xref: /linux/drivers/leds/rgb/leds-qcom-lpg.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2022 Linaro Ltd
4  * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
5  * Copyright (c) 2023, Qualcomm Innovation Center, Inc. All rights reserved.
6  */
7 #include <linux/bits.h>
8 #include <linux/bitfield.h>
9 #include <linux/led-class-multicolor.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/platform_device.h>
14 #include <linux/pwm.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/soc/qcom/qcom-pbs.h>
18 
19 #define LPG_SUBTYPE_REG		0x05
20 #define  LPG_SUBTYPE_LPG	0x2
21 #define  LPG_SUBTYPE_PWM	0xb
22 #define  LPG_SUBTYPE_HI_RES_PWM	0xc
23 #define  LPG_SUBTYPE_LPG_LITE	0x11
24 #define LPG_PATTERN_CONFIG_REG	0x40
25 #define LPG_SIZE_CLK_REG	0x41
26 #define  PWM_CLK_SELECT_MASK	GENMASK(1, 0)
27 #define  PWM_CLK_SELECT_HI_RES_MASK	GENMASK(2, 0)
28 #define  PWM_SIZE_HI_RES_MASK	GENMASK(6, 4)
29 #define LPG_PREDIV_CLK_REG	0x42
30 #define  PWM_FREQ_PRE_DIV_MASK	GENMASK(6, 5)
31 #define  PWM_FREQ_EXP_MASK	GENMASK(2, 0)
32 #define PWM_TYPE_CONFIG_REG	0x43
33 #define PWM_VALUE_REG		0x44
34 #define PWM_ENABLE_CONTROL_REG	0x46
35 #define PWM_SYNC_REG		0x47
36 #define LPG_RAMP_DURATION_REG	0x50
37 #define LPG_HI_PAUSE_REG	0x52
38 #define LPG_LO_PAUSE_REG	0x54
39 #define LPG_HI_IDX_REG		0x56
40 #define LPG_LO_IDX_REG		0x57
41 #define PWM_SEC_ACCESS_REG	0xd0
42 #define PWM_DTEST_REG(x)	(0xe2 + (x) - 1)
43 
44 #define SDAM_REG_PBS_SEQ_EN		0x42
45 #define SDAM_PBS_TRIG_SET		0xe5
46 #define SDAM_PBS_TRIG_CLR		0xe6
47 
48 #define TRI_LED_SRC_SEL		0x45
49 #define TRI_LED_EN_CTL		0x46
50 #define TRI_LED_ATC_CTL		0x47
51 
52 #define LPG_LUT_REG(x)		(0x40 + (x) * 2)
53 #define RAMP_CONTROL_REG	0xc8
54 
55 #define LPG_RESOLUTION_9BIT	BIT(9)
56 #define LPG_RESOLUTION_15BIT	BIT(15)
57 #define PPG_MAX_LED_BRIGHTNESS	255
58 
59 #define LPG_MAX_M		7
60 #define LPG_MAX_PREDIV		6
61 
62 #define DEFAULT_TICK_DURATION_US	7800
63 #define RAMP_STEP_DURATION(x)		(((x) * 1000 / DEFAULT_TICK_DURATION_US) & 0xff)
64 
65 #define SDAM_MAX_DEVICES	2
66 /* LPG common config settings for PPG */
67 #define SDAM_START_BASE			0x40
68 #define SDAM_REG_RAMP_STEP_DURATION		0x47
69 
70 #define SDAM_LUT_SDAM_LUT_PATTERN_OFFSET	0x45
71 #define SDAM_LPG_SDAM_LUT_PATTERN_OFFSET	0x80
72 
73 /* LPG per channel config settings for PPG */
74 #define SDAM_LUT_EN_OFFSET			0x0
75 #define SDAM_PATTERN_CONFIG_OFFSET		0x1
76 #define SDAM_END_INDEX_OFFSET			0x3
77 #define SDAM_START_INDEX_OFFSET		0x4
78 #define SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET	0x6
79 #define SDAM_PAUSE_HI_MULTIPLIER_OFFSET	0x8
80 #define SDAM_PAUSE_LO_MULTIPLIER_OFFSET	0x9
81 
82 struct lpg_channel;
83 struct lpg_data;
84 
85 /**
86  * struct lpg - LPG device context
87  * @dev:	pointer to LPG device
88  * @map:	regmap for register access
89  * @lock:	used to synchronize LED and pwm callback requests
90  * @pwm:	PWM-chip object, if operating in PWM mode
91  * @data:	reference to version specific data
92  * @lut_base:	base address of the LUT block (optional)
93  * @lut_size:	number of entries in the LUT block
94  * @lut_bitmap:	allocation bitmap for LUT entries
95  * @pbs_dev:	PBS device
96  * @lpg_chan_sdam:	LPG SDAM peripheral device
97  * @lut_sdam:	LUT SDAM peripheral device
98  * @pbs_en_bitmap:	bitmap for tracking PBS triggers
99  * @triled_base: base address of the TRILED block (optional)
100  * @triled_src:	power-source for the TRILED
101  * @triled_has_atc_ctl:	true if there is TRI_LED_ATC_CTL register
102  * @triled_has_src_sel:	true if there is TRI_LED_SRC_SEL register
103  * @channels:	list of PWM channels
104  * @num_channels: number of @channels
105  */
106 struct lpg {
107 	struct device *dev;
108 	struct regmap *map;
109 
110 	struct mutex lock;
111 
112 	struct pwm_chip *pwm;
113 
114 	const struct lpg_data *data;
115 
116 	u32 lut_base;
117 	u32 lut_size;
118 	unsigned long *lut_bitmap;
119 
120 	struct pbs_dev *pbs_dev;
121 	struct nvmem_device *lpg_chan_sdam;
122 	struct nvmem_device *lut_sdam;
123 	unsigned long pbs_en_bitmap;
124 
125 	u32 triled_base;
126 	u32 triled_src;
127 	bool triled_has_atc_ctl;
128 	bool triled_has_src_sel;
129 
130 	struct lpg_channel *channels;
131 	unsigned int num_channels;
132 };
133 
134 /**
135  * struct lpg_channel - per channel data
136  * @lpg:	reference to parent lpg
137  * @base:	base address of the PWM channel
138  * @triled_mask: mask in TRILED to enable this channel
139  * @lut_mask:	mask in LUT to start pattern generator for this channel
140  * @subtype:	PMIC hardware block subtype
141  * @sdam_offset:	channel offset in LPG SDAM
142  * @in_use:	channel is exposed to LED framework
143  * @color:	color of the LED attached to this channel
144  * @dtest_line:	DTEST line for output, or 0 if disabled
145  * @dtest_value: DTEST line configuration
146  * @pwm_value:	duty (in microseconds) of the generated pulses, overridden by LUT
147  * @enabled:	output enabled?
