xref: /linux/drivers/isdn/hardware/mISDN/hfcpci.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * hfcpci.c     low level driver for CCD's hfc-pci based cards
5  *
6  * Author     Werner Cornelius (werner@isdn4linux.de)
7  *            based on existing driver for CCD hfc ISA cards
8  *            type approval valid for HFC-S PCI A based card
9  *
10  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
11  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
12  *
13  * Module options:
14  *
15  * debug:
16  *	NOTE: only one poll value must be given for all cards
17  *	See hfc_pci.h for debug flags.
18  *
19  * poll:
20  *	NOTE: only one poll value must be given for all cards
21  *	Give the number of samples for each fifo process.
22  *	By default 128 is used. Decrease to reduce delay, increase to
23  *	reduce cpu load. If unsure, don't mess with it!
24  *	A value of 128 will use controller's interrupt. Other values will
25  *	use kernel timer, because the controller will not allow lower values
26  *	than 128.
27  *	Also note that the value depends on the kernel timer frequency.
28  *	If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
29  *	If the kernel uses 100 Hz, steps of 80 samples are possible.
30  *	If the kernel uses 300 Hz, steps of about 26 samples are possible.
31  */
32 
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/pci.h>
36 #include <linux/delay.h>
37 #include <linux/mISDNhw.h>
38 #include <linux/slab.h>
39 
40 #include "hfc_pci.h"
41 
42 static const char *hfcpci_revision = "2.0";
43 
44 static int HFC_cnt;
45 static uint debug;
46 static uint poll, tics;
47 static struct timer_list hfc_tl;
48 static unsigned long hfc_jiffies;
49 
50 MODULE_AUTHOR("Karsten Keil");
51 MODULE_LICENSE("GPL");
52 module_param(debug, uint, S_IRUGO | S_IWUSR);
53 module_param(poll, uint, S_IRUGO | S_IWUSR);
54 
55 enum {
56 	HFC_CCD_2BD0,
57 	HFC_CCD_B000,
58 	HFC_CCD_B006,
59 	HFC_CCD_B007,
60 	HFC_CCD_B008,
61 	HFC_CCD_B009,
62 	HFC_CCD_B00A,
63 	HFC_CCD_B00B,
64 	HFC_CCD_B00C,
65 	HFC_CCD_B100,
66 	HFC_CCD_B700,
67 	HFC_CCD_B701,
68 	HFC_ASUS_0675,
69 	HFC_BERKOM_A1T,
70 	HFC_BERKOM_TCONCEPT,
71 	HFC_ANIGMA_MC145575,
72 	HFC_ZOLTRIX_2BD0,
73 	HFC_DIGI_DF_M_IOM2_E,
74 	HFC_DIGI_DF_M_E,
75 	HFC_DIGI_DF_M_IOM2_A,
76 	HFC_DIGI_DF_M_A,
77 	HFC_ABOCOM_2BD1,
78 	HFC_SITECOM_DC105V2,
79 };
80 
81 struct hfcPCI_hw {
82 	unsigned char		cirm;
83 	unsigned char		ctmt;
84 	unsigned char		clkdel;
85 	unsigned char		states;
86 	unsigned char		conn;
87 	unsigned char		mst_m;
88 	unsigned char		int_m1;
89 	unsigned char		int_m2;
90 	unsigned char		sctrl;
91 	unsigned char		sctrl_r;
92 	unsigned char		sctrl_e;
93 	unsigned char		trm;
94 	unsigned char		fifo_en;
95 	unsigned char		bswapped;
96 	unsigned char		protocol;
97 	int			nt_timer;
98 	unsigned char __iomem	*pci_io; /* start of PCI IO memory */
99 	dma_addr_t		dmahandle;
100 	void			*fifos; /* FIFO memory */
101 	int			last_bfifo_cnt[2];
102 	/* marker saving last b-fifo frame count */
103 	struct timer_list	timer;
104 };
105 
106 #define	HFC_CFG_MASTER		1
107 #define HFC_CFG_SLAVE		2
108 #define	HFC_CFG_PCM		3
109 #define HFC_CFG_2HFC		4
110 #define HFC_CFG_SLAVEHFC	5
111 #define HFC_CFG_NEG_F0		6
112 #define HFC_CFG_SW_DD_DU	7
113 
114 #define FLG_HFC_TIMER_T1	16
115 #define FLG_HFC_TIMER_T3	17
116 
117 #define NT_T1_COUNT	1120	/* number of 3.125ms interrupts (3.5s) */
118 #define NT_T3_COUNT	31	/* number of 3.125ms interrupts (97 ms) */
119 #define CLKDEL_TE	0x0e	/* CLKDEL in TE mode */
120 #define CLKDEL_NT	0x6c	/* CLKDEL in NT mode */
121 
122 
123 struct hfc_pci {
124 	u_char			subtype;
125 	u_char			chanlimit;
126 	u_char			initdone;
127 	u_long			cfg;
128 	u_int			irq;
129 	u_int			irqcnt;
130 	struct pci_dev		*pdev;
131 	struct hfcPCI_hw	hw;
132 	spinlock_t		lock;	/* card lock */
133 	struct dchannel		dch;
134 	struct bchannel		bch[2];
135 };
136 
137 /* Interface functions */
138 static void
139 enable_hwirq(struct hfc_pci *hc)
140 {
141 	hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
142 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
143 }
144 
145 static void
146 disable_hwirq(struct hfc_pci *hc)
147 {
148 	hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
149 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
150 }
151 
152 /*
153  * free hardware resources used by driver
154  */
155 static void
156 release_io_hfcpci(struct hfc_pci *hc)
157 {
158 	/* disable memory mapped ports + busmaster */
159 	pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
160 	del_timer(&hc->hw.timer);
161 	dma_free_coherent(&hc->pdev->dev, 0x8000, hc->hw.fifos,
162 			  hc->hw.dmahandle);
163 	iounmap(hc->hw.pci_io);
164 }
165 
166 /*
167  * set mode (NT or TE)
168  */
169 static void
170 hfcpci_setmode(struct hfc_pci *hc)
171 {
172 	if (hc->hw.protocol == ISDN_P_NT_S0) {
173 		hc->hw.clkdel = CLKDEL_NT;	/* ST-Bit delay for NT-Mode */
174 		hc->hw.sctrl |= SCTRL_MODE_NT;	/* NT-MODE */
175 		hc->hw.states = 1;		/* G1 */
176 	} else {
177 		hc->hw.clkdel = CLKDEL_TE;	/* ST-Bit delay for TE-Mode */
178 		hc->hw.sctrl &= ~SCTRL_MODE_NT;	/* TE-MODE */
179 		hc->hw.states = 2;		/* F2 */
180 	}
181 	Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
182 	Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
183 	udelay(10);
184 	Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
185 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
186 }
187 
188 /*
189  * function called to reset the HFC PCI chip. A complete software reset of chip
190  * and fifos is done.
