xref: /linux/drivers/isdn/hardware/mISDN/hfcsusb.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  */
31 
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/usb.h>
35 #include <linux/mISDNhw.h>
36 #include <linux/slab.h>
37 #include "hfcsusb.h"
38 
39 static const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05";
40 
41 static unsigned int debug;
42 static int poll = DEFAULT_TRANSP_BURST_SZ;
43 
44 static LIST_HEAD(HFClist);
45 static DEFINE_RWLOCK(HFClock);
46 
47 
48 MODULE_AUTHOR("Martin Bachem");
49 MODULE_LICENSE("GPL");
50 module_param(debug, uint, S_IRUGO | S_IWUSR);
51 module_param(poll, int, 0);
52 
53 static int hfcsusb_cnt;
54 
55 /* some function prototypes */
56 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
57 static void release_hw(struct hfcsusb *hw);
58 static void reset_hfcsusb(struct hfcsusb *hw);
59 static void setPortMode(struct hfcsusb *hw);
60 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
61 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
62 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
63 static void deactivate_bchannel(struct bchannel *bch);
64 static void hfcsusb_ph_info(struct hfcsusb *hw);
65 
66 /* start next background transfer for control channel */
67 static void
68 ctrl_start_transfer(struct hfcsusb *hw)
69 {
70 	if (debug & DBG_HFC_CALL_TRACE)
71 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
72 
73 	if (hw->ctrl_cnt) {
74 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
75 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
76 		hw->ctrl_urb->transfer_buffer = NULL;
77 		hw->ctrl_urb->transfer_buffer_length = 0;
78 		hw->ctrl_write.wIndex =
79 		    cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
80 		hw->ctrl_write.wValue =
81 		    cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
82 
83 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
84 	}
85 }
86 
87 /*
88  * queue a control transfer request to write HFC-S USB
89  * chip register using CTRL resuest queue
90  */
91 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
92 {
93 	struct ctrl_buf *buf;
94 
95 	if (debug & DBG_HFC_CALL_TRACE)
96 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
97 			hw->name, __func__, reg, val);
98 
99 	spin_lock(&hw->ctrl_lock);
100 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
101 		spin_unlock(&hw->ctrl_lock);
102 		return 1;
103 	}
104 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
105 	buf->hfcs_reg = reg;
106 	buf->reg_val = val;
107 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
108 		hw->ctrl_in_idx = 0;
109 	if (++hw->ctrl_cnt == 1)
110 		ctrl_start_transfer(hw);
111 	spin_unlock(&hw->ctrl_lock);
112 
113 	return 0;
114 }
115 
116 /* control completion routine handling background control cmds */
117 static void
118 ctrl_complete(struct urb *urb)
119 {
120 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
121 
122 	if (debug & DBG_HFC_CALL_TRACE)
123 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
124 
125 	urb->dev = hw->dev;
126 	if (hw->ctrl_cnt) {
127 		hw->ctrl_cnt--;	/* decrement actual count */
128 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
129 			hw->ctrl_out_idx = 0;	/* pointer wrap */
130 
131 		ctrl_start_transfer(hw); /* start next transfer */
132 	}
133 }
134 
135 /* handle LED bits   */
136 static void
137 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
138 {
139 	if (set_on) {
140 		if (led_bits < 0)
141 			hw->led_state &= ~abs(led_bits);
142 		else
143 			hw->led_state |= led_bits;
144 	} else {
145 		if (led_bits < 0)
146 			hw->led_state |= abs(led_bits);
147 		else
148 			hw->led_state &= ~led_bits;
149 	}
150 }
151 
152 /* handle LED requests  */
153 static void
154 handle_led(struct hfcsusb *hw, int event)
155 {
156 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
157 		hfcsusb_idtab[hw->vend_idx].driver_info;
158 	__u8 tmpled;
159 
160 	if (driver_info->led_scheme == LED_OFF)
161 		return;
162 	tmpled = hw->led_state;
163 
164 	switch (event) {
165 	case LED_POWER_ON:
166 		set_led_bit(hw, driver_info->led_bits[0], 1);
167 		set_led_bit(hw, driver_info->led_bits[1], 0);
168 		set_led_bit(hw, driver_info->led_bits[2], 0);
169 		set_led_bit(hw, driver_info->led_bits[3], 0);
170 		break;
171 	case LED_POWER_OFF:
172 		set_led_bit(hw, driver_info->led_bits[0], 0);
173 		set_led_bit(hw, driver_info->led_bits[1], 0);
174 		set_led_bit(hw, driver_info->led_bits[2], 0);
175 		set_led_bit(hw, driver_info->led_bits[3], 0);
176 		break;
177 	case LED_S0_ON:
178 		set_led_bit(hw, driver_info->led_bits[1], 1);
179 		break;
180 	case LED_S0_OFF:
181 		set_led_bit(hw, driver_info->led_bits[1], 0);
182 		break;
183 	case LED_B1_ON:
184 		set_led_bit(hw, driver_info->led_bits[2], 1);
185 		break;
186 	case LED_B1_OFF:
187 		set_led_bit(hw, driver_info->led_bits[2], 0);
188 		break;
189 	case LED_B2_ON:
190 		set_led_bit(hw, driver_info->led_bits[3], 1);
191 		break;
192 	case LED_B2_OFF:
193 		set_led_bit(hw, driver_info->led_bits[3], 0);
194 		break;
195 	}
196 
197 	if (hw->led_state != tmpled) {
198 		if (debug & DBG_HFC_CALL_TRACE)
199 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
200 			    hw->name, __func__,
201 			    HFCUSB_P_DATA, hw->led_state);
202 
203 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
204 	}
205 }
206 
207 /*
208  * Layer2 -> Layer 1 Bchannel data
209  */
210 static int
211 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
212 {
213 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
214 	struct hfcsusb		*hw = bch->hw;
215 	int			ret = -EINVAL;
216 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
217 	u_long			flags;
218 
219 	if (debug & DBG_HFC_CALL_TRACE)
220 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
221 
222 	switch (hh->prim) {
223 	case PH_DATA_REQ:
224 		spin_lock_irqsave(&hw->lock, flags);
225 		ret = bchannel_senddata(bch, skb);
226 		spin_unlock_irqrestore(&hw->lock, flags);
227 		if (debug & DBG_HFC_CALL_TRACE)
228 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
229 				hw->name, __func__, ret);
230 		if (ret > 0) {
231 			/*
232 			 * other l1 drivers don't send early confirms on
233 			 * transp data, but hfcsusb does because tx_next
234 			 * skb is needed in tx_iso_complete()
235 			 */
236 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
237 			ret = 0;
238 		}
239 		return ret;
240 	case PH_ACTIVATE_REQ:
241 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
242 			hfcsusb_start_endpoint(hw, bch->nr);
243 			ret = hfcsusb_setup_bch(bch, ch->protocol);
244 		} else
245 			ret = 0;
246 		if (!ret)
247 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
248 				0, NULL, GFP_KERNEL);
249 		break;
250 	case PH_DEACTIVATE_REQ:
251 		deactivate_bchannel(bch);
252 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
253 			0, NULL, GFP_KERNEL);
254 		ret = 0;
255 		break;
256 	}
257 	if (!ret)
258 		dev_kfree_skb(skb);
259 	return ret;
260 }
261 
262 /*
263  * send full D/B channel status information
264  * as MPH_INFORMATION_IND
265  */
266 static void
267 hfcsusb_ph_info(struct hfcsusb *hw)
268 {
269 	struct ph_info *phi;
270 	struct dchannel *dch = &hw->dch;
271 	int i;
272 
273 	phi = kzalloc(sizeof(struct ph_info) +
274 		dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
275 	phi->dch.ch.protocol = hw->protocol;
276 	phi->dch.ch.Flags = dch->Flags;
277 	phi->dch.state = dch->state;
278 	phi->dch.num_bch = dch->dev.nrbchan;
279 	for (i = 0; i < dch->dev.nrbchan; i++) {
280 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
281 		phi->bch[i].Flags = hw->bch[i].Flags;
282 	}
283 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
284 		sizeof(struct ph_info_dch) + dch->dev.nrbchan *