148  * @period:	period (in nanoseconds) of the generated pulses
149  * @clk_sel:	reference clock frequency selector
150  * @pre_div_sel: divider selector of the reference clock
151  * @pre_div_exp: exponential divider of the reference clock
152  * @pwm_resolution_sel:	pwm resolution selector
153  * @ramp_enabled: duty cycle is driven by iterating over lookup table
154  * @ramp_ping_pong: reverse through pattern, rather than wrapping to start
155  * @ramp_oneshot: perform only a single pass over the pattern
156  * @ramp_reverse: iterate over pattern backwards
157  * @ramp_tick_ms: length (in milliseconds) of one step in the pattern
158  * @ramp_lo_pause_ms: pause (in milliseconds) before iterating over pattern
159  * @ramp_hi_pause_ms: pause (in milliseconds) after iterating over pattern
160  * @pattern_lo_idx: start index of associated pattern
161  * @pattern_hi_idx: last index of associated pattern
162  */
163 struct lpg_channel {
164 	struct lpg *lpg;
165 
166 	u32 base;
167 	unsigned int triled_mask;
168 	unsigned int lut_mask;
169 	unsigned int subtype;
170 	u32 sdam_offset;
171 
172 	bool in_use;
173 
174 	int color;
175 
176 	u32 dtest_line;
177 	u32 dtest_value;
178 
179 	u16 pwm_value;
180 	bool enabled;
181 
182 	u64 period;
183 	unsigned int clk_sel;
184 	unsigned int pre_div_sel;
185 	unsigned int pre_div_exp;
186 	unsigned int pwm_resolution_sel;
187 
188 	bool ramp_enabled;
189 	bool ramp_ping_pong;
190 	bool ramp_oneshot;
191 	bool ramp_reverse;
192 	unsigned short ramp_tick_ms;
193 	unsigned long ramp_lo_pause_ms;
194 	unsigned long ramp_hi_pause_ms;
195 
196 	unsigned int pattern_lo_idx;
197 	unsigned int pattern_hi_idx;
198 };
199 
200 /**
201  * struct lpg_led - logical LED object
202  * @lpg:		lpg context reference
203  * @cdev:		LED class device
204  * @mcdev:		Multicolor LED class device
205  * @num_channels:	number of @channels
206  * @channels:		list of channels associated with the LED
207  */
208 struct lpg_led {
209 	struct lpg *lpg;
210 
211 	struct led_classdev cdev;
212 	struct led_classdev_mc mcdev;
213 
214 	unsigned int num_channels;
215 	struct lpg_channel *channels[] __counted_by(num_channels);
216 };
217 
218 /**
219  * struct lpg_channel_data - per channel initialization data
220  * @sdam_offset:	Channel offset in LPG SDAM
221  * @base:		base address for PWM channel registers
222  * @triled_mask:	bitmask for controlling this channel in TRILED
223  */
224 struct lpg_channel_data {
225 	unsigned int sdam_offset;
226 	unsigned int base;
227 	u8 triled_mask;
228 };
229 
230 /**
231  * struct lpg_data - initialization data
232  * @lut_base:		base address of LUT block
233  * @lut_size:		number of entries in LUT
234  * @triled_base:	base address of TRILED
235  * @triled_has_atc_ctl:	true if there is TRI_LED_ATC_CTL register
236  * @triled_has_src_sel:	true if there is TRI_LED_SRC_SEL register
237  * @num_channels:	number of channels in LPG
238  * @channels:		list of channel initialization data
239  */
240 struct lpg_data {
241 	unsigned int lut_base;
242 	unsigned int lut_size;
243 	unsigned int triled_base;
244 	bool triled_has_atc_ctl;
245 	bool triled_has_src_sel;
246 	int num_channels;
247 	const struct lpg_channel_data *channels;
248 };
249 
250 #define PBS_SW_TRIG_BIT		BIT(0)
251 
252 static int lpg_clear_pbs_trigger(struct lpg *lpg, unsigned int lut_mask)
253 {
254 	u8 val = 0;
255 	int rc;
256 
257 	lpg->pbs_en_bitmap &= (~lut_mask);
258 	if (!lpg->pbs_en_bitmap) {
259 		rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val);
260 		if (rc < 0)
261 			return rc;
262 
263 		if (lpg->lut_sdam) {
264 			val = PBS_SW_TRIG_BIT;
265 			rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_CLR, 1, &val);
266 			if (rc < 0)
267 				return rc;
268 		}
269 	}
270 
271 	return 0;
272 }
273 
274 static int lpg_set_pbs_trigger(struct lpg *lpg, unsigned int lut_mask)
275 {
276 	u8 val = PBS_SW_TRIG_BIT;
277 	int rc;
278 
279 	if (!lpg->pbs_en_bitmap) {
280 		rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val);
281 		if (rc < 0)
282 			return rc;
283 
284 		if (lpg->lut_sdam) {
285 			rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_SET, 1, &val);
286 			if (rc < 0)
287 				return rc;
288 		} else {
289 			rc = qcom_pbs_trigger_event(lpg->pbs_dev, val);
290 			if (rc < 0)
291 				return rc;
292 		}
293 	}
294 	lpg->pbs_en_bitmap |= lut_mask;
295 
296 	return 0;
297 }
298 
299 static int lpg_sdam_configure_triggers(struct lpg_channel *chan, u8 set_trig)
300 {
301 	u32 addr = SDAM_LUT_EN_OFFSET + chan->sdam_offset;
302 
303 	if (!chan->lpg->lpg_chan_sdam)
304 		return 0;
305 
306 	return nvmem_device_write(chan->lpg->lpg_chan_sdam, addr, 1, &set_trig);
307 }
308 
309 static int triled_set(struct lpg *lpg, unsigned int mask, unsigned int enable)
310 {
311 	/* Skip if we don't have a triled block */
312 	if (!lpg->triled_base)
313 		return 0;
314 
315 	return regmap_update_bits(lpg->map, lpg->triled_base + TRI_LED_EN_CTL,
316 				  mask, enable);
317 }
318 
319 static int lpg_lut_store_sdam(struct lpg *lpg, struct led_pattern *pattern,
320 			 size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
321 {
322 	unsigned int idx;
323 	u8 brightness;
324 	int i, rc;
325 	u16 addr;
326 
327 	if (len > lpg->lut_size) {
328 		dev_err(lpg->dev, "Pattern length (%zu) exceeds maximum pattern length (%d)\n",
329 			len, lpg->lut_size);
330 		return -EINVAL;
331 	}
332 
333 	idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size, 0, len, 0);
334 	if (idx >= lpg->lut_size)
335 		return -ENOSPC;
336 
337 	for (i = 0; i < len; i++) {
338 		brightness = pattern[i].brightness;
339 
340 		if (lpg->lut_sdam) {
341 			addr = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET + i + idx;
342 			rc = nvmem_device_write(lpg->lut_sdam, addr, 1, &brightness);
343 		} else {
344 			addr = SDAM_LPG_SDAM_LUT_PATTERN_OFFSET + i + idx;
345 			rc = nvmem_device_write(lpg->lpg_chan_sdam, addr, 1, &brightness);
346 		}
347 
348 		if (rc < 0)
349 			return rc;
350 	}
351 
352 	bitmap_set(lpg->lut_bitmap, idx, len);
353 
354 	*lo_idx = idx;
355 	*hi_idx = idx + len - 1;
356 
357 	return 0;
358 }
359 
360 static int lpg_lut_store(struct lpg *lpg, struct led_pattern *pattern,
361 			 size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
362 {
363 	unsigned int idx;
364 	u16 val;
365 	int i;
366 
367 	idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size,
368 					 0, len, 0);
369 	if (idx >= lpg->lut_size)
370 		return -ENOMEM;
371 
372 	for (i = 0; i < len; i++) {
373 		val = pattern[i].brightness;
374 
375 		regmap_bulk_write(lpg->map, lpg->lut_base + LPG_LUT_REG(idx + i),
376 				  &val, sizeof(val));
377 	}
378 
379 	bitmap_set(lpg->lut_bitmap, idx, len);
380 
381 	*lo_idx = idx;
382 	*hi_idx = idx + len - 1;
383 
384 	return 0;
385 }
386 
387 static void lpg_lut_free(struct lpg *lpg, unsigned int lo_idx, unsigned int hi_idx)
388 {
389 	int len;
390 
391 	len = hi_idx - lo_idx + 1;
392 	if (len == 1)
393 		return;
394 
395 	bitmap_clear(lpg->lut_bitmap, lo_idx, len);
396 }
397 
398 static int lpg_lut_sync(struct lpg *lpg, unsigned int mask)
399 {
400 	if (!lpg->lut_base)
401 		return 0;
402 
403 	return regmap_write(lpg->map, lpg->lut_base + RAMP_CONTROL_REG, mask);
404 }
405 
406 static const unsigned int lpg_clk_rates[] = {0, 1024, 32768, 19200000};
407 static const unsigned int lpg_clk_rates_hi_res[] = {0, 1024, 32768, 19200000, 76800000};
408 static const unsigned int lpg_pre_divs[] = {1, 3, 5, 6};
409 static const unsigned int lpg_pwm_resolution[] =  {9};
410 static const unsigned int lpg_pwm_resolution_hi_res[] =  {8, 9, 10, 11, 12, 13, 14, 15};
411 
412 static int lpg_calc_freq(struct lpg_channel *chan, uint64_t period)
413 {
414 	unsigned int i, pwm_resolution_count, best_pwm_resolution_sel = 0;
415 	const unsigned int *clk_rate_arr, *pwm_resolution_arr;
416 	unsigned int clk_sel, clk_len, best_clk = 0;
417 	unsigned int div, best_div = 0;
418 	unsigned int m, best_m = 0;
419 	unsigned int resolution;
420 	unsigned int error;
421 	unsigned int best_err = UINT_MAX;
422 	u64 max_period, min_period;
423 	u64 best_period = 0;
424 	u64 max_res;
425 
426 	/*
427 	 * The PWM period is determined by:
428 	 *
429 	 *          resolution * pre_div * 2^M
430 	 * period = --------------------------
431 	 *                   refclk
432 	 *
433 	 * Resolution = 2^9 bits for PWM or
434 	 *              2^{8, 9, 10, 11, 12, 13, 14, 15} bits for high resolution PWM
435 	 * pre_div = {1, 3, 5, 6} and
436 	 * M = [0..7].
437 	 *
438 	 * This allows for periods between 27uS and 384s for PWM channels and periods between
439 	 * 3uS and 24576s for high resolution PWMs.
440 	 * The PWM framework wants a period of equal or lower length than requested,
441 	 * reject anything below minimum period.
