1); 1068 } else { 1069 /* Last descriptor in ringset. Set End of Table. */ 1070 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT, 1071 &pdcs->rxd_64[i].ctrl1); 1072 } 1073 } 1074 return PDC_SUCCESS; 1075 1076 fail_dealloc: 1077 dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase); 1078 done: 1079 return err; 1080 } 1081 1082 static void pdc_ring_free(struct pdc_state *pdcs) 1083 { 1084 if (pdcs->tx_ring_alloc.vbase) { 1085 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase, 1086 pdcs->tx_ring_alloc.dmabase); 1087 pdcs->tx_ring_alloc.vbase = NULL; 1088 } 1089 1090 if (pdcs->rx_ring_alloc.vbase) { 1091 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase, 1092 pdcs->rx_ring_alloc.dmabase); 1093 pdcs->rx_ring_alloc.vbase = NULL; 1094 } 1095 } 1096 1097 /** 1098 * pdc_desc_count() - Count the number of DMA descriptors that will be required 1099 * for a given scatterlist. Account for the max length of a DMA buffer. 1100 * @sg: Scatterlist to be DMA'd 1101 * Return: Number of descriptors required 1102 */ 1103 static u32 pdc_desc_count(struct scatterlist *sg) 1104 { 1105 u32 cnt = 0; 1106 1107 while (sg) { 1108 cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1); 1109 sg = sg_next(sg); 1110 } 1111 return cnt; 1112 } 1113 1114 /** 1115 * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors 1116 * and the rx ring has room for rx_cnt descriptors. 1117 * @pdcs: PDC state 1118 * @tx_cnt: The number of descriptors required in the tx ring 1119 * @rx_cnt: The number of descriptors required i the rx ring 1120 * 1121 * Return: true if one of the rings does not have enough space 1122 * false if sufficient space is available in both rings 1123 */ 1124 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt) 1125 { 1126 u32 rx_avail; 1127 u32 tx_avail; 1128 bool full = false; 1129 1130 /* Check if the tx and rx rings are likely to have enough space */ 1131 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 1132 pdcs->nrxpost); 1133 if (unlikely(rx_cnt > rx_avail)) { 1134 pdcs->rx_ring_full++; 1135 full = true; 1136 } 1137 1138 if (likely(!full)) { 1139 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout, 1140 pdcs->ntxpost); 1141 if (unlikely(tx_cnt > tx_avail)) { 1142 pdcs->tx_ring_full++; 1143 full = true; 1144 } 1145 } 1146 return full; 1147 } 1148 1149 /** 1150 * pdc_last_tx_done() - If both the tx and rx rings have at least 1151 * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox 1152 * framework can submit another message. 1153 * @chan: mailbox channel to check 1154 * Return: true if PDC can accept another message on this channel 1155 */ 1156 static bool pdc_last_tx_done(struct mbox_chan *chan) 1157 { 1158 struct pdc_state *pdcs = chan->con_priv; 1159 bool ret; 1160 1161 if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN, 1162 PDC_RING_SPACE_MIN))) { 1163 pdcs->last_tx_not_done++; 1164 ret = false; 1165 } else { 1166 ret = true; 1167 } 1168 return ret; 1169 } 1170 1171 /** 1172 * pdc_send_data() - mailbox send_data function 1173 * @chan: The mailbox channel on which the data is sent. The channel 1174 * corresponds to a DMA ringset. 1175 * @data: The mailbox message to be sent. The message must be a 1176 * brcm_message structure. 