285 		sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
286 	kfree(phi);
287 }
288 
289 /*
290  * Layer2 -> Layer 1 Dchannel data
291  */
292 static int
293 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
294 {
295 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
296 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
297 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
298 	struct hfcsusb		*hw = dch->hw;
299 	int			ret = -EINVAL;
300 	u_long			flags;
301 
302 	switch (hh->prim) {
303 	case PH_DATA_REQ:
304 		if (debug & DBG_HFC_CALL_TRACE)
305 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
306 				hw->name, __func__);
307 
308 		spin_lock_irqsave(&hw->lock, flags);
309 		ret = dchannel_senddata(dch, skb);
310 		spin_unlock_irqrestore(&hw->lock, flags);
311 		if (ret > 0) {
312 			ret = 0;
313 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
314 		}
315 		break;
316 
317 	case PH_ACTIVATE_REQ:
318 		if (debug & DBG_HFC_CALL_TRACE)
319 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
320 				hw->name, __func__,
321 				(hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
322 
323 		if (hw->protocol == ISDN_P_NT_S0) {
324 			ret = 0;
325 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
326 				_queue_data(&dch->dev.D,
327 					PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
328 					NULL, GFP_ATOMIC);
329 			} else {
330 				hfcsusb_ph_command(hw,
331 					HFC_L1_ACTIVATE_NT);
332 				test_and_set_bit(FLG_L2_ACTIVATED,
333 					&dch->Flags);
334 			}
335 		} else {
336 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
337 			ret = l1_event(dch->l1, hh->prim);
338 		}
339 		break;
340 
341 	case PH_DEACTIVATE_REQ:
342 		if (debug & DBG_HFC_CALL_TRACE)
343 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
344 				hw->name, __func__);
345 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
346 
347 		if (hw->protocol == ISDN_P_NT_S0) {
348 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
349 			spin_lock_irqsave(&hw->lock, flags);
350 			skb_queue_purge(&dch->squeue);
351 			if (dch->tx_skb) {
352 				dev_kfree_skb(dch->tx_skb);
353 				dch->tx_skb = NULL;
354 			}
355 			dch->tx_idx = 0;
356 			if (dch->rx_skb) {
357 				dev_kfree_skb(dch->rx_skb);
358 				dch->rx_skb = NULL;
359 			}
360 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
361 			spin_unlock_irqrestore(&hw->lock, flags);
362 #ifdef FIXME
363 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
364 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
365 #endif
366 			ret = 0;
367 		} else
368 			ret = l1_event(dch->l1, hh->prim);
369 		break;
370 	case MPH_INFORMATION_REQ:
371 		hfcsusb_ph_info(hw);
372 		ret = 0;
373 		break;
374 	}
375 
376 	return ret;
377 }
378 
379 /*
380  * Layer 1 callback function
381  */
382 static int
383 hfc_l1callback(struct dchannel *dch, u_int cmd)
384 {
385 	struct hfcsusb *hw = dch->hw;
386 
387 	if (debug & DBG_HFC_CALL_TRACE)
388 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
389 			hw->name, __func__, cmd);
390 
391 	switch (cmd) {
392 	case INFO3_P8:
393 	case INFO3_P10:
394 	case HW_RESET_REQ:
395 	case HW_POWERUP_REQ:
396 		break;
397 
398 	case HW_DEACT_REQ:
399 		skb_queue_purge(&dch->squeue);
400 		if (dch->tx_skb) {
401 			dev_kfree_skb(dch->tx_skb);
402 			dch->tx_skb = NULL;
403 		}
404 		dch->tx_idx = 0;
405 		if (dch->rx_skb) {
406 			dev_kfree_skb(dch->rx_skb);
407 			dch->rx_skb = NULL;
408 		}
409 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
410 		break;
411 	case PH_ACTIVATE_IND:
412 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
413 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
414 			GFP_ATOMIC);
415 		break;
416 	case PH_DEACTIVATE_IND:
417 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
418 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
419 			GFP_ATOMIC);
420 		break;
421 	default:
422 		if (dch->debug & DEBUG_HW)
423 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
424 			hw->name, __func__, cmd);
425 		return -1;
426 	}
427 	hfcsusb_ph_info(hw);
428 	return 0;
429 }
430 
431 static int
432 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
433     struct channel_req *rq)
434 {
435 	int err = 0;
436 
437 	if (debug & DEBUG_HW_OPEN)
438 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
439 		    hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
440 		    __builtin_return_address(0));
441 	if (rq->protocol == ISDN_P_NONE)
442 		return -EINVAL;
443 
444 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
445 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
446 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
447 
448 	/* E-Channel logging */
449 	if (rq->adr.channel == 1) {
450 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
451 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
452 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
453 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
454 				     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
455 		} else
456 			return -EINVAL;
457 	}
458 
459 	if (!hw->initdone) {
460 		hw->protocol = rq->protocol;
461 		if (rq->protocol == ISDN_P_TE_S0) {
462 			err = create_l1(&hw->dch, hfc_l1callback);
463 			if (err)
464 				return err;
465 		}
466 		setPortMode(hw);
467 		ch->protocol = rq->protocol;
468 		hw->initdone = 1;
469 	} else {
470 		if (rq->protocol != ch->protocol)
471 			return -EPROTONOSUPPORT;
472 	}
473 
474 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
475 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
476 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
477 		    0, NULL, GFP_KERNEL);
478 	rq->ch = ch;
479 	if (!try_module_get(THIS_MODULE))
480 		printk(KERN_WARNING "%s: %s: cannot get module\n",
481 		    hw->name, __func__);
482 	return 0;
483 }
484 
485 static int
486 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
487 {
488 	struct bchannel		*bch;
489 
490 	if (rq->adr.channel > 2)
491 		return -EINVAL;
492 	if (rq->protocol == ISDN_P_NONE)
493 		return -EINVAL;
494 
495 	if (debug & DBG_HFC_CALL_TRACE)
496 		printk(KERN_DEBUG "%s: %s B%i\n",
497 			hw->name, __func__, rq->adr.channel);
498 
499 	bch = &hw->bch[rq->adr.channel - 1];
500 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
501 		return -EBUSY; /* b-channel can be only open once */
502 	test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
503 	bch->ch.protocol = rq->protocol;
504 	rq->ch = &bch->ch;
505 
506 	/* start USB endpoint for bchannel */
507 	if (rq->adr.channel  == 1)
508 		hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
509 	else
510 		hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
511 
512 	if (!try_module_get(THIS_MODULE))
513 		printk(KERN_WARNING "%s: %s:cannot get module\n",
514 		    hw->name, __func__);
515 	return 0;
516 }
517 
518 static int
519 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
520 {
521 	int ret = 0;
522 
523 	if (debug & DBG_HFC_CALL_TRACE)
524 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
525 		    hw->name, __func__, (cq->op), (cq->channel));
526 
527 	switch (cq->op) {
528 	case MISDN_CTRL_GETOP:
529 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
530 			 MISDN_CTRL_DISCONNECT;
531 		break;
532 	default:
533 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
534 			hw->name, __func__, cq->op);
535 		ret = -EINVAL;
536 		break;
537 	}
538 	return ret;
539 }
540 
541 /*
542  * device control function
543  */
544 static int
545 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
546 {
547 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
548 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
