xref: /linux/drivers/leds/rgb/leds-qcom-lpg.c (revision 7a08cb9b4bb92fb86f5fe8a3aa0ac08a9b3d783b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2022 Linaro Ltd
4  * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
5  * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved.
6  */
7 #include <linux/bits.h>
8 #include <linux/bitfield.h>
9 #include <linux/led-class-multicolor.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/platform_device.h>
14 #include <linux/pwm.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 #include <linux/soc/qcom/qcom-pbs.h>
18 
19 #define LPG_SUBTYPE_REG		0x05
20 #define  LPG_SUBTYPE_LPG	0x2
21 #define  LPG_SUBTYPE_PWM	0xb
22 #define  LPG_SUBTYPE_HI_RES_PWM	0xc
23 #define  LPG_SUBTYPE_LPG_LITE	0x11
24 #define LPG_PATTERN_CONFIG_REG	0x40
25 #define LPG_SIZE_CLK_REG	0x41
26 #define  PWM_CLK_SELECT_MASK	GENMASK(1, 0)
27 #define  PWM_CLK_SELECT_HI_RES_MASK	GENMASK(2, 0)
28 #define  PWM_SIZE_HI_RES_MASK	GENMASK(6, 4)
29 #define LPG_PREDIV_CLK_REG	0x42
30 #define  PWM_FREQ_PRE_DIV_MASK	GENMASK(6, 5)
31 #define  PWM_FREQ_EXP_MASK	GENMASK(2, 0)
32 #define PWM_TYPE_CONFIG_REG	0x43
33 #define PWM_VALUE_REG		0x44
34 #define PWM_ENABLE_CONTROL_REG	0x46
35 #define PWM_SYNC_REG		0x47
36 #define LPG_RAMP_DURATION_REG	0x50
37 #define LPG_HI_PAUSE_REG	0x52
38 #define LPG_LO_PAUSE_REG	0x54
39 #define LPG_HI_IDX_REG		0x56
40 #define LPG_LO_IDX_REG		0x57
41 #define PWM_SEC_ACCESS_REG	0xd0
42 #define PWM_DTEST_REG(x)	(0xe2 + (x) - 1)
43 
44 #define SDAM_REG_PBS_SEQ_EN		0x42
45 #define SDAM_PBS_TRIG_SET		0xe5
46 #define SDAM_PBS_TRIG_CLR		0xe6
47 
48 #define TRI_LED_SRC_SEL		0x45
49 #define TRI_LED_EN_CTL		0x46
50 #define TRI_LED_ATC_CTL		0x47
51 
52 #define LPG_LUT_REG(x)		(0x40 + (x) * 2)
53 #define RAMP_CONTROL_REG	0xc8
54 
55 #define LPG_RESOLUTION_9BIT	BIT(9)
56 #define LPG_RESOLUTION_15BIT	BIT(15)
57 #define PPG_MAX_LED_BRIGHTNESS	255
58 
59 #define LPG_MAX_M		7
60 #define LPG_MAX_PREDIV		6
61 
62 #define DEFAULT_TICK_DURATION_US	7800
63 #define RAMP_STEP_DURATION(x)		(((x) * 1000 / DEFAULT_TICK_DURATION_US) & 0xff)
64 
65 #define SDAM_MAX_DEVICES	2
66 /* LPG common config settings for PPG */
67 #define SDAM_START_BASE			0x40
68 #define SDAM_REG_RAMP_STEP_DURATION		0x47
69 
70 #define SDAM_LUT_SDAM_LUT_PATTERN_OFFSET	0x45
71 #define SDAM_LPG_SDAM_LUT_PATTERN_OFFSET	0x80
72 
73 /* LPG per channel config settings for PPG */
74 #define SDAM_LUT_EN_OFFSET			0x0
75 #define SDAM_PATTERN_CONFIG_OFFSET		0x1
76 #define SDAM_END_INDEX_OFFSET			0x3
77 #define SDAM_START_INDEX_OFFSET		0x4
78 #define SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET	0x6
79 #define SDAM_PAUSE_HI_MULTIPLIER_OFFSET	0x8
80 #define SDAM_PAUSE_LO_MULTIPLIER_OFFSET	0x9
81 
82 struct lpg_channel;
83 struct lpg_data;
84 
85 /**
86  * struct lpg - LPG device context
87  * @dev:	pointer to LPG device
88  * @map:	regmap for register access
89  * @lock:	used to synchronize LED and pwm callback requests
90  * @pwm:	PWM-chip object, if operating in PWM mode
91  * @data:	reference to version specific data
92  * @lut_base:	base address of the LUT block (optional)
93  * @lut_size:	number of entries in the LUT block
94  * @lut_bitmap:	allocation bitmap for LUT entries
95  * @pbs_dev:	PBS device
96  * @lpg_chan_sdam:	LPG SDAM peripheral device
97  * @lut_sdam:	LUT SDAM peripheral device
98  * @pbs_en_bitmap:	bitmap for tracking PBS triggers
99  * @triled_base: base address of the TRILED block (optional)
100  * @triled_src:	power-source for the TRILED
101  * @triled_has_atc_ctl:	true if there is TRI_LED_ATC_CTL register
102  * @triled_has_src_sel:	true if there is TRI_LED_SRC_SEL register
103  * @channels:	list of PWM channels
104  * @num_channels: number of @channels
105  */
106 struct lpg {
107 	struct device *dev;
108 	struct regmap *map;
109 
110 	struct mutex lock;
111 
112 	struct pwm_chip *pwm;
113 
114 	const struct lpg_data *data;
115 
116 	u32 lut_base;
117 	u32 lut_size;
118 	unsigned long *lut_bitmap;
119 
120 	struct pbs_dev *pbs_dev;
121 	struct nvmem_device *lpg_chan_sdam;
122 	struct nvmem_device *lut_sdam;
123 	unsigned long pbs_en_bitmap;
124 
125 	u32 triled_base;
126 	u32 triled_src;
127 	bool triled_has_atc_ctl;
128 	bool triled_has_src_sel;
129 
130 	struct lpg_channel *channels;
131 	unsigned int num_channels;
132 };
133 
134 /**
135  * struct lpg_channel - per channel data
136  * @lpg:	reference to parent lpg
137  * @base:	base address of the PWM channel
138  * @triled_mask: mask in TRILED to enable this channel
139  * @lut_mask:	mask in LUT to start pattern generator for this channel
140  * @subtype:	PMIC hardware block subtype
141  * @sdam_offset:	channel offset in LPG SDAM
142  * @in_use:	channel is exposed to LED framework
143  * @color:	color of the LED attached to this channel
144  * @dtest_line:	DTEST line for output, or 0 if disabled
145  * @dtest_value: DTEST line configuration
146  * @pwm_value:	duty (in microseconds) of the generated pulses, overridden by LUT
147  * @enabled:	output enabled?