1177 * 1178 * This function is registered as the send_data function for the mailbox 1179 * controller. From the destination scatterlist in the mailbox message, it 1180 * creates a sequence of receive descriptors in the rx ring. From the source 1181 * scatterlist, it creates a sequence of transmit descriptors in the tx ring. 1182 * After creating the descriptors, it writes the rx ptr and tx ptr registers to 1183 * initiate the DMA transfer. 1184 * 1185 * This function does the DMA map and unmap of the src and dst scatterlists in 1186 * the mailbox message. 1187 * 1188 * Return: 0 if successful 1189 * -ENOTSUPP if the mailbox message is a type this driver does not 1190 * support 1191 * < 0 if an error 1192 */ 1193 static int pdc_send_data(struct mbox_chan *chan, void *data) 1194 { 1195 struct pdc_state *pdcs = chan->con_priv; 1196 struct device *dev = &pdcs->pdev->dev; 1197 struct brcm_message *mssg = data; 1198 int err = PDC_SUCCESS; 1199 int src_nent; 1200 int dst_nent; 1201 int nent; 1202 u32 tx_desc_req; 1203 u32 rx_desc_req; 1204 1205 if (unlikely(mssg->type != BRCM_MESSAGE_SPU)) 1206 return -ENOTSUPP; 1207 1208 src_nent = sg_nents(mssg->spu.src); 1209 if (likely(src_nent)) { 1210 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE); 1211 if (unlikely(nent == 0)) 1212 return -EIO; 1213 } 1214 1215 dst_nent = sg_nents(mssg->spu.dst); 1216 if (likely(dst_nent)) { 1217 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent, 1218 DMA_FROM_DEVICE); 1219 if (unlikely(nent == 0)) { 1220 dma_unmap_sg(dev, mssg->spu.src, src_nent, 1221 DMA_TO_DEVICE); 1222 return -EIO; 1223 } 1224 } 1225 1226 /* 1227 * Check if the tx and rx rings have enough space. Do this prior to 1228 * writing any tx or rx descriptors. Need to ensure that we do not write 1229 * a partial set of descriptors, or write just rx descriptors but 1230 * corresponding tx descriptors don't fit. Note that we want this check 1231 * and the entire sequence of descriptor to happen without another 1232 * thread getting in. The channel spin lock in the mailbox framework 1233 * ensures this. 1234 */ 1235 tx_desc_req = pdc_desc_count(mssg->spu.src); 1236 rx_desc_req = pdc_desc_count(mssg->spu.dst); 1237 if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1))) 1238 return -ENOSPC; 1239 1240 /* Create rx descriptors to SPU catch response */ 1241 err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx); 1242 err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst); 1243 1244 /* Create tx descriptors to submit SPU request */ 1245 err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src); 1246 err |= pdc_tx_list_final(pdcs); /* initiate transfer */ 1247 1248 if (unlikely(err)) 1249 dev_err(&pdcs->pdev->dev, 1250 "%s failed with error %d", __func__, err); 1251 1252 return err; 1253 } 1254 1255 static int pdc_startup(struct mbox_chan *chan) 1256 { 1257 return pdc_ring_init(chan->con_priv, PDC_RINGSET); 1258 } 1259 1260 static void pdc_shutdown(struct mbox_chan *chan) 1261 { 1262 struct pdc_state *pdcs = chan->con_priv; 1263 1264 if (!pdcs) 1265 return; 1266 1267 dev_dbg(&pdcs->pdev->dev, 1268 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx); 1269 pdc_ring_free(pdcs); 1270 } 1271 1272 /** 1273 * pdc_hw_init() - Use the given initialization parameters to initialize the 1274 * state for one of the PDCs. 1275 * @pdcs: state of the PDC 1276 */ 1277 static 1278 void pdc_hw_init(struct pdc_state *pdcs) 1279 { 1280 struct platform_device *pdev; 1281 struct device *dev; 1282 struct dma64 *dma_reg; 1283 int ringset = PDC_RINGSET; 1284 1285 pdev = pdcs->pdev; 1286 dev = &pdev->dev; 1287 1288 dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx); 