549 	struct hfcsusb		*hw = dch->hw;
550 	struct channel_req	*rq;
551 	int			err = 0;
552 
553 	if (dch->debug & DEBUG_HW)
554 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
555 		    hw->name, __func__, cmd, arg);
556 	switch (cmd) {
557 	case OPEN_CHANNEL:
558 		rq = arg;
559 		if ((rq->protocol == ISDN_P_TE_S0) ||
560 		    (rq->protocol == ISDN_P_NT_S0))
561 			err = open_dchannel(hw, ch, rq);
562 		else
563 			err = open_bchannel(hw, rq);
564 		if (!err)
565 			hw->open++;
566 		break;
567 	case CLOSE_CHANNEL:
568 		hw->open--;
569 		if (debug & DEBUG_HW_OPEN)
570 			printk(KERN_DEBUG
571 				"%s: %s: dev(%d) close from %p (open %d)\n",
572 				hw->name, __func__, hw->dch.dev.id,
573 				__builtin_return_address(0), hw->open);
574 		if (!hw->open) {
575 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
576 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
577 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
578 			handle_led(hw, LED_POWER_ON);
579 		}
580 		module_put(THIS_MODULE);
581 		break;
582 	case CONTROL_CHANNEL:
583 		err = channel_ctrl(hw, arg);
584 		break;
585 	default:
586 		if (dch->debug & DEBUG_HW)
587 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
588 				hw->name, __func__, cmd);
589 		return -EINVAL;
590 	}
591 	return err;
592 }
593 
594 /*
595  * S0 TE state change event handler
596  */
597 static void
598 ph_state_te(struct dchannel *dch)
599 {
600 	struct hfcsusb *hw = dch->hw;
601 
602 	if (debug & DEBUG_HW) {
603 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
604 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
605 			    HFC_TE_LAYER1_STATES[dch->state]);
606 		else
607 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
608 			    hw->name, __func__, dch->state);
609 	}
610 
611 	switch (dch->state) {
612 	case 0:
613 		l1_event(dch->l1, HW_RESET_IND);
614 		break;
615 	case 3:
616 		l1_event(dch->l1, HW_DEACT_IND);
617 		break;
618 	case 5:
619 	case 8:
620 		l1_event(dch->l1, ANYSIGNAL);
621 		break;
622 	case 6:
623 		l1_event(dch->l1, INFO2);
624 		break;
625 	case 7:
626 		l1_event(dch->l1, INFO4_P8);
627 		break;
628 	}
629 	if (dch->state == 7)
630 		handle_led(hw, LED_S0_ON);
631 	else
632 		handle_led(hw, LED_S0_OFF);
633 }
634 
635 /*
636  * S0 NT state change event handler
637  */
638 static void
639 ph_state_nt(struct dchannel *dch)
640 {
641 	struct hfcsusb *hw = dch->hw;
642 
643 	if (debug & DEBUG_HW) {
644 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
645 			printk(KERN_DEBUG "%s: %s: %s\n",
646 			    hw->name, __func__,
647 			    HFC_NT_LAYER1_STATES[dch->state]);
648 
649 		else
650 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
651 			    hw->name, __func__, dch->state);
652 	}
653 
654 	switch (dch->state) {
655 	case (1):
656 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
657 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
658 		hw->nt_timer = 0;
659 		hw->timers &= ~NT_ACTIVATION_TIMER;
660 		handle_led(hw, LED_S0_OFF);
661 		break;
662 
663 	case (2):
664 		if (hw->nt_timer < 0) {
665 			hw->nt_timer = 0;
666 			hw->timers &= ~NT_ACTIVATION_TIMER;
667 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
668 		} else {
669 			hw->timers |= NT_ACTIVATION_TIMER;
670 			hw->nt_timer = NT_T1_COUNT;
671 			/* allow G2 -> G3 transition */
672 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
673 		}
674 		break;
675 	case (3):
676 		hw->nt_timer = 0;
677 		hw->timers &= ~NT_ACTIVATION_TIMER;
678 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
679 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
680 			MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
681 		handle_led(hw, LED_S0_ON);
682 		break;
683 	case (4):
684 		hw->nt_timer = 0;
685 		hw->timers &= ~NT_ACTIVATION_TIMER;
686 		break;
687 	default:
688 		break;
689 	}
690 	hfcsusb_ph_info(hw);
691 }
692 
693 static void
694 ph_state(struct dchannel *dch)
695 {
696 	struct hfcsusb *hw = dch->hw;
697 
698 	if (hw->protocol == ISDN_P_NT_S0)
699 		ph_state_nt(dch);
700 	else if (hw->protocol == ISDN_P_TE_S0)
701 		ph_state_te(dch);
702 }
703 
704 /*
705  * disable/enable BChannel for desired protocoll
706  */
707 static int
708 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
709 {
710 	struct hfcsusb *hw = bch->hw;
711 	__u8 conhdlc, sctrl, sctrl_r;
712 
713 	if (debug & DEBUG_HW)
714 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
715 		    hw->name, __func__, bch->state, protocol,
716 		    bch->nr);
717 
718 	/* setup val for CON_HDLC */
719 	conhdlc = 0;
720 	if (protocol > ISDN_P_NONE)
721 		conhdlc = 8;	/* enable FIFO */
722 
723 	switch (protocol) {
724 	case (-1):	/* used for init */
725 		bch->state = -1;
726 		/* fall through */
727 	case (ISDN_P_NONE):
728 		if (bch->state == ISDN_P_NONE)
729 			return 0; /* already in idle state */
730 		bch->state = ISDN_P_NONE;
731 		clear_bit(FLG_HDLC, &bch->Flags);
732 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
733 		break;
734 	case (ISDN_P_B_RAW):
735 		conhdlc |= 2;
736 		bch->state = protocol;
737 		set_bit(FLG_TRANSPARENT, &bch->Flags);
738 		break;
739 	case (ISDN_P_B_HDLC):
740 		bch->state = protocol;
741 		set_bit(FLG_HDLC, &bch->Flags);
742 		break;
743 	default:
744 		if (debug & DEBUG_HW)
745 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
746 				hw->name, __func__, protocol);
747 		return -ENOPROTOOPT;
748 	}
749 
750 	if (protocol >= ISDN_P_NONE) {
751 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
752 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
753 		write_reg(hw, HFCUSB_INC_RES_F, 2);
754 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
755 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
756 		write_reg(hw, HFCUSB_INC_RES_F, 2);
757 
758 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
759 		sctrl_r = 0x0;
760 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
761 			sctrl |= 1;
762 			sctrl_r |= 1;
763 		}
764 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
765 			sctrl |= 2;
766 			sctrl_r |= 2;
767 		}
768 		write_reg(hw, HFCUSB_SCTRL, sctrl);
769 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
770 
771 		if (protocol > ISDN_P_NONE)
772 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
773 		else
774 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
775 				LED_B2_OFF);
776 	}
777 	hfcsusb_ph_info(hw);
778 	return 0;
779 }
780 
781 static void
782 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
783 {
784 	if (debug & DEBUG_HW)
785 		printk(KERN_DEBUG "%s: %s: %x\n",
786 		   hw->name, __func__, command);
787 
788 	switch (command) {
789 	case HFC_L1_ACTIVATE_TE:
790 		/* force sending sending INFO1 */
791 		write_reg(hw, HFCUSB_STATES, 0x14);
792 		/* start l1 activation */
793 		write_reg(hw, HFCUSB_STATES, 0x04);
794 		break;
795 
796 	case HFC_L1_FORCE_DEACTIVATE_TE:
797 		write_reg(hw, HFCUSB_STATES, 0x10);
798 		write_reg(hw, HFCUSB_STATES, 0x03);
799 		break;
800 
801 	case HFC_L1_ACTIVATE_NT:
802 		if (hw->dch.state == 3)
803 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
804 				MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
805 		else
806 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
807 				HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
808 		break;
809 
810 	case HFC_L1_DEACTIVATE_NT:
811 		write_reg(hw, HFCUSB_STATES,
812 			HFCUSB_DO_ACTION);
813 		break;
814 	}
815 }
816 
817 /*
818  * Layer 1 B-channel hardware access
819  */
820 static int
821 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
822 {
823 	int	ret = 0;
824 
825 	switch (cq->op) {
826 	case MISDN_CTRL_GETOP:
827 		cq->op = MISDN_CTRL_FILL_EMPTY;
828 		break;