191  */
192 static void
193 reset_hfcpci(struct hfc_pci *hc)
194 {
195 	u_char	val;
196 	int	cnt = 0;
197 
198 	printk(KERN_DEBUG "reset_hfcpci: entered\n");
199 	val = Read_hfc(hc, HFCPCI_CHIP_ID);
200 	printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
201 	/* enable memory mapped ports, disable busmaster */
202 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
203 	disable_hwirq(hc);
204 	/* enable memory ports + busmaster */
205 	pci_write_config_word(hc->pdev, PCI_COMMAND,
206 			      PCI_ENA_MEMIO + PCI_ENA_MASTER);
207 	val = Read_hfc(hc, HFCPCI_STATUS);
208 	printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
209 	hc->hw.cirm = HFCPCI_RESET;	/* Reset On */
210 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
211 	set_current_state(TASK_UNINTERRUPTIBLE);
212 	mdelay(10);			/* Timeout 10ms */
213 	hc->hw.cirm = 0;		/* Reset Off */
214 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
215 	val = Read_hfc(hc, HFCPCI_STATUS);
216 	printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
217 	while (cnt < 50000) { /* max 50000 us */
218 		udelay(5);
219 		cnt += 5;
220 		val = Read_hfc(hc, HFCPCI_STATUS);
221 		if (!(val & 2))
222 			break;
223 	}
224 	printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
225 
226 	hc->hw.fifo_en = 0x30;	/* only D fifos enabled */
227 
228 	hc->hw.bswapped = 0;	/* no exchange */
229 	hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
230 	hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
231 	hc->hw.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
232 	hc->hw.sctrl_r = 0;
233 	hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;	/* S/T Auto awake */
234 	hc->hw.mst_m = 0;
235 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
236 		hc->hw.mst_m |= HFCPCI_MASTER;	/* HFC Master Mode */
237 	if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
238 		hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
239 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
240 	Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
241 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
242 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
243 
244 	hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
245 		HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
246 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
247 
248 	/* Clear already pending ints */
249 	val = Read_hfc(hc, HFCPCI_INT_S1);
250 
251 	/* set NT/TE mode */
252 	hfcpci_setmode(hc);
253 
254 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
255 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
256 
257 	/*
258 	 * Init GCI/IOM2 in master mode
259 	 * Slots 0 and 1 are set for B-chan 1 and 2
260 	 * D- and monitor/CI channel are not enabled
261 	 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
262 	 * STIO2 is used as data input, B1+B2 from IOM->ST
263 	 * ST B-channel send disabled -> continuous 1s
264 	 * The IOM slots are always enabled
265 	 */
266 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
267 		/* set data flow directions: connect B1,B2: HFC to/from PCM */
268 		hc->hw.conn = 0x09;
269 	} else {
270 		hc->hw.conn = 0x36;	/* set data flow directions */
271 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
272 			Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
273 			Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
274 			Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
275 			Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
276 		} else {
277 			Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
278 			Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
279 			Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
280 			Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
281 		}
282 	}
283 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
284 	val = Read_hfc(hc, HFCPCI_INT_S2);
285 }
286 
287 /*
288  * Timer function called when kernel timer expires
289  */
290 static void
291 hfcpci_Timer(struct timer_list *t)
292 {
293 	struct hfc_pci *hc = from_timer(hc, t, hw.timer);
294 	hc->hw.timer.expires = jiffies + 75;
295 	/* WD RESET */
296 /*
297  *	WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
298  *	add_timer(&hc->hw.timer);
299  */
300 }
301 
302 
303 /*
304  * select a b-channel entry matching and active
305  */
306 static struct bchannel *
307 Sel_BCS(struct hfc_pci *hc, int channel)
308 {
309 	if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
310 	    (hc->bch[0].nr & channel))
311 		return &hc->bch[0];
312 	else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
313 		 (hc->bch[1].nr & channel))
314 		return &hc->bch[1];
315 	else
316 		return NULL;
317 }
318 
319 /*
320  * clear the desired B-channel rx fifo
321  */
322 static void
323 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
324 {
325 	u_char		fifo_state;
326 	struct bzfifo	*bzr;
327 
328 	if (fifo) {
329 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
330 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
331 	} else {
332 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
333 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
334 	}
335 	if (fifo_state)
336 		hc->hw.fifo_en ^= fifo_state;
337 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
338 	hc->hw.last_bfifo_cnt[fifo] = 0;
339 	bzr->f1 = MAX_B_FRAMES;
340 	bzr->f2 = bzr->f1;	/* init F pointers to remain constant */
341 	bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
342 	bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
343 		le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
344 	if (fifo_state)
345 		hc->hw.fifo_en |= fifo_state;
346 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
347 }
348 
349 /*
350  * clear the desired B-channel tx fifo
351  */
352 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
353 {
354 	u_char		fifo_state;
355 	struct bzfifo	*bzt;
356 
357 	if (fifo) {
358 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
359 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
360 	} else {
361 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
362 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
363 	}
364 	if (fifo_state)
365 		hc->hw.fifo_en ^= fifo_state;
366 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
367 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
368 		printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
369 		       "z1(%x) z2(%x) state(%x)\n",
370 		       fifo, bzt->f1, bzt->f2,
371 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
372 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
373 		       fifo_state);
374 	bzt->f2 = MAX_B_FRAMES;
375 	bzt->f1 = bzt->f2;	/* init F pointers to remain constant */
376 	bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
377 	bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
378 	if (fifo_state)
379 		hc->hw.fifo_en |= fifo_state;
380 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
381 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
382 		printk(KERN_DEBUG
383 		       "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
384 		       fifo, bzt->f1, bzt->f2,
385 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
386 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
387 }
388 
389 /*
390  * read a complete B-frame out of the buffer
391  */
392 static void
393 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
394 		   u_char *bdata, int count)
395 {
396 	u_char		*ptr, *ptr1, new_f2;
397 	int		maxlen, new_z2;
398 	struct zt	*zp;
399 