1289 dev_dbg(dev, "state structure: %p", 1290 pdcs); 1291 dev_dbg(dev, " - base virtual addr of hw regs %p", 1292 pdcs->pdc_reg_vbase); 1293 1294 /* initialize data structures */ 1295 pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase; 1296 pdcs->txregs_64 = (struct dma64_regs *) 1297 (((u8 *)pdcs->pdc_reg_vbase) + 1298 PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset)); 1299 pdcs->rxregs_64 = (struct dma64_regs *) 1300 (((u8 *)pdcs->pdc_reg_vbase) + 1301 PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset)); 1302 1303 pdcs->ntxd = PDC_RING_ENTRIES; 1304 pdcs->nrxd = PDC_RING_ENTRIES; 1305 pdcs->ntxpost = PDC_RING_ENTRIES - 1; 1306 pdcs->nrxpost = PDC_RING_ENTRIES - 1; 1307 iowrite32(0, &pdcs->regs->intmask); 1308 1309 dma_reg = &pdcs->regs->dmaregs[ringset]; 1310 1311 /* Configure DMA but will enable later in pdc_ring_init() */ 1312 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1313 1314 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1), 1315 &dma_reg->dmarcv.control); 1316 1317 /* Reset current index pointers after making sure DMA is disabled */ 1318 iowrite32(0, &dma_reg->dmaxmt.ptr); 1319 iowrite32(0, &dma_reg->dmarcv.ptr); 1320 1321 if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN) 1322 iowrite32(PDC_CKSUM_CTRL, 1323 pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET); 1324 } 1325 1326 /** 1327 * pdc_hw_disable() - Disable the tx and rx control in the hw. 1328 * @pdcs: PDC state structure 1329 * 1330 */ 1331 static void pdc_hw_disable(struct pdc_state *pdcs) 1332 { 1333 struct dma64 *dma_reg; 1334 1335 dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET]; 1336 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1337 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1), 1338 &dma_reg->dmarcv.control); 1339 } 1340 1341 /** 1342 * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata 1343 * header returned with each response message. 1344 * @pdcs: PDC state structure 1345 * 1346 * The metadata is not returned to the mailbox client. So the PDC driver 1347 * manages these buffers. 1348 * 1349 * Return: PDC_SUCCESS 1350 * -ENOMEM if pool creation fails 1351 */ 1352 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs) 1353 { 1354 struct platform_device *pdev; 1355 struct device *dev; 1356 1357 pdev = pdcs->pdev; 1358 dev = &pdev->dev; 1359 1360 pdcs->pdc_resp_hdr_len = pdcs->rx_status_len; 1361 if (pdcs->use_bcm_hdr) 1362 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN; 1363 1364 pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev, 1365 pdcs->pdc_resp_hdr_len, 1366 RX_BUF_ALIGN, 0); 1367 if (!pdcs->rx_buf_pool) 1368 return -ENOMEM; 1369 1370 return PDC_SUCCESS; 1371 } 1372 1373 /** 1374 * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and 1375 * specify a threaded IRQ handler for deferred handling of interrupts outside of 1376 * interrupt context. 1377 * @pdcs: PDC state 1378 * 1379 * Set the interrupt mask for transmit and receive done. 1380 * Set the lazy interrupt frame count to generate an interrupt for just one pkt. 1381 * 1382 * Return: PDC_SUCCESS 1383 * <0 if threaded irq request fails 1384 */ 1385 static int pdc_interrupts_init(struct pdc_state *pdcs) 1386 { 1387 struct platform_device *pdev = pdcs->pdev; 1388 struct device *dev = &pdev->dev; 1389 struct device_node *dn = pdev->dev.of_node; 1390 int err; 1391 1392 /* interrupt configuration */ 1393 