829 	case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
830 		test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
831 		if (debug & DEBUG_HW_OPEN)
832 			printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
833 				"off=%d)\n", __func__, bch->nr, !!cq->p1);
834 		break;
835 	default:
836 		printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
837 		ret = -EINVAL;
838 		break;
839 	}
840 	return ret;
841 }
842 
843 /* collect data from incoming interrupt or isochron USB data */
844 static void
845 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
846 	int finish)
847 {
848 	struct hfcsusb	*hw = fifo->hw;
849 	struct sk_buff	*rx_skb = NULL;
850 	int		maxlen = 0;
851 	int		fifon = fifo->fifonum;
852 	int		i;
853 	int		hdlc = 0;
854 
855 	if (debug & DBG_HFC_CALL_TRACE)
856 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
857 		    "dch(%p) bch(%p) ech(%p)\n",
858 		    hw->name, __func__, fifon, len,
859 		    fifo->dch, fifo->bch, fifo->ech);
860 
861 	if (!len)
862 		return;
863 
864 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
865 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
866 		       hw->name, __func__);
867 		return;
868 	}
869 
870 	spin_lock(&hw->lock);
871 	if (fifo->dch) {
872 		rx_skb = fifo->dch->rx_skb;
873 		maxlen = fifo->dch->maxlen;
874 		hdlc = 1;
875 	}
876 	if (fifo->bch) {
877 		rx_skb = fifo->bch->rx_skb;
878 		maxlen = fifo->bch->maxlen;
879 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
880 	}
881 	if (fifo->ech) {
882 		rx_skb = fifo->ech->rx_skb;
883 		maxlen = fifo->ech->maxlen;
884 		hdlc = 1;
885 	}
886 
887 	if (!rx_skb) {
888 		rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
889 		if (rx_skb) {
890 			if (fifo->dch)
891 				fifo->dch->rx_skb = rx_skb;
892 			if (fifo->bch)
893 				fifo->bch->rx_skb = rx_skb;
894 			if (fifo->ech)
895 				fifo->ech->rx_skb = rx_skb;
896 			skb_trim(rx_skb, 0);
897 		} else {
898 			printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
899 			    hw->name, __func__);
900 			spin_unlock(&hw->lock);
901 			return;
902 		}
903 	}
904 
905 	if (fifo->dch || fifo->ech) {
906 		/* D/E-Channel SKB range check */
907 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
908 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
909 			    "for fifo(%d) HFCUSB_D_RX\n",
910 			    hw->name, __func__, fifon);
911 			skb_trim(rx_skb, 0);
912 			spin_unlock(&hw->lock);
913 			return;
914 		}
915 	} else if (fifo->bch) {
916 		/* B-Channel SKB range check */
917 		if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
918 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
919 			    "for fifo(%d) HFCUSB_B_RX\n",
920 			    hw->name, __func__, fifon);
921 			skb_trim(rx_skb, 0);
922 			spin_unlock(&hw->lock);
923 			return;
924 		}
925 	}
926 
927 	memcpy(skb_put(rx_skb, len), data, len);
928 
929 	if (hdlc) {
930 		/* we have a complete hdlc packet */
931 		if (finish) {
932 			if ((rx_skb->len > 3) &&
933 			   (!(rx_skb->data[rx_skb->len - 1]))) {
934 				if (debug & DBG_HFC_FIFO_VERBOSE) {
935 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
936 					    " new RX len(%i): ",
937 					    hw->name, __func__, fifon,
938 					    rx_skb->len);
939 					i = 0;
940 					while (i < rx_skb->len)
941 						printk("%02x ",
942 						    rx_skb->data[i++]);
943 					printk("\n");
944 				}
945 
946 				/* remove CRC & status */
947 				skb_trim(rx_skb, rx_skb->len - 3);
948 
949 				if (fifo->dch)
950 					recv_Dchannel(fifo->dch);
951 				if (fifo->bch)
952 					recv_Bchannel(fifo->bch, MISDN_ID_ANY);
953 				if (fifo->ech)
954 					recv_Echannel(fifo->ech,
955 						     &hw->dch);
956 			} else {
957 				if (debug & DBG_HFC_FIFO_VERBOSE) {
958 					printk(KERN_DEBUG
959 					    "%s: CRC or minlen ERROR fifon(%i) "
960 					    "RX len(%i): ",
961 					    hw->name, fifon, rx_skb->len);
962 					i = 0;
963 					while (i < rx_skb->len)
964 						printk("%02x ",
965 						    rx_skb->data[i++]);
966 					printk("\n");
967 				}
968 				skb_trim(rx_skb, 0);
969 			}
970 		}
971 	} else {
972 		/* deliver transparent data to layer2 */
973 		if (rx_skb->len >= poll)
974 			recv_Bchannel(fifo->bch, MISDN_ID_ANY);
975 	}
976 	spin_unlock(&hw->lock);
977 }
978 
979 static void
980 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
981 	      void *buf, int num_packets, int packet_size, int interval,
982 	      usb_complete_t complete, void *context)
983 {
984 	int k;
985 
986 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
987 	    complete, context);
988 
989 	urb->number_of_packets = num_packets;
990 	urb->transfer_flags = URB_ISO_ASAP;
991 	urb->actual_length = 0;
992 	urb->interval = interval;
993 
994 	for (k = 0; k < num_packets; k++) {
995 		urb->iso_frame_desc[k].offset = packet_size * k;
996 		urb->iso_frame_desc[k].length = packet_size;
997 		urb->iso_frame_desc[k].actual_length = 0;
998 	}
999 }
1000 
1001 /* receive completion routine for all ISO tx fifos   */
1002 static void
1003 rx_iso_complete(struct urb *urb)
1004 {
1005 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1006 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1007 	struct hfcsusb *hw = fifo->hw;
1008 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
1009 	    status, iso_status, i;
1010 	__u8 *buf;
1011 	static __u8 eof[8];
1012 	__u8 s0_state;
1013 
1014 	fifon = fifo->fifonum;
1015 	status = urb->status;
1016 
1017 	spin_lock(&hw->lock);
1018 	if (fifo->stop_gracefull) {
1019 		fifo->stop_gracefull = 0;
1020 		fifo->active = 0;
1021 		spin_unlock(&hw->lock);
1022 		return;
1023 	}
1024 	spin_unlock(&hw->lock);
1025 
1026 	/*
1027 	 * ISO transfer only partially completed,
1028 	 * look at individual frame status for details
1029 	 */
1030 	if (status == -EXDEV) {
1031 		if (debug & DEBUG_HW)
1032 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
1033 			    "urb->status %d, fifonum %d\n",
1034 			    hw->name, __func__,  status, fifon);
1035 
1036 		/* clear status, so go on with ISO transfers */
1037 		status = 0;
1038 	}
1039 
1040 	s0_state = 0;
1041 	if (fifo->active && !status) {
1042 		num_isoc_packets = iso_packets[fifon];
1043 		maxlen = fifo->usb_packet_maxlen;
1044 
1045 		for (k = 0; k < num_isoc_packets; ++k) {
1046 			len = urb->iso_frame_desc[k].actual_length;
1047 			offset = urb->iso_frame_desc[k].offset;
1048 			buf = context_iso_urb->buffer + offset;
1049 			iso_status = urb->iso_frame_desc[k].status;
1050 
1051 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1052 				printk(KERN_DEBUG "%s: %s: "
1053 				    "ISO packet %i, status: %i\n",
1054 				    hw->name, __func__, k, iso_status);
1055 			}
1056 
1057 			/* USB data log for every D ISO in */
1058 			if ((fifon == HFCUSB_D_RX) &&
1059 			    (debug & DBG_HFC_USB_VERBOSE)) {
1060 				printk(KERN_DEBUG
1061 				    "%s: %s: %d (%d/%d) len(%d) ",
1062 				    hw->name, __func__, urb->start_frame,
1063 				    k, num_isoc_packets-1,
1064 				    len);
1065 				for (i = 0; i < len; i++)
1066 					printk("%x ", buf[i]);
1067 				printk("\n");
1068 			}
1069 
1070 			if (!iso_status) {
1071 				if (fifo->last_urblen != maxlen) {
1072 					/*
1073 					 * save fifo fill-level threshold bits
1074 					 * to use them later in TX ISO URB
1075 					 * completions
1076 					 */
1077 					hw->threshold_mask = buf[1];
1078 
1079 					if (fifon == HFCUSB_D_RX)
1080 						s0_state = (buf[0] >> 4);
1081 
1082 					eof[fifon] = buf[0] & 1;
1083 					if (len > 2)
1084 						hfcsusb_rx_frame(fifo, buf + 2,
1085 							len - 2, (len < maxlen)
1086 							? eof[fifon] : 0);
1087 				} else
1088 					hfcsusb_rx_frame(fifo, buf, len,
1089 						(len < maxlen) ?