400 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
401 		printk(KERN_DEBUG "hfcpci_empty_fifo\n");
402 	zp = &bz->za[bz->f2];	/* point to Z-Regs */
403 	new_z2 = le16_to_cpu(zp->z2) + count;	/* new position in fifo */
404 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
405 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
406 	new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
407 	if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
408 	    (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
409 		if (bch->debug & DEBUG_HW)
410 			printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
411 			       "invalid length %d or crc\n", count);
412 #ifdef ERROR_STATISTIC
413 		bch->err_inv++;
414 #endif
415 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
416 		bz->f2 = new_f2;	/* next buffer */
417 	} else {
418 		bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
419 		if (!bch->rx_skb) {
420 			printk(KERN_WARNING "HFCPCI: receive out of memory\n");
421 			return;
422 		}
423 		count -= 3;
424 		ptr = skb_put(bch->rx_skb, count);
425 
426 		if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
427 			maxlen = count;		/* complete transfer */
428 		else
429 			maxlen = B_FIFO_SIZE + B_SUB_VAL -
430 				le16_to_cpu(zp->z2);	/* maximum */
431 
432 		ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
433 		/* start of data */
434 		memcpy(ptr, ptr1, maxlen);	/* copy data */
435 		count -= maxlen;
436 
437 		if (count) {	/* rest remaining */
438 			ptr += maxlen;
439 			ptr1 = bdata;	/* start of buffer */
440 			memcpy(ptr, ptr1, count);	/* rest */
441 		}
442 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
443 		bz->f2 = new_f2;	/* next buffer */
444 		recv_Bchannel(bch, MISDN_ID_ANY, false);
445 	}
446 }
447 
448 /*
449  * D-channel receive procedure
450  */
451 static int
452 receive_dmsg(struct hfc_pci *hc)
453 {
454 	struct dchannel	*dch = &hc->dch;
455 	int		maxlen;
456 	int		rcnt, total;
457 	int		count = 5;
458 	u_char		*ptr, *ptr1;
459 	struct dfifo	*df;
460 	struct zt	*zp;
461 
462 	df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
463 	while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
464 		zp = &df->za[df->f2 & D_FREG_MASK];
465 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
466 		if (rcnt < 0)
467 			rcnt += D_FIFO_SIZE;
468 		rcnt++;
469 		if (dch->debug & DEBUG_HW_DCHANNEL)
470 			printk(KERN_DEBUG
471 			       "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
472 			       df->f1, df->f2,
473 			       le16_to_cpu(zp->z1),
474 			       le16_to_cpu(zp->z2),
475 			       rcnt);
476 
477 		if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
478 		    (df->data[le16_to_cpu(zp->z1)])) {
479 			if (dch->debug & DEBUG_HW)
480 				printk(KERN_DEBUG
481 				       "empty_fifo hfcpci packet inv. len "
482 				       "%d or crc %d\n",
483 				       rcnt,
484 				       df->data[le16_to_cpu(zp->z1)]);
485 #ifdef ERROR_STATISTIC
486 			cs->err_rx++;
487 #endif
488 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
489 				(MAX_D_FRAMES + 1);	/* next buffer */
490 			df->za[df->f2 & D_FREG_MASK].z2 =
491 				cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
492 					    (D_FIFO_SIZE - 1));
493 		} else {
494 			dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
495 			if (!dch->rx_skb) {
496 				printk(KERN_WARNING
497 				       "HFC-PCI: D receive out of memory\n");
498 				break;
499 			}
500 			total = rcnt;
501 			rcnt -= 3;
502 			ptr = skb_put(dch->rx_skb, rcnt);
503 
504 			if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
505 				maxlen = rcnt;	/* complete transfer */
506 			else
507 				maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
508 			/* maximum */
509 
510 			ptr1 = df->data + le16_to_cpu(zp->z2);
511 			/* start of data */
512 			memcpy(ptr, ptr1, maxlen);	/* copy data */
513 			rcnt -= maxlen;
514 
515 			if (rcnt) {	/* rest remaining */
516 				ptr += maxlen;
517 				ptr1 = df->data;	/* start of buffer */
518 				memcpy(ptr, ptr1, rcnt);	/* rest */
519 			}
520 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
521 				(MAX_D_FRAMES + 1);	/* next buffer */
522 			df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
523 									      le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
524 			recv_Dchannel(dch);
525 		}
526 	}
527 	return 1;
528 }
529 
530 /*
531  * check for transparent receive data and read max one 'poll' size if avail
532  */
533 static void
534 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
535 			struct bzfifo *txbz, u_char *bdata)
536 {
537 	__le16	*z1r, *z2r, *z1t, *z2t;
538 	int	new_z2, fcnt_rx, fcnt_tx, maxlen;
539 	u_char	*ptr, *ptr1;
540 
541 	z1r = &rxbz->za[MAX_B_FRAMES].z1;	/* pointer to z reg */
542 	z2r = z1r + 1;
543 	z1t = &txbz->za[MAX_B_FRAMES].z1;
544 	z2t = z1t + 1;
545 
546 	fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
547 	if (!fcnt_rx)
548 		return;	/* no data avail */
549 
550 	if (fcnt_rx <= 0)
551 		fcnt_rx += B_FIFO_SIZE;	/* bytes actually buffered */
552 	new_z2 = le16_to_cpu(*z2r) + fcnt_rx;	/* new position in fifo */
553 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
554 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
555 
556 	fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
557 	if (fcnt_tx <= 0)
558 		fcnt_tx += B_FIFO_SIZE;
559 	/* fcnt_tx contains available bytes in tx-fifo */
560 	fcnt_tx = B_FIFO_SIZE - fcnt_tx;
561 	/* remaining bytes to send (bytes in tx-fifo) */
562 
563 	if (test_bit(FLG_RX_OFF, &bch->Flags)) {
564 		bch->dropcnt += fcnt_rx;
565 		*z2r = cpu_to_le16(new_z2);
566 		return;
567 	}
568 	maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
569 	if (maxlen < 0) {
570 		pr_warn("B%d: No bufferspace for %d bytes\n", bch->nr, fcnt_rx);
571 	} else {
572 		ptr = skb_put(bch->rx_skb, fcnt_rx);
573 		if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
574 			maxlen = fcnt_rx;	/* complete transfer */
575 		else
576 			maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
577 		/* maximum */
578 
579 		ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
580 		/* start of data */
581 		memcpy(ptr, ptr1, maxlen);	/* copy data */
582 		fcnt_rx -= maxlen;
583 
584 		if (fcnt_rx) {	/* rest remaining */
585 			ptr += maxlen;
586 			ptr1 = bdata;	/* start of buffer */
587 			memcpy(ptr, ptr1, fcnt_rx);	/* rest */
588 		}
589 		recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
590 	}
591 	*z2r = cpu_to_le16(new_z2);		/* new position */
592 }
593 
594 /*
595  * B-channel main receive routine
596  */
597 static void
598 main_rec_hfcpci(struct bchannel *bch)
599 {
600 	struct hfc_pci	*hc = bch->hw;
601 	int		rcnt, real_fifo;
602 	int		receive = 0, count = 5;
603 	struct bzfifo	*txbz, *rxbz;
604 	u_char		*bdata;
605 	struct zt	*zp;
606 
607 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
608 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
609 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
610 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
611 		real_fifo = 1;
612 	} else {
613 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
614 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
615 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
616 		real_fifo = 0;
617 	}
618 Begin:
619 	count--;
620 	if (rxbz->f1 != rxbz->f2) {
621 		if (bch->debug & DEBUG_HW_BCHANNEL)
622 			printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
623 			       bch->nr, rxbz->f1, rxbz->f2);
624 		zp = &rxbz->za[rxbz->f2];
625 
626 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