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 1394 1395 if (pdcs->hw_type == FA_HW) 1396 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + 1397 FA_RCVLAZY0_OFFSET); 1398 else 1399 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + 1400 PDC_RCVLAZY0_OFFSET); 1401 1402 /* read irq from device tree */ 1403 pdcs->pdc_irq = irq_of_parse_and_map(dn, 0); 1404 dev_dbg(dev, "pdc device %s irq %u for pdcs %p", 1405 dev_name(dev), pdcs->pdc_irq, pdcs); 1406 1407 err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0, 1408 dev_name(dev), dev); 1409 if (err) { 1410 dev_err(dev, "IRQ %u request failed with err %d\n", 1411 pdcs->pdc_irq, err); 1412 return err; 1413 } 1414 return PDC_SUCCESS; 1415 } 1416 1417 static const struct mbox_chan_ops pdc_mbox_chan_ops = { 1418 .send_data = pdc_send_data, 1419 .last_tx_done = pdc_last_tx_done, 1420 .startup = pdc_startup, 1421 .shutdown = pdc_shutdown 1422 }; 1423 1424 /** 1425 * pdc_mb_init() - Initialize the mailbox controller. 1426 * @pdcs: PDC state 1427 * 1428 * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel 1429 * driver only uses one ringset and thus one mb channel. PDC uses the transmit 1430 * complete interrupt to determine when a mailbox message has successfully been 1431 * transmitted. 1432 * 1433 * Return: 0 on success 1434 * < 0 if there is an allocation or registration failure 1435 */ 1436 static int pdc_mb_init(struct pdc_state *pdcs) 1437 { 1438 struct device *dev = &pdcs->pdev->dev; 1439 struct mbox_controller *mbc; 1440 int chan_index; 1441 int err; 1442 1443 mbc = &pdcs->mbc; 1444 mbc->dev = dev; 1445 mbc->ops = &pdc_mbox_chan_ops; 1446 mbc->num_chans = 1; 1447 mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans), 1448 GFP_KERNEL); 1449 if (!mbc->chans) 1450 return -ENOMEM; 1451 1452 mbc->txdone_irq = false; 1453 mbc->txdone_poll = true; 1454 mbc->txpoll_period = 1; 1455 for (chan_index = 0; chan_index < mbc->num_chans; chan_index++) 1456 mbc->chans[chan_index].con_priv = pdcs; 1457 1458 /* Register mailbox controller */ 1459 err = devm_mbox_controller_register(dev, mbc); 1460 if (err) { 1461 dev_crit(dev, 1462 "Failed to register PDC mailbox controller. Error %d.", 1463 err); 1464 return err; 1465 } 1466 return 0; 1467 } 1468 1469 /* Device tree API */ 1470 static const int pdc_hw = PDC_HW; 1471 static const int fa_hw = FA_HW; 1472 1473 static const struct of_device_id pdc_mbox_of_match[] = { 1474 {.compatible = "brcm,iproc-pdc-mbox", .data = &pdc_hw}, 1475 {.compatible = "brcm,iproc-fa2-mbox", .data = &fa_hw}, 1476 { /* sentinel */ } 1477 }; 1478 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match); 1479 1480 /** 1481 * pdc_dt_read() - Read application-specific data from device tree. 1482 * @pdev: Platform device 1483 * @pdcs: PDC state 1484 * 1485 * Reads the number of bytes of receive status that precede each received frame. 1486 * Reads whether transmit and received frames should be preceded by an 8-byte 1487 * BCM header. 1488 * 1489 * Return: 0 if successful 1490 * -ENODEV if device not available 1491 */ 1492 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs) 1493 { 1494 struct device *dev = &pdev->dev; 1495 struct device_node *dn = pdev->dev.of_node; 1496 const int *hw_type; 1497 int err; 1498 1499 err = of_property_read_u32(dn, "brcm,rx-status-len", 1500 &pdcs->rx_status_len); 1501 if (err < 0) 1502 dev_err(dev, 1503 "%s failed to get DMA receive status length from device tree", 1504 __func__); 1505 1506 pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr"); 1507 1508 pdcs->hw_type = PDC_HW; 1509 1510 hw_type = device_get_match_data(dev); 1511 if (hw_type) 1512 pdcs->hw_type = *hw_type; 1513 1514 return 0; 1515 } 1516 1517 /** 1518 * pdc_probe() - Probe function for PDC driver. 