1 /* 2 * Windfarm PowerMac thermal control. 3 * Control loops for machines with SMU and PPC970MP processors. 4 * 5 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org> 6 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp. 7 * 8 * Use and redistribute under the terms of the GNU GPL v2. 9 */ 10 #include <linux/types.h> 11 #include <linux/errno.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/platform_device.h> 15 #include <linux/reboot.h> 16 #include <asm/prom.h> 17 #include <asm/smu.h> 18 19 #include "windfarm.h" 20 #include "windfarm_pid.h" 21 22 #define VERSION "0.2" 23 24 #define DEBUG 25 #undef LOTSA_DEBUG 26 27 #ifdef DEBUG 28 #define DBG(args...) printk(args) 29 #else 30 #define DBG(args...) do { } while(0) 31 #endif 32 33 #ifdef LOTSA_DEBUG 34 #define DBG_LOTS(args...) printk(args) 35 #else 36 #define DBG_LOTS(args...) do { } while(0) 37 #endif 38 39 /* define this to force CPU overtemp to 60 degree, useful for testing 40 * the overtemp code 41 */ 42 #undef HACKED_OVERTEMP 43 44 /* We currently only handle 2 chips, 4 cores... */ 45 #define NR_CHIPS 2 46 #define NR_CORES 4 47 #define NR_CPU_FANS 3 * NR_CHIPS 48 49 /* Controls and sensors */ 50 static struct wf_sensor *sens_cpu_temp[NR_CORES]; 51 static struct wf_sensor *sens_cpu_power[NR_CORES]; 52 static struct wf_sensor *hd_temp; 53 static struct wf_sensor *slots_power; 54 static struct wf_sensor *u4_temp; 55 56 static struct wf_control *cpu_fans[NR_CPU_FANS]; 57 static char *cpu_fan_names[NR_CPU_FANS] = { 58 "cpu-rear-fan-0", 59 "cpu-rear-fan-1", 60 "cpu-front-fan-0", 61 "cpu-front-fan-1", 62 "cpu-pump-0", 63 "cpu-pump-1", 64 }; 65 static struct wf_control *cpufreq_clamp; 66 67 /* Second pump isn't required (and isn't actually present) */ 68 #define CPU_FANS_REQD (NR_CPU_FANS - 2) 69 #define FIRST_PUMP 4 70 #define LAST_PUMP 5 71 72 /* We keep a temperature history for average calculation of 180s */ 73 #define CPU_TEMP_HIST_SIZE 180 74 75 /* Scale factor for fan speed, *100 */ 76 static int cpu_fan_scale[NR_CPU_FANS] = { 77 100, 78 100, 79 97, /* inlet fans run at 97% of exhaust fan */ 80 97, 81 100, /* updated later */ 82 100, /* updated later */ 83 }; 84 85 static struct wf_control *backside_fan; 86 static struct wf_control *slots_fan; 87 static struct wf_control *drive_bay_fan; 88 89 /* PID loop state */ 90 static struct wf_cpu_pid_state cpu_pid[NR_CORES]; 91 static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; 92 static int cpu_thist_pt; 93 static s64 cpu_thist_total; 94 static s32 cpu_all_tmax = 100 << 16; 95 static int cpu_last_target; 96 static struct wf_pid_state backside_pid; 97 static int backside_tick; 98 static struct wf_pid_state slots_pid; 99 static int slots_started; 100 static struct wf_pid_state drive_bay_pid; 101 static int drive_bay_tick; 102 103 static int nr_cores; 104 static int have_all_controls; 105 static int have_all_sensors; 106 static int started; 107 108 static int failure_state; 109 #define FAILURE_SENSOR 1 110 #define FAILURE_FAN 2 111 #define FAILURE_PERM 4 112 #define FAILURE_LOW_OVERTEMP 8 113 #define FAILURE_HIGH_OVERTEMP 16 114 115 /* Overtemp values */ 116 #define LOW_OVER_AVERAGE 0 117 #define LOW_OVER_IMMEDIATE (10 << 16) 118 #define LOW_OVER_CLEAR ((-10) << 16) 119 #define HIGH_OVER_IMMEDIATE (14 << 16) 120 #define HIGH_OVER_AVERAGE (10 << 16) 121 #define HIGH_OVER_IMMEDIATE (14 << 16) 122 123 124 /* Implementation... */ 125 static int create_cpu_loop(int cpu) 126 { 127 int chip = cpu / 2; 128 int core = cpu & 1; 129 struct smu_sdbp_header *hdr; 130 struct smu_sdbp_cpupiddata *piddata; 131 struct wf_cpu_pid_param pid; 132 struct wf_control *main_fan = cpu_fans[0]; 133 s32 tmax; 134 int fmin; 135 136 /* Get PID params from the appropriate SAT */ 137 hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL); 138 if (hdr == NULL) { 139 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n"); 140 return -EINVAL; 141 } 142 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1]; 143 144 /* Get FVT params to get Tmax; if not found, assume default */ 145 hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL); 146 if (hdr) { 147 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1]; 148 tmax = fvt->maxtemp << 16; 149 } else 150 tmax = 95 << 16; /* default to 95 degrees C */ 151 152 /* We keep a global tmax for overtemp calculations */ 153 if (tmax < cpu_all_tmax) 154 cpu_all_tmax = tmax; 155 156 /* 157 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and 158 * 515 for the 2-way. That appears to be overkill, so for now, 159 * impose a minimum of 750 or 515. 160 */ 161 fmin = (nr_cores > 2) ? 750 : 515; 162 163 /* Initialize PID loop */ 164 pid.interval = 1; /* seconds */ 165 pid.history_len = piddata->history_len; 166 pid.gd = piddata->gd; 167 pid.gp = piddata->gp; 168 pid.gr = piddata->gr / piddata->history_len; 169 pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8); 170 pid.ttarget = tmax - (piddata->target_temp_delta << 16); 171 pid.tmax = tmax; 172 pid.min = main_fan->ops->get_min(main_fan); 173 pid.max = main_fan->ops->get_max(main_fan); 174 if (pid.min < fmin) 175 pid.min = fmin; 176 177 wf_cpu_pid_init(&cpu_pid[cpu], &pid); 178 return 0; 179 } 180 181 static void cpu_max_all_fans(void) 182 { 183 int i; 184 185 /* We max all CPU fans in case of a sensor error. We also do the 186 * cpufreq clamping now, even if it's supposedly done later by the 187 * generic code anyway, we do it earlier here to react faster 188 */ 189 if (cpufreq_clamp) 190 wf_control_set_max(cpufreq_clamp); 191 for (i = 0; i < NR_CPU_FANS; ++i) 192 if (cpu_fans[i]) 193 wf_control_set_max(cpu_fans[i]); 194 } 195 196 static int cpu_check_overtemp(s32 temp) 197 { 198 int new_state = 0; 199 s32 t_avg, t_old; 200 201 /* First check for immediate overtemps */ 202 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { 203 new_state |= FAILURE_LOW_OVERTEMP; 204 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) 205 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" 206 " temperature !\n"); 207 } 208 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { 209 new_state |= FAILURE_HIGH_OVERTEMP; 210 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) 211 printk(KERN_ERR "windfarm: Critical overtemp due to" 212 " immediate CPU temperature !\n"); 213 } 214 215 /* We calculate a history of max temperatures and use that for the 216 * overtemp management 217 */ 218 t_old = cpu_thist[cpu_thist_pt]; 219 cpu_thist[cpu_thist_pt] = temp; 220 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; 221 cpu_thist_total -= t_old; 222 cpu_thist_total += temp; 223 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; 224 225 DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", 226 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); 227 228 /* Now check for average overtemps */ 229 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { 230 new_state |= FAILURE_LOW_OVERTEMP; 231 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) 232 printk(KERN_ERR "windfarm: Overtemp due to average CPU" 233 " temperature !