442 	 */
443 
444 	if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
445 		clk_rate_arr = lpg_clk_rates_hi_res;
446 		clk_len = ARRAY_SIZE(lpg_clk_rates_hi_res);
447 		pwm_resolution_arr = lpg_pwm_resolution_hi_res;
448 		pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution_hi_res);
449 		max_res = LPG_RESOLUTION_15BIT;
450 	} else {
451 		clk_rate_arr = lpg_clk_rates;
452 		clk_len = ARRAY_SIZE(lpg_clk_rates);
453 		pwm_resolution_arr = lpg_pwm_resolution;
454 		pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution);
455 		max_res = LPG_RESOLUTION_9BIT;
456 	}
457 
458 	min_period = div64_u64((u64)NSEC_PER_SEC * (1 << pwm_resolution_arr[0]),
459 			       clk_rate_arr[clk_len - 1]);
460 	if (period <= min_period)
461 		return -EINVAL;
462 
463 	/* Limit period to largest possible value, to avoid overflows */
464 	max_period = div64_u64((u64)NSEC_PER_SEC * max_res * LPG_MAX_PREDIV * (1 << LPG_MAX_M),
465 			       1024);
466 	if (period > max_period)
467 		period = max_period;
468 
469 	/*
470 	 * Search for the pre_div, refclk, resolution and M by solving the rewritten formula
471 	 * for each refclk, resolution and pre_div value:
472 	 *
473 	 *                     period * refclk
474 	 * M = log2 -------------------------------------
475 	 *           NSEC_PER_SEC * pre_div * resolution
476 	 */
477 
478 	for (i = 0; i < pwm_resolution_count; i++) {
479 		resolution = 1 << pwm_resolution_arr[i];
480 		for (clk_sel = 1; clk_sel < clk_len; clk_sel++) {
481 			u64 numerator = period * clk_rate_arr[clk_sel];
482 
483 			for (div = 0; div < ARRAY_SIZE(lpg_pre_divs); div++) {
484 				u64 denominator = (u64)NSEC_PER_SEC * lpg_pre_divs[div] *
485 						  resolution;
486 				u64 actual;
487 				u64 ratio;
488 
489 				if (numerator < denominator)
490 					continue;
491 
492 				ratio = div64_u64(numerator, denominator);
493 				m = ilog2(ratio);
494 				if (m > LPG_MAX_M)
495 					m = LPG_MAX_M;
496 
497 				actual = DIV_ROUND_UP_ULL(denominator * (1 << m),
498 							  clk_rate_arr[clk_sel]);
499 				error = period - actual;
500 				if (error < best_err) {
501 					best_err = error;
502 					best_div = div;
503 					best_m = m;
504 					best_clk = clk_sel;
505 					best_period = actual;
506 					best_pwm_resolution_sel = i;
507 				}
508 			}
509 		}
510 	}
511 	chan->clk_sel = best_clk;
512 	chan->pre_div_sel = best_div;
513 	chan->pre_div_exp = best_m;
514 	chan->period = best_period;
515 	chan->pwm_resolution_sel = best_pwm_resolution_sel;
516 	return 0;
517 }
518 
519 static void lpg_calc_duty(struct lpg_channel *chan, uint64_t duty)
520 {
521 	unsigned int max;
522 	unsigned int val;
523 	unsigned int clk_rate;
524 
525 	if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
526 		max = LPG_RESOLUTION_15BIT - 1;
527 		clk_rate = lpg_clk_rates_hi_res[chan->clk_sel];
528 	} else {
529 		max = LPG_RESOLUTION_9BIT - 1;
530 		clk_rate = lpg_clk_rates[chan->clk_sel];
531 	}
532 
533 	val = div64_u64(duty * clk_rate,
534 			(u64)NSEC_PER_SEC * lpg_pre_divs[chan->pre_div_sel] * (1 << chan->pre_div_exp));
535 
536 	chan->pwm_value = min(val, max);
537 }
538 
539 static void lpg_apply_freq(struct lpg_channel *chan)
540 {
541 	unsigned long val;
542 	struct lpg *lpg = chan->lpg;
543 
544 	if (!chan->enabled)
545 		return;
546 
547 	val = chan->clk_sel;
548 
549 	/* Specify resolution, based on the subtype of the channel */
550 	switch (chan->subtype) {
551 	case LPG_SUBTYPE_LPG:
552 		val |= GENMASK(5, 4);
553 		break;
554 	case LPG_SUBTYPE_PWM:
555 		val |= BIT(2);
556 		break;
557 	case LPG_SUBTYPE_HI_RES_PWM:
558 		val |= FIELD_PREP(PWM_SIZE_HI_RES_MASK, chan->pwm_resolution_sel);
559 		break;
560 	case LPG_SUBTYPE_LPG_LITE:
561 	default:
562 		val |= BIT(4);
563 		break;
564 	}
565 
566 	regmap_write(lpg->map, chan->base + LPG_SIZE_CLK_REG, val);
567 
568 	val = FIELD_PREP(PWM_FREQ_PRE_DIV_MASK, chan->pre_div_sel) |
569 	      FIELD_PREP(PWM_FREQ_EXP_MASK, chan->pre_div_exp);
570 	regmap_write(lpg->map, chan->base + LPG_PREDIV_CLK_REG, val);
571 }
572 
573 #define LPG_ENABLE_GLITCH_REMOVAL	BIT(5)
574 
575 static void lpg_enable_glitch(struct lpg_channel *chan)
576 {
577 	struct lpg *lpg = chan->lpg;
578 
579 	regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
580 			   LPG_ENABLE_GLITCH_REMOVAL, 0);
581 }
582 
583 static void lpg_disable_glitch(struct lpg_channel *chan)
584 {
585 	struct lpg *lpg = chan->lpg;
586 
587 	regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
588 			   LPG_ENABLE_GLITCH_REMOVAL,
589 			   LPG_ENABLE_GLITCH_REMOVAL);
590 }
591 
592 static void lpg_apply_pwm_value(struct lpg_channel *chan)
593 {
594 	struct lpg *lpg = chan->lpg;
595 	u16 val = chan->pwm_value;
596 
597 	if (!chan->enabled)
598 		return;
599 
600 	regmap_bulk_write(lpg->map, chan->base + PWM_VALUE_REG, &val, sizeof(val));
601 }
602 
603 #define LPG_PATTERN_CONFIG_LO_TO_HI	BIT(4)
604 #define LPG_PATTERN_CONFIG_REPEAT	BIT(3)
605 #define LPG_PATTERN_CONFIG_TOGGLE	BIT(2)
606 #define LPG_PATTERN_CONFIG_PAUSE_HI	BIT(1)
607 #define LPG_PATTERN_CONFIG_PAUSE_LO	BIT(0)
608 
609 static void lpg_sdam_apply_lut_control(struct lpg_channel *chan)
610 {
611 	struct nvmem_device *lpg_chan_sdam = chan->lpg->lpg_chan_sdam;
612 	unsigned int lo_idx = chan->pattern_lo_idx;
613 	unsigned int hi_idx = chan->pattern_hi_idx;
614 	u8 val = 0, conf = 0, lut_offset = 0;
615 	unsigned int hi_pause, lo_pause;
616 	struct lpg *lpg = chan->lpg;
617 
618 	if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
619 		return;
620 
621 	hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, chan->ramp_tick_ms);
622 	lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, chan->ramp_tick_ms);
623 
624 	if (!chan->ramp_oneshot)
625 		conf |= LPG_PATTERN_CONFIG_REPEAT;
626 	if (chan->ramp_hi_pause_ms && lpg->lut_sdam)
627 		conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
628 	if (chan->ramp_lo_pause_ms && lpg->lut_sdam)
629 		conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
630 
631 	if (lpg->lut_sdam) {
632 		lut_offset = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET - SDAM_START_BASE;
633 		hi_idx += lut_offset;
634 		lo_idx += lut_offset;
635 	}
636 
637 	nvmem_device_write(lpg_chan_sdam, SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val);
638 	nvmem_device_write(lpg_chan_sdam, SDAM_PATTERN_CONFIG_OFFSET + chan->sdam_offset, 1, &conf);
639 	nvmem_device_write(lpg_chan_sdam, SDAM_END_INDEX_OFFSET + chan->sdam_offset, 1, &hi_idx);
640 	nvmem_device_write(lpg_chan_sdam, SDAM_START_INDEX_OFFSET + chan->sdam_offset, 1, &lo_idx);
641 
642 	val = RAMP_STEP_DURATION(chan->ramp_tick_ms);
643 	nvmem_device_write(lpg_chan_sdam, SDAM_REG_RAMP_STEP_DURATION, 1, &val);
644 
645 	if (lpg->lut_sdam) {
646 		nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_HI_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &hi_pause);
647 		nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_LO_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &lo_pause);
648 	}
649 
650 }
651 
652 static void lpg_apply_lut_control(struct lpg_channel *chan)
653 {
654 	struct lpg *lpg = chan->lpg;
655 	unsigned int hi_pause;
656 	unsigned int lo_pause;
657 	unsigned int conf = 0;
658 	unsigned int lo_idx = chan->pattern_lo_idx;
659 	unsigned int hi_idx = chan->pattern_hi_idx;
660 	u16 step = chan->ramp_tick_ms;
661 
662 	if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
663 		return;
664 
665 	hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, step);
666 	lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, step);
667 
668 	if (!chan->ramp_reverse)
669 		conf |= LPG_PATTERN_CONFIG_LO_TO_HI;
670 	if (!chan->ramp_oneshot)
671 		conf |= LPG_PATTERN_CONFIG_REPEAT;
672 	if (chan->ramp_ping_pong)
673 		conf |= LPG_PATTERN_CONFIG_TOGGLE;
674 	if (chan->ramp_hi_pause_ms)
675 		conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
676 	if (chan->ramp_lo_pause_ms)
677 		conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
678 
679 	regmap_write(lpg->map, chan->base + LPG_PATTERN_CONFIG_REG, conf);
680 	regmap_write(lpg->map, chan->base + LPG_HI_IDX_REG, hi_idx);
681 	regmap_write(lpg->map, chan->base + LPG_LO_IDX_REG, lo_idx);
682 
683 	regmap_bulk_write(lpg->map, chan->base + LPG_RAMP_DURATION_REG, &step, sizeof(step));
684 	regmap_write(lpg->map, chan->base + LPG_HI_PAUSE_REG, hi_pause);
685 	regmap_write(lpg->map, chan->base + LPG_LO_PAUSE_REG, lo_pause);
686 }
687 
688 #define LPG_ENABLE_CONTROL_OUTPUT		BIT(7)
689 #define LPG_ENABLE_CONTROL_BUFFER_TRISTATE	BIT(5)
690 #define LPG_ENABLE_CONTROL_SRC_PWM		BIT(2)
691 #define LPG_ENABLE_CONTROL_RAMP_GEN		BIT(1)
692 
693 static void lpg_apply_control(struct lpg_channel *chan)
694 {
695 	unsigned int ctrl;
696 	struct lpg *lpg = chan->lpg;
697 
698 	ctrl = LPG_ENABLE_CONTROL_BUFFER_TRISTATE;
699 
700 	if (chan->enabled)
701 		ctrl |= LPG_ENABLE_CONTROL_OUTPUT;
702 
703 	if (chan->pattern_lo_idx != chan->pattern_hi_idx)
704 		ctrl |= LPG_ENABLE_CONTROL_RAMP_GEN;
705 	else
706 		ctrl |= LPG_ENABLE_CONTROL_SRC_PWM;
707 
708 	regmap_write(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, ctrl);
709 
710 	/*
711 	 * Due to LPG hardware bug, in the PWM mode, having enabled PWM,
712 	 * We have to write PWM values one more time.