148  * @period:	period (in nanoseconds) of the generated pulses
149  * @clk_sel:	reference clock frequency selector
150  * @pre_div_sel: divider selector of the reference clock
151  * @pre_div_exp: exponential divider of the reference clock
152  * @pwm_resolution_sel:	pwm resolution selector
153  * @ramp_enabled: duty cycle is driven by iterating over lookup table
154  * @ramp_ping_pong: reverse through pattern, rather than wrapping to start
155  * @ramp_oneshot: perform only a single pass over the pattern
156  * @ramp_reverse: iterate over pattern backwards
157  * @ramp_tick_ms: length (in milliseconds) of one step in the pattern
158  * @ramp_lo_pause_ms: pause (in milliseconds) before iterating over pattern
159  * @ramp_hi_pause_ms: pause (in milliseconds) after iterating over pattern
160  * @pattern_lo_idx: start index of associated pattern
161  * @pattern_hi_idx: last index of associated pattern
162  */
163 struct lpg_channel {
164 	struct lpg *lpg;
165 
166 	u32 base;
167 	unsigned int triled_mask;
168 	unsigned int lut_mask;
169 	unsigned int subtype;
170 	u32 sdam_offset;
171 
172 	bool in_use;
173 
174 	int color;
175 
176 	u32 dtest_line;
177 	u32 dtest_value;
178 
179 	u16 pwm_value;
180 	bool enabled;
181 
182 	u64 period;
183 	unsigned int clk_sel;
184 	unsigned int pre_div_sel;
185 	unsigned int pre_div_exp;
186 	unsigned int pwm_resolution_sel;
187 
188 	bool ramp_enabled;
189 	bool ramp_ping_pong;
190 	bool ramp_oneshot;
191 	bool ramp_reverse;
192 	unsigned short ramp_tick_ms;
193 	unsigned long ramp_lo_pause_ms;
194 	unsigned long ramp_hi_pause_ms;
195 
196 	unsigned int pattern_lo_idx;
197 	unsigned int pattern_hi_idx;
198 };
199 
200 /**
201  * struct lpg_led - logical LED object
202  * @lpg:		lpg context reference
203  * @cdev:		LED class device
204  * @mcdev:		Multicolor LED class device
205  * @num_channels:	number of @channels
206  * @channels:		list of channels associated with the LED
207  */
208 struct lpg_led {
209 	struct lpg *lpg;
210 
211 	struct led_classdev cdev;
212 	struct led_classdev_mc mcdev;
213 
214 	unsigned int num_channels;
215 	struct lpg_channel *channels[] __counted_by(num_channels);
216 };
217 
218 /**
219  * struct lpg_channel_data - per channel initialization data
220  * @sdam_offset:	Channel offset in LPG SDAM
221  * @base:		base address for PWM channel registers
222  * @triled_mask:	bitmask for controlling this channel in TRILED
223  */
224 struct lpg_channel_data {
225 	unsigned int sdam_offset;
226 	unsigned int base;
227 	u8 triled_mask;
228 };
229 
230 /**
231  * struct lpg_data - initialization data
232  * @lut_base:		base address of LUT block
233  * @lut_size:		number of entries in LUT
234  * @triled_base:	base address of TRILED
235  * @triled_has_atc_ctl:	true if there is TRI_LED_ATC_CTL register
236  * @triled_has_src_sel:	true if there is TRI_LED_SRC_SEL register
237  * @num_channels:	number of channels in LPG
238  * @channels:		list of channel initialization data
239  */
240 struct lpg_data {
241 	unsigned int lut_base;
242 	unsigned int lut_size;
243 	unsigned int triled_base;
244 	bool triled_has_atc_ctl;
245 	bool triled_has_src_sel;
246 	int num_channels;
247 	const struct lpg_channel_data *channels;
248 };
249 
250 #define PBS_SW_TRIG_BIT		BIT(0)
251 
252 static int lpg_clear_pbs_trigger(struct lpg *lpg, unsigned int lut_mask)
253 {
254 	u8 val = 0;
255 	int rc;
256 
257 	if (!lpg->lpg_chan_sdam)
258 		return 0;
259 
260 	lpg->pbs_en_bitmap &= (~lut_mask);
261 	if (!lpg->pbs_en_bitmap) {
262 		rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val);
263 		if (rc < 0)
264 			return rc;
265 
266 		if (lpg->lut_sdam) {
267 			val = PBS_SW_TRIG_BIT;
268 			rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_CLR, 1, &val);
269 			if (rc < 0)
270 				return rc;
271 		}
272 	}
273 
274 	return 0;
275 }
276 
277 static int lpg_set_pbs_trigger(struct lpg *lpg, unsigned int lut_mask)
278 {
279 	u8 val = PBS_SW_TRIG_BIT;
280 	int rc;
281 
282 	if (!lpg->lpg_chan_sdam)
283 		return 0;
284 
285 	if (!lpg->pbs_en_bitmap) {
286 		rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val);
287 		if (rc < 0)
288 			return rc;
289 
290 		if (lpg->lut_sdam) {
291 			rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_SET, 1, &val);
292 			if (rc < 0)
293 				return rc;
294 		} else {
295 			rc = qcom_pbs_trigger_event(lpg->pbs_dev, val);
296 			if (rc < 0)
297 				return rc;
298 		}
299 	}
300 	lpg->pbs_en_bitmap |= lut_mask;
301 
302 	return 0;
303 }
304 
305 static int lpg_sdam_configure_triggers(struct lpg_channel *chan, u8 set_trig)
306 {
307 	u32 addr = SDAM_LUT_EN_OFFSET + chan->sdam_offset;
308 
309 	if (!chan->lpg->lpg_chan_sdam)
310 		return 0;
311 
312 	return nvmem_device_write(chan->lpg->lpg_chan_sdam, addr, 1, &set_trig);
313 }
314 
315 static int triled_set(struct lpg *lpg, unsigned int mask, unsigned int enable)
316 {
317 	/* Skip if we don't have a triled block */
318 	if (!lpg->triled_base)
319 		return 0;
320 
321 	return regmap_update_bits(lpg->map, lpg->triled_base + TRI_LED_EN_CTL,
322 				  mask, enable);
323 }
324 
325 static int lpg_lut_store_sdam(struct lpg *lpg, struct led_pattern *pattern,
326 			 size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
327 {
328 	unsigned int idx;
329 	u8 brightness;
330 	int i, rc;
331 	u16 addr;
332 
333 	if (len > lpg->lut_size) {
334 		dev_err(lpg->dev, "Pattern length (%zu) exceeds maximum pattern length (%d)\n",
335 			len, lpg->lut_size);
336 		return -EINVAL;
337 	}
338 
339 	idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size, 0, len, 0);
340 	if (idx >= lpg->lut_size)
341 		return -ENOSPC;
342 
343 	for (i = 0; i < len; i++) {
344 		brightness = pattern[i].brightness;
345 
346 		if (lpg->lut_sdam) {
347 			addr = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET + i + idx;
348 			rc = nvmem_device_write(lpg->lut_sdam, addr, 1, &brightness);
349 		} else {
350 			addr = SDAM_LPG_SDAM_LUT_PATTERN_OFFSET + i + idx;
351 			rc = nvmem_device_write(lpg->lpg_chan_sdam, addr, 1, &brightness);
352 		}
353 
354 		if (rc < 0)
355 			return rc;
356 	}
357 
358 	bitmap_set(lpg->lut_bitmap, idx, len);
359 
360 	*lo_idx = idx;
361 	*hi_idx = idx + len - 1;
362 
363 	return 0;
364 }
365 
366 static int lpg_lut_store(struct lpg *lpg, struct led_pattern *pattern,
367 			 size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
368 {
369 	unsigned int idx;
370 	u16 val;
371 	int i;
372 
373 	idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size,
374 					 0, len, 0);
375 	if (idx >= lpg->lut_size)
376 		return -ENOMEM;
377 
378 	for (i = 0; i < len; i++) {
379 		val = pattern[i].brightness;
380 
381 		regmap_bulk_write(lpg->map, lpg->lut_base + LPG_LUT_REG(idx + i),
382 				  &val, sizeof(val));
383 	}
384 
385 	bitmap_set(lpg->lut_bitmap, idx, len);
386 
387 	*lo_idx = idx;
388 	*hi_idx = idx + len - 1;
389 
390 	return 0;
391 }
392 
393 static void lpg_lut_free(struct lpg *lpg, unsigned int lo_idx, unsigned int hi_idx)
394 {
395 	int len;
396 
397 	len = hi_idx - lo_idx + 1;
398 	if (len == 1)
399 		return;
400 
401 	bitmap_clear(lpg->lut_bitmap, lo_idx, len);
402 }
403 
404 static int lpg_lut_sync(struct lpg *lpg, unsigned int mask)
405 {
406 	if (!lpg->lut_base)
407 		return 0;
408 
409 	return regmap_write(lpg->map, lpg->lut_base + RAMP_CONTROL_REG, mask);
410 }
411 
412 static const unsigned int lpg_clk_rates[] = {0, 1024, 32768, 19200000};
413 static const unsigned int lpg_clk_rates_hi_res[] = {0, 1024, 32768, 19200000, 76800000};
414 static const unsigned int lpg_pre_divs[] = {1, 3, 5, 6};
415 static const unsigned int lpg_pwm_resolution[] =  {9};
416 static const unsigned int lpg_pwm_resolution_hi_res[] =  {8, 9, 10, 11, 12, 13, 14, 15};
417 
418 static int lpg_calc_freq(struct lpg_channel *chan, uint64_t period)
419 {
420 	unsigned int i, pwm_resolution_count, best_pwm_resolution_sel = 0;
421 	const unsigned int *clk_rate_arr, *pwm_resolution_arr;
422 	unsigned int clk_sel, clk_len, best_clk = 0;
423 	unsigned int div, best_div = 0;
424 	unsigned int m, best_m = 0;
425 	unsigned int resolution;
426 	unsigned int error;
427 	unsigned int best_err = UINT_MAX;
428 	u64 max_period, min_period;
429 	u64 best_period = 0;
430 	u64 max_res;
431 
432 	/*
433 	 * The PWM period is determined by:
434 	 *
435 	 *          resolution * pre_div * 2^M
436 	 * period = --------------------------
437 	 *                   refclk
438 	 *
439 	 * Resolution = 2^9 bits for PWM or
440 	 *              2^{8, 9, 10, 11, 12, 13, 14, 15} bits for high resolution PWM
441 	 * pre_div = {1, 3, 5, 6} and
442 	 * M = [0..7].
443 	 *
444 	 * This allows for periods between 27uS and 384s for PWM channels and periods between
445 	 * 3uS and 24576s for high resolution PWMs.
446 	 * The PWM framework wants a period of equal or lower length than requested,
447 	 * reject anything below minimum period.