1090 						eof[fifon] : 0);
1091 				fifo->last_urblen = len;
1092 			}
1093 		}
1094 
1095 		/* signal S0 layer1 state change */
1096 		if ((s0_state) && (hw->initdone) &&
1097 		    (s0_state != hw->dch.state)) {
1098 			hw->dch.state = s0_state;
1099 			schedule_event(&hw->dch, FLG_PHCHANGE);
1100 		}
1101 
1102 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1103 			      context_iso_urb->buffer, num_isoc_packets,
1104 			      fifo->usb_packet_maxlen, fifo->intervall,
1105 			      (usb_complete_t)rx_iso_complete, urb->context);
1106 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1107 		if (errcode < 0) {
1108 			if (debug & DEBUG_HW)
1109 				printk(KERN_DEBUG "%s: %s: error submitting "
1110 				    "ISO URB: %d\n",
1111 				    hw->name, __func__, errcode);
1112 		}
1113 	} else {
1114 		if (status && (debug & DBG_HFC_URB_INFO))
1115 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1116 			    "urb->status %d, fifonum %d\n",
1117 			    hw->name, __func__, status, fifon);
1118 	}
1119 }
1120 
1121 /* receive completion routine for all interrupt rx fifos */
1122 static void
1123 rx_int_complete(struct urb *urb)
1124 {
1125 	int len, status, i;
1126 	__u8 *buf, maxlen, fifon;
1127 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1128 	struct hfcsusb *hw = fifo->hw;
1129 	static __u8 eof[8];
1130 
1131 	spin_lock(&hw->lock);
1132 	if (fifo->stop_gracefull) {
1133 		fifo->stop_gracefull = 0;
1134 		fifo->active = 0;
1135 		spin_unlock(&hw->lock);
1136 		return;
1137 	}
1138 	spin_unlock(&hw->lock);
1139 
1140 	fifon = fifo->fifonum;
1141 	if ((!fifo->active) || (urb->status)) {
1142 		if (debug & DBG_HFC_URB_ERROR)
1143 			printk(KERN_DEBUG
1144 			    "%s: %s: RX-Fifo %i is going down (%i)\n",
1145 			    hw->name, __func__, fifon, urb->status);
1146 
1147 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1148 		return;
1149 	}
1150 	len = urb->actual_length;
1151 	buf = fifo->buffer;
1152 	maxlen = fifo->usb_packet_maxlen;
1153 
1154 	/* USB data log for every D INT in */
1155 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1156 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1157 		    hw->name, __func__, len);
1158 		for (i = 0; i < len; i++)
1159 			printk("%02x ", buf[i]);
1160 		printk("\n");
1161 	}
1162 
1163 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1164 		/* the threshold mask is in the 2nd status byte */
1165 		hw->threshold_mask = buf[1];
1166 
1167 		/* signal S0 layer1 state change */
1168 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1169 			hw->dch.state = (buf[0] >> 4);
1170 			schedule_event(&hw->dch, FLG_PHCHANGE);
1171 		}
1172 
1173 		eof[fifon] = buf[0] & 1;
1174 		/* if we have more than the 2 status bytes -> collect data */
1175 		if (len > 2)
1176 			hfcsusb_rx_frame(fifo, buf + 2,
1177 			   urb->actual_length - 2,
1178 			   (len < maxlen) ? eof[fifon] : 0);
1179 	} else {
1180 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1181 				 (len < maxlen) ? eof[fifon] : 0);
1182 	}
1183 	fifo->last_urblen = urb->actual_length;
1184 
1185 	status = usb_submit_urb(urb, GFP_ATOMIC);
1186 	if (status) {
1187 		if (debug & DEBUG_HW)
1188 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1189 			    hw->name, __func__);
1190 	}
1191 }
1192 
1193 /* transmit completion routine for all ISO tx fifos */
1194 static void
1195 tx_iso_complete(struct urb *urb)
1196 {
1197 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1198 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1199 	struct hfcsusb *hw = fifo->hw;
1200 	struct sk_buff *tx_skb;
1201 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1202 	    errcode, hdlc, i;
1203 	int *tx_idx;
1204 	int frame_complete, fifon, status;
1205 	__u8 threshbit;
1206 
1207 	spin_lock(&hw->lock);
1208 	if (fifo->stop_gracefull) {
1209 		fifo->stop_gracefull = 0;
1210 		fifo->active = 0;
1211 		spin_unlock(&hw->lock);
1212 		return;
1213 	}
1214 
1215 	if (fifo->dch) {
1216 		tx_skb = fifo->dch->tx_skb;
1217 		tx_idx = &fifo->dch->tx_idx;
1218 		hdlc = 1;
1219 	} else if (fifo->bch) {
1220 		tx_skb = fifo->bch->tx_skb;
1221 		tx_idx = &fifo->bch->tx_idx;
1222 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1223 	} else {
1224 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1225 		    hw->name, __func__);
1226 		spin_unlock(&hw->lock);
1227 		return;
1228 	}
1229 
1230 	fifon = fifo->fifonum;
1231 	status = urb->status;
1232 
1233 	tx_offset = 0;
1234 
1235 	/*
1236 	 * ISO transfer only partially completed,
1237 	 * look at individual frame status for details
1238 	 */
1239 	if (status == -EXDEV) {
1240 		if (debug & DBG_HFC_URB_ERROR)
1241 			printk(KERN_DEBUG "%s: %s: "
1242 			    "-EXDEV (%i) fifon (%d)\n",
1243 			    hw->name, __func__, status, fifon);
1244 
1245 		/* clear status, so go on with ISO transfers */
1246 		status = 0;
1247 	}
1248 
1249 	if (fifo->active && !status) {
1250 		/* is FifoFull-threshold set for our channel? */
1251 		threshbit = (hw->threshold_mask & (1 << fifon));
1252 		num_isoc_packets = iso_packets[fifon];
1253 
1254 		/* predict dataflow to avoid fifo overflow */
1255 		if (fifon >= HFCUSB_D_TX)
1256 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1257 		else
1258 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1259 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1260 			      context_iso_urb->buffer, num_isoc_packets,
1261 			      fifo->usb_packet_maxlen, fifo->intervall,
1262 			      (usb_complete_t)tx_iso_complete, urb->context);
1263 		memset(context_iso_urb->buffer, 0,
1264 		       sizeof(context_iso_urb->buffer));
1265 		frame_complete = 0;
1266 
1267 		for (k = 0; k < num_isoc_packets; ++k) {
1268 			/* analyze tx success of previous ISO packets */
1269 			if (debug & DBG_HFC_URB_ERROR) {
1270 				errcode = urb->iso_frame_desc[k].status;
1271 				if (errcode) {
1272 					printk(KERN_DEBUG "%s: %s: "
1273 					    "ISO packet %i, status: %i\n",
1274 					     hw->name, __func__, k, errcode);
1275 				}
1276 			}
1277 
1278 			/* Generate next ISO Packets */
1279 			if (tx_skb)
1280 				remain = tx_skb->len - *tx_idx;
1281 			else
1282 				remain = 0;
1283 
1284 			if (remain > 0) {
1285 				fifo->bit_line -= sink;
1286 				current_len = (0 - fifo->bit_line) / 8;
1287 				if (current_len > 14)
1288 					current_len = 14;
1289 				if (current_len < 0)
1290 					current_len = 0;
1291 				if (remain < current_len)
1292 					current_len = remain;
1293 
1294 				/* how much bit do we put on the line? */
1295 				fifo->bit_line += current_len * 8;
1296 
1297 				context_iso_urb->buffer[tx_offset] = 0;
1298 				if (current_len == remain) {
1299 					if (hdlc) {
1300 						/* signal frame completion */
1301 						context_iso_urb->
1302 						    buffer[tx_offset] = 1;
1303 						/* add 2 byte flags and 16bit
1304 						 * CRC at end of ISDN frame */
1305 						fifo->bit_line += 32;
1306 					}
1307 					frame_complete = 1;
1308 				}
1309 
1310 				/* copy tx data to iso-urb buffer */
1311 				memcpy(context_iso_urb->buffer + tx_offset + 1,
1312 				       (tx_skb->data + *tx_idx), current_len);
1313 				*tx_idx += current_len;
1314 
1315 				urb->iso_frame_desc[k].offset = tx_offset;
1316 				urb->iso_frame_desc[k].length = current_len + 1;
1317 
1318 				/* USB data log for every D ISO out */
1319 				if ((fifon == HFCUSB_D_RX) &&
1320 				    (debug & DBG_HFC_USB_VERBOSE)) {
1321 					printk(KERN_DEBUG
1322 					    "%s: %s (%d/%d) offs(%d) len(%d) ",
1323 					    hw->name, __func__,
1324 					    k, num_isoc_packets-1,
1325 					    urb->iso_frame_desc[k].offset,
1326 					    urb->iso_frame_desc[k].length);
1327 
1328 					for (i = urb->iso_frame_desc[k].offset;
1329 					     i < (urb->iso_frame_desc[k].offset
1330 					     + urb->iso_frame_desc[k].length);
1331 					     i++)
1332 						printk("%x ",
1333 						    context_iso_urb->buffer[i]);
1334 
1335 					printk(" skb->len(%i) tx-idx(%d)\n",
1336 					    tx_skb->len, *tx_idx);
1337 				}
1338 
1339 				tx_offset += (current_len + 1);
1340 			} else {
1341 				urb->iso_frame_desc[k].offset = tx_offset++;
1342 				urb->iso_frame_desc[k].length = 1;
1343 				/* we lower data margin every msec */
1344 				fifo->bit_line -= sink;
1345 				if (fifo->bit_line < BITLINE_INF)
1346 					fifo->bit_line = BITLINE_INF;
1347 			}
1348 
1349 			if (frame_complete) {
1350 				frame_complete = 0;
1351 
1352 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1353 					printk(KERN_DEBUG  "%s: %s: "
1354 					    "fifon(%i) new TX len(%i): ",
1355 					    hw->name, __func__,
1356 					    fifon, tx_skb->len);
1357 					i = 0;
1358 					while (i < tx_skb->len)