713 	 */
714 	if (chan->enabled)
715 		lpg_apply_pwm_value(chan);
716 }
717 
718 #define LPG_SYNC_PWM	BIT(0)
719 
720 static void lpg_apply_sync(struct lpg_channel *chan)
721 {
722 	struct lpg *lpg = chan->lpg;
723 
724 	regmap_write(lpg->map, chan->base + PWM_SYNC_REG, LPG_SYNC_PWM);
725 }
726 
727 static int lpg_parse_dtest(struct lpg *lpg)
728 {
729 	struct lpg_channel *chan;
730 	struct device_node *np = lpg->dev->of_node;
731 	int count;
732 	int ret;
733 	int i;
734 
735 	count = of_property_count_u32_elems(np, "qcom,dtest");
736 	if (count == -EINVAL) {
737 		return 0;
738 	} else if (count < 0) {
739 		ret = count;
740 		goto err_malformed;
741 	} else if (count != lpg->data->num_channels * 2) {
742 		return dev_err_probe(lpg->dev, -EINVAL,
743 				     "qcom,dtest needs to be %d items\n",
744 				     lpg->data->num_channels * 2);
745 	}
746 
747 	for (i = 0; i < lpg->data->num_channels; i++) {
748 		chan = &lpg->channels[i];
749 
750 		ret = of_property_read_u32_index(np, "qcom,dtest", i * 2,
751 						 &chan->dtest_line);
752 		if (ret)
753 			goto err_malformed;
754 
755 		ret = of_property_read_u32_index(np, "qcom,dtest", i * 2 + 1,
756 						 &chan->dtest_value);
757 		if (ret)
758 			goto err_malformed;
759 	}
760 
761 	return 0;
762 
763 err_malformed:
764 	return dev_err_probe(lpg->dev, ret, "malformed qcom,dtest\n");
765 }
766 
767 static void lpg_apply_dtest(struct lpg_channel *chan)
768 {
769 	struct lpg *lpg = chan->lpg;
770 
771 	if (!chan->dtest_line)
772 		return;
773 
774 	regmap_write(lpg->map, chan->base + PWM_SEC_ACCESS_REG, 0xa5);
775 	regmap_write(lpg->map, chan->base + PWM_DTEST_REG(chan->dtest_line),
776 		     chan->dtest_value);
777 }
778 
779 static void lpg_apply(struct lpg_channel *chan)
780 {
781 	lpg_disable_glitch(chan);
782 	lpg_apply_freq(chan);
783 	lpg_apply_pwm_value(chan);
784 	lpg_apply_control(chan);
785 	lpg_apply_sync(chan);
786 	if (chan->lpg->lpg_chan_sdam)
787 		lpg_sdam_apply_lut_control(chan);
788 	else
789 		lpg_apply_lut_control(chan);
790 	lpg_enable_glitch(chan);
791 }
792 
793 static void lpg_brightness_set(struct lpg_led *led, struct led_classdev *cdev,
794 			       struct mc_subled *subleds)
795 {
796 	enum led_brightness brightness;
797 	struct lpg_channel *chan;
798 	unsigned int triled_enabled = 0;
799 	unsigned int triled_mask = 0;
800 	unsigned int lut_mask = 0;
801 	unsigned int duty;
802 	struct lpg *lpg = led->lpg;
803 	int i;
804 
805 	for (i = 0; i < led->num_channels; i++) {
806 		chan = led->channels[i];
807 		brightness = subleds[i].brightness;
808 
809 		if (brightness == LED_OFF) {
810 			chan->enabled = false;
811 			chan->ramp_enabled = false;
812 		} else if (chan->pattern_lo_idx != chan->pattern_hi_idx) {
813 			lpg_calc_freq(chan, NSEC_PER_MSEC);
814 			lpg_sdam_configure_triggers(chan, 1);
815 
816 			chan->enabled = true;
817 			chan->ramp_enabled = true;
818 
819 			lut_mask |= chan->lut_mask;
820 			triled_enabled |= chan->triled_mask;
821 		} else {
822 			lpg_calc_freq(chan, NSEC_PER_MSEC);
823 
824 			duty = div_u64(brightness * chan->period, cdev->max_brightness);
825 			lpg_calc_duty(chan, duty);
826 			chan->enabled = true;
827 			chan->ramp_enabled = false;
828 
829 			triled_enabled |= chan->triled_mask;
830 		}
831 
832 		triled_mask |= chan->triled_mask;
833 
834 		lpg_apply(chan);
835 	}
836 
837 	/* Toggle triled lines */
838 	if (triled_mask)
839 		triled_set(lpg, triled_mask, triled_enabled);
840 
841 	/* Trigger start of ramp generator(s) */
842 	if (lut_mask) {
843 		lpg_lut_sync(lpg, lut_mask);
844 		lpg_set_pbs_trigger(lpg, lut_mask);
845 	}
846 }
847 
848 static int lpg_brightness_single_set(struct led_classdev *cdev,
849 				     enum led_brightness value)
850 {
851 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
852 	struct mc_subled info;
853 
854 	mutex_lock(&led->lpg->lock);
855 
856 	info.brightness = value;
857 	lpg_brightness_set(led, cdev, &info);
858 
859 	mutex_unlock(&led->lpg->lock);
860 
861 	return 0;
862 }
863 
864 static int lpg_brightness_mc_set(struct led_classdev *cdev,
865 				 enum led_brightness value)
866 {
867 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
868 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
869 
870 	mutex_lock(&led->lpg->lock);
871 
872 	led_mc_calc_color_components(mc, value);
873 	lpg_brightness_set(led, cdev, mc->subled_info);
874 
875 	mutex_unlock(&led->lpg->lock);
876 
877 	return 0;
878 }
879 
880 static int lpg_blink_set(struct lpg_led *led,
881 			 unsigned long *delay_on, unsigned long *delay_off)
882 {
883 	struct lpg_channel *chan;
884 	unsigned int period;
885 	unsigned int triled_mask = 0;
886 	struct lpg *lpg = led->lpg;
887 	u64 duty;
888 	int i;
889 
890 	if (!*delay_on && !*delay_off) {
891 		*delay_on = 500;
892 		*delay_off = 500;
893 	}
894 
895 	duty = *delay_on * NSEC_PER_MSEC;
896 	period = (*delay_on + *delay_off) * NSEC_PER_MSEC;
897 
898 	for (i = 0; i < led->num_channels; i++) {
899 		chan = led->channels[i];
900 
901 		lpg_calc_freq(chan, period);
902 		lpg_calc_duty(chan, duty);
903 
904 		chan->enabled = true;
905 		chan->ramp_enabled = false;
906 
907 		triled_mask |= chan->triled_mask;
908 
909 		lpg_apply(chan);
910 	}
911 
912 	/* Enable triled lines */
913 	triled_set(lpg, triled_mask, triled_mask);
914 
915 	chan = led->channels[0];
916 	duty = div_u64(chan->pwm_value * chan->period, LPG_RESOLUTION_9BIT);
917 	*delay_on = div_u64(duty, NSEC_PER_MSEC);
918 	*delay_off = div_u64(chan->period - duty, NSEC_PER_MSEC);
919 
920 	return 0;
921 }
922 
923 static int lpg_blink_single_set(struct led_classdev *cdev,
924 				unsigned long *delay_on, unsigned long *delay_off)
925 {
926 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
927 	int ret;
928 
929 	mutex_lock(&led->lpg->lock);
930 
931 	ret = lpg_blink_set(led, delay_on, delay_off);
932 
933 	mutex_unlock(&led->lpg->lock);
934 
935 	return ret;
936 }
937 
938 static int lpg_blink_mc_set(struct led_classdev *cdev,
939 			    unsigned long *delay_on, unsigned long *delay_off)
940 {
941 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
942 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
943 	int ret;
944 
945 	mutex_lock(&led->lpg->lock);
946 
947 	ret = lpg_blink_set(led, delay_on, delay_off);
948 
949 	mutex_unlock(&led->lpg->lock);
950 
951 	return ret;
952 }
953 
954 static int lpg_pattern_set(struct lpg_led *led, struct led_pattern *led_pattern,
955 			   u32 len, int repeat)
956 {
957 	struct lpg_channel *chan;
958 	struct lpg *lpg = led->lpg;
959 	struct led_pattern *pattern;
960 	unsigned int brightness_a;
961 	unsigned int brightness_b;
962 	unsigned int hi_pause = 0;
963 	unsigned int lo_pause = 0;
964 	unsigned int actual_len;
965 	unsigned int delta_t;
966 	unsigned int lo_idx;
967 	unsigned int hi_idx;
968 	unsigned int i;
969 	bool ping_pong = true;
970 	int ret = -EINVAL;
971 
972 	/* Hardware only support oneshot or indefinite loops */
973 	if (repeat != -1 && repeat != 1)
974 		return -EINVAL;
975 
976 	/*
977 	 * The standardized leds-trigger-pattern format defines that the
978 	 * brightness of the LED follows a linear transition from one entry
979 	 * in the pattern to the next, over the given delta_t time. It
980 	 * describes that the way to perform instant transitions a zero-length
981 	 * entry should be added following a pattern entry.