\n"); 234 } 235 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { 236 new_state |= FAILURE_HIGH_OVERTEMP; 237 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) 238 printk(KERN_ERR "windfarm: Critical overtemp due to" 239 " average CPU temperature !\n"); 240 } 241 242 /* Now handle overtemp conditions. We don't currently use the windfarm 243 * overtemp handling core as it's not fully suited to the needs of those 244 * new machine. This will be fixed later. 245 */ 246 if (new_state) { 247 /* High overtemp -> immediate shutdown */ 248 if (new_state & FAILURE_HIGH_OVERTEMP) 249 machine_power_off(); 250 if ((failure_state & new_state) != new_state) 251 cpu_max_all_fans(); 252 failure_state |= new_state; 253 } else if ((failure_state & FAILURE_LOW_OVERTEMP) && 254 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { 255 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); 256 failure_state &= ~FAILURE_LOW_OVERTEMP; 257 } 258 259 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); 260 } 261 262 static void cpu_fans_tick(void) 263 { 264 int err, cpu; 265 s32 greatest_delta = 0; 266 s32 temp, power, t_max = 0; 267 int i, t, target = 0; 268 struct wf_sensor *sr; 269 struct wf_control *ct; 270 struct wf_cpu_pid_state *sp; 271 272 DBG_LOTS(KERN_DEBUG); 273 for (cpu = 0; cpu < nr_cores; ++cpu) { 274 /* Get CPU core temperature */ 275 sr = sens_cpu_temp[cpu]; 276 err = sr->ops->get_value(sr, &temp); 277 if (err) { 278 DBG("\n"); 279 printk(KERN_WARNING "windfarm: CPU %d temperature " 280 "sensor error %d\n", cpu, err); 281 failure_state |= FAILURE_SENSOR; 282 cpu_max_all_fans(); 283 return; 284 } 285 286 /* Keep track of highest temp */ 287 t_max = max(t_max, temp); 288 289 /* Get CPU power */ 290 sr = sens_cpu_power[cpu]; 291 err = sr->ops->get_value(sr, &power); 292 if (err) { 293 DBG("\n"); 294 printk(KERN_WARNING "windfarm: CPU %d power " 295 "sensor error %d\n", cpu, err); 296 failure_state |= FAILURE_SENSOR; 297 cpu_max_all_fans(); 298 return; 299 } 300 301 /* Run PID */ 302 sp = &cpu_pid[cpu]; 303 t = wf_cpu_pid_run(sp, power, temp); 304 305 if (cpu == 0 || sp->last_delta > greatest_delta) { 306 greatest_delta = sp->last_delta; 307 target = t; 308 } 309 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ", 310 cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp)); 311 } 312 DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max)); 313 314 /* Darwin limits decrease to 20 per iteration */ 315 if (target < (cpu_last_target - 20)) 316 target = cpu_last_target - 20; 317 cpu_last_target = target; 318 for (cpu = 0; cpu < nr_cores; ++cpu) 319 cpu_pid[cpu].target = target; 320 321 /* Handle possible overtemps */ 322 if (cpu_check_overtemp(t_max)) 323 return; 324 325 /* Set fans */ 326 for (i = 0; i < NR_CPU_FANS; ++i) { 327 ct = cpu_fans[i]; 328 if (ct == NULL) 329 continue; 330 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100); 331 if (err) { 332 printk(KERN_WARNING "windfarm: fan %s reports " 333 "error %d\n", ct->name, err); 334 failure_state |= FAILURE_FAN; 335 break; 336 } 337 } 338 } 339 340 /* Backside/U4 fan */ 341 static struct wf_pid_param backside_param = { 342 .interval = 5, 343 .history_len = 2, 344 .gd = 48 << 20, 345 .gp = 5 << 20, 346 .gr = 0, 347 .itarget = 64 << 16, 348 .additive = 1, 349 }; 350 351 static void backside_fan_tick(void) 352 { 353 s32 temp; 354 int speed; 355 int err; 356 357 if (!backside_fan || !u4_temp) 358 return; 359 if (!backside_tick) { 360 /* first time; initialize things */ 361 printk(KERN_INFO "windfarm: Backside control loop started.