627 		if (rcnt < 0)
628 			rcnt += B_FIFO_SIZE;
629 		rcnt++;
630 		if (bch->debug & DEBUG_HW_BCHANNEL)
631 			printk(KERN_DEBUG
632 			       "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
633 			       bch->nr, le16_to_cpu(zp->z1),
634 			       le16_to_cpu(zp->z2), rcnt);
635 		hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
636 		rcnt = rxbz->f1 - rxbz->f2;
637 		if (rcnt < 0)
638 			rcnt += MAX_B_FRAMES + 1;
639 		if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
640 			rcnt = 0;
641 			hfcpci_clear_fifo_rx(hc, real_fifo);
642 		}
643 		hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
644 		if (rcnt > 1)
645 			receive = 1;
646 		else
647 			receive = 0;
648 	} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
649 		hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
650 		return;
651 	} else
652 		receive = 0;
653 	if (count && receive)
654 		goto Begin;
655 
656 }
657 
658 /*
659  * D-channel send routine
660  */
661 static void
662 hfcpci_fill_dfifo(struct hfc_pci *hc)
663 {
664 	struct dchannel	*dch = &hc->dch;
665 	int		fcnt;
666 	int		count, new_z1, maxlen;
667 	struct dfifo	*df;
668 	u_char		*src, *dst, new_f1;
669 
670 	if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
671 		printk(KERN_DEBUG "%s\n", __func__);
672 
673 	if (!dch->tx_skb)
674 		return;
675 	count = dch->tx_skb->len - dch->tx_idx;
676 	if (count <= 0)
677 		return;
678 	df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
679 
680 	if (dch->debug & DEBUG_HW_DFIFO)
681 		printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
682 		       df->f1, df->f2,
683 		       le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
684 	fcnt = df->f1 - df->f2;	/* frame count actually buffered */
685 	if (fcnt < 0)
686 		fcnt += (MAX_D_FRAMES + 1);	/* if wrap around */
687 	if (fcnt > (MAX_D_FRAMES - 1)) {
688 		if (dch->debug & DEBUG_HW_DCHANNEL)
689 			printk(KERN_DEBUG
690 			       "hfcpci_fill_Dfifo more as 14 frames\n");
691 #ifdef ERROR_STATISTIC
692 		cs->err_tx++;
693 #endif
694 		return;
695 	}
696 	/* now determine free bytes in FIFO buffer */
697 	maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
698 		le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
699 	if (maxlen <= 0)
700 		maxlen += D_FIFO_SIZE;	/* count now contains available bytes */
701 
702 	if (dch->debug & DEBUG_HW_DCHANNEL)
703 		printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
704 		       count, maxlen);
705 	if (count > maxlen) {
706 		if (dch->debug & DEBUG_HW_DCHANNEL)
707 			printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
708 		return;
709 	}
710 	new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
711 		(D_FIFO_SIZE - 1);
712 	new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
713 	src = dch->tx_skb->data + dch->tx_idx;	/* source pointer */
714 	dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
715 	maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
716 	/* end fifo */
717 	if (maxlen > count)
718 		maxlen = count;	/* limit size */
719 	memcpy(dst, src, maxlen);	/* first copy */
720 
721 	count -= maxlen;	/* remaining bytes */
722 	if (count) {
723 		dst = df->data;	/* start of buffer */
724 		src += maxlen;	/* new position */
725 		memcpy(dst, src, count);
726 	}
727 	df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
728 	/* for next buffer */
729 	df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
730 	/* new pos actual buffer */
731 	df->f1 = new_f1;	/* next frame */
732 	dch->tx_idx = dch->tx_skb->len;
733 }
734 
735 /*
736  * B-channel send routine
737  */
738 static void
739 hfcpci_fill_fifo(struct bchannel *bch)
740 {
741 	struct hfc_pci	*hc = bch->hw;
742 	int		maxlen, fcnt;
743 	int		count, new_z1;
744 	struct bzfifo	*bz;
745 	u_char		*bdata;
746 	u_char		new_f1, *src, *dst;
747 	__le16 *z1t, *z2t;
748 
749 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
750 		printk(KERN_DEBUG "%s\n", __func__);
751 	if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
752 		if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
753 		    !test_bit(FLG_TRANSPARENT, &bch->Flags))
754 			return;
755 		count = HFCPCI_FILLEMPTY;
756 	} else {
757 		count = bch->tx_skb->len - bch->tx_idx;
758 	}
759 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
760 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
761 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
762 	} else {
763 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
764 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
765 	}
766 
767 	if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
768 		z1t = &bz->za[MAX_B_FRAMES].z1;
769 		z2t = z1t + 1;
770 		if (bch->debug & DEBUG_HW_BCHANNEL)
771 			printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
772 			       "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
773 			       le16_to_cpu(*z1t), le16_to_cpu(*z2t));
774 		fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
775 		if (fcnt <= 0)
776 			fcnt += B_FIFO_SIZE;
777 		if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
778 			/* fcnt contains available bytes in fifo */
779 			if (count > fcnt)
780 				count = fcnt;
781 			new_z1 = le16_to_cpu(*z1t) + count;
782 			/* new buffer Position */
783 			if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
784 				new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
785 			dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
786 			maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
787 			/* end of fifo */
788 			if (bch->debug & DEBUG_HW_BFIFO)
789 				printk(KERN_DEBUG "hfcpci_FFt fillempty "
790 				       "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
791 				       fcnt, maxlen, new_z1, dst);
792 			if (maxlen > count)
793 				maxlen = count;		/* limit size */
794 			memset(dst, bch->fill[0], maxlen); /* first copy */
795 			count -= maxlen;		/* remaining bytes */
796 			if (count) {
797 				dst = bdata;		/* start of buffer */
798 				memset(dst, bch->fill[0], count);
799 			}
800 			*z1t = cpu_to_le16(new_z1);	/* now send data */
801 			return;
802 		}
803 		/* fcnt contains available bytes in fifo */
804 		fcnt = B_FIFO_SIZE - fcnt;
805 		/* remaining bytes to send (bytes in fifo) */
806 
807 	next_t_frame:
808 		count = bch->tx_skb->len - bch->tx_idx;
809 		/* maximum fill shall be poll*2 */
810 		if (count > (poll << 1) - fcnt)
811 			count = (poll << 1) - fcnt;
812 		if (count <= 0)
813 			return;
814 		/* data is suitable for fifo */
815 		new_z1 = le16_to_cpu(*z1t) + count;
816 		/* new buffer Position */
817 		if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
818 			new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
819 		src = bch->tx_skb->data + bch->tx_idx;
820 		/* source pointer */
821 		dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
822 		maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
823 		/* end of fifo */
824 		if (bch->debug & DEBUG_HW_BFIFO)
825 			printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
826 			       "maxl(%d) nz1(%x) dst(%p)\n",
827 			       fcnt, maxlen, new_z1, dst);
828 		fcnt += count;
829 		bch->tx_idx += count;
830 		if (maxlen > count)
831 			maxlen = count;		/* limit size */
832 		memcpy(dst, src, maxlen);	/* first copy */
833 		count -= maxlen;	/* remaining bytes */
834 		if (count) {
835 			dst = bdata;	/* start of buffer */
836 			src += maxlen;	/* new position */
837 			memcpy(dst, src, count);
838 		}
839 		*z1t = cpu_to_le16(new_z1);	/* now send data */