1359 						printk("%02x ",
1360 						    tx_skb->data[i++]);
1361 					printk("\n");
1362 				}
1363 
1364 				dev_kfree_skb(tx_skb);
1365 				tx_skb = NULL;
1366 				if (fifo->dch && get_next_dframe(fifo->dch))
1367 					tx_skb = fifo->dch->tx_skb;
1368 				else if (fifo->bch &&
1369 				    get_next_bframe(fifo->bch)) {
1370 					if (test_bit(FLG_TRANSPARENT,
1371 					    &fifo->bch->Flags))
1372 						confirm_Bsend(fifo->bch);
1373 					tx_skb = fifo->bch->tx_skb;
1374 				}
1375 			}
1376 		}
1377 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1378 		if (errcode < 0) {
1379 			if (debug & DEBUG_HW)
1380 				printk(KERN_DEBUG
1381 				    "%s: %s: error submitting ISO URB: %d \n",
1382 				    hw->name, __func__, errcode);
1383 		}
1384 
1385 		/*
1386 		 * abuse DChannel tx iso completion to trigger NT mode state
1387 		 * changes tx_iso_complete is assumed to be called every
1388 		 * fifo->intervall (ms)
1389 		 */
1390 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1391 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1392 			if ((--hw->nt_timer) < 0)
1393 				schedule_event(&hw->dch, FLG_PHCHANGE);
1394 		}
1395 
1396 	} else {
1397 		if (status && (debug & DBG_HFC_URB_ERROR))
1398 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1399 			    "fifonum=%d\n",
1400 			    hw->name, __func__,
1401 			    symbolic(urb_errlist, status), status, fifon);
1402 	}
1403 	spin_unlock(&hw->lock);
1404 }
1405 
1406 /*
1407  * allocs urbs and start isoc transfer with two pending urbs to avoid
1408  * gaps in the transfer chain
1409  */
1410 static int
1411 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1412 		 usb_complete_t complete, int packet_size)
1413 {
1414 	struct hfcsusb *hw = fifo->hw;
1415 	int i, k, errcode;
1416 
1417 	if (debug)
1418 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1419 		    hw->name, __func__, fifo->fifonum);
1420 
1421 	/* allocate Memory for Iso out Urbs */
1422 	for (i = 0; i < 2; i++) {
1423 		if (!(fifo->iso[i].urb)) {
1424 			fifo->iso[i].urb =
1425 			    usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1426 			if (!(fifo->iso[i].urb)) {
1427 				printk(KERN_DEBUG
1428 				    "%s: %s: alloc urb for fifo %i failed",
1429 				    hw->name, __func__, fifo->fifonum);
1430 			}
1431 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1432 			fifo->iso[i].indx = i;
1433 
1434 			/* Init the first iso */
1435 			if (ISO_BUFFER_SIZE >=
1436 			    (fifo->usb_packet_maxlen *
1437 			     num_packets_per_urb)) {
1438 				fill_isoc_urb(fifo->iso[i].urb,
1439 				    fifo->hw->dev, fifo->pipe,
1440 				    fifo->iso[i].buffer,
1441 				    num_packets_per_urb,
1442 				    fifo->usb_packet_maxlen,
1443 				    fifo->intervall, complete,
1444 				    &fifo->iso[i]);
1445 				memset(fifo->iso[i].buffer, 0,
1446 				       sizeof(fifo->iso[i].buffer));
1447 
1448 				for (k = 0; k < num_packets_per_urb; k++) {
1449 					fifo->iso[i].urb->
1450 					    iso_frame_desc[k].offset =
1451 					    k * packet_size;
1452 					fifo->iso[i].urb->
1453 					    iso_frame_desc[k].length =
1454 					    packet_size;
1455 				}
1456 			} else {
1457 				printk(KERN_DEBUG
1458 				    "%s: %s: ISO Buffer size to small!\n",
1459 				    hw->name, __func__);
1460 			}
1461 		}
1462 		fifo->bit_line = BITLINE_INF;
1463 
1464 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1465 		fifo->active = (errcode >= 0) ? 1 : 0;
1466 		fifo->stop_gracefull = 0;
1467 		if (errcode < 0) {
1468 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1469 			    hw->name, __func__,
1470 			    symbolic(urb_errlist, errcode), i);
1471 		}
1472 	}
1473 	return fifo->active;
1474 }
1475 
1476 static void
1477 stop_iso_gracefull(struct usb_fifo *fifo)
1478 {
1479 	struct hfcsusb *hw = fifo->hw;
1480 	int i, timeout;
1481 	u_long flags;
1482 
1483 	for (i = 0; i < 2; i++) {
1484 		spin_lock_irqsave(&hw->lock, flags);
1485 		if (debug)
1486 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1487 			       hw->name, __func__, fifo->fifonum, i);
1488 		fifo->stop_gracefull = 1;
1489 		spin_unlock_irqrestore(&hw->lock, flags);
1490 	}
1491 
1492 	for (i = 0; i < 2; i++) {
1493 		timeout = 3;
1494 		while (fifo->stop_gracefull && timeout--)
1495 			schedule_timeout_interruptible((HZ/1000)*16);
1496 		if (debug && fifo->stop_gracefull)
1497 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1498 				hw->name, __func__, fifo->fifonum, i);
1499 	}
1500 }
1501 
1502 static void
1503 stop_int_gracefull(struct usb_fifo *fifo)
1504 {
1505 	struct hfcsusb *hw = fifo->hw;
1506 	int timeout;
1507 	u_long flags;
1508 
1509 	spin_lock_irqsave(&hw->lock, flags);
1510 	if (debug)
1511 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1512 		       hw->name, __func__, fifo->fifonum);
1513 	fifo->stop_gracefull = 1;
1514 	spin_unlock_irqrestore(&hw->lock, flags);
1515 
1516 	timeout = 3;
1517 	while (fifo->stop_gracefull && timeout--)
1518 		schedule_timeout_interruptible((HZ/1000)*3);
1519 	if (debug && fifo->stop_gracefull)
1520 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1521 		       hw->name, __func__, fifo->fifonum);
1522 }
1523 
1524 /* start the interrupt transfer for the given fifo */
1525 static void
1526 start_int_fifo(struct usb_fifo *fifo)
1527 {
1528 	struct hfcsusb *hw = fifo->hw;
1529 	int errcode;
1530 
1531 	if (debug)
1532 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1533 		    hw->name, __func__, fifo->fifonum);
1534 
1535 	if (!fifo->urb) {
1536 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1537 		if (!fifo->urb)
1538 			return;
1539 	}
1540 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1541 	    fifo->buffer, fifo->usb_packet_maxlen,
1542 	    (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1543 	fifo->active = 1;
1544 	fifo->stop_gracefull = 0;
1545 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1546 	if (errcode) {
1547 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1548 		    hw->name, __func__, errcode);
1549 		fifo->active = 0;
1550 	}
1551 }
1552 
1553 static void
1554 setPortMode(struct hfcsusb *hw)
1555 {
1556 	if (debug & DEBUG_HW)
1557 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1558 		   (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1559 
1560 	if (hw->protocol == ISDN_P_TE_S0) {
1561 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1562 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1563 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1564 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1565 		write_reg(hw, HFCUSB_STATES, 3);
1566 	} else {
1567 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1568 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1569 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1570 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1571 		write_reg(hw, HFCUSB_STATES, 1);
1572 	}
1573 }
1574 
1575 static void
1576 reset_hfcsusb(struct hfcsusb *hw)
1577 {
1578 	struct usb_fifo *fifo;
1579 	int i;
1580 
1581 	if (debug & DEBUG_HW)
1582 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1583 
1584 	/* do Chip reset */
1585 	write_reg(hw, HFCUSB_CIRM, 8);
1586 
1587 	/* aux = output, reset off */
1588 	write_reg(hw, HFCUSB_CIRM, 0x10);
1589 
1590 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1591 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1592 	    ((hw->packet_size / 8) << 4));
1593 
1594 	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1595 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1596 
1597 	/* enable PCM/GCI master mode */
1598 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1599 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1600 
1601 	/* init the fifos */
1602 	write_reg(hw, HFCUSB_F_THRES,
1603 	    (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1604 
1605 	fifo = hw->fifos;
1606 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1607 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1608 		fifo[i].max_size =
1609 		    (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1610 		fifo[i].last_urblen = 0;
1611 
1612 		/* set 2 bit for D- & E-channel */
1613 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1614 
1615 		/* enable all fifos */
1616 		if (i == HFCUSB_D_TX)
1617 			write_reg(hw, HFCUSB_CON_HDLC,
1618 			    (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1619 		else
1620 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1621 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1622 	}
1623 
1624 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1625 	handle_led(hw, LED_POWER_ON);
1626 }
1627 