\n"); 362 backside_param.min = backside_fan->ops->get_min(backside_fan); 363 backside_param.max = backside_fan->ops->get_max(backside_fan); 364 wf_pid_init(&backside_pid, &backside_param); 365 backside_tick = 1; 366 } 367 if (--backside_tick > 0) 368 return; 369 backside_tick = backside_pid.param.interval; 370 371 err = u4_temp->ops->get_value(u4_temp, &temp); 372 if (err) { 373 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n", 374 err); 375 failure_state |= FAILURE_SENSOR; 376 wf_control_set_max(backside_fan); 377 return; 378 } 379 speed = wf_pid_run(&backside_pid, temp); 380 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", 381 FIX32TOPRINT(temp), speed); 382 383 err = backside_fan->ops->set_value(backside_fan, speed); 384 if (err) { 385 printk(KERN_WARNING "windfarm: backside fan error %d\n", err); 386 failure_state |= FAILURE_FAN; 387 } 388 } 389 390 /* Drive bay fan */ 391 static struct wf_pid_param drive_bay_prm = { 392 .interval = 5, 393 .history_len = 2, 394 .gd = 30 << 20, 395 .gp = 5 << 20, 396 .gr = 0, 397 .itarget = 40 << 16, 398 .additive = 1, 399 }; 400 401 static void drive_bay_fan_tick(void) 402 { 403 s32 temp; 404 int speed; 405 int err; 406 407 if (!drive_bay_fan || !hd_temp) 408 return; 409 if (!drive_bay_tick) { 410 /* first time; initialize things */ 411 printk(KERN_INFO "windfarm: Drive bay control loop started.\n"); 412 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan); 413 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan); 414 wf_pid_init(&drive_bay_pid, &drive_bay_prm); 415 drive_bay_tick = 1; 416 } 417 if (--drive_bay_tick > 0) 418 return; 419 drive_bay_tick = drive_bay_pid.param.interval; 420 421 err = hd_temp->ops->get_value(hd_temp, &temp); 422 if (err) { 423 printk(KERN_WARNING "windfarm: drive bay temp sensor " 424 "error %d\n", err); 425 failure_state |= FAILURE_SENSOR; 426 wf_control_set_max(drive_bay_fan); 427 return; 428 } 429 speed = wf_pid_run(&drive_bay_pid, temp); 430 DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n", 431 FIX32TOPRINT(temp), speed); 432 433 err = drive_bay_fan->ops->set_value(drive_bay_fan, speed); 434 if (err) { 435 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err); 436 failure_state |= FAILURE_FAN; 437 } 438 } 439 440 /* PCI slots area fan */ 441 /* This makes the fan speed proportional to the power consumed */ 442 static struct wf_pid_param slots_param = { 443 .interval = 1, 444 .history_len = 2, 445 .gd = 0, 446 .gp = 0, 447 .gr = 0x1277952, 448 .itarget = 0, 449 .min = 1560, 450 .max = 3510, 451 }; 452 453 static void slots_fan_tick(void) 454 { 455 s32 power; 456 int speed; 457 int err; 458 459 if (!slots_fan || !slots_power) 460 return; 461 if (!slots_started) { 462 /* first time; initialize things */ 463 printk(KERN_INFO "windfarm: Slots control loop started.