840 		if (bch->tx_idx < bch->tx_skb->len)
841 			return;
842 		dev_kfree_skb_any(bch->tx_skb);
843 		if (get_next_bframe(bch))
844 			goto next_t_frame;
845 		return;
846 	}
847 	if (bch->debug & DEBUG_HW_BCHANNEL)
848 		printk(KERN_DEBUG
849 		       "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
850 		       __func__, bch->nr, bz->f1, bz->f2,
851 		       bz->za[bz->f1].z1);
852 	fcnt = bz->f1 - bz->f2;	/* frame count actually buffered */
853 	if (fcnt < 0)
854 		fcnt += (MAX_B_FRAMES + 1);	/* if wrap around */
855 	if (fcnt > (MAX_B_FRAMES - 1)) {
856 		if (bch->debug & DEBUG_HW_BCHANNEL)
857 			printk(KERN_DEBUG
858 			       "hfcpci_fill_Bfifo more as 14 frames\n");
859 		return;
860 	}
861 	/* now determine free bytes in FIFO buffer */
862 	maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
863 		le16_to_cpu(bz->za[bz->f1].z1) - 1;
864 	if (maxlen <= 0)
865 		maxlen += B_FIFO_SIZE;	/* count now contains available bytes */
866 
867 	if (bch->debug & DEBUG_HW_BCHANNEL)
868 		printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
869 		       bch->nr, count, maxlen);
870 
871 	if (maxlen < count) {
872 		if (bch->debug & DEBUG_HW_BCHANNEL)
873 			printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
874 		return;
875 	}
876 	new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
877 	/* new buffer Position */
878 	if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
879 		new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
880 
881 	new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
882 	src = bch->tx_skb->data + bch->tx_idx;	/* source pointer */
883 	dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
884 	maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
885 	/* end fifo */
886 	if (maxlen > count)
887 		maxlen = count;	/* limit size */
888 	memcpy(dst, src, maxlen);	/* first copy */
889 
890 	count -= maxlen;	/* remaining bytes */
891 	if (count) {
892 		dst = bdata;	/* start of buffer */
893 		src += maxlen;	/* new position */
894 		memcpy(dst, src, count);
895 	}
896 	bz->za[new_f1].z1 = cpu_to_le16(new_z1);	/* for next buffer */
897 	bz->f1 = new_f1;	/* next frame */
898 	dev_kfree_skb_any(bch->tx_skb);
899 	get_next_bframe(bch);
900 }
901 
902 
903 
904 /*
905  * handle L1 state changes TE
906  */
907 
908 static void
909 ph_state_te(struct dchannel *dch)
910 {
911 	if (dch->debug)
912 		printk(KERN_DEBUG "%s: TE newstate %x\n",
913 		       __func__, dch->state);
914 	switch (dch->state) {
915 	case 0:
916 		l1_event(dch->l1, HW_RESET_IND);
917 		break;
918 	case 3:
919 		l1_event(dch->l1, HW_DEACT_IND);
920 		break;
921 	case 5:
922 	case 8:
923 		l1_event(dch->l1, ANYSIGNAL);
924 		break;
925 	case 6:
926 		l1_event(dch->l1, INFO2);
927 		break;
928 	case 7:
929 		l1_event(dch->l1, INFO4_P8);
930 		break;
931 	}
932 }
933 
934 /*
935  * handle L1 state changes NT
936  */
937 
938 static void
939 handle_nt_timer3(struct dchannel *dch) {
940 	struct hfc_pci	*hc = dch->hw;
941 
942 	test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
943 	hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
944 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
945 	hc->hw.nt_timer = 0;
946 	test_and_set_bit(FLG_ACTIVE, &dch->Flags);
947 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
948 		hc->hw.mst_m |= HFCPCI_MASTER;
949 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
950 	_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
951 		    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
952 }
953 
954 static void
955 ph_state_nt(struct dchannel *dch)
956 {
957 	struct hfc_pci	*hc = dch->hw;
958 
959 	if (dch->debug)
960 		printk(KERN_DEBUG "%s: NT newstate %x\n",
961 		       __func__, dch->state);
962 	switch (dch->state) {
963 	case 2:
964 		if (hc->hw.nt_timer < 0) {
965 			hc->hw.nt_timer = 0;
966 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
967 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
968 			hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
969 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
970 			/* Clear already pending ints */
971 			(void) Read_hfc(hc, HFCPCI_INT_S1);
972 			Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
973 			udelay(10);
974 			Write_hfc(hc, HFCPCI_STATES, 4);
975 			dch->state = 4;
976 		} else if (hc->hw.nt_timer == 0) {
977 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
978 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
979 			hc->hw.nt_timer = NT_T1_COUNT;
980 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
981 			hc->hw.ctmt |= HFCPCI_TIM3_125;
982 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
983 				  HFCPCI_CLTIMER);
984 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
985 			test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
986 			/* allow G2 -> G3 transition */
987 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
988 		} else {
989 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
990 		}
991 		break;
992 	case 1:
993 		hc->hw.nt_timer = 0;
994 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
995 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
996 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
997 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
998 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
999 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1000 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1001 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1002 		_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1003 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1004 		break;
1005 	case 4:
1006 		hc->hw.nt_timer = 0;
1007 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011 		break;
1012 	case 3:
1013 		if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1014 			if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1015 						&dch->Flags)) {
1016 				handle_nt_timer3(dch);
1017 				break;
1018 			}
1019 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1020 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1021 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1022 			hc->hw.nt_timer = NT_T3_COUNT;
1023 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1024 			hc->hw.ctmt |= HFCPCI_TIM3_125;
1025 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1026 				  HFCPCI_CLTIMER);
1027 		}
1028 		break;
1029 	}
1030 }
1031 
1032 static void
1033 ph_state(struct dchannel *dch)
1034 {
1035 	struct hfc_pci	*hc = dch->hw;
1036 
1037 	if (hc->hw.protocol == ISDN_P_NT_S0) {
1038 		if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1039 		    hc->hw.nt_timer < 0)
1040 			handle_nt_timer3(dch);
1041 		else
1042 			ph_state_nt(dch);
1043 	} else
1044 		ph_state_te(dch);
1045 }
1046 
1047 /*
1048  * Layer 1 callback function
1049  */
1050 static int
1051 hfc_l1callback(struct dchannel *dch, u_int cmd)
1052 {
1053 	struct hfc_pci		*hc = dch->hw;
1054 
1055 	switch (cmd) {
1056 	case INFO3_P8:
1057 	case INFO3_P10:
1058 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1059 			hc->hw.mst_m |= HFCPCI_MASTER;
1060 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1061 		break;
1062 	case HW_RESET_REQ:
1063 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1064 		/* HFC ST 3 */
1065 		udelay(6);
1066 		Write_hfc(hc, HFCPCI_STATES, 3);	/* HFC ST 2 */
1067 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1068 			hc->hw.mst_m |= HFCPCI_MASTER;
1069 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1070 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1071 			  HFCPCI_DO_ACTION);