982 	 *
983 	 * The LPG hardware is only able to perform the latter (no linear
984 	 * transitions), so require each entry in the pattern to be followed by
985 	 * a zero-length transition.
986 	 */
987 	if (len % 2)
988 		return -EINVAL;
989 
990 	pattern = kcalloc(len / 2, sizeof(*pattern), GFP_KERNEL);
991 	if (!pattern)
992 		return -ENOMEM;
993 
994 	for (i = 0; i < len; i += 2) {
995 		if (led_pattern[i].brightness != led_pattern[i + 1].brightness)
996 			goto out_free_pattern;
997 		if (led_pattern[i + 1].delta_t != 0)
998 			goto out_free_pattern;
999 
1000 		pattern[i / 2].brightness = led_pattern[i].brightness;
1001 		pattern[i / 2].delta_t = led_pattern[i].delta_t;
1002 	}
1003 
1004 	len /= 2;
1005 
1006 	/*
1007 	 * Specifying a pattern of length 1 causes the hardware to iterate
1008 	 * through the entire LUT, so prohibit this.
1009 	 */
1010 	if (len < 2)
1011 		goto out_free_pattern;
1012 
1013 	/*
1014 	 * The LPG plays patterns with at a fixed pace, a "low pause" can be
1015 	 * used to stretch the first delay of the pattern and a "high pause"
1016 	 * the last one.
1017 	 *
1018 	 * In order to save space the pattern can be played in "ping pong"
1019 	 * mode, in which the pattern is first played forward, then "high
1020 	 * pause" is applied, then the pattern is played backwards and finally
1021 	 * the "low pause" is applied.
1022 	 *
1023 	 * The middle elements of the pattern are used to determine delta_t and
1024 	 * the "low pause" and "high pause" multipliers are derrived from this.
1025 	 *
1026 	 * The first element in the pattern is used to determine "low pause".
1027 	 *
1028 	 * If the specified pattern is a palindrome the ping pong mode is
1029 	 * enabled. In this scenario the delta_t of the middle entry (i.e. the
1030 	 * last in the programmed pattern) determines the "high pause".
1031 	 *
1032 	 * SDAM-based devices do not support "ping pong", and only supports
1033 	 * "low pause" and "high pause" with a dedicated SDAM LUT.
1034 	 */
1035 
1036 	/* Detect palindromes and use "ping pong" to reduce LUT usage */
1037 	if (lpg->lut_base) {
1038 		for (i = 0; i < len / 2; i++) {
1039 			brightness_a = pattern[i].brightness;
1040 			brightness_b = pattern[len - i - 1].brightness;
1041 
1042 			if (brightness_a != brightness_b) {
1043 				ping_pong = false;
1044 				break;
1045 			}
1046 		}
1047 	} else
1048 		ping_pong = false;
1049 
1050 	/* The pattern length to be written to the LUT */
1051 	if (ping_pong)
1052 		actual_len = (len + 1) / 2;
1053 	else
1054 		actual_len = len;
1055 
1056 	/*
1057 	 * Validate that all delta_t in the pattern are the same, with the
1058 	 * exception of the middle element in case of ping_pong.
1059 	 */
1060 	delta_t = pattern[1].delta_t;
1061 	for (i = 2; i < len; i++) {
1062 		if (pattern[i].delta_t != delta_t) {
1063 			/*
1064 			 * Allow last entry in the full or shortened pattern to
1065 			 * specify hi pause. Reject other variations.
1066 			 */
1067 			if (i != actual_len - 1)
1068 				goto out_free_pattern;
1069 		}
1070 	}
1071 
1072 	/* LPG_RAMP_DURATION_REG is a 9bit */
1073 	if (delta_t >= BIT(9))
1074 		goto out_free_pattern;
1075 
1076 	/*
1077 	 * Find "low pause" and "high pause" in the pattern in the LUT case.
1078 	 * SDAM-based devices without dedicated LUT SDAM require equal
1079 	 * duration of all steps.
1080 	 */
1081 	if (lpg->lut_base || lpg->lut_sdam) {
1082 		lo_pause = pattern[0].delta_t;
1083 		hi_pause = pattern[actual_len - 1].delta_t;
1084 	} else {
1085 		if (delta_t != pattern[0].delta_t || delta_t != pattern[actual_len - 1].delta_t)
1086 			goto out_free_pattern;
1087 	}
1088 
1089 
1090 	mutex_lock(&lpg->lock);
1091 
1092 	if (lpg->lut_base)
1093 		ret = lpg_lut_store(lpg, pattern, actual_len, &lo_idx, &hi_idx);
1094 	else
1095 		ret = lpg_lut_store_sdam(lpg, pattern, actual_len, &lo_idx, &hi_idx);
1096 
1097 	if (ret < 0)
1098 		goto out_unlock;
1099 
1100 	for (i = 0; i < led->num_channels; i++) {
1101 		chan = led->channels[i];
1102 
1103 		chan->ramp_tick_ms = delta_t;
1104 		chan->ramp_ping_pong = ping_pong;
1105 		chan->ramp_oneshot = repeat != -1;
1106 
1107 		chan->ramp_lo_pause_ms = lo_pause;
1108 		chan->ramp_hi_pause_ms = hi_pause;
1109 
1110 		chan->pattern_lo_idx = lo_idx;
1111 		chan->pattern_hi_idx = hi_idx;
1112 	}
1113 
1114 out_unlock:
1115 	mutex_unlock(&lpg->lock);
1116 out_free_pattern:
1117 	kfree(pattern);
1118 
1119 	return ret;
1120 }
1121 
1122 static int lpg_pattern_single_set(struct led_classdev *cdev,
1123 				  struct led_pattern *pattern, u32 len,
1124 				  int repeat)
1125 {
1126 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
1127 	int ret;
1128 
1129 	ret = lpg_pattern_set(led, pattern, len, repeat);
1130 	if (ret < 0)
1131 		return ret;
1132 
1133 	lpg_brightness_single_set(cdev, LED_FULL);
1134 
1135 	return 0;
1136 }
1137 
1138 static int lpg_pattern_mc_set(struct led_classdev *cdev,
1139 			      struct led_pattern *pattern, u32 len,
1140 			      int repeat)
1141 {
1142 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
1143 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
1144 	unsigned int triled_mask = 0;
1145 	int ret, i;
1146 
1147 	for (i = 0; i < led->num_channels; i++)
1148 		triled_mask |= led->channels[i]->triled_mask;
1149 	triled_set(led->lpg, triled_mask, 0);
1150 
1151 	ret = lpg_pattern_set(led, pattern, len, repeat);
1152 	if (ret < 0)
1153 		return ret;
1154 
1155 	led_mc_calc_color_components(mc, LED_FULL);
1156 	lpg_brightness_set(led, cdev, mc->subled_info);
1157 
1158 	return 0;
1159 }
1160 
1161 static int lpg_pattern_clear(struct lpg_led *led)
1162 {
1163 	struct lpg_channel *chan;
1164 	struct lpg *lpg = led->lpg;
1165 	int i;
1166 
1167 	mutex_lock(&lpg->lock);
1168 
1169 	chan = led->channels[0];
1170 	lpg_lut_free(lpg, chan->pattern_lo_idx, chan->pattern_hi_idx);
1171 
1172 	for (i = 0; i < led->num_channels; i++) {
1173 		chan = led->channels[i];
1174 		lpg_sdam_configure_triggers(chan, 0);
1175 		lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask);
1176 		chan->pattern_lo_idx = 0;
1177 		chan->pattern_hi_idx = 0;
1178 	}
1179 
1180 	mutex_unlock(&lpg->lock);
1181 
1182 	return 0;
1183 }
1184 
1185 static int lpg_pattern_single_clear(struct led_classdev *cdev)
1186 {
1187 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
1188 
1189 	return lpg_pattern_clear(led);
1190 }
1191 
1192 static int lpg_pattern_mc_clear(struct led_classdev *cdev)
1193 {
1194 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
1195 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
1196 
1197 	return lpg_pattern_clear(led);
1198 }
1199 
1200 static inline struct lpg *lpg_pwm_from_chip(struct pwm_chip *chip)
1201 {
1202 	return pwmchip_get_drvdata(chip);
1203 }
1204 
1205 static int lpg_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1206 {
1207 	struct lpg *lpg = lpg_pwm_from_chip(chip);
1208 	struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
1209 
1210 	return chan->in_use ? -EBUSY : 0;
1211 }
1212 
1213 /*
1214  * Limitations:
1215  * - Updating both duty and period is not done atomically, so the output signal
1216  *   will momentarily be a mix of the settings.
