xref: /linux/drivers/leds/trigger/ledtrig-activity.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Activity LED trigger
4  *
5  * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
6  * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/leds.h>
13 #include <linux/module.h>
14 #include <linux/reboot.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/timer.h>
18 #include "../leds.h"
19 
20 static int panic_detected;
21 
22 struct activity_data {
23 	struct timer_list timer;
24 	struct led_classdev *led_cdev;
25 	u64 last_used;
26 	u64 last_boot;
27 	int time_left;
28 	int state;
29 	int invert;
30 };
31 
32 static void led_activity_function(struct timer_list *t)
33 {
34 	struct activity_data *activity_data = from_timer(activity_data, t,
35 							 timer);
36 	struct led_classdev *led_cdev = activity_data->led_cdev;
37 	unsigned int target;
38 	unsigned int usage;
39 	int delay;
40 	u64 curr_used;
41 	u64 curr_boot;
42 	s32 diff_used;
43 	s32 diff_boot;
44 	int cpus;
45 	int i;
46 
47 	if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
48 		led_cdev->blink_brightness = led_cdev->new_blink_brightness;
49 
50 	if (unlikely(panic_detected)) {
51 		/* full brightness in case of panic */
52 		led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
53 		return;
54 	}
55 
56 	cpus = 0;
57 	curr_used = 0;
58 
59 	for_each_possible_cpu(i) {
60 		struct kernel_cpustat kcpustat;
61 
62 		kcpustat_cpu_fetch(&kcpustat, i);
63 
64 		curr_used += kcpustat.cpustat[CPUTIME_USER]
65 			  +  kcpustat.cpustat[CPUTIME_NICE]
66 			  +  kcpustat.cpustat[CPUTIME_SYSTEM]
67 			  +  kcpustat.cpustat[CPUTIME_SOFTIRQ]
68 			  +  kcpustat.cpustat[CPUTIME_IRQ];
69 		cpus++;
70 	}
71 
72 	/* We come here every 100ms in the worst case, so that's 100M ns of
73 	 * cumulated time. By dividing by 2^16, we get the time resolution
74 	 * down to 16us, ensuring we won't overflow 32-bit computations below
75 	 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
76 	 */
77 	curr_boot = ktime_get_boottime_ns() * cpus;
78 	diff_boot = (curr_boot - activity_data->last_boot) >> 16;
79 	diff_used = (curr_used - activity_data->last_used) >> 16;
80 	activity_data->last_boot = curr_boot;
81 	activity_data->last_used = curr_used;
82 
83 	if (diff_boot <= 0 || diff_used < 0)
84 		usage = 0;
85 	else if (diff_used >= diff_boot)
86 		usage = 100;
87 	else
88 		usage = 100 * diff_used / diff_boot;
89 
90 	/*
91 	 * Now we know the total boot_time multiplied by the number of CPUs, and
92 	 * the total idle+wait time for all CPUs. We'll compare how they evolved
93 	 * since last call. The % of overall CPU usage is :
94 	 *
95 	 *      1 - delta_idle / delta_boot
96 	 *
97 	 * What we want is that when the CPU usage is zero, the LED must blink
98 	 * slowly with very faint flashes that are detectable but not disturbing
99 	 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
100 	 * blinking frequency to increase up to the point where the load is
101 	 * enough to saturate one core in multi-core systems or 50% in single
102 	 * core systems. At this point it should reach 10 Hz with a 10/90 duty
103 	 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
104 	 * remains stable (10 Hz) and only the duty cycle increases to report
105 	 * the activity, up to the point where we have 90ms ON, 10ms OFF when
106 	 * all cores are saturated. It's important that the LED never stays in
107 	 * a steady state so that it's easy to distinguish an idle or saturated
108 	 * machine from a hung one.
109 	 *
110 	 * This gives us :
111 	 *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
112 	 *     (10ms ON, 90ms OFF)
113 	 *   - below target :
114 	 *      ON_ms  = 10
115 	 *      OFF_ms = 90 + (1 - usage/target) * 900
116 	 *   - above target :
117 	 *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
118 	 *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
119 	 *
120 	 * In order to keep a good responsiveness, we cap the sleep time to
121 	 * 100 ms and keep track of the sleep time left. This allows us to
122 	 * quickly change it if needed.
123 	 */
124 
125 	activity_data->time_left -= 100;
126 	if (activity_data->time_left <= 0) {
127 		activity_data->time_left = 0;
128 		activity_data->state = !activity_data->state;
129 		led_set_brightness_nosleep(led_cdev,
130 			(activity_data->state ^ activity_data->invert) ?