1072 		l1_event(dch->l1, HW_POWERUP_IND);
1073 		break;
1074 	case HW_DEACT_REQ:
1075 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1076 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1077 		skb_queue_purge(&dch->squeue);
1078 		if (dch->tx_skb) {
1079 			dev_kfree_skb(dch->tx_skb);
1080 			dch->tx_skb = NULL;
1081 		}
1082 		dch->tx_idx = 0;
1083 		if (dch->rx_skb) {
1084 			dev_kfree_skb(dch->rx_skb);
1085 			dch->rx_skb = NULL;
1086 		}
1087 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1088 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1089 			del_timer(&dch->timer);
1090 		break;
1091 	case HW_POWERUP_REQ:
1092 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1093 		break;
1094 	case PH_ACTIVATE_IND:
1095 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1096 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1097 			    GFP_ATOMIC);
1098 		break;
1099 	case PH_DEACTIVATE_IND:
1100 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1101 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1102 			    GFP_ATOMIC);
1103 		break;
1104 	default:
1105 		if (dch->debug & DEBUG_HW)
1106 			printk(KERN_DEBUG "%s: unknown command %x\n",
1107 			       __func__, cmd);
1108 		return -1;
1109 	}
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Interrupt handler
1115  */
1116 static inline void
1117 tx_birq(struct bchannel *bch)
1118 {
1119 	if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1120 		hfcpci_fill_fifo(bch);
1121 	else {
1122 		dev_kfree_skb_any(bch->tx_skb);
1123 		if (get_next_bframe(bch))
1124 			hfcpci_fill_fifo(bch);
1125 	}
1126 }
1127 
1128 static inline void
1129 tx_dirq(struct dchannel *dch)
1130 {
1131 	if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1132 		hfcpci_fill_dfifo(dch->hw);
1133 	else {
1134 		dev_kfree_skb(dch->tx_skb);
1135 		if (get_next_dframe(dch))
1136 			hfcpci_fill_dfifo(dch->hw);
1137 	}
1138 }
1139 
1140 static irqreturn_t
1141 hfcpci_int(int intno, void *dev_id)
1142 {
1143 	struct hfc_pci	*hc = dev_id;
1144 	u_char		exval;
1145 	struct bchannel	*bch;
1146 	u_char		val, stat;
1147 
1148 	spin_lock(&hc->lock);
1149 	if (!(hc->hw.int_m2 & 0x08)) {
1150 		spin_unlock(&hc->lock);
1151 		return IRQ_NONE; /* not initialised */
1152 	}
1153 	stat = Read_hfc(hc, HFCPCI_STATUS);
1154 	if (HFCPCI_ANYINT & stat) {
1155 		val = Read_hfc(hc, HFCPCI_INT_S1);
1156 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1157 			printk(KERN_DEBUG
1158 			       "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1159 	} else {
1160 		/* shared */
1161 		spin_unlock(&hc->lock);
1162 		return IRQ_NONE;
1163 	}
1164 	hc->irqcnt++;
1165 
1166 	if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1167 		printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1168 	val &= hc->hw.int_m1;
1169 	if (val & 0x40) {	/* state machine irq */
1170 		exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1171 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172 			printk(KERN_DEBUG "ph_state chg %d->%d\n",
1173 			       hc->dch.state, exval);
1174 		hc->dch.state = exval;
1175 		schedule_event(&hc->dch, FLG_PHCHANGE);
1176 		val &= ~0x40;
1177 	}
1178 	if (val & 0x80) {	/* timer irq */
1179 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1180 			if ((--hc->hw.nt_timer) < 0)
1181 				schedule_event(&hc->dch, FLG_PHCHANGE);
1182 		}
1183 		val &= ~0x80;
1184 		Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1185 	}
1186 	if (val & 0x08) {	/* B1 rx */
1187 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1188 		if (bch)
1189 			main_rec_hfcpci(bch);
1190 		else if (hc->dch.debug)
1191 			printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1192 	}
1193 	if (val & 0x10) {	/* B2 rx */
1194 		bch = Sel_BCS(hc, 2);
1195 		if (bch)
1196 			main_rec_hfcpci(bch);
1197 		else if (hc->dch.debug)
1198 			printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1199 	}
1200 	if (val & 0x01) {	/* B1 tx */
1201 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1202 		if (bch)
1203 			tx_birq(bch);
1204 		else if (hc->dch.debug)
1205 			printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1206 	}
1207 	if (val & 0x02) {	/* B2 tx */
1208 		bch = Sel_BCS(hc, 2);
1209 		if (bch)
1210 			tx_birq(bch);
1211 		else if (hc->dch.debug)
1212 			printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1213 	}
1214 	if (val & 0x20)		/* D rx */
1215 		receive_dmsg(hc);
1216 	if (val & 0x04) {	/* D tx */
1217 		if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1218 			del_timer(&hc->dch.timer);
1219 		tx_dirq(&hc->dch);
1220 	}
1221 	spin_unlock(&hc->lock);
1222 	return IRQ_HANDLED;
1223 }
1224 
1225 /*
1226  * timer callback for D-chan busy resolution. Currently no function
1227  */
1228 static void
1229 hfcpci_dbusy_timer(struct timer_list *t)
1230 {
1231 }
1232 
1233 /*
1234  * activate/deactivate hardware for selected channels and mode
1235  */
1236 static int
1237 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1238 {
1239 	struct hfc_pci	*hc = bch->hw;
1240 	int		fifo2;
1241 	u_char		rx_slot = 0, tx_slot = 0, pcm_mode;
1242 
1243 	if (bch->debug & DEBUG_HW_BCHANNEL)
1244 		printk(KERN_DEBUG
1245 		       "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1246 		       bch->state, protocol, bch->nr, bc);
1247 
1248 	fifo2 = bc;
1249 	pcm_mode = (bc >> 24) & 0xff;
1250 	if (pcm_mode) { /* PCM SLOT USE */
1251 		if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1252 			printk(KERN_WARNING
1253 			       "%s: pcm channel id without HFC_CFG_PCM\n",
1254 			       __func__);
1255 		rx_slot = (bc >> 8) & 0xff;
1256 		tx_slot = (bc >> 16) & 0xff;
1257 		bc = bc & 0xff;
1258 	} else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1259 		printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1260 		       __func__);
1261 	if (hc->chanlimit > 1) {
1262 		hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1263 		hc->hw.sctrl_e &= ~0x80;
1264 	} else {
1265 		if (bc & 2) {
1266 			if (protocol != ISDN_P_NONE) {
1267 				hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1268 				hc->hw.sctrl_e |= 0x80;
1269 			} else {
1270 				hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1271 				hc->hw.sctrl_e &= ~0x80;
1272 			}
1273 			fifo2 = 1;
1274 		} else {
1275 			hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1276 			hc->hw.sctrl_e &= ~0x80;
1277 		}
1278 	}
1279 	switch (protocol) {
1280 	case (-1): /* used for init */
1281 		bch->state = -1;
1282 		bch->nr = bc;
1283 		fallthrough;
1284 	case (ISDN_P_NONE):
1285 		if (bch->state == ISDN_P_NONE)
1286 			return 0;
1287 		if (bc & 2) {
1288 			hc->hw.sctrl &= ~SCTRL_B2_ENA;
1289 			hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1290 		} else {
1291 			hc->hw.sctrl &= ~SCTRL_B1_ENA;
1292 			hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1293 		}
1294 		if (fifo2 & 2) {
1295 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1296 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS |
1297 					   HFCPCI_INTS_B2REC);
1298 		} else {
1299 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1300 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS |
1301 					   HFCPCI_INTS_B1REC);
1302 		}
1303 #ifdef REVERSE_BITORDER
1304 		if (bch->nr & 2)
1305 			hc->hw.cirm &= 0x7f;
1306 		else
1307 			hc->hw.cirm &= 0xbf;
1308 #endif
1309 		bch->state = ISDN_P_NONE;
1310 		bch->nr = bc;
1311 		test_and_clear_bit(FLG_HDLC, &bch->Flags);
1312 		test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1313 		break;