448 	 */
449 
450 	if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
451 		clk_rate_arr = lpg_clk_rates_hi_res;
452 		clk_len = ARRAY_SIZE(lpg_clk_rates_hi_res);
453 		pwm_resolution_arr = lpg_pwm_resolution_hi_res;
454 		pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution_hi_res);
455 		max_res = LPG_RESOLUTION_15BIT;
456 	} else {
457 		clk_rate_arr = lpg_clk_rates;
458 		clk_len = ARRAY_SIZE(lpg_clk_rates);
459 		pwm_resolution_arr = lpg_pwm_resolution;
460 		pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution);
461 		max_res = LPG_RESOLUTION_9BIT;
462 	}
463 
464 	min_period = div64_u64((u64)NSEC_PER_SEC * (1 << pwm_resolution_arr[0]),
465 			       clk_rate_arr[clk_len - 1]);
466 	if (period <= min_period)
467 		return -EINVAL;
468 
469 	/* Limit period to largest possible value, to avoid overflows */
470 	max_period = div64_u64((u64)NSEC_PER_SEC * max_res * LPG_MAX_PREDIV * (1 << LPG_MAX_M),
471 			       1024);
472 	if (period > max_period)
473 		period = max_period;
474 
475 	/*
476 	 * Search for the pre_div, refclk, resolution and M by solving the rewritten formula
477 	 * for each refclk, resolution and pre_div value:
478 	 *
479 	 *                     period * refclk
480 	 * M = log2 -------------------------------------
481 	 *           NSEC_PER_SEC * pre_div * resolution
482 	 */
483 
484 	for (i = 0; i < pwm_resolution_count; i++) {
485 		resolution = 1 << pwm_resolution_arr[i];
486 		for (clk_sel = 1; clk_sel < clk_len; clk_sel++) {
487 			u64 numerator = period * clk_rate_arr[clk_sel];
488 
489 			for (div = 0; div < ARRAY_SIZE(lpg_pre_divs); div++) {
490 				u64 denominator = (u64)NSEC_PER_SEC * lpg_pre_divs[div] *
491 						  resolution;
492 				u64 actual;
493 				u64 ratio;
494 
495 				if (numerator < denominator)
496 					continue;
497 
498 				ratio = div64_u64(numerator, denominator);
499 				m = ilog2(ratio);
500 				if (m > LPG_MAX_M)
501 					m = LPG_MAX_M;
502 
503 				actual = DIV_ROUND_UP_ULL(denominator * (1 << m),
504 							  clk_rate_arr[clk_sel]);
505 				error = period - actual;
506 				if (error < best_err) {
507 					best_err = error;
508 					best_div = div;
509 					best_m = m;
510 					best_clk = clk_sel;
511 					best_period = actual;
512 					best_pwm_resolution_sel = i;
513 				}
514 			}
515 		}
516 	}
517 	chan->clk_sel = best_clk;
518 	chan->pre_div_sel = best_div;
519 	chan->pre_div_exp = best_m;
520 	chan->period = best_period;
521 	chan->pwm_resolution_sel = best_pwm_resolution_sel;
522 	return 0;
523 }
524 
525 static void lpg_calc_duty(struct lpg_channel *chan, uint64_t duty)
526 {
527 	unsigned int max;
528 	unsigned int val;
529 	unsigned int clk_rate;
530 
531 	if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
532 		max = LPG_RESOLUTION_15BIT - 1;
533 		clk_rate = lpg_clk_rates_hi_res[chan->clk_sel];
534 	} else {
535 		max = LPG_RESOLUTION_9BIT - 1;
536 		clk_rate = lpg_clk_rates[chan->clk_sel];
537 	}
538 
539 	val = div64_u64(duty * clk_rate,
540 			(u64)NSEC_PER_SEC * lpg_pre_divs[chan->pre_div_sel] * (1 << chan->pre_div_exp));
541 
542 	chan->pwm_value = min(val, max);
543 }
544 
545 static void lpg_apply_freq(struct lpg_channel *chan)
546 {
547 	unsigned long val;
548 	struct lpg *lpg = chan->lpg;
549 
550 	if (!chan->enabled)
551 		return;
552 
553 	val = chan->clk_sel;
554 
555 	/* Specify resolution, based on the subtype of the channel */
556 	switch (chan->subtype) {
557 	case LPG_SUBTYPE_LPG:
558 		val |= GENMASK(5, 4);
559 		break;
560 	case LPG_SUBTYPE_PWM:
561 		val |= BIT(2);
562 		break;
563 	case LPG_SUBTYPE_HI_RES_PWM:
564 		val |= FIELD_PREP(PWM_SIZE_HI_RES_MASK, chan->pwm_resolution_sel);
565 		break;
566 	case LPG_SUBTYPE_LPG_LITE:
567 	default:
568 		val |= BIT(4);
569 		break;
570 	}
571 
572 	regmap_write(lpg->map, chan->base + LPG_SIZE_CLK_REG, val);
573 
574 	val = FIELD_PREP(PWM_FREQ_PRE_DIV_MASK, chan->pre_div_sel) |
575 	      FIELD_PREP(PWM_FREQ_EXP_MASK, chan->pre_div_exp);
576 	regmap_write(lpg->map, chan->base + LPG_PREDIV_CLK_REG, val);
577 }
578 
579 #define LPG_ENABLE_GLITCH_REMOVAL	BIT(5)
580 
581 static void lpg_enable_glitch(struct lpg_channel *chan)
582 {
583 	struct lpg *lpg = chan->lpg;
584 
585 	regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
586 			   LPG_ENABLE_GLITCH_REMOVAL, 0);
587 }
588 
589 static void lpg_disable_glitch(struct lpg_channel *chan)
590 {
591 	struct lpg *lpg = chan->lpg;
592 
593 	regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
594 			   LPG_ENABLE_GLITCH_REMOVAL,
595 			   LPG_ENABLE_GLITCH_REMOVAL);
596 }
597 
598 static void lpg_apply_pwm_value(struct lpg_channel *chan)
599 {
600 	struct lpg *lpg = chan->lpg;
601 	u16 val = chan->pwm_value;
602 
603 	if (!chan->enabled)
604 		return;
605 
606 	regmap_bulk_write(lpg->map, chan->base + PWM_VALUE_REG, &val, sizeof(val));
607 }
608 
609 #define LPG_PATTERN_CONFIG_LO_TO_HI	BIT(4)
610 #define LPG_PATTERN_CONFIG_REPEAT	BIT(3)
611 #define LPG_PATTERN_CONFIG_TOGGLE	BIT(2)
612 #define LPG_PATTERN_CONFIG_PAUSE_HI	BIT(1)
613 #define LPG_PATTERN_CONFIG_PAUSE_LO	BIT(0)
614 
615 static void lpg_sdam_apply_lut_control(struct lpg_channel *chan)
616 {
617 	struct nvmem_device *lpg_chan_sdam = chan->lpg->lpg_chan_sdam;
618 	unsigned int lo_idx = chan->pattern_lo_idx;
619 	unsigned int hi_idx = chan->pattern_hi_idx;
620 	u8 val = 0, conf = 0, lut_offset = 0;
621 	unsigned int hi_pause, lo_pause;
622 	struct lpg *lpg = chan->lpg;
623 
624 	if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
625 		return;
626 
627 	hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, chan->ramp_tick_ms);
628 	lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, chan->ramp_tick_ms);
629 
630 	if (!chan->ramp_oneshot)
631 		conf |= LPG_PATTERN_CONFIG_REPEAT;
632 	if (chan->ramp_hi_pause_ms && lpg->lut_sdam)
633 		conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
634 	if (chan->ramp_lo_pause_ms && lpg->lut_sdam)
635 		conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
636 
637 	if (lpg->lut_sdam) {
638 		lut_offset = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET - SDAM_START_BASE;
639 		hi_idx += lut_offset;
640 		lo_idx += lut_offset;
641 	}
642 
643 	nvmem_device_write(lpg_chan_sdam, SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val);
644 	nvmem_device_write(lpg_chan_sdam, SDAM_PATTERN_CONFIG_OFFSET + chan->sdam_offset, 1, &conf);
645 	nvmem_device_write(lpg_chan_sdam, SDAM_END_INDEX_OFFSET + chan->sdam_offset, 1, &hi_idx);
646 	nvmem_device_write(lpg_chan_sdam, SDAM_START_INDEX_OFFSET + chan->sdam_offset, 1, &lo_idx);
647 
648 	val = RAMP_STEP_DURATION(chan->ramp_tick_ms);
649 	nvmem_device_write(lpg_chan_sdam, SDAM_REG_RAMP_STEP_DURATION, 1, &val);
650 
651 	if (lpg->lut_sdam) {
652 		nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_HI_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &hi_pause);
653 		nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_LO_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &lo_pause);
654 	}
655 
656 }
657 
658 static void lpg_apply_lut_control(struct lpg_channel *chan)
659 {
660 	struct lpg *lpg = chan->lpg;
661 	unsigned int hi_pause;
662 	unsigned int lo_pause;
663 	unsigned int conf = 0;
664 	unsigned int lo_idx = chan->pattern_lo_idx;
665 	unsigned int hi_idx = chan->pattern_hi_idx;
666 	u16 step = chan->ramp_tick_ms;
667 
668 	if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
669 		return;
670 
671 	hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, step);
672 	lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, step);
673 
674 	if (!chan->ramp_reverse)
675 		conf |= LPG_PATTERN_CONFIG_LO_TO_HI;
676 	if (!chan->ramp_oneshot)
677 		conf |= LPG_PATTERN_CONFIG_REPEAT;
678 	if (chan->ramp_ping_pong)
679 		conf |= LPG_PATTERN_CONFIG_TOGGLE;
680 	if (chan->ramp_hi_pause_ms)
681 		conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
682 	if (chan->ramp_lo_pause_ms)
683 		conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
684 
685 	regmap_write(lpg->map, chan->base + LPG_PATTERN_CONFIG_REG, conf);
686 	regmap_write(lpg->map, chan->base + LPG_HI_IDX_REG, hi_idx);
687 	regmap_write(lpg->map, chan->base + LPG_LO_IDX_REG, lo_idx);
688 
689 	regmap_bulk_write(lpg->map, chan->base + LPG_RAMP_DURATION_REG, &step, sizeof(step));
690 	regmap_write(lpg->map, chan->base + LPG_HI_PAUSE_REG, hi_pause);
691 	regmap_write(lpg->map, chan->base + LPG_LO_PAUSE_REG, lo_pause);
692 }
693 
694 #define LPG_ENABLE_CONTROL_OUTPUT		BIT(7)
695 #define LPG_ENABLE_CONTROL_BUFFER_TRISTATE	BIT(5)
696 #define LPG_ENABLE_CONTROL_SRC_PWM		BIT(2)
697 #define LPG_ENABLE_CONTROL_RAMP_GEN		BIT(1)
698 
699 static void lpg_apply_control(struct lpg_channel *chan)
700 {
701 	unsigned int ctrl;
702 	struct lpg *lpg = chan->lpg;
703 
704 	ctrl = LPG_ENABLE_CONTROL_BUFFER_TRISTATE;
705 
706 	if (chan->enabled)
707 		ctrl |= LPG_ENABLE_CONTROL_OUTPUT;
708 
709 	if (chan->pattern_lo_idx != chan->pattern_hi_idx)
710 		ctrl |= LPG_ENABLE_CONTROL_RAMP_GEN;
711 	else
712 		ctrl |= LPG_ENABLE_CONTROL_SRC_PWM;
713 
714 	regmap_write(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, ctrl);
715 
716 	/*
717 	 * Due to LPG hardware bug, in the PWM mode, having enabled PWM,
718 	 * We have to write PWM values one more time.