1628 /* start USB data pipes dependand on device's endpoint configuration */
1629 static void
1630 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1631 {
1632 	/* quick check if endpoint already running */
1633 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1634 		return;
1635 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1636 		return;
1637 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1638 		return;
1639 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1640 		return;
1641 
1642 	/* start rx endpoints using USB INT IN method */
1643 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1644 		start_int_fifo(hw->fifos + channel*2 + 1);
1645 
1646 	/* start rx endpoints using USB ISO IN method */
1647 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1648 		switch (channel) {
1649 		case HFC_CHAN_D:
1650 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1651 				ISOC_PACKETS_D,
1652 				(usb_complete_t)rx_iso_complete,
1653 				16);
1654 			break;
1655 		case HFC_CHAN_E:
1656 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1657 				ISOC_PACKETS_D,
1658 				(usb_complete_t)rx_iso_complete,
1659 				16);
1660 			break;
1661 		case HFC_CHAN_B1:
1662 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1663 				ISOC_PACKETS_B,
1664 				(usb_complete_t)rx_iso_complete,
1665 				16);
1666 			break;
1667 		case HFC_CHAN_B2:
1668 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1669 				ISOC_PACKETS_B,
1670 				(usb_complete_t)rx_iso_complete,
1671 				16);
1672 			break;
1673 		}
1674 	}
1675 
1676 	/* start tx endpoints using USB ISO OUT method */
1677 	switch (channel) {
1678 	case HFC_CHAN_D:
1679 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1680 			ISOC_PACKETS_B,
1681 			(usb_complete_t)tx_iso_complete, 1);
1682 		break;
1683 	case HFC_CHAN_B1:
1684 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1685 			ISOC_PACKETS_D,
1686 			(usb_complete_t)tx_iso_complete, 1);
1687 		break;
1688 	case HFC_CHAN_B2:
1689 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1690 			ISOC_PACKETS_B,
1691 			(usb_complete_t)tx_iso_complete, 1);
1692 		break;
1693 	}
1694 }
1695 
1696 /* stop USB data pipes dependand on device's endpoint configuration */
1697 static void
1698 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1699 {
1700 	/* quick check if endpoint currently running */
1701 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1702 		return;
1703 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1704 		return;
1705 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1706 		return;
1707 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1708 		return;
1709 
1710 	/* rx endpoints using USB INT IN method */
1711 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1712 		stop_int_gracefull(hw->fifos + channel*2 + 1);
1713 
1714 	/* rx endpoints using USB ISO IN method */
1715 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1716 		stop_iso_gracefull(hw->fifos + channel*2 + 1);
1717 
1718 	/* tx endpoints using USB ISO OUT method */
1719 	if (channel != HFC_CHAN_E)
1720 		stop_iso_gracefull(hw->fifos + channel*2);
1721 }
1722 
1723 
1724 /* Hardware Initialization */
1725 static int
1726 setup_hfcsusb(struct hfcsusb *hw)
1727 {
1728 	u_char b;
1729 
1730 	if (debug & DBG_HFC_CALL_TRACE)
1731 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1732 
1733 	/* check the chip id */
1734 	if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1735 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1736 		    hw->name, __func__);
1737 		return 1;
1738 	}
1739 	if (b != HFCUSB_CHIPID) {
1740 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1741 		    hw->name, __func__, b);
1742 		return 1;
1743 	}
1744 
1745 	/* first set the needed config, interface and alternate */
1746 	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1747 
1748 	hw->led_state = 0;
1749 
1750 	/* init the background machinery for control requests */
1751 	hw->ctrl_read.bRequestType = 0xc0;
1752 	hw->ctrl_read.bRequest = 1;
1753 	hw->ctrl_read.wLength = cpu_to_le16(1);
1754 	hw->ctrl_write.bRequestType = 0x40;
1755 	hw->ctrl_write.bRequest = 0;
1756 	hw->ctrl_write.wLength = 0;
1757 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1758 	    (u_char *)&hw->ctrl_write, NULL, 0,
1759 	    (usb_complete_t)ctrl_complete, hw);
1760 
1761 	reset_hfcsusb(hw);
1762 	return 0;
1763 }
1764 
1765 static void
1766 release_hw(struct hfcsusb *hw)
1767 {
1768 	if (debug & DBG_HFC_CALL_TRACE)
1769 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1770 
1771 	/*
1772 	 * stop all endpoints gracefully
1773 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1774 	 *       signals after calling mISDN_unregister_device()
1775 	 */
1776 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1777 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1778 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1779 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1780 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1781 	if (hw->protocol == ISDN_P_TE_S0)
1782 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1783 
1784 	mISDN_unregister_device(&hw->dch.dev);
1785 	mISDN_freebchannel(&hw->bch[1]);
1786 	mISDN_freebchannel(&hw->bch[0]);
1787 	mISDN_freedchannel(&hw->dch);
1788 
1789 	if (hw->ctrl_urb) {
1790 		usb_kill_urb(hw->ctrl_urb);
1791 		usb_free_urb(hw->ctrl_urb);
1792 		hw->ctrl_urb = NULL;
1793 	}
1794 
1795 	if (hw->intf)
1796 		usb_set_intfdata(hw->intf, NULL);
1797 	list_del(&hw->list);
1798 	kfree(hw);
1799 	hw = NULL;
1800 }
1801 
1802 static void
1803 deactivate_bchannel(struct bchannel *bch)
1804 {
1805 	struct hfcsusb *hw = bch->hw;
1806 	u_long flags;
1807 
1808 	if (bch->debug & DEBUG_HW)
1809 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1810 		    hw->name, __func__, bch->nr);
1811 
1812 	spin_lock_irqsave(&hw->lock, flags);
1813 	mISDN_clear_bchannel(bch);
1814 	spin_unlock_irqrestore(&hw->lock, flags);
1815 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1816 	hfcsusb_stop_endpoint(hw, bch->nr);
1817 }
1818 
1819 /*
1820  * Layer 1 B-channel hardware access
1821  */
1822 static int
1823 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1824 {
1825 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1826 	int		ret = -EINVAL;
1827 
1828 	if (bch->debug & DEBUG_HW)
1829 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1830 
1831 	switch (cmd) {
1832 	case HW_TESTRX_RAW:
1833 	case HW_TESTRX_HDLC:
1834 	case HW_TESTRX_OFF:
1835 		ret = -EINVAL;
1836 		break;
1837 
1838 	case CLOSE_CHANNEL:
1839 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1840 		if (test_bit(FLG_ACTIVE, &bch->Flags))
1841 			deactivate_bchannel(bch);
1842 		ch->protocol = ISDN_P_NONE;
1843 		ch->peer = NULL;
1844 		module_put(THIS_MODULE);
1845 		ret = 0;
1846 		break;
1847 	case CONTROL_CHANNEL:
1848 		ret = channel_bctrl(bch, arg);
1849 		break;
1850 	default:
1851 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1852 			__func__, cmd);
1853 	}
1854 	return ret;
1855 }
1856 
1857 static int
1858 setup_instance(struct hfcsusb *hw, struct device *parent)
1859 {
1860 	u_long	flags;
1861 	int	err, i;
1862 
1863 	if (debug & DBG_HFC_CALL_TRACE)
1864 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1865 
1866 	spin_lock_init(&hw->ctrl_lock);
1867 	spin_lock_init(&hw->lock);
1868 
1869 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1870 	hw->dch.debug = debug & 0xFFFF;
1871 	hw->dch.hw = hw;
1872 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1873 	hw->dch.dev.D.send = hfcusb_l2l1D;
1874 	hw->dch.dev.D.ctrl = hfc_dctrl;
1875 
1876 	/* enable E-Channel logging */
1877 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1878 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1879 
1880 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1881 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1882 	hw->dch.dev.nrbchan = 2;
1883 	for (i = 0; i < 2; i++) {
1884 		hw->bch[i].nr = i + 1;
1885 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1886 		hw->bch[i].debug = debug;
1887 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
1888 		hw->bch[i].hw = hw;
1889 		hw->bch[i].ch.send = hfcusb_l2l1B;
1890 		hw->bch[i].ch.ctrl = hfc_bctrl;
1891 		hw->bch[i].ch.nr = i + 1;
1892 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1893 	}
1894 
1895 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1896 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1897 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1898 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1899 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1900 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1901 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1902 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1903 