\n"); 464 wf_pid_init(&slots_pid, &slots_param); 465 slots_started = 1; 466 } 467 468 err = slots_power->ops->get_value(slots_power, &power); 469 if (err) { 470 printk(KERN_WARNING "windfarm: slots power sensor error %d\n", 471 err); 472 failure_state |= FAILURE_SENSOR; 473 wf_control_set_max(slots_fan); 474 return; 475 } 476 speed = wf_pid_run(&slots_pid, power); 477 DBG_LOTS("slots PID power=%d.%.3d speed=%d\n", 478 FIX32TOPRINT(power), speed); 479 480 err = slots_fan->ops->set_value(slots_fan, speed); 481 if (err) { 482 printk(KERN_WARNING "windfarm: slots fan error %d\n", err); 483 failure_state |= FAILURE_FAN; 484 } 485 } 486 487 static void set_fail_state(void) 488 { 489 int i; 490 491 if (cpufreq_clamp) 492 wf_control_set_max(cpufreq_clamp); 493 for (i = 0; i < NR_CPU_FANS; ++i) 494 if (cpu_fans[i]) 495 wf_control_set_max(cpu_fans[i]); 496 if (backside_fan) 497 wf_control_set_max(backside_fan); 498 if (slots_fan) 499 wf_control_set_max(slots_fan); 500 if (drive_bay_fan) 501 wf_control_set_max(drive_bay_fan); 502 } 503 504 static void pm112_tick(void) 505 { 506 int i, last_failure; 507 508 if (!started) { 509 started = 1; 510 printk(KERN_INFO "windfarm: CPUs control loops started.\n"); 511 for (i = 0; i < nr_cores; ++i) { 512 if (create_cpu_loop(i) < 0) { 513 failure_state = FAILURE_PERM; 514 set_fail_state(); 515 break; 516 } 517 } 518 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); 519 520 #ifdef HACKED_OVERTEMP 521 cpu_all_tmax = 60 << 16; 522 #endif 523 } 524 525 /* Permanent failure, bail out */ 526 if (failure_state & FAILURE_PERM) 527 return; 528 /* Clear all failure bits except low overtemp which will be eventually 529 * cleared by the control loop itself 530 */ 531 last_failure = failure_state; 532 failure_state &= FAILURE_LOW_OVERTEMP; 533 cpu_fans_tick(); 534 backside_fan_tick(); 535 slots_fan_tick(); 536 drive_bay_fan_tick(); 537 538 DBG_LOTS("last_failure: 0x%x, failure_state: %x\n", 539 last_failure, failure_state); 540 541 /* Check for failures. Any failure causes cpufreq clamping */ 542 if (failure_state && last_failure == 0 && cpufreq_clamp) 543 wf_control_set_max(cpufreq_clamp); 544 if (failure_state == 0 && last_failure && cpufreq_clamp) 545 wf_control_set_min(cpufreq_clamp); 546 547 /* That's it for now, we might want to deal with other failures 548 * differently in the future though 549 */ 550 } 551 552 static void pm112_new_control(struct wf_control *ct) 553 { 554 int i, max_exhaust; 555 556 if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) { 557 if (wf_get_control(ct) == 0) 558 cpufreq_clamp = ct; 559 } 560 561 for (i = 0; i < NR_CPU_FANS; ++i) { 562 if (!strcmp(ct->name, cpu_fan_names[i])) { 563 if (cpu_fans[i] == NULL && wf_get_control(ct) == 0) 564 cpu_fans[i] = ct; 565 break; 566 } 567 } 568 if (i >= NR_CPU_FANS) { 569 /* not a CPU fan, try the others */ 570 if (!strcmp(ct->name, "backside-fan")) { 571 if (backside_fan == NULL && wf_get_control(ct) == 0) 572 backside_fan = ct; 573 } else if (!strcmp(ct->name, "slots-fan")) { 574 if (slots_fan == NULL && wf_get_control(ct) == 0) 575 slots_fan = ct; 576 } else if (!strcmp(ct->name, "drive-bay-fan")) { 577 if (drive_bay_fan == NULL && wf_get_control(ct) == 0) 578 drive_bay_fan = ct; 579 } 580 return; 581 } 582 583 for (i = 0; i < CPU_FANS_REQD; ++i) 584 if (cpu_fans[i] == NULL) 585 return; 586 587 /* work out pump scaling factors */ 588 max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]); 589 for (i = FIRST_PUMP; i <= LAST_PUMP; ++i) 590 