719 	 */
720 	if (chan->enabled)
721 		lpg_apply_pwm_value(chan);
722 }
723 
724 #define LPG_SYNC_PWM	BIT(0)
725 
726 static void lpg_apply_sync(struct lpg_channel *chan)
727 {
728 	struct lpg *lpg = chan->lpg;
729 
730 	regmap_write(lpg->map, chan->base + PWM_SYNC_REG, LPG_SYNC_PWM);
731 }
732 
733 static int lpg_parse_dtest(struct lpg *lpg)
734 {
735 	struct lpg_channel *chan;
736 	struct device_node *np = lpg->dev->of_node;
737 	int count;
738 	int ret;
739 	int i;
740 
741 	count = of_property_count_u32_elems(np, "qcom,dtest");
742 	if (count == -EINVAL) {
743 		return 0;
744 	} else if (count < 0) {
745 		ret = count;
746 		goto err_malformed;
747 	} else if (count != lpg->data->num_channels * 2) {
748 		return dev_err_probe(lpg->dev, -EINVAL,
749 				     "qcom,dtest needs to be %d items\n",
750 				     lpg->data->num_channels * 2);
751 	}
752 
753 	for (i = 0; i < lpg->data->num_channels; i++) {
754 		chan = &lpg->channels[i];
755 
756 		ret = of_property_read_u32_index(np, "qcom,dtest", i * 2,
757 						 &chan->dtest_line);
758 		if (ret)
759 			goto err_malformed;
760 
761 		ret = of_property_read_u32_index(np, "qcom,dtest", i * 2 + 1,
762 						 &chan->dtest_value);
763 		if (ret)
764 			goto err_malformed;
765 	}
766 
767 	return 0;
768 
769 err_malformed:
770 	return dev_err_probe(lpg->dev, ret, "malformed qcom,dtest\n");
771 }
772 
773 static void lpg_apply_dtest(struct lpg_channel *chan)
774 {
775 	struct lpg *lpg = chan->lpg;
776 
777 	if (!chan->dtest_line)
778 		return;
779 
780 	regmap_write(lpg->map, chan->base + PWM_SEC_ACCESS_REG, 0xa5);
781 	regmap_write(lpg->map, chan->base + PWM_DTEST_REG(chan->dtest_line),
782 		     chan->dtest_value);
783 }
784 
785 static void lpg_apply(struct lpg_channel *chan)
786 {
787 	lpg_disable_glitch(chan);
788 	lpg_apply_freq(chan);
789 	lpg_apply_pwm_value(chan);
790 	lpg_apply_control(chan);
791 	lpg_apply_sync(chan);
792 	if (chan->lpg->lpg_chan_sdam)
793 		lpg_sdam_apply_lut_control(chan);
794 	else
795 		lpg_apply_lut_control(chan);
796 	lpg_enable_glitch(chan);
797 }
798 
799 static void lpg_brightness_set(struct lpg_led *led, struct led_classdev *cdev,
800 			       struct mc_subled *subleds)
801 {
802 	enum led_brightness brightness;
803 	struct lpg_channel *chan;
804 	unsigned int triled_enabled = 0;
805 	unsigned int triled_mask = 0;
806 	unsigned int lut_mask = 0;
807 	unsigned int duty;
808 	struct lpg *lpg = led->lpg;
809 	int i;
810 
811 	for (i = 0; i < led->num_channels; i++) {
812 		chan = led->channels[i];
813 		brightness = subleds[i].brightness;
814 
815 		if (brightness == LED_OFF) {
816 			chan->enabled = false;
817 			chan->ramp_enabled = false;
818 		} else if (chan->pattern_lo_idx != chan->pattern_hi_idx) {
819 			lpg_calc_freq(chan, NSEC_PER_MSEC);
820 			lpg_sdam_configure_triggers(chan, 1);
821 
822 			chan->enabled = true;
823 			chan->ramp_enabled = true;
824 
825 			lut_mask |= chan->lut_mask;
826 			triled_enabled |= chan->triled_mask;
827 		} else {
828 			lpg_calc_freq(chan, NSEC_PER_MSEC);
829 
830 			duty = div_u64(brightness * chan->period, cdev->max_brightness);
831 			lpg_calc_duty(chan, duty);
832 			chan->enabled = true;
833 			chan->ramp_enabled = false;
834 
835 			triled_enabled |= chan->triled_mask;
836 		}
837 
838 		triled_mask |= chan->triled_mask;
839 
840 		lpg_apply(chan);
841 	}
842 
843 	/* Toggle triled lines */
844 	if (triled_mask)
845 		triled_set(lpg, triled_mask, triled_enabled);
846 
847 	/* Trigger start of ramp generator(s) */
848 	if (lut_mask) {
849 		lpg_lut_sync(lpg, lut_mask);
850 		lpg_set_pbs_trigger(lpg, lut_mask);
851 	}
852 }
853 
854 static int lpg_brightness_single_set(struct led_classdev *cdev,
855 				     enum led_brightness value)
856 {
857 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
858 	struct mc_subled info;
859 
860 	mutex_lock(&led->lpg->lock);
861 
862 	info.brightness = value;
863 	lpg_brightness_set(led, cdev, &info);
864 
865 	mutex_unlock(&led->lpg->lock);
866 
867 	return 0;
868 }
869 
870 static int lpg_brightness_mc_set(struct led_classdev *cdev,
871 				 enum led_brightness value)
872 {
873 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
874 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
875 
876 	mutex_lock(&led->lpg->lock);
877 
878 	led_mc_calc_color_components(mc, value);
879 	lpg_brightness_set(led, cdev, mc->subled_info);
880 
881 	mutex_unlock(&led->lpg->lock);
882 
883 	return 0;
884 }
885 
886 static int lpg_blink_set(struct lpg_led *led,
887 			 unsigned long *delay_on, unsigned long *delay_off)
888 {
889 	struct lpg_channel *chan;
890 	unsigned int period;
891 	unsigned int triled_mask = 0;
892 	struct lpg *lpg = led->lpg;
893 	u64 duty;
894 	int i;
895 
896 	if (!*delay_on && !*delay_off) {
897 		*delay_on = 500;
898 		*delay_off = 500;
899 	}
900 
901 	duty = *delay_on * NSEC_PER_MSEC;
902 	period = (*delay_on + *delay_off) * NSEC_PER_MSEC;
903 
904 	for (i = 0; i < led->num_channels; i++) {
905 		chan = led->channels[i];
906 
907 		lpg_calc_freq(chan, period);
908 		lpg_calc_duty(chan, duty);
909 
910 		chan->enabled = true;
911 		chan->ramp_enabled = false;
912 
913 		triled_mask |= chan->triled_mask;
914 
915 		lpg_apply(chan);
916 	}
917 
918 	/* Enable triled lines */
919 	triled_set(lpg, triled_mask, triled_mask);
920 
921 	chan = led->channels[0];
922 	duty = div_u64(chan->pwm_value * chan->period, LPG_RESOLUTION_9BIT);
923 	*delay_on = div_u64(duty, NSEC_PER_MSEC);
924 	*delay_off = div_u64(chan->period - duty, NSEC_PER_MSEC);
925 
926 	return 0;
927 }
928 
929 static int lpg_blink_single_set(struct led_classdev *cdev,
930 				unsigned long *delay_on, unsigned long *delay_off)
931 {
932 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
933 	int ret;
934 
935 	mutex_lock(&led->lpg->lock);
936 
937 	ret = lpg_blink_set(led, delay_on, delay_off);
938 
939 	mutex_unlock(&led->lpg->lock);
940 
941 	return ret;
942 }
943 
944 static int lpg_blink_mc_set(struct led_classdev *cdev,
945 			    unsigned long *delay_on, unsigned long *delay_off)
946 {
947 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
948 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
949 	int ret;
950 
951 	mutex_lock(&led->lpg->lock);
952 
953 	ret = lpg_blink_set(led, delay_on, delay_off);
954 
955 	mutex_unlock(&led->lpg->lock);
956 
957 	return ret;
958 }
959 
960 static int lpg_pattern_set(struct lpg_led *led, struct led_pattern *led_pattern,
961 			   u32 len, int repeat)
962 {
963 	struct lpg_channel *chan;
964 	struct lpg *lpg = led->lpg;
965 	struct led_pattern *pattern;
966 	unsigned int brightness_a;
967 	unsigned int brightness_b;
968 	unsigned int hi_pause = 0;
969 	unsigned int lo_pause = 0;
970 	unsigned int actual_len;
971 	unsigned int delta_t;
972 	unsigned int lo_idx;
973 	unsigned int hi_idx;
974 	unsigned int i;
975 	bool ping_pong = true;
976 	int ret = -EINVAL;
977 
978 	/* Hardware only support oneshot or indefinite loops */
979 	if (repeat != -1 && repeat != 1)
980 		return -EINVAL;
981 
982 	/*
983 	 * The standardized leds-trigger-pattern format defines that the
984 	 * brightness of the LED follows a linear transition from one entry
985 	 * in the pattern to the next, over the given delta_t time. It
986 	 * describes that the way to perform instant transitions a zero-length
987 	 * entry should be added following a pattern entry.