131 			led_cdev->blink_brightness : LED_OFF);
132 	}
133 
134 	target = (cpus > 1) ? (100 / cpus) : 50;
135 
136 	if (usage < target)
137 		delay = activity_data->state ?
138 			10 :                        /* ON  */
139 			990 - 900 * usage / target; /* OFF */
140 	else
141 		delay = activity_data->state ?
142 			10 + 80 * (usage - target) / (100 - target) : /* ON  */
143 			90 - 80 * (usage - target) / (100 - target);  /* OFF */
144 
145 
146 	if (!activity_data->time_left || delay <= activity_data->time_left)
147 		activity_data->time_left = delay;
148 
149 	delay = min_t(int, activity_data->time_left, 100);
150 	mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
151 }
152 
153 static ssize_t led_invert_show(struct device *dev,
154                                struct device_attribute *attr, char *buf)
155 {
156 	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
157 
158 	return sprintf(buf, "%u\n", activity_data->invert);
159 }
160 
161 static ssize_t led_invert_store(struct device *dev,
162                                 struct device_attribute *attr,
163                                 const char *buf, size_t size)
164 {
165 	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
166 	unsigned long state;
167 	int ret;
168 
169 	ret = kstrtoul(buf, 0, &state);
170 	if (ret)
171 		return ret;
172 
173 	activity_data->invert = !!state;
174 
175 	return size;
176 }
177 
178 static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
179 
180 static struct attribute *activity_led_attrs[] = {
181 	&dev_attr_invert.attr,
182 	NULL
183 };
184 ATTRIBUTE_GROUPS(activity_led);
185 
186 static int activity_activate(struct led_classdev *led_cdev)
187 {
188 	struct activity_data *activity_data;
189 
190 	activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
191 	if (!activity_data)
192 		return -ENOMEM;
193 
194 	led_set_trigger_data(led_cdev, activity_data);
195 
196 	activity_data->led_cdev = led_cdev;
197 	timer_setup(&activity_data->timer, led_activity_function, 0);
198 	if (!led_cdev->blink_brightness)
199 		led_cdev->blink_brightness = led_cdev->max_brightness;
200 	led_activity_function(&activity_data->timer);
201 	set_bit(LED_BLINK_SW, &led_cdev->work_flags);
202 
203 	return 0;
204 }
205 
206 static void activity_deactivate(struct led_classdev *led_cdev)
207 {
208 	struct activity_data *activity_data = led_get_trigger_data(led_cdev);
209 
210 	del_timer_sync(&activity_data->timer);
211 	kfree(activity_data);
212 	clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
213 }
214 
215 static struct led_trigger activity_led_trigger = {
216 	.name       = "activity",
217 	.activate   = activity_activate,
218 	.deactivate = activity_deactivate,
219 	.groups     = activity_led_groups,
220 };
221 
222 static int activity_reboot_notifier(struct notifier_block *nb,
223                                     unsigned long code, void *unused)
224 {
225 	led_trigger_unregister(&activity_led_trigger);
226 	return NOTIFY_DONE;
227 }
228 
229 static int activity_panic_notifier(struct notifier_block *nb,
230                                    unsigned long code, void *unused)
231 {
232 	panic_detected = 1;
233 	return NOTIFY_DONE;
234 }
235 
236 static struct notifier_block activity_reboot_nb = {
237 	.notifier_call = activity_reboot_notifier,
238 };
239 
240 static struct notifier_block activity_panic_nb = {
241 	.notifier_call = activity_panic_notifier,
242 };
243 
244 static int __init activity_init(void)
245 {
246 	int rc = led_trigger_register(&activity_led_trigger);
247 
248 	if (!rc) {
249 		atomic_notifier_chain_register(&panic_notifier_list,
250 					       &activity_panic_nb);
251 		register_reboot_notifier(&activity_reboot_nb);
252 	}
253 	return rc;
254 }
255 
256 static void __exit activity_exit(void)
257 {
258 	unregister_reboot_notifier(&activity_reboot_nb);
259 	atomic_notifier_chain_unregister(&panic_notifier_list,
260 					 &activity_panic_nb);
261 	led_trigger_unregister(&activity_led_trigger);
262 }
263 
264 module_init(activity_init);
265 module_exit(activity_exit);
266 
267 MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
268 MODULE_DESCRIPTION("Activity LED trigger");
269 MODULE_LICENSE("GPL v2");
270