1904 	err = setup_hfcsusb(hw);
1905 	if (err)
1906 		goto out;
1907 
1908 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1909 	    hfcsusb_cnt + 1);
1910 	printk(KERN_INFO "%s: registered as '%s'\n",
1911 	    DRIVER_NAME, hw->name);
1912 
1913 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1914 	if (err)
1915 		goto out;
1916 
1917 	hfcsusb_cnt++;
1918 	write_lock_irqsave(&HFClock, flags);
1919 	list_add_tail(&hw->list, &HFClist);
1920 	write_unlock_irqrestore(&HFClock, flags);
1921 	return 0;
1922 
1923 out:
1924 	mISDN_freebchannel(&hw->bch[1]);
1925 	mISDN_freebchannel(&hw->bch[0]);
1926 	mISDN_freedchannel(&hw->dch);
1927 	kfree(hw);
1928 	return err;
1929 }
1930 
1931 static int
1932 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1933 {
1934 	struct hfcsusb			*hw;
1935 	struct usb_device		*dev = interface_to_usbdev(intf);
1936 	struct usb_host_interface	*iface = intf->cur_altsetting;
1937 	struct usb_host_interface	*iface_used = NULL;
1938 	struct usb_host_endpoint	*ep;
1939 	struct hfcsusb_vdata		*driver_info;
1940 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1941 	    probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1942 	    ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1943 	    alt_used = 0;
1944 
1945 	vend_idx = 0xffff;
1946 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1947 		if ((le16_to_cpu(dev->descriptor.idVendor)
1948 		       == hfcsusb_idtab[i].idVendor) &&
1949 		    (le16_to_cpu(dev->descriptor.idProduct)
1950 		       == hfcsusb_idtab[i].idProduct)) {
1951 			vend_idx = i;
1952 			continue;
1953 		}
1954 	}
1955 
1956 	printk(KERN_DEBUG
1957 	    "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1958 	    __func__, ifnum, iface->desc.bAlternateSetting,
1959 	    intf->minor, vend_idx);
1960 
1961 	if (vend_idx == 0xffff) {
1962 		printk(KERN_WARNING
1963 		    "%s: no valid vendor found in USB descriptor\n",
1964 		    __func__);
1965 		return -EIO;
1966 	}
1967 	/* if vendor and product ID is OK, start probing alternate settings */
1968 	alt_idx = 0;
1969 	small_match = -1;
1970 
1971 	/* default settings */
1972 	iso_packet_size = 16;
1973 	packet_size = 64;
1974 
1975 	while (alt_idx < intf->num_altsetting) {
1976 		iface = intf->altsetting + alt_idx;
1977 		probe_alt_setting = iface->desc.bAlternateSetting;
1978 		cfg_used = 0;
1979 
1980 		while (validconf[cfg_used][0]) {
1981 			cfg_found = 1;
1982 			vcf = validconf[cfg_used];
1983 			ep = iface->endpoint;
1984 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1985 
1986 			/* check for all endpoints in this alternate setting */
1987 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1988 				ep_addr = ep->desc.bEndpointAddress;
1989 
1990 				/* get endpoint base */
1991 				idx = ((ep_addr & 0x7f) - 1) * 2;
1992 				if (ep_addr & 0x80)
1993 					idx++;
1994 				attr = ep->desc.bmAttributes;
1995 
1996 				if (cmptbl[idx] != EP_NOP) {
1997 					if (cmptbl[idx] == EP_NUL)
1998 						cfg_found = 0;
1999 					if (attr == USB_ENDPOINT_XFER_INT
2000 						&& cmptbl[idx] == EP_INT)
2001 						cmptbl[idx] = EP_NUL;
2002 					if (attr == USB_ENDPOINT_XFER_BULK
2003 						&& cmptbl[idx] == EP_BLK)
2004 						cmptbl[idx] = EP_NUL;
2005 					if (attr == USB_ENDPOINT_XFER_ISOC
2006 						&& cmptbl[idx] == EP_ISO)
2007 						cmptbl[idx] = EP_NUL;
2008 
2009 					if (attr == USB_ENDPOINT_XFER_INT &&
2010 						ep->desc.bInterval < vcf[17]) {
2011 						cfg_found = 0;
2012 					}
2013 				}
2014 				ep++;
2015 			}
2016 
2017 			for (i = 0; i < 16; i++)
2018 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2019 					cfg_found = 0;
2020 
2021 			if (cfg_found) {
2022 				if (small_match < cfg_used) {
2023 					small_match = cfg_used;
2024 					alt_used = probe_alt_setting;
2025 					iface_used = iface;
2026 				}
2027 			}
2028 			cfg_used++;
2029 		}
2030 		alt_idx++;
2031 	}	/* (alt_idx < intf->num_altsetting) */
2032 
2033 	/* not found a valid USB Ta Endpoint config */
2034 	if (small_match == -1)
2035 		return -EIO;
2036 
2037 	iface = iface_used;
2038 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2039 	if (!hw)
2040 		return -ENOMEM;	/* got no mem */
2041 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2042 
2043 	ep = iface->endpoint;
2044 	vcf = validconf[small_match];
2045 
2046 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2047 		struct usb_fifo *f;
2048 
2049 		ep_addr = ep->desc.bEndpointAddress;
2050 		/* get endpoint base */
2051 		idx = ((ep_addr & 0x7f) - 1) * 2;
2052 		if (ep_addr & 0x80)
2053 			idx++;
2054 		f = &hw->fifos[idx & 7];
2055 
2056 		/* init Endpoints */
2057 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2058 			ep++;
2059 			continue;
2060 		}
2061 		switch (ep->desc.bmAttributes) {
2062 		case USB_ENDPOINT_XFER_INT:
2063 			f->pipe = usb_rcvintpipe(dev,
2064 				ep->desc.bEndpointAddress);
2065 			f->usb_transfer_mode = USB_INT;
2066 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2067 			break;
2068 		case USB_ENDPOINT_XFER_BULK:
2069 			if (ep_addr & 0x80)
2070 				f->pipe = usb_rcvbulkpipe(dev,
2071 					ep->desc.bEndpointAddress);
2072 			else
2073 				f->pipe = usb_sndbulkpipe(dev,
2074 					ep->desc.bEndpointAddress);
2075 			f->usb_transfer_mode = USB_BULK;
2076 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2077 			break;
2078 		case USB_ENDPOINT_XFER_ISOC:
2079 			if (ep_addr & 0x80)
2080 				f->pipe = usb_rcvisocpipe(dev,
2081 					ep->desc.bEndpointAddress);
2082 			else
2083 				f->pipe = usb_sndisocpipe(dev,
2084 					ep->desc.bEndpointAddress);
2085 			f->usb_transfer_mode = USB_ISOC;
2086 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2087 			break;
2088 		default:
2089 			f->pipe = 0;
2090 		}
2091 
2092 		if (f->pipe) {
2093 			f->fifonum = idx & 7;
2094 			f->hw = hw;
2095 			f->usb_packet_maxlen =
2096 			    le16_to_cpu(ep->desc.wMaxPacketSize);
2097 			f->intervall = ep->desc.bInterval;
2098 		}
2099 		ep++;
2100 	}
2101 	hw->dev = dev; /* save device */
2102 	hw->if_used = ifnum; /* save used interface */
2103 	hw->alt_used = alt_used; /* and alternate config */
2104 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2105 	hw->cfg_used = vcf[16];	/* store used config */
2106 	hw->vend_idx = vend_idx; /* store found vendor */
2107 	hw->packet_size = packet_size;
2108 	hw->iso_packet_size = iso_packet_size;
2109 
2110 	/* create the control pipes needed for register access */
2111 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2112 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2113 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2114 
2115 	driver_info =
2116 		(struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
2117 	printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2118 	    hw->name, __func__, driver_info->vend_name,
2119 	    conf_str[small_match], ifnum, alt_used);
2120 
2121 	if (setup_instance(hw, dev->dev.parent))
2122 		return -EIO;
2123 
2124 	hw->intf = intf;
2125 	usb_set_intfdata(hw->intf, hw);
2126 	return 0;
2127 }
2128 
2129 /* function called when an active device is removed */
2130 static void
2131 hfcsusb_disconnect(struct usb_interface *intf)
2132 {
2133 	struct hfcsusb *hw = usb_get_intfdata(intf);
2134 	struct hfcsusb *next;
2135 	int cnt = 0;
2136 
2137 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2138 
2139 	handle_led(hw, LED_POWER_OFF);
2140 	release_hw(hw);
2141 
2142 	list_for_each_entry_safe(hw, next, &HFClist, list)
2143 		cnt++;
2144 	if (!cnt)
2145 		hfcsusb_cnt = 0;
2146 
2147 	usb_set_intfdata(intf, NULL);
2148 }
2149 
2150 static struct usb_driver hfcsusb_drv = {
2151 	.name = DRIVER_NAME,
2152 	.id_table = hfcsusb_idtab,
2153 	.probe = hfcsusb_probe,
2154 	.disconnect = hfcsusb_disconnect,
2155 };
2156 
2157 static int __init
2158 hfcsusb_init(void)
2159 {
2160 	printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n",
2161 	    hfcsusb_rev, debug, poll);
2162 
2163 	if (usb_register(&hfcsusb_drv)) {
2164 		printk(KERN_INFO DRIVER_NAME
2165 		    ": Unable to register hfcsusb module at usb stack\n");
2166 		return -ENODEV;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 static void __exit
2173 hfcsusb_cleanup(void)
2174 {
2175 	if (debug & DBG_HFC_CALL_TRACE)
2176 		printk(KERN_INFO DRIVER_NAME ": %s\n", __func__);
2177 
2178 	/* unregister Hardware */
2179 	usb_deregister(&hfcsusb_drv);	/* release our driver */
2180 }
2181 
2182 module_init(hfcsusb_init);
2183 module_exit(hfcsusb_cleanup);
2184