988 	 *
989 	 * The LPG hardware is only able to perform the latter (no linear
990 	 * transitions), so require each entry in the pattern to be followed by
991 	 * a zero-length transition.
992 	 */
993 	if (len % 2)
994 		return -EINVAL;
995 
996 	pattern = kcalloc(len / 2, sizeof(*pattern), GFP_KERNEL);
997 	if (!pattern)
998 		return -ENOMEM;
999 
1000 	for (i = 0; i < len; i += 2) {
1001 		if (led_pattern[i].brightness != led_pattern[i + 1].brightness)
1002 			goto out_free_pattern;
1003 		if (led_pattern[i + 1].delta_t != 0)
1004 			goto out_free_pattern;
1005 
1006 		pattern[i / 2].brightness = led_pattern[i].brightness;
1007 		pattern[i / 2].delta_t = led_pattern[i].delta_t;
1008 	}
1009 
1010 	len /= 2;
1011 
1012 	/*
1013 	 * Specifying a pattern of length 1 causes the hardware to iterate
1014 	 * through the entire LUT, so prohibit this.
1015 	 */
1016 	if (len < 2)
1017 		goto out_free_pattern;
1018 
1019 	/*
1020 	 * The LPG plays patterns with at a fixed pace, a "low pause" can be
1021 	 * used to stretch the first delay of the pattern and a "high pause"
1022 	 * the last one.
1023 	 *
1024 	 * In order to save space the pattern can be played in "ping pong"
1025 	 * mode, in which the pattern is first played forward, then "high
1026 	 * pause" is applied, then the pattern is played backwards and finally
1027 	 * the "low pause" is applied.
1028 	 *
1029 	 * The middle elements of the pattern are used to determine delta_t and
1030 	 * the "low pause" and "high pause" multipliers are derrived from this.
1031 	 *
1032 	 * The first element in the pattern is used to determine "low pause".
1033 	 *
1034 	 * If the specified pattern is a palindrome the ping pong mode is
1035 	 * enabled. In this scenario the delta_t of the middle entry (i.e. the
1036 	 * last in the programmed pattern) determines the "high pause".
1037 	 *
1038 	 * SDAM-based devices do not support "ping pong", and only supports
1039 	 * "low pause" and "high pause" with a dedicated SDAM LUT.
1040 	 */
1041 
1042 	/* Detect palindromes and use "ping pong" to reduce LUT usage */
1043 	if (lpg->lut_base) {
1044 		for (i = 0; i < len / 2; i++) {
1045 			brightness_a = pattern[i].brightness;
1046 			brightness_b = pattern[len - i - 1].brightness;
1047 
1048 			if (brightness_a != brightness_b) {
1049 				ping_pong = false;
1050 				break;
1051 			}
1052 		}
1053 	} else
1054 		ping_pong = false;
1055 
1056 	/* The pattern length to be written to the LUT */
1057 	if (ping_pong)
1058 		actual_len = (len + 1) / 2;
1059 	else
1060 		actual_len = len;
1061 
1062 	/*
1063 	 * Validate that all delta_t in the pattern are the same, with the
1064 	 * exception of the middle element in case of ping_pong.
1065 	 */
1066 	delta_t = pattern[1].delta_t;
1067 	for (i = 2; i < len; i++) {
1068 		if (pattern[i].delta_t != delta_t) {
1069 			/*
1070 			 * Allow last entry in the full or shortened pattern to
1071 			 * specify hi pause. Reject other variations.
1072 			 */
1073 			if (i != actual_len - 1)
1074 				goto out_free_pattern;
1075 		}
1076 	}
1077 
1078 	/* LPG_RAMP_DURATION_REG is a 9bit */
1079 	if (delta_t >= BIT(9))
1080 		goto out_free_pattern;
1081 
1082 	/*
1083 	 * Find "low pause" and "high pause" in the pattern in the LUT case.
1084 	 * SDAM-based devices without dedicated LUT SDAM require equal
1085 	 * duration of all steps.
1086 	 */
1087 	if (lpg->lut_base || lpg->lut_sdam) {
1088 		lo_pause = pattern[0].delta_t;
1089 		hi_pause = pattern[actual_len - 1].delta_t;
1090 	} else {
1091 		if (delta_t != pattern[0].delta_t || delta_t != pattern[actual_len - 1].delta_t)
1092 			goto out_free_pattern;
1093 	}
1094 
1095 
1096 	mutex_lock(&lpg->lock);
1097 
1098 	if (lpg->lut_base)
1099 		ret = lpg_lut_store(lpg, pattern, actual_len, &lo_idx, &hi_idx);
1100 	else
1101 		ret = lpg_lut_store_sdam(lpg, pattern, actual_len, &lo_idx, &hi_idx);
1102 
1103 	if (ret < 0)
1104 		goto out_unlock;
1105 
1106 	for (i = 0; i < led->num_channels; i++) {
1107 		chan = led->channels[i];
1108 
1109 		chan->ramp_tick_ms = delta_t;
1110 		chan->ramp_ping_pong = ping_pong;
1111 		chan->ramp_oneshot = repeat != -1;
1112 
1113 		chan->ramp_lo_pause_ms = lo_pause;
1114 		chan->ramp_hi_pause_ms = hi_pause;
1115 
1116 		chan->pattern_lo_idx = lo_idx;
1117 		chan->pattern_hi_idx = hi_idx;
1118 	}
1119 
1120 out_unlock:
1121 	mutex_unlock(&lpg->lock);
1122 out_free_pattern:
1123 	kfree(pattern);
1124 
1125 	return ret;
1126 }
1127 
1128 static int lpg_pattern_single_set(struct led_classdev *cdev,
1129 				  struct led_pattern *pattern, u32 len,
1130 				  int repeat)
1131 {
1132 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
1133 	int ret;
1134 
1135 	ret = lpg_pattern_set(led, pattern, len, repeat);
1136 	if (ret < 0)
1137 		return ret;
1138 
1139 	lpg_brightness_single_set(cdev, LED_FULL);
1140 
1141 	return 0;
1142 }
1143 
1144 static int lpg_pattern_mc_set(struct led_classdev *cdev,
1145 			      struct led_pattern *pattern, u32 len,
1146 			      int repeat)
1147 {
1148 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
1149 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
1150 	unsigned int triled_mask = 0;
1151 	int ret, i;
1152 
1153 	for (i = 0; i < led->num_channels; i++)
1154 		triled_mask |= led->channels[i]->triled_mask;
1155 	triled_set(led->lpg, triled_mask, 0);
1156 
1157 	ret = lpg_pattern_set(led, pattern, len, repeat);
1158 	if (ret < 0)
1159 		return ret;
1160 
1161 	led_mc_calc_color_components(mc, LED_FULL);
1162 	lpg_brightness_set(led, cdev, mc->subled_info);
1163 
1164 	return 0;
1165 }
1166 
1167 static int lpg_pattern_clear(struct lpg_led *led)
1168 {
1169 	struct lpg_channel *chan;
1170 	struct lpg *lpg = led->lpg;
1171 	int i;
1172 
1173 	mutex_lock(&lpg->lock);
1174 
1175 	chan = led->channels[0];
1176 	lpg_lut_free(lpg, chan->pattern_lo_idx, chan->pattern_hi_idx);
1177 
1178 	for (i = 0; i < led->num_channels; i++) {
1179 		chan = led->channels[i];
1180 		lpg_sdam_configure_triggers(chan, 0);
1181 		lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask);
1182 		chan->pattern_lo_idx = 0;
1183 		chan->pattern_hi_idx = 0;
1184 	}
1185 
1186 	mutex_unlock(&lpg->lock);
1187 
1188 	return 0;
1189 }
1190 
1191 static int lpg_pattern_single_clear(struct led_classdev *cdev)
1192 {
1193 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
1194 
1195 	return lpg_pattern_clear(led);
1196 }
1197 
1198 static int lpg_pattern_mc_clear(struct led_classdev *cdev)
1199 {
1200 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
1201 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
1202 
1203 	return lpg_pattern_clear(led);
1204 }
1205 
1206 static inline struct lpg *lpg_pwm_from_chip(struct pwm_chip *chip)
1207 {
1208 	return pwmchip_get_drvdata(chip);
1209 }
1210 
1211 static int lpg_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1212 {
1213 	struct lpg *lpg = lpg_pwm_from_chip(chip);
1214 	struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
1215 
1216 	return chan->in_use ? -EBUSY : 0;
1217 }
1218 
1219 /*
1220  * Limitations:
1221  * - Updating both duty and period is not done atomically, so the output signal
1222  *   will momentarily be a mix of the settings.