if ((ct = cpu_fans[i]) != NULL) 591 cpu_fan_scale[i] = 592 ct->ops->get_max(ct) * 100 / max_exhaust; 593 594 have_all_controls = 1; 595 } 596 597 static void pm112_new_sensor(struct wf_sensor *sr) 598 { 599 unsigned int i; 600 601 if (!strncmp(sr->name, "cpu-temp-", 9)) { 602 i = sr->name[9] - '0'; 603 if (sr->name[10] == 0 && i < NR_CORES && 604 sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0) 605 sens_cpu_temp[i] = sr; 606 607 } else if (!strncmp(sr->name, "cpu-power-", 10)) { 608 i = sr->name[10] - '0'; 609 if (sr->name[11] == 0 && i < NR_CORES && 610 sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0) 611 sens_cpu_power[i] = sr; 612 } else if (!strcmp(sr->name, "hd-temp")) { 613 if (hd_temp == NULL && wf_get_sensor(sr) == 0) 614 hd_temp = sr; 615 } else if (!strcmp(sr->name, "slots-power")) { 616 if (slots_power == NULL && wf_get_sensor(sr) == 0) 617 slots_power = sr; 618 } else if (!strcmp(sr->name, "backside-temp")) { 619 if (u4_temp == NULL && wf_get_sensor(sr) == 0) 620 u4_temp = sr; 621 } else 622 return; 623 624 /* check if we have all the sensors we need */ 625 for (i = 0; i < nr_cores; ++i) 626 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL) 627 return; 628 629 have_all_sensors = 1; 630 } 631 632 static int pm112_wf_notify(struct notifier_block *self, 633 unsigned long event, void *data) 634 { 635 switch (event) { 636 case WF_EVENT_NEW_SENSOR: 637 pm112_new_sensor(data); 638 break; 639 case WF_EVENT_NEW_CONTROL: 640 pm112_new_control(data); 641 break; 642 case WF_EVENT_TICK: 643 if (have_all_controls && have_all_sensors) 644 pm112_tick(); 645 } 646 return 0; 647 } 648 649 static struct notifier_block pm112_events = { 650 .notifier_call = pm112_wf_notify, 651 }; 652 653 static int wf_pm112_probe(struct platform_device *dev) 654 { 655 wf_register_client(&pm112_events); 656 return 0; 657 } 658 659 static int __devexit wf_pm112_remove(struct platform_device *dev) 660 { 661 wf_unregister_client(&pm112_events); 662 /* should release all sensors and controls */ 663 return 0; 664 } 665 666 static struct platform_driver wf_pm112_driver = { 667 .probe = wf_pm112_probe, 668 .remove = __devexit_p(wf_pm112_remove), 669 .driver = { 670 .name = "windfarm", 671 .owner = THIS_MODULE, 672 }, 673 }; 674 675 static int __init wf_pm112_init(void) 676 { 677 struct device_node *cpu; 678 679 if (!machine_is_compatible("PowerMac11,2")) 680 return -ENODEV; 681 682 /* Count the number of CPU cores */ 683 nr_cores = 0; 684 for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; ) 685 ++nr_cores; 686 687 printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n"); 688 689 #ifdef MODULE 690 request_module("windfarm_smu_controls"); 691 request_module("windfarm_smu_sensors"); 692 request_module("windfarm_smu_sat"); 693 request_module("windfarm_lm75_sensor"); 694 request_module("windfarm_max6690_sensor"); 695 request_module("windfarm_cpufreq_clamp"); 696 697 #endif /* MODULE */ 698 699 platform_driver_register(&wf_pm112_driver); 700 return 0; 701 } 702 703 static void __exit wf_pm112_exit(void) 704 { 705 platform_driver_unregister(&wf_pm112_driver); 706 } 707 708 module_init(wf_pm112_init); 709 module_exit(wf_pm112_exit); 710 711 MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>"); 712 MODULE_DESCRIPTION("Thermal control for PowerMac11,2"); 713 MODULE_LICENSE("GPL"); 714 MODULE_ALIAS("platform:windfarm"); 715