1519 * @pdev: PDC platform device 1520 * 1521 * Reserve and map register regions defined in device tree. 1522 * Allocate and initialize tx and rx DMA rings. 1523 * Initialize a mailbox controller for each PDC. 1524 * 1525 * Return: 0 if successful 1526 * < 0 if an error 1527 */ 1528 static int pdc_probe(struct platform_device *pdev) 1529 { 1530 int err = 0; 1531 struct device *dev = &pdev->dev; 1532 struct resource *pdc_regs; 1533 struct pdc_state *pdcs; 1534 1535 /* PDC state for one SPU */ 1536 pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL); 1537 if (!pdcs) { 1538 err = -ENOMEM; 1539 goto cleanup; 1540 } 1541 1542 pdcs->pdev = pdev; 1543 platform_set_drvdata(pdev, pdcs); 1544 pdcs->pdc_idx = pdcg.num_spu; 1545 pdcg.num_spu++; 1546 1547 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39)); 1548 if (err) { 1549 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err); 1550 goto cleanup; 1551 } 1552 1553 /* Create DMA pool for tx ring */ 1554 pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE, 1555 RING_ALIGN, 0); 1556 if (!pdcs->ring_pool) { 1557 err = -ENOMEM; 1558 goto cleanup; 1559 } 1560 1561 err = pdc_dt_read(pdev, pdcs); 1562 if (err) 1563 goto cleanup_ring_pool; 1564 1565 pdcs->pdc_reg_vbase = devm_platform_get_and_ioremap_resource(pdev, 0, &pdc_regs); 1566 if (IS_ERR(pdcs->pdc_reg_vbase)) { 1567 err = PTR_ERR(pdcs->pdc_reg_vbase); 1568 goto cleanup_ring_pool; 1569 } 1570 dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa", 1571 &pdc_regs->start, &pdc_regs->end); 1572 1573 /* create rx buffer pool after dt read to know how big buffers are */ 1574 err = pdc_rx_buf_pool_create(pdcs); 1575 if (err) 1576 goto cleanup_ring_pool; 1577 1578 pdc_hw_init(pdcs); 1579 1580 /* Init tasklet for deferred DMA rx processing */ 1581 tasklet_setup(&pdcs->rx_tasklet, pdc_tasklet_cb); 1582 1583 err = pdc_interrupts_init(pdcs); 1584 if (err) 1585 goto cleanup_buf_pool; 1586 1587 /* Initialize mailbox controller */ 1588 err = pdc_mb_init(pdcs); 1589 if (err) 1590 goto cleanup_buf_pool; 1591 1592 pdc_setup_debugfs(pdcs); 1593 1594 dev_dbg(dev, "pdc_probe() successful"); 1595 return PDC_SUCCESS; 1596 1597 cleanup_buf_pool: 1598 tasklet_kill(&pdcs->rx_tasklet); 1599 dma_pool_destroy(pdcs->rx_buf_pool); 1600 1601 cleanup_ring_pool: 1602 dma_pool_destroy(pdcs->ring_pool); 1603 1604 cleanup: 1605 return err; 1606 } 1607 1608 static int pdc_remove(struct platform_device *pdev) 1609 { 1610 struct pdc_state *pdcs = platform_get_drvdata(pdev); 1611 1612 pdc_free_debugfs(); 1613 1614 tasklet_kill(&pdcs->rx_tasklet); 1615 1616 pdc_hw_disable(pdcs); 1617 1618 dma_pool_destroy(pdcs->rx_buf_pool); 1619 dma_pool_destroy(pdcs->ring_pool); 1620 return 0; 1621 } 1622 1623 static struct platform_driver pdc_mbox_driver = { 1624 .probe = pdc_probe, 1625 .remove = pdc_remove, 1626 .driver = { 1627 .name = "brcm-iproc-pdc-mbox", 1628 .of_match_table = pdc_mbox_of_match, 1629 }, 1630 }; 1631 module_platform_driver(pdc_mbox_driver); 1632 1633 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 1634 MODULE_DESCRIPTION("Broadcom PDC mailbox driver"); 1635 MODULE_LICENSE("GPL v2"); 1636