1223  * - Changed parameters takes effect immediately.
1224  * - A disabled channel outputs a logical 0.
1225  */
1226 static int lpg_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1227 			 const struct pwm_state *state)
1228 {
1229 	struct lpg *lpg = lpg_pwm_from_chip(chip);
1230 	struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
1231 	int ret = 0;
1232 
1233 	if (state->polarity != PWM_POLARITY_NORMAL)
1234 		return -EINVAL;
1235 
1236 	mutex_lock(&lpg->lock);
1237 
1238 	if (state->enabled) {
1239 		ret = lpg_calc_freq(chan, state->period);
1240 		if (ret < 0)
1241 			goto out_unlock;
1242 
1243 		lpg_calc_duty(chan, state->duty_cycle);
1244 	}
1245 	chan->enabled = state->enabled;
1246 
1247 	lpg_apply(chan);
1248 
1249 	triled_set(lpg, chan->triled_mask, chan->enabled ? chan->triled_mask : 0);
1250 
1251 out_unlock:
1252 	mutex_unlock(&lpg->lock);
1253 
1254 	return ret;
1255 }
1256 
1257 static int lpg_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1258 			     struct pwm_state *state)
1259 {
1260 	struct lpg *lpg = lpg_pwm_from_chip(chip);
1261 	struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
1262 	unsigned int resolution;
1263 	unsigned int pre_div;
1264 	unsigned int refclk;
1265 	unsigned int val;
1266 	unsigned int m;
1267 	u16 pwm_value;
1268 	int ret;
1269 
1270 	ret = regmap_read(lpg->map, chan->base + LPG_SIZE_CLK_REG, &val);
1271 	if (ret)
1272 		return ret;
1273 
1274 	if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) {
1275 		refclk = lpg_clk_rates_hi_res[FIELD_GET(PWM_CLK_SELECT_HI_RES_MASK, val)];
1276 		resolution = lpg_pwm_resolution_hi_res[FIELD_GET(PWM_SIZE_HI_RES_MASK, val)];
1277 	} else {
1278 		refclk = lpg_clk_rates[FIELD_GET(PWM_CLK_SELECT_MASK, val)];
1279 		resolution = 9;
1280 	}
1281 
1282 	if (refclk) {
1283 		ret = regmap_read(lpg->map, chan->base + LPG_PREDIV_CLK_REG, &val);
1284 		if (ret)
1285 			return ret;
1286 
1287 		pre_div = lpg_pre_divs[FIELD_GET(PWM_FREQ_PRE_DIV_MASK, val)];
1288 		m = FIELD_GET(PWM_FREQ_EXP_MASK, val);
1289 
1290 		ret = regmap_bulk_read(lpg->map, chan->base + PWM_VALUE_REG, &pwm_value, sizeof(pwm_value));
1291 		if (ret)
1292 			return ret;
1293 
1294 		state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * (1 << resolution) *
1295 						 pre_div * (1 << m), refclk);
1296 		state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pwm_value * pre_div * (1 << m), refclk);
1297 	} else {
1298 		state->period = 0;
1299 		state->duty_cycle = 0;
1300 	}
1301 
1302 	ret = regmap_read(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, &val);
1303 	if (ret)
1304 		return ret;
1305 
1306 	state->enabled = FIELD_GET(LPG_ENABLE_CONTROL_OUTPUT, val);
1307 	state->polarity = PWM_POLARITY_NORMAL;
1308 
1309 	if (state->duty_cycle > state->period)
1310 		state->duty_cycle = state->period;
1311 
1312 	return 0;
1313 }
1314 
1315 static const struct pwm_ops lpg_pwm_ops = {
1316 	.request = lpg_pwm_request,
1317 	.apply = lpg_pwm_apply,
1318 	.get_state = lpg_pwm_get_state,
1319 };
1320 
1321 static int lpg_add_pwm(struct lpg *lpg)
1322 {
1323 	struct pwm_chip *chip;
1324 	int ret;
1325 
1326 	lpg->pwm = chip = devm_pwmchip_alloc(lpg->dev, lpg->num_channels, 0);
1327 	if (IS_ERR(chip))
1328 		return PTR_ERR(chip);
1329 
1330 	chip->ops = &lpg_pwm_ops;
1331 	pwmchip_set_drvdata(chip, lpg);
1332 
1333 	ret = devm_pwmchip_add(lpg->dev, chip);
1334 	if (ret)
1335 		dev_err_probe(lpg->dev, ret, "failed to add PWM chip\n");
1336 
1337 	return ret;
1338 }
1339 
1340 static int lpg_parse_channel(struct lpg *lpg, struct device_node *np,
1341 			     struct lpg_channel **channel)
1342 {
1343 	struct lpg_channel *chan;
1344 	u32 color = LED_COLOR_ID_GREEN;
1345 	u32 reg;
1346 	int ret;
1347 
1348 	ret = of_property_read_u32(np, "reg", &reg);
1349 	if (ret || !reg || reg > lpg->num_channels)
1350 		return dev_err_probe(lpg->dev, -EINVAL, "invalid \"reg\" of %pOFn\n", np);
1351 
1352 	chan = &lpg->channels[reg - 1];
1353 	chan->in_use = true;
1354 
1355 	ret = of_property_read_u32(np, "color", &color);
1356 	if (ret < 0 && ret != -EINVAL)
1357 		return dev_err_probe(lpg->dev, ret,
1358 				     "failed to parse \"color\" of %pOF\n", np);
1359 
1360 	chan->color = color;
1361 
1362 	*channel = chan;
1363 
1364 	return 0;
1365 }
1366 
1367 static int lpg_add_led(struct lpg *lpg, struct device_node *np)
1368 {
1369 	struct led_init_data init_data = {};
1370 	struct led_classdev *cdev;
1371 	struct mc_subled *info;
1372 	struct lpg_led *led;
1373 	const char *state;
1374 	int num_channels;
1375 	u32 color = 0;
1376 	int ret;
1377 	int i;
1378 
1379 	ret = of_property_read_u32(np, "color", &color);
1380 	if (ret < 0 && ret != -EINVAL)
1381 		return dev_err_probe(lpg->dev, ret,
1382 			      "failed to parse \"color\" of %pOF\n", np);
1383 
1384 	if (color == LED_COLOR_ID_RGB)
1385 		num_channels = of_get_available_child_count(np);
1386 	else
1387 		num_channels = 1;
1388 
1389 	led = devm_kzalloc(lpg->dev, struct_size(led, channels, num_channels), GFP_KERNEL);
1390 	if (!led)
1391 		return -ENOMEM;
1392 
1393 	led->lpg = lpg;
1394 	led->num_channels = num_channels;
1395 
1396 	if (color == LED_COLOR_ID_RGB) {
1397 		info = devm_kcalloc(lpg->dev, num_channels, sizeof(*info), GFP_KERNEL);
1398 		if (!info)
1399 			return -ENOMEM;
1400 		i = 0;
1401 		for_each_available_child_of_node_scoped(np, child) {
1402 			ret = lpg_parse_channel(lpg, child, &led->channels[i]);
1403 			if (ret < 0)
1404 				return ret;
1405 
1406 			info[i].color_index = led->channels[i]->color;
1407 			info[i].intensity = 0;
1408 			i++;
1409 		}
1410 
1411 		led->mcdev.subled_info = info;
1412 		led->mcdev.num_colors = num_channels;
1413 
1414 		cdev = &led->mcdev.led_cdev;
1415 		cdev->brightness_set_blocking = lpg_brightness_mc_set;
1416 		cdev->blink_set = lpg_blink_mc_set;
1417 
1418 		/* Register pattern accessors if we have a LUT block or when using PPG */
1419 		if (lpg->lut_base || lpg->lpg_chan_sdam) {
1420 			cdev->pattern_set = lpg_pattern_mc_set;
1421 			cdev->pattern_clear = lpg_pattern_mc_clear;
1422 		}
1423 	} else {
1424 		ret = lpg_parse_channel(lpg, np, &led->channels[0]);
1425 		if (ret < 0)
1426 			return ret;
1427 
1428 		cdev = &led->cdev;
1429 		cdev->brightness_set_blocking = lpg_brightness_single_set;
1430 		cdev->blink_set = lpg_blink_single_set;
1431 