1217  * - Changed parameters takes effect immediately.
1218  * - A disabled channel outputs a logical 0.
1219  */
1220 static int lpg_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1221 			 const struct pwm_state *state)
1222 {
1223 	struct lpg *lpg = lpg_pwm_from_chip(chip);
1224 	struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
1225 	int ret = 0;
1226 
1227 	if (state->polarity != PWM_POLARITY_NORMAL)
1228 		return -EINVAL;
1229 
1230 	mutex_lock(&lpg->lock);
1231 
1232 	if (state->enabled) {
1233 		ret = lpg_calc_freq(chan, state->period);
1234 		if (ret < 0)
1235 			goto out_unlock;
1236 
1237 		lpg_calc_duty(chan, state->duty_cycle);
1238 	}
1239 	chan->enabled = state->enabled;
1240 
1241 	lpg_apply(chan);
1242 
1243 	triled_set(lpg, chan->triled_mask, chan->enabled ? chan->triled_mask : 0);
1244 
1245 out_unlock:
1246 	mutex_unlock(&lpg->lock);
1247 
1248 	return ret;
1249 }
1250 
1251 static int lpg_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1252 			     struct pwm_state *state)
1253 {
1254 	struct lpg *lpg = lpg_pwm_from_chip(chip);
1255 	struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
1256 	unsigned int resolution;
1257 	unsigned int pre_div;
1258 	unsigned int refclk;
1259 	unsigned int val;
1260 	unsigned int m;
1261 	u16 pwm_value;
1262 	int ret;
1263 
1264 	ret = regmap_read(lpg->map, chan->base + LPG_SIZE_CLK_REG, &val);
1265 	if (ret)
1266 		return ret;
1267 
1268 	if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
1269 		refclk = lpg_clk_rates_hi_res[FIELD_GET(PWM_CLK_SELECT_HI_RES_MASK, val)];
1270 		resolution = lpg_pwm_resolution_hi_res[FIELD_GET(PWM_SIZE_HI_RES_MASK, val)];
1271 	} else {
1272 		refclk = lpg_clk_rates[FIELD_GET(PWM_CLK_SELECT_MASK, val)];
1273 		resolution = 9;
1274 	}
1275 
1276 	if (refclk) {
1277 		ret = regmap_read(lpg->map, chan->base + LPG_PREDIV_CLK_REG, &val);
1278 		if (ret)
1279 			return ret;
1280 
1281 		pre_div = lpg_pre_divs[FIELD_GET(PWM_FREQ_PRE_DIV_MASK, val)];
1282 		m = FIELD_GET(PWM_FREQ_EXP_MASK, val);
1283 
1284 		ret = regmap_bulk_read(lpg->map, chan->base + PWM_VALUE_REG, &pwm_value, sizeof(pwm_value));
1285 		if (ret)
1286 			return ret;
1287 
1288 		state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * (1 << resolution) *
1289 						 pre_div * (1 << m), refclk);
1290 		state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pwm_value * pre_div * (1 << m), refclk);
1291 	} else {
1292 		state->period = 0;
1293 		state->duty_cycle = 0;
1294 	}
1295 
1296 	ret = regmap_read(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, &val);
1297 	if (ret)
1298 		return ret;
1299 
1300 	state->enabled = FIELD_GET(LPG_ENABLE_CONTROL_OUTPUT, val);
1301 	state->polarity = PWM_POLARITY_NORMAL;
1302 
1303 	if (state->duty_cycle > state->period)
1304 		state->duty_cycle = state->period;
1305 
1306 	return 0;
1307 }
1308 
1309 static const struct pwm_ops lpg_pwm_ops = {
1310 	.request = lpg_pwm_request,
1311 	.apply = lpg_pwm_apply,
1312 	.get_state = lpg_pwm_get_state,
1313 };
1314 
1315 static int lpg_add_pwm(struct lpg *lpg)
1316 {
1317 	struct pwm_chip *chip;
1318 	int ret;
1319 
1320 	lpg->pwm = chip = devm_pwmchip_alloc(lpg->dev, lpg->num_channels, 0);
1321 	if (IS_ERR(chip))
1322 		return PTR_ERR(chip);
1323 
1324 	chip->ops = &lpg_pwm_ops;
1325 	pwmchip_set_drvdata(chip, lpg);
1326 
1327 	ret = devm_pwmchip_add(lpg->dev, chip);
1328 	if (ret)
1329 		dev_err_probe(lpg->dev, ret, "failed to add PWM chip\n");
1330 
1331 	return ret;
1332 }
1333 
1334 static int lpg_parse_channel(struct lpg *lpg, struct device_node *np,
1335 			     struct lpg_channel **channel)
1336 {
1337 	struct lpg_channel *chan;
1338 	u32 color = LED_COLOR_ID_GREEN;
1339 	u32 reg;
1340 	int ret;
1341 
1342 	ret = of_property_read_u32(np, "reg", &reg);
1343 	if (ret || !reg || reg > lpg->num_channels)
1344 		return dev_err_probe(lpg->dev, -EINVAL, "invalid \"reg\" of %pOFn\n", np);
1345 
1346 	chan = &lpg->channels[reg - 1];
1347 	chan->in_use = true;
1348 
1349 	ret = of_property_read_u32(np, "color", &color);
1350 	if (ret < 0 && ret != -EINVAL)
1351 		return dev_err_probe(lpg->dev, ret,
1352 				     "failed to parse \"color\" of %pOF\n", np);
1353 
1354 	chan->color = color;
1355 
1356 	*channel = chan;
1357 
1358 	return 0;
1359 }
1360 
1361 static int lpg_add_led(struct lpg *lpg, struct device_node *np)
1362 {
1363 	struct led_init_data init_data = {};
1364 	struct led_classdev *cdev;
1365 	struct device_node *child;
1366 	struct mc_subled *info;
1367 	struct lpg_led *led;
1368 	const char *state;
1369 	int num_channels;
1370 	u32 color = 0;
1371 	int ret;
1372 	int i;
1373 
1374 	ret = of_property_read_u32(np, "color", &color);
1375 	if (ret < 0 && ret != -EINVAL)
1376 		return dev_err_probe(lpg->dev, ret,
1377 			      "failed to parse \"color\" of %pOF\n", np);
1378 
1379 	if (color == LED_COLOR_ID_RGB)
1380 		num_channels = of_get_available_child_count(np);
1381 	else
1382 		num_channels = 1;
1383 
1384 	led = devm_kzalloc(lpg->dev, struct_size(led, channels, num_channels), GFP_KERNEL);
1385 	if (!led)
1386 		return -ENOMEM;
1387 
1388 	led->lpg = lpg;
1389 	led->num_channels = num_channels;
1390 
1391 	if (color == LED_COLOR_ID_RGB) {
1392 		info = devm_kcalloc(lpg->dev, num_channels, sizeof(*info), GFP_KERNEL);
1393 		if (!info)
1394 			return -ENOMEM;
1395 		i = 0;
1396 		for_each_available_child_of_node(np, child) {
1397 			ret = lpg_parse_channel(lpg, child, &led->channels[i]);
1398 			if (ret < 0) {
1399 				of_node_put(child);
1400 				return ret;
1401 			}
1402 
1403 			info[i].color_index = led->channels[i]->color;
1404 			info[i].intensity = 0;
1405 			i++;
1406 		}
1407 
1408 		led->mcdev.subled_info = info;
1409 		led->mcdev.num_colors = num_channels;
1410 
1411 		cdev = &led->mcdev.led_cdev;
1412 		cdev->brightness_set_blocking = lpg_brightness_mc_set;
1413 		cdev->blink_set = lpg_blink_mc_set;
1414 
1415 		/* Register pattern accessors if we have a LUT block or when using PPG */
1416 		if (lpg->lut_base || lpg->lpg_chan_sdam) {
1417 			cdev->pattern_set = lpg_pattern_mc_set;
1418 			cdev->pattern_clear = lpg_pattern_mc_clear;
1419 		}
1420 	} else {
1421 		ret = lpg_parse_channel(lpg, np, &led->channels[0]);
1422 		if (ret < 0)
1423 			return ret;
1424 
1425 		cdev = &led->cdev;
1426 		cdev->brightness_set_blocking = lpg_brightness_single_set;