1432 		/* Register pattern accessors if we have a LUT block or when using PPG */
1433 		if (lpg->lut_base || lpg->lpg_chan_sdam) {
1434 			cdev->pattern_set = lpg_pattern_single_set;
1435 			cdev->pattern_clear = lpg_pattern_single_clear;
1436 		}
1437 	}
1438 
1439 	cdev->default_trigger = of_get_property(np, "linux,default-trigger", NULL);
1440 
1441 	if (lpg->lpg_chan_sdam)
1442 		cdev->max_brightness = PPG_MAX_LED_BRIGHTNESS;
1443 	else
1444 		cdev->max_brightness = LPG_RESOLUTION_9BIT - 1;
1445 
1446 	if (!of_property_read_string(np, "default-state", &state) &&
1447 	    !strcmp(state, "on"))
1448 		cdev->brightness = cdev->max_brightness;
1449 	else
1450 		cdev->brightness = LED_OFF;
1451 
1452 	cdev->brightness_set_blocking(cdev, cdev->brightness);
1453 
1454 	init_data.fwnode = of_fwnode_handle(np);
1455 
1456 	if (color == LED_COLOR_ID_RGB)
1457 		ret = devm_led_classdev_multicolor_register_ext(lpg->dev, &led->mcdev, &init_data);
1458 	else
1459 		ret = devm_led_classdev_register_ext(lpg->dev, &led->cdev, &init_data);
1460 	if (ret)
1461 		dev_err_probe(lpg->dev, ret, "unable to register %s\n", cdev->name);
1462 
1463 	return ret;
1464 }
1465 
1466 static int lpg_init_channels(struct lpg *lpg)
1467 {
1468 	const struct lpg_data *data = lpg->data;
1469 	struct lpg_channel *chan;
1470 	int i;
1471 
1472 	lpg->num_channels = data->num_channels;
1473 	lpg->channels = devm_kcalloc(lpg->dev, data->num_channels,
1474 				     sizeof(struct lpg_channel), GFP_KERNEL);
1475 	if (!lpg->channels)
1476 		return -ENOMEM;
1477 
1478 	for (i = 0; i < data->num_channels; i++) {
1479 		chan = &lpg->channels[i];
1480 
1481 		chan->lpg = lpg;
1482 		chan->base = data->channels[i].base;
1483 		chan->triled_mask = data->channels[i].triled_mask;
1484 		chan->lut_mask = BIT(i);
1485 		chan->sdam_offset = data->channels[i].sdam_offset;
1486 
1487 		regmap_read(lpg->map, chan->base + LPG_SUBTYPE_REG, &chan->subtype);
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 static int lpg_init_triled(struct lpg *lpg)
1494 {
1495 	struct device_node *np = lpg->dev->of_node;
1496 	int ret;
1497 
1498 	/* Skip initialization if we don't have a triled block */
1499 	if (!lpg->data->triled_base)
1500 		return 0;
1501 
1502 	lpg->triled_base = lpg->data->triled_base;
1503 	lpg->triled_has_atc_ctl = lpg->data->triled_has_atc_ctl;
1504 	lpg->triled_has_src_sel = lpg->data->triled_has_src_sel;
1505 
1506 	if (lpg->triled_has_src_sel) {
1507 		ret = of_property_read_u32(np, "qcom,power-source", &lpg->triled_src);
1508 		if (ret || lpg->triled_src == 2 || lpg->triled_src > 3)
1509 			return dev_err_probe(lpg->dev, -EINVAL,
1510 					     "invalid power source\n");
1511 	}
1512 
1513 	/* Disable automatic trickle charge LED */
1514 	if (lpg->triled_has_atc_ctl)
1515 		regmap_write(lpg->map, lpg->triled_base + TRI_LED_ATC_CTL, 0);
1516 
1517 	/* Configure power source */
1518 	if (lpg->triled_has_src_sel)
1519 		regmap_write(lpg->map, lpg->triled_base + TRI_LED_SRC_SEL, lpg->triled_src);
1520 
1521 	/* Default all outputs to off */
1522 	regmap_write(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, 0);
1523 
1524 	return 0;
1525 }
1526 
1527 static int lpg_init_lut(struct lpg *lpg)
1528 {
1529 	const struct lpg_data *data = lpg->data;
1530 
1531 	if (!data->lut_size)
1532 		return 0;
1533 
1534 	lpg->lut_size = data->lut_size;
1535 	if (data->lut_base)
1536 		lpg->lut_base = data->lut_base;
1537 
1538 	lpg->lut_bitmap = devm_bitmap_zalloc(lpg->dev, lpg->lut_size, GFP_KERNEL);
1539 	if (!lpg->lut_bitmap)
1540 		return -ENOMEM;
1541 
1542 	return 0;
1543 }
1544 
1545 static int lpg_init_sdam(struct lpg *lpg)
1546 {
1547 	int i, sdam_count, rc;
1548 	u8 val = 0;
1549 
1550 	sdam_count = of_property_count_strings(lpg->dev->of_node, "nvmem-names");
1551 	if (sdam_count <= 0)
1552 		return 0;
1553 	if (sdam_count > SDAM_MAX_DEVICES)
1554 		return -EINVAL;
1555 
1556 	/* Get the 1st SDAM device for LPG/LUT config */
1557 	lpg->lpg_chan_sdam = devm_nvmem_device_get(lpg->dev, "lpg_chan_sdam");
1558 	if (IS_ERR(lpg->lpg_chan_sdam))
1559 		return dev_err_probe(lpg->dev, PTR_ERR(lpg->lpg_chan_sdam),
1560 				"Failed to get LPG chan SDAM device\n");
1561 
1562 	if (sdam_count == 1) {
1563 		/* Get PBS device node if single SDAM device */
1564 		lpg->pbs_dev = get_pbs_client_device(lpg->dev);
1565 		if (IS_ERR(lpg->pbs_dev))
1566 			return dev_err_probe(lpg->dev, PTR_ERR(lpg->pbs_dev),
1567 					"Failed to get PBS client device\n");
1568 	} else if (sdam_count == 2) {
1569 		/* Get the 2nd SDAM device for LUT pattern */
1570 		lpg->lut_sdam = devm_nvmem_device_get(lpg->dev, "lut_sdam");
1571 		if (IS_ERR(lpg->lut_sdam))
1572 			return dev_err_probe(lpg->dev, PTR_ERR(lpg->lut_sdam),
1573 					"Failed to get LPG LUT SDAM device\n");
1574 	}
1575 
1576 	for (i = 0; i < lpg->num_channels; i++) {
1577 		struct lpg_channel *chan = &lpg->channels[i];
1578 
1579 		if (chan->sdam_offset) {
1580 			rc = nvmem_device_write(lpg->lpg_chan_sdam,
1581 				SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val);
1582 			if (rc < 0)
1583 				return rc;
1584 
1585 			rc = lpg_sdam_configure_triggers(chan, 0);
1586 			if (rc < 0)
1587 				return rc;
1588 
1589 			rc = lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask);
1590 			if (rc < 0)
1591 				return rc;
1592 		}
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 static int lpg_probe(struct platform_device *pdev)
1599 {
1600 	struct lpg *lpg;
1601 	int ret;
1602 	int i;
1603 
1604 	lpg = devm_kzalloc(&pdev->dev, sizeof(*lpg), GFP_KERNEL);
1605 	if (!lpg)
1606 		return -ENOMEM;
1607 
1608 	lpg->data = of_device_get_match_data(&pdev->dev);
1609 	if (!lpg->data)
1610 		return -EINVAL;
1611 
1612 	lpg->dev = &pdev->dev;
1613 	mutex_init(&lpg->lock);
1614 
1615 	lpg->map = dev_get_regmap(pdev->dev.parent, NULL);
1616 	if (!lpg->map)
1617 		return dev_err_probe(&pdev->dev, -ENXIO, "parent regmap unavailable\n");
1618 
1619 	ret = lpg_init_channels(lpg);
1620 	if (ret < 0)
1621 		return ret;
1622 
1623 	ret = lpg_parse_dtest(lpg);
1624 	if (ret < 0)
1625 		return ret;
1626 
1627 	ret = lpg_init_triled(lpg);
1628 	if (ret < 0)
1629 		return ret;
1630 
1631 	ret = lpg_init_sdam(lpg);
1632 	if (ret < 0)
1633 		return ret;
1634 
1635 	ret = lpg_init_lut(lpg);
1636 	if (ret < 0)
1637 		return ret;
1638 
1639 	for_each_available_child_of_node_scoped(pdev->dev.of_node, np) {
1640 		ret = lpg_add_led(lpg, np);
1641 		if (ret)
1642 			return ret;
1643 	}
1644 
1645 	for (i = 0; i < lpg->num_channels; i++)
1646 		lpg_apply_dtest(&lpg->channels[i]);
1647 
1648 	return lpg_add_pwm(lpg);
1649 }
1650 
1651 static const struct lpg_data pm660l_lpg_data = {
1652 	.lut_base = 0xb000,
1653 	.lut_size = 49,
1654 
1655 	.triled_base = 0xd000,
1656 	.triled_has_atc_ctl = true,
1657 	.triled_has_src_sel = true,
1658 
1659 	.num_channels = 4,
1660 	.channels = (const struct lpg_channel_data[]) {
1661 		{ .base = 0xb100, .triled_mask = BIT(5) },
1662 		{ .base = 0xb200, .triled_mask = BIT(6) },
1663 		{ .base = 0xb300, .triled_mask = BIT(7) },
1664 		{ .base = 0xb400 },
1665 	},
1666 };
1667 
1668 static const struct lpg_data pm8916_pwm_data = {
1669 	.num_channels = 1,
1670 	.channels = (const struct lpg_channel_data[]) {
1671 		{ .base = 0xbc00 },
1672 	},
1673 };
1674 
1675 static const struct lpg_data pm8941_lpg_data = {
1676 	.lut_base = 0xb000,
1677 	.lut_size = 64,
1678 
1679 	.triled_base = 0xd000,
1680 	.triled_has_atc_ctl = true,
1681 	.triled_has_src_sel = true,
1682 
1683 	.num_channels = 8,
1684 	.channels = (const struct lpg_channel_data[]) {
1685 		{ .base = 0xb100 },
1686 		{ .base = 0xb200 },
1687 		{ .base = 0xb300 },
1688 		{ .base = 0xb400 },
1689 		{ .base = 0xb500, .triled_mask = BIT(5) },
1690 		{ .base = 0xb600, .triled_mask = BIT(6) },
1691 		{ .base = 0xb700, .triled_mask = BIT(7) },
1692 		{ .base = 0xb800 },
1693 	},
1694 };
1695 
1696 static const struct lpg_data pmi8950_pwm_data = {
1697 	.num_channels = 1,
1698 	.channels = (const struct lpg_channel_data[]) {
1699 		{ .base = 0xb000 },
1700 	},
1701 };
1702 
1703 static const struct lpg_data pm8994_lpg_data = {
1704 	.lut_base = 0xb000,
1705 	.lut_size = 64,
1706 
1707 	.num_channels = 6,
1708 	.channels = (const struct lpg_channel_data[]) {
1709 		{ .base = 0xb100 },
1710 		{ .base = 0xb200 },
1711 		{ .base = 0xb300 },
1712 		{ .base = 0xb400 },
1713 		{ .base = 0xb500 },
1714 		{ .base = 0xb600 },
1715 	},
1716 };
1717 
1718 /* PMI632 uses SDAM instead of LUT for pattern */
1719 static const struct lpg_data pmi632_lpg_data = {
1720 	.triled_base = 0xd000,
1721 
1722 	.lut_size = 64,
1723 
1724 	.num_channels = 5,
1725 	.channels = (const struct lpg_channel_data[]) {
1726 		{ .base = 0xb300, .triled_mask = BIT(7), .sdam_offset = 0x48 },
1727 		{ .base = 0xb400, .triled_mask = BIT(6), .sdam_offset = 0x56 },
1728 		{ .base = 0xb500, .triled_mask = BIT(5), .sdam_offset = 0x64 },
1729 		{ .base = 0xb600 },
1730 		{ .base = 0xb700 },
1731 	},
1732 };
1733 
1734 static const struct lpg_data pmi8994_lpg_data = {
1735 	.lut_base = 0xb000,
1736 	.lut_size = 24,
1737 
1738 	.triled_base = 0xd000,
1739 	.triled_has_atc_ctl = true,
1740 	.triled_has_src_sel = true,
1741 
1742 	.num_channels = 4,
1743 	.channels = (const struct lpg_channel_data[]) {
1744 		{ .base = 0xb100, .triled_mask = BIT(5) },
1745 		{ .base = 0xb200, .triled_mask = BIT(6) },
1746 		{ .base = 0xb300, .triled_mask = BIT(7) },
1747 		{ .base = 0xb400 },
1748 	},
1749 };
1750 
1751 static const struct lpg_data pmi8998_lpg_data = {
1752 	.lut_base = 0xb000,
1753 	.lut_size = 49,
1754 
1755 	.triled_base = 0xd000,
1756 
1757 	.num_channels = 6,
1758 	.channels = (const struct lpg_channel_data[]) {
1759 		{ .base = 0xb100 },
1760 		{ .base = 0xb200 },
1761 		{ .base = 0xb300, .triled_mask = BIT(5) },
1762 		{ .base = 0xb400, .triled_mask = BIT(6) },
1763 		{ .base = 0xb500, .triled_mask = BIT(7) },
1764 		{ .base = 0xb600 },
1765 	},
1766 };
1767 
1768 static const struct lpg_data pm8150b_lpg_data = {
1769 	.lut_base = 0xb000,
1770 	.lut_size = 24,
1771 
1772 	.triled_base = 0xd000,
1773 
1774 	.num_channels = 2,
1775 	.channels = (const struct lpg_channel_data[]) {
1776 		{ .base = 0xb100, .triled_mask = BIT(7) },
1777 		{ .base = 0xb200, .triled_mask = BIT(6) },
1778 	},
1779 };
1780 
1781 static const struct lpg_data pm8150l_lpg_data = {
1782 	.lut_base = 0xb000,
1783 	.lut_size = 48,
1784 
1785 	.triled_base = 0xd000,
1786 
1787 	.num_channels = 5,
1788 	.channels = (const struct lpg_channel_data[]) {
1789 		{ .base = 0xb100, .triled_mask = BIT(7) },
1790 		{ .base = 0xb200, .triled_mask = BIT(6) },
1791 		{ .base = 0xb300, .triled_mask = BIT(5) },
1792 		{ .base = 0xbc00 },
1793 		{ .base = 0xbd00 },
1794 
1795 	},
1796 };
1797 
1798 static const struct lpg_data pm8350c_pwm_data = {
1799 	.triled_base = 0xef00,
1800 
1801 	.lut_size = 122,
1802 
1803 	.num_channels = 4,
1804 	.channels = (const struct lpg_channel_data[]) {
1805 		{ .base = 0xe800, .triled_mask = BIT(7), .sdam_offset = 0x48 },
1806 		{ .base = 0xe900, .triled_mask = BIT(6), .sdam_offset = 0x56 },
1807 		{ .base = 0xea00, .triled_mask = BIT(5), .sdam_offset = 0x64 },
1808 		{ .base = 0xeb00 },
1809 	},
1810 };
1811 
1812 static const struct lpg_data pmk8550_pwm_data = {
1813 	.num_channels = 2,
1814 	.channels = (const struct lpg_channel_data[]) {
1815 		{ .base = 0xe800 },
1816 		{ .base = 0xe900 },
1817 	},
1818 };
1819 
1820 static const struct of_device_id lpg_of_table[] = {
1821 	{ .compatible = "qcom,pm660l-lpg", .data = &pm660l_lpg_data },
1822 	{ .compatible = "qcom,pm8150b-lpg", .data = &pm8150b_lpg_data },
1823 	{ .compatible = "qcom,pm8150l-lpg", .data = &pm8150l_lpg_data },
1824 	{ .compatible = "qcom,pm8350c-pwm", .data = &pm8350c_pwm_data },
1825 	{ .compatible = "qcom,pm8916-pwm", .data = &pm8916_pwm_data },
1826 	{ .compatible = "qcom,pm8941-lpg", .data = &pm8941_lpg_data },
1827 	{ .compatible = "qcom,pm8994-lpg", .data = &pm8994_lpg_data },
1828 	{ .compatible = "qcom,pmi632-lpg", .data = &pmi632_lpg_data },
1829 	{ .compatible = "qcom,pmi8950-pwm", .data = &pmi8950_pwm_data },
1830 	{ .compatible = "qcom,pmi8994-lpg", .data = &pmi8994_lpg_data },
1831 	{ .compatible = "qcom,pmi8998-lpg", .data = &pmi8998_lpg_data },
1832 	{ .compatible = "qcom,pmc8180c-lpg", .data = &pm8150l_lpg_data },
1833 	{ .compatible = "qcom,pmk8550-pwm", .data = &pmk8550_pwm_data },
1834 	{}
1835 };
1836 MODULE_DEVICE_TABLE(of, lpg_of_table);
1837 
1838 static struct platform_driver lpg_driver = {
1839 	.probe = lpg_probe,
1840 	.driver = {
1841 		.name = "qcom-spmi-lpg",
1842 		.of_match_table = lpg_of_table,
1843 	},
1844 };
1845 module_platform_driver(lpg_driver);
1846 
1847 MODULE_DESCRIPTION("Qualcomm LPG LED driver");
1848 MODULE_LICENSE("GPL v2");
1849