1427 		cdev->blink_set = lpg_blink_single_set;
1428 
1429 		/* Register pattern accessors if we have a LUT block or when using PPG */
1430 		if (lpg->lut_base || lpg->lpg_chan_sdam) {
1431 			cdev->pattern_set = lpg_pattern_single_set;
1432 			cdev->pattern_clear = lpg_pattern_single_clear;
1433 		}
1434 	}
1435 
1436 	cdev->default_trigger = of_get_property(np, "linux,default-trigger", NULL);
1437 
1438 	if (lpg->lpg_chan_sdam)
1439 		cdev->max_brightness = PPG_MAX_LED_BRIGHTNESS;
1440 	else
1441 		cdev->max_brightness = LPG_RESOLUTION_9BIT - 1;
1442 
1443 	if (!of_property_read_string(np, "default-state", &state) &&
1444 	    !strcmp(state, "on"))
1445 		cdev->brightness = cdev->max_brightness;
1446 	else
1447 		cdev->brightness = LED_OFF;
1448 
1449 	cdev->brightness_set_blocking(cdev, cdev->brightness);
1450 
1451 	init_data.fwnode = of_fwnode_handle(np);
1452 
1453 	if (color == LED_COLOR_ID_RGB)
1454 		ret = devm_led_classdev_multicolor_register_ext(lpg->dev, &led->mcdev, &init_data);
1455 	else
1456 		ret = devm_led_classdev_register_ext(lpg->dev, &led->cdev, &init_data);
1457 	if (ret)
1458 		dev_err_probe(lpg->dev, ret, "unable to register %s\n", cdev->name);
1459 
1460 	return ret;
1461 }
1462 
1463 static int lpg_init_channels(struct lpg *lpg)
1464 {
1465 	const struct lpg_data *data = lpg->data;
1466 	struct lpg_channel *chan;
1467 	int i;
1468 
1469 	lpg->num_channels = data->num_channels;
1470 	lpg->channels = devm_kcalloc(lpg->dev, data->num_channels,
1471 				     sizeof(struct lpg_channel), GFP_KERNEL);
1472 	if (!lpg->channels)
1473 		return -ENOMEM;
1474 
1475 	for (i = 0; i < data->num_channels; i++) {
1476 		chan = &lpg->channels[i];
1477 
1478 		chan->lpg = lpg;
1479 		chan->base = data->channels[i].base;
1480 		chan->triled_mask = data->channels[i].triled_mask;
1481 		chan->lut_mask = BIT(i);
1482 		chan->sdam_offset = data->channels[i].sdam_offset;
1483 
1484 		regmap_read(lpg->map, chan->base + LPG_SUBTYPE_REG, &chan->subtype);
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static int lpg_init_triled(struct lpg *lpg)
1491 {
1492 	struct device_node *np = lpg->dev->of_node;
1493 	int ret;
1494 
1495 	/* Skip initialization if we don't have a triled block */
1496 	if (!lpg->data->triled_base)
1497 		return 0;
1498 
1499 	lpg->triled_base = lpg->data->triled_base;
1500 	lpg->triled_has_atc_ctl = lpg->data->triled_has_atc_ctl;
1501 	lpg->triled_has_src_sel = lpg->data->triled_has_src_sel;
1502 
1503 	if (lpg->triled_has_src_sel) {
1504 		ret = of_property_read_u32(np, "qcom,power-source", &lpg->triled_src);
1505 		if (ret || lpg->triled_src == 2 || lpg->triled_src > 3)
1506 			return dev_err_probe(lpg->dev, -EINVAL,
1507 					     "invalid power source\n");
1508 	}
1509 
1510 	/* Disable automatic trickle charge LED */
1511 	if (lpg->triled_has_atc_ctl)
1512 		regmap_write(lpg->map, lpg->triled_base + TRI_LED_ATC_CTL, 0);
1513 
1514 	/* Configure power source */
1515 	if (lpg->triled_has_src_sel)
1516 		regmap_write(lpg->map, lpg->triled_base + TRI_LED_SRC_SEL, lpg->triled_src);
1517 
1518 	/* Default all outputs to off */
1519 	regmap_write(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, 0);
1520 
1521 	return 0;
1522 }
1523 
1524 static int lpg_init_lut(struct lpg *lpg)
1525 {
1526 	const struct lpg_data *data = lpg->data;
1527 
1528 	if (!data->lut_size)
1529 		return 0;
1530 
1531 	lpg->lut_size = data->lut_size;
1532 	if (data->lut_base)
1533 		lpg->lut_base = data->lut_base;
1534 
1535 	lpg->lut_bitmap = devm_bitmap_zalloc(lpg->dev, lpg->lut_size, GFP_KERNEL);
1536 	if (!lpg->lut_bitmap)
1537 		return -ENOMEM;
1538 
1539 	return 0;
1540 }
1541 
1542 static int lpg_init_sdam(struct lpg *lpg)
1543 {
1544 	int i, sdam_count, rc;
1545 	u8 val = 0;
1546 
1547 	sdam_count = of_property_count_strings(lpg->dev->of_node, "nvmem-names");
1548 	if (sdam_count <= 0)
1549 		return 0;
1550 	if (sdam_count > SDAM_MAX_DEVICES)
1551 		return -EINVAL;
1552 
1553 	/* Get the 1st SDAM device for LPG/LUT config */
1554 	lpg->lpg_chan_sdam = devm_nvmem_device_get(lpg->dev, "lpg_chan_sdam");
1555 	if (IS_ERR(lpg->lpg_chan_sdam))
1556 		return dev_err_probe(lpg->dev, PTR_ERR(lpg->lpg_chan_sdam),
1557 				"Failed to get LPG chan SDAM device\n");
1558 
1559 	if (sdam_count == 1) {
1560 		/* Get PBS device node if single SDAM device */
1561 		lpg->pbs_dev = get_pbs_client_device(lpg->dev);
1562 		if (IS_ERR(lpg->pbs_dev))
1563 			return dev_err_probe(lpg->dev, PTR_ERR(lpg->pbs_dev),
1564 					"Failed to get PBS client device\n");
1565 	} else if (sdam_count == 2) {
1566 		/* Get the 2nd SDAM device for LUT pattern */
1567 		lpg->lut_sdam = devm_nvmem_device_get(lpg->dev, "lut_sdam");
1568 		if (IS_ERR(lpg->lut_sdam))
1569 			return dev_err_probe(lpg->dev, PTR_ERR(lpg->lut_sdam),
1570 					"Failed to get LPG LUT SDAM device\n");
1571 	}
1572 
1573 	for (i = 0; i < lpg->num_channels; i++) {
1574 		struct lpg_channel *chan = &lpg->channels[i];
1575 
1576 		if (chan->sdam_offset) {
1577 			rc = nvmem_device_write(lpg->lpg_chan_sdam,
1578 				SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val);
1579 			if (rc < 0)
1580 				return rc;
1581 
1582 			rc = lpg_sdam_configure_triggers(chan, 0);
1583 			if (rc < 0)
1584 				return rc;
1585 
1586 			rc = lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask);
1587 			if (rc < 0)
1588 				return rc;
1589 		}
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 static int lpg_probe(struct platform_device *pdev)
1596 {
1597 	struct device_node *np;
1598 	struct lpg *lpg;
1599 	int ret;
1600 	int i;
1601 
1602 	lpg = devm_kzalloc(&pdev->dev, sizeof(*lpg), GFP_KERNEL);
1603 	if (!lpg)
1604 		return -ENOMEM;
1605 
1606 	lpg->data = of_device_get_match_data(&pdev->dev);
1607 	if (!lpg->data)
1608 		return -EINVAL;
1609 
1610 	lpg->dev = &pdev->dev;
1611 	mutex_init(&lpg->lock);
1612 
1613 	lpg->map = dev_get_regmap(pdev->dev.parent, NULL);
1614 	if (!lpg->map)
1615 		return dev_err_probe(&pdev->dev, -ENXIO, "parent regmap unavailable\n");
1616 
1617 	ret = lpg_init_channels(lpg);
1618 	if (ret < 0)
1619 		return ret;
1620 
1621 	ret = lpg_parse_dtest(lpg);
1622 	if (ret < 0)
1623 		return ret;
1624 
1625 	ret = lpg_init_triled(lpg);
1626 	if (ret < 0)
1627 		return ret;
1628 
1629 	ret = lpg_init_sdam(lpg);
1630 	if (ret < 0)
1631 		return ret;
1632 
1633 	ret = lpg_init_lut(lpg);
1634 	if (ret < 0)
1635 		return ret;
1636 
1637 	for_each_available_child_of_node(pdev->dev.of_node, np) {
1638 		ret = lpg_add_led(lpg, np);
1639 		if (ret) {
1640 			of_node_put(np);
1641 			return ret;
1642 		}
1643 	}
1644 
1645 	for (i = 0; i < lpg->num_channels; i++)
1646 		lpg_apply_dtest(&lpg->channels[i]);
1647 
1648 	return lpg_add_pwm(lpg);
1649 }
1650 
1651 static const struct lpg_data pm660l_lpg_data = {
1652 	.lut_base = 0xb000,
1653 	.lut_size = 49,
1654 
1655 	.triled_base = 0xd000,
1656 	.triled_has_atc_ctl = true,
1657 	.triled_has_src_sel = true,
1658 
1659 	.num_channels = 4,
1660 	.channels = (const struct lpg_channel_data[]) {
1661 		{ .base = 0xb100, .triled_mask = BIT(5) },
1662 		{ .base = 0xb200, .triled_mask = BIT(6) },
1663 		{ .base = 0xb300, .triled_mask = BIT(7) },
1664 		{ .base = 0xb400 },
1665 	},
1666 };
1667 
1668 static const struct lpg_data pm8916_pwm_data = {
1669 	.num_channels = 1,
1670 	.channels = (const struct lpg_channel_data[]) {
1671 		{ .base = 0xbc00 },
1672 	},
1673 };
1674 
1675 static const struct lpg_data pm8941_lpg_data = {
1676 	.lut_base = 0xb000,
1677 	.lut_size = 64,
1678 
1679 	.triled_base = 0xd000,
1680 	.triled_has_atc_ctl = true,
1681 	.triled_has_src_sel = true,
1682 
1683 	.num_channels = 8,
1684 	.channels = (const struct lpg_channel_data[]) {
1685 		{ .base = 0xb100 },
1686 		{ .base = 0xb200 },
1687 		{ .base = 0xb300 },
1688 		{ .base = 0xb400 },
1689 		{ .base = 0xb500, .triled_mask = BIT(5) },
1690 		{ .base = 0xb600, .triled_mask = BIT(6) },
1691 		{ .base = 0xb700, .triled_mask = BIT(7) },
1692 		{ .base = 0xb800 },
1693 	},
1694 };
1695 
1696 static const struct lpg_data pm8994_lpg_data = {
1697 	.lut_base = 0xb000,
1698 	.lut_size = 64,
1699 
1700 	.num_channels = 6,
1701 	.channels = (const struct lpg_channel_data[]) {
1702 		{ .base = 0xb100 },
1703 		{ .base = 0xb200 },
1704 		{ .base = 0xb300 },
1705 		{ .base = 0xb400 },
1706 		{ .base = 0xb500 },
1707 		{ .base = 0xb600 },
1708 	},
1709 };
1710 
1711 /* PMI632 uses SDAM instead of LUT for pattern */
1712 static const struct lpg_data pmi632_lpg_data = {
1713 	.triled_base = 0xd000,
1714 
1715 	.lut_size = 64,
1716 
1717 	.num_channels = 5,
1718 	.channels = (const struct lpg_channel_data[]) {
1719 		{ .base = 0xb300, .triled_mask = BIT(7), .sdam_offset = 0x48 },
1720 		{ .base = 0xb400, .triled_mask = BIT(6), .sdam_offset = 0x56 },
1721 		{ .base = 0xb500, .triled_mask = BIT(5), .sdam_offset = 0x64 },
1722 		{ .base = 0xb600 },
1723 		{ .base = 0xb700 },
1724 	},
1725 };
1726 
1727 static const struct lpg_data pmi8994_lpg_data = {
1728 	.lut_base = 0xb000,
1729 	.lut_size = 24,
1730 
1731 	.triled_base = 0xd000,
1732 	.triled_has_atc_ctl = true,
1733 	.triled_has_src_sel = true,
1734 
1735 	.num_channels = 4,
1736 	.channels = (const struct lpg_channel_data[]) {
1737 		{ .base = 0xb100, .triled_mask = BIT(5) },
1738 		{ .base = 0xb200, .triled_mask = BIT(6) },
1739 		{ .base = 0xb300, .triled_mask = BIT(7) },
1740 		{ .base = 0xb400 },
1741 	},
1742 };
1743 
1744 static const struct lpg_data pmi8998_lpg_data = {
1745 	.lut_base = 0xb000,
1746 	.lut_size = 49,
1747 
1748 	.triled_base = 0xd000,
1749 
1750 	.num_channels = 6,
1751 	.channels = (const struct lpg_channel_data[]) {
1752 		{ .base = 0xb100 },
1753 		{ .base = 0xb200 },
1754 		{ .base = 0xb300, .triled_mask = BIT(5) },
1755 		{ .base = 0xb400, .triled_mask = BIT(6) },
1756 		{ .base = 0xb500, .triled_mask = BIT(7) },
1757 		{ .base = 0xb600 },
1758 	},
1759 };
1760 
1761 static const struct lpg_data pm8150b_lpg_data = {
1762 	.lut_base = 0xb000,
1763 	.lut_size = 24,
1764 
1765 	.triled_base = 0xd000,
1766 
1767 	.num_channels = 2,
1768 	.channels = (const struct lpg_channel_data[]) {
1769 		{ .base = 0xb100, .triled_mask = BIT(7) },
1770 		{ .base = 0xb200, .triled_mask = BIT(6) },
1771 	},
1772 };
1773 
1774 static const struct lpg_data pm8150l_lpg_data = {
1775 	.lut_base = 0xb000,
1776 	.lut_size = 48,
1777 
1778 	.triled_base = 0xd000,
1779 
1780 	.num_channels = 5,
1781 	.channels = (const struct lpg_channel_data[]) {
1782 		{ .base = 0xb100, .triled_mask = BIT(7) },
1783 		{ .base = 0xb200, .triled_mask = BIT(6) },
1784 		{ .base = 0xb300, .triled_mask = BIT(5) },
1785 		{ .base = 0xbc00 },
1786 		{ .base = 0xbd00 },
1787 
1788 	},
1789 };
1790 
1791 static const struct lpg_data pm8350c_pwm_data = {
1792 	.triled_base = 0xef00,
1793 
1794 	.lut_size = 122,
1795 
1796 	.num_channels = 4,
1797 	.channels = (const struct lpg_channel_data[]) {
1798 		{ .base = 0xe800, .triled_mask = BIT(7), .sdam_offset = 0x48 },
1799 		{ .base = 0xe900, .triled_mask = BIT(6), .sdam_offset = 0x56 },
1800 		{ .base = 0xea00, .triled_mask = BIT(5), .sdam_offset = 0x64 },
1801 		{ .base = 0xeb00 },
1802 	},
1803 };
1804 
1805 static const struct lpg_data pmk8550_pwm_data = {
1806 	.num_channels = 2,
1807 	.channels = (const struct lpg_channel_data[]) {
1808 		{ .base = 0xe800 },
1809 		{ .base = 0xe900 },
1810 	},
1811 };
1812 
1813 static const struct of_device_id lpg_of_table[] = {
1814 	{ .compatible = "qcom,pm660l-lpg", .data = &pm660l_lpg_data },
1815 	{ .compatible = "qcom,pm8150b-lpg", .data = &pm8150b_lpg_data },
1816 	{ .compatible = "qcom,pm8150l-lpg", .data = &pm8150l_lpg_data },
1817 	{ .compatible = "qcom,pm8350c-pwm", .data = &pm8350c_pwm_data },
1818 	{ .compatible = "qcom,pm8916-pwm", .data = &pm8916_pwm_data },
1819 	{ .compatible = "qcom,pm8941-lpg", .data = &pm8941_lpg_data },
1820 	{ .compatible = "qcom,pm8994-lpg", .data = &pm8994_lpg_data },
1821 	{ .compatible = "qcom,pmi632-lpg", .data = &pmi632_lpg_data },
1822 	{ .compatible = "qcom,pmi8994-lpg", .data = &pmi8994_lpg_data },
1823 	{ .compatible = "qcom,pmi8998-lpg", .data = &pmi8998_lpg_data },
1824 	{ .compatible = "qcom,pmc8180c-lpg", .data = &pm8150l_lpg_data },
1825 	{ .compatible = "qcom,pmk8550-pwm", .data = &pmk8550_pwm_data },
1826 	{}
1827 };
1828 MODULE_DEVICE_TABLE(of, lpg_of_table);
1829 
1830 static struct platform_driver lpg_driver = {
1831 	.probe = lpg_probe,
1832 	.driver = {
1833 		.name = "qcom-spmi-lpg",
1834 		.of_match_table = lpg_of_table,
1835 	},
1836 };
1837 module_platform_driver(lpg_driver);
1838 
1839 MODULE_DESCRIPTION("Qualcomm LPG LED driver");
1840 MODULE_LICENSE("GPL v2");
1841