1314 	case (ISDN_P_B_RAW):
1315 		bch->state = protocol;
1316 		bch->nr = bc;
1317 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1318 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1319 		if (bc & 2) {
1320 			hc->hw.sctrl |= SCTRL_B2_ENA;
1321 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1322 #ifdef REVERSE_BITORDER
1323 			hc->hw.cirm |= 0x80;
1324 #endif
1325 		} else {
1326 			hc->hw.sctrl |= SCTRL_B1_ENA;
1327 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1328 #ifdef REVERSE_BITORDER
1329 			hc->hw.cirm |= 0x40;
1330 #endif
1331 		}
1332 		if (fifo2 & 2) {
1333 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1334 			if (!tics)
1335 				hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1336 						  HFCPCI_INTS_B2REC);
1337 			hc->hw.ctmt |= 2;
1338 			hc->hw.conn &= ~0x18;
1339 		} else {
1340 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1341 			if (!tics)
1342 				hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1343 						  HFCPCI_INTS_B1REC);
1344 			hc->hw.ctmt |= 1;
1345 			hc->hw.conn &= ~0x03;
1346 		}
1347 		test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1348 		break;
1349 	case (ISDN_P_B_HDLC):
1350 		bch->state = protocol;
1351 		bch->nr = bc;
1352 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1353 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1354 		if (bc & 2) {
1355 			hc->hw.sctrl |= SCTRL_B2_ENA;
1356 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1357 		} else {
1358 			hc->hw.sctrl |= SCTRL_B1_ENA;
1359 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1360 		}
1361 		if (fifo2 & 2) {
1362 			hc->hw.last_bfifo_cnt[1] = 0;
1363 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1364 			hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1365 					  HFCPCI_INTS_B2REC);
1366 			hc->hw.ctmt &= ~2;
1367 			hc->hw.conn &= ~0x18;
1368 		} else {
1369 			hc->hw.last_bfifo_cnt[0] = 0;
1370 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1371 			hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1372 					  HFCPCI_INTS_B1REC);
1373 			hc->hw.ctmt &= ~1;
1374 			hc->hw.conn &= ~0x03;
1375 		}
1376 		test_and_set_bit(FLG_HDLC, &bch->Flags);
1377 		break;
1378 	default:
1379 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1380 		return -ENOPROTOOPT;
1381 	}
1382 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1383 		if ((protocol == ISDN_P_NONE) ||
1384 		    (protocol == -1)) {	/* init case */
1385 			rx_slot = 0;
1386 			tx_slot = 0;
1387 		} else {
1388 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1389 				rx_slot |= 0xC0;
1390 				tx_slot |= 0xC0;
1391 			} else {
1392 				rx_slot |= 0x80;
1393 				tx_slot |= 0x80;
1394 			}
1395 		}
1396 		if (bc & 2) {
1397 			hc->hw.conn &= 0xc7;
1398 			hc->hw.conn |= 0x08;
1399 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1400 			       __func__, tx_slot);
1401 			printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1402 			       __func__, rx_slot);
1403 			Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1404 			Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1405 		} else {
1406 			hc->hw.conn &= 0xf8;
1407 			hc->hw.conn |= 0x01;
1408 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1409 			       __func__, tx_slot);
1410 			printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1411 			       __func__, rx_slot);
1412 			Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1413 			Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1414 		}
1415 	}
1416 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1417 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1418 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1419 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1420 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1421 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1422 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1423 #ifdef REVERSE_BITORDER
1424 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1425 #endif
1426 	return 0;
1427 }
1428 
1429 static int
1430 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1431 {
1432 	struct hfc_pci	*hc = bch->hw;
1433 
1434 	if (bch->debug & DEBUG_HW_BCHANNEL)
1435 		printk(KERN_DEBUG
1436 		       "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1437 		       bch->state, protocol, bch->nr, chan);
1438 	if (bch->nr != chan) {
1439 		printk(KERN_DEBUG
1440 		       "HFCPCI rxtest wrong channel parameter %x/%x\n",
1441 		       bch->nr, chan);
1442 		return -EINVAL;
1443 	}
1444 	switch (protocol) {
1445 	case (ISDN_P_B_RAW):
1446 		bch->state = protocol;
1447 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1448 		if (chan & 2) {
1449 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1450 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1451 			if (!tics)
1452 				hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1453 			hc->hw.ctmt |= 2;
1454 			hc->hw.conn &= ~0x18;
1455 #ifdef REVERSE_BITORDER
1456 			hc->hw.cirm |= 0x80;
1457 #endif
1458 		} else {
1459 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1460 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1461 			if (!tics)
1462 				hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1463 			hc->hw.ctmt |= 1;
1464 			hc->hw.conn &= ~0x03;
1465 #ifdef REVERSE_BITORDER
1466 			hc->hw.cirm |= 0x40;
1467 #endif
1468 		}
1469 		break;
1470 	case (ISDN_P_B_HDLC):
1471 		bch->state = protocol;
1472 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1473 		if (chan & 2) {
1474 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1475 			hc->hw.last_bfifo_cnt[1] = 0;
1476 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1477 			hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1478 			hc->hw.ctmt &= ~2;
1479 			hc->hw.conn &= ~0x18;
1480 		} else {
1481 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1482 			hc->hw.last_bfifo_cnt[0] = 0;
1483 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1484 			hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1485 			hc->hw.ctmt &= ~1;
1486 			hc->hw.conn &= ~0x03;
1487 		}
1488 		break;
1489 	default:
1490 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1491 		return -ENOPROTOOPT;
1492 	}
1493 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1494 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1495 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1496 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1497 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1498 #ifdef REVERSE_BITORDER
1499 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1500 #endif
1501 	return 0;
1502 }
1503 
1504 static void
1505 deactivate_bchannel(struct bchannel *bch)
1506 {
1507 	struct hfc_pci	*hc = bch->hw;
1508 	u_long		flags;
1509 
1510 	spin_lock_irqsave(&hc->lock, flags);
1511 	mISDN_clear_bchannel(bch);
1512 	mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1513 	spin_unlock_irqrestore(&hc->lock, flags);
1514 }
1515 
1516 /*
1517  * Layer 1 B-channel hardware access
1518  */
1519 static int
1520 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1521 {
1522 	return mISDN_ctrl_bchannel(bch, cq);
1523 }
1524 static int
1525 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1526 {
1527 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1528 	struct hfc_pci	*hc = bch->hw;
1529 	int		ret = -EINVAL;
1530 	u_long		flags;
1531 
1532 	if (bch->debug & DEBUG_HW)
1533 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1534 	switch (cmd) {
1535 	case HW_TESTRX_RAW:
1536 		spin_lock_irqsave(&hc->lock, flags);
1537 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1538 		spin_unlock_irqrestore(&hc->lock, flags);
1539 		break;
1540 	case HW_TESTRX_HDLC:
1541 		spin_lock_irqsave(&hc->lock, flags);
1542 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1543 		spin_unlock_irqrestore(&hc->lock, flags);
1544 		break;
1545 	case HW_TESTRX_OFF:
1546 		spin_lock_irqsave(&hc->lock, flags);
1547 		mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1548 		spin_unlock_irqrestore(&hc->lock, flags);
1549 		ret = 0;
1550 		break;
1551 	case CLOSE_CHANNEL:
1552 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1553 		deactivate_bchannel(bch);
1554 		ch->protocol = ISDN_P_NONE;
1555 		ch->peer = NULL;
1556 		module_put(THIS_MODULE);
1557 		ret = 0;
1558 		break;
1559 	case CONTROL_CHANNEL:
1560 		ret = channel_bctrl(bch, arg);
1561 		break;
1562 	default:
1563 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1564 		       __func__, cmd);
1565 	}
1566 	return ret;
1567 }
1568 
1569 /*
1570  * Layer2 -> Layer 1 Dchannel data
1571  */
1572 static int
1573 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1574 {
1575 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1576 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1577 	struct hfc_pci		*hc = dch->hw;
1578 	int			ret = -EINVAL;
1579 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1580 	unsigned int		id;
1581 	u_long			flags;
1582 
1583 	switch (hh->prim) {
1584 	case PH_DATA_REQ:
1585 		spin_lock_irqsave(&hc->lock, flags);
1586 		ret = dchannel_senddata(dch, skb);
1587 		if (ret > 0) { /* direct TX */
1588 			id = hh->id; /* skb can be freed */
1589 			hfcpci_fill_dfifo(dch->hw);
1590 			ret = 0;
1591 			spin_unlock_irqrestore(&hc->lock, flags);
1592 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1593 		} else
1594 			spin_unlock_irqrestore(&hc->lock, flags);
1595 		return ret;
1596 	case PH_ACTIVATE_REQ:
1597 		spin_lock_irqsave(&hc->lock, flags);
1598 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1599 			ret = 0;
1600 			if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1601 				hc->hw.mst_m |= HFCPCI_MASTER;
1602 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1603 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1604 				spin_unlock_irqrestore(&hc->lock, flags);
1605 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1606 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1607 				break;
1608 			}
1609 			test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1610 			Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1611 				  HFCPCI_DO_ACTION | 1);
1612 		} else
1613 			ret = l1_event(dch->l1, hh->prim);
1614 		spin_unlock_irqrestore(&hc->lock, flags);
1615 		break;
1616 	case PH_DEACTIVATE_REQ:
1617 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1618 		spin_lock_irqsave(&hc->lock, flags);
1619 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1620 			struct sk_buff_head free_queue;
1621 
1622 			__skb_queue_head_init(&free_queue);
1623 			/* prepare deactivation */
1624 			Write_hfc(hc, HFCPCI_STATES, 0x40);
1625 			skb_queue_splice_init(&dch->squeue, &free_queue);
1626 			if (dch->tx_skb) {
1627 				__skb_queue_tail(&free_queue, dch->tx_skb);
1628 				dch->tx_skb = NULL;
1629 			}
1630 			dch->tx_idx = 0;
1631 			if (dch->rx_skb) {
1632 				__skb_queue_tail(&free_queue, dch->rx_skb);
1633 				dch->rx_skb = NULL;
1634 			}
1635 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1636 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1637 				del_timer(&dch->timer);
1638 #ifdef FIXME
1639 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1640 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1641 #endif
1642 			hc->hw.mst_m &= ~HFCPCI_MASTER;
1643 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1644 			ret = 0;
1645 			spin_unlock_irqrestore(&hc->lock, flags);
1646 			__skb_queue_purge(&free_queue);
1647 		} else {
1648 			ret = l1_event(dch->l1, hh->prim);
1649 			spin_unlock_irqrestore(&hc->lock, flags);
1650 		}
1651 		break;
1652 	}
1653 	if (!ret)
1654 		dev_kfree_skb(skb);
1655 	return ret;
1656 }
1657 
1658 /*
1659  * Layer2 -> Layer 1 Bchannel data
1660  */
1661 static int
1662 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1663 {
1664 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
1665 	struct hfc_pci		*hc = bch->hw;
1666 	int			ret = -EINVAL;
1667 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1668 	unsigned long		flags;
1669 
1670 	switch (hh->prim) {
1671 	case PH_DATA_REQ:
1672 		spin_lock_irqsave(&hc->lock, flags);
1673 		ret = bchannel_senddata(bch, skb);
1674 		if (ret > 0) { /* direct TX */
1675 			hfcpci_fill_fifo(bch);
1676 			ret = 0;
1677 		}
1678 		spin_unlock_irqrestore(&hc->lock, flags);
1679 		return ret;
1680 	case PH_ACTIVATE_REQ:
1681 		spin_lock_irqsave(&hc->lock, flags);
1682 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1683 			ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1684 		else
1685 			ret = 0;
1686 		spin_unlock_irqrestore(&hc->lock, flags);
1687 		if (!ret)
1688 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1689 				    NULL, GFP_KERNEL);
1690 		break;
1691 	case PH_DEACTIVATE_REQ:
1692 		deactivate_bchannel(bch);
1693 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1694 			    NULL, GFP_KERNEL);
1695 		ret = 0;
1696 		break;
1697 	}
1698 	if (!ret)
1699 		dev_kfree_skb(skb);
1700 	return ret;
1701 }
1702 
1703 /*
1704  * called for card init message
1705  */
1706 
1707 static void
1708 inithfcpci(struct hfc_pci *hc)
1709 {
1710 	printk(KERN_DEBUG "inithfcpci: entered\n");
1711 	timer_setup(&hc->dch.timer, hfcpci_dbusy_timer, 0);
1712 	hc->chanlimit = 2;
1713 	mode_hfcpci(&hc->bch[0], 1, -1);
1714 	mode_hfcpci(&hc->bch[1], 2, -1);
1715 }
1716 
1717 
1718 static int
1719 init_card(struct hfc_pci *hc)
1720 {
1721 	int	cnt = 3;
1722 	u_long	flags;
1723 
1724 	printk(KERN_DEBUG "init_card: entered\n");
1725 
1726 
1727 	spin_lock_irqsave(&hc->lock, flags);
1728 	disable_hwirq(hc);
1729 	spin_unlock_irqrestore(&hc->lock, flags);
1730 	if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1731 		printk(KERN_WARNING
1732 		       "mISDN: couldn't get interrupt %d\n", hc->irq);
1733 		return -EIO;
1734 	}
1735 	spin_lock_irqsave(&hc->lock, flags);
1736 	reset_hfcpci(hc);
1737 	while (cnt) {
1738 		inithfcpci(hc);
1739 		/*
1740 		 * Finally enable IRQ output
1741 		 * this is only allowed, if an IRQ routine is already
1742 		 * established for this HFC, so don't do that earlier
1743 		 */
1744 		enable_hwirq(hc);
1745 		spin_unlock_irqrestore(&hc->lock, flags);
1746 		/* Timeout 80ms */
1747 		set_current_state(TASK_UNINTERRUPTIBLE);
1748 		schedule_timeout((80 * HZ) / 1000);
1749 		printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1750 		       hc->irq, hc->irqcnt);
1751 		/* now switch timer interrupt off */
1752 		spin_lock_irqsave(&hc->lock, flags);
1753 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1754 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1755 		/* reinit mode reg */
1756 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1757 		if (!hc->irqcnt) {
1758 			printk(KERN_WARNING
1759 			       "HFC PCI: IRQ(%d) getting no interrupts "
1760 			       "during init %d\n", hc->irq, 4 - cnt);
1761 			if (cnt == 1)
1762 				break;
1763 			else {
1764 				reset_hfcpci(hc);
1765 				cnt--;
1766 			}
1767 		} else {
1768 			spin_unlock_irqrestore(&hc->lock, flags);
1769 			hc->initdone = 1;
1770 			return 0;
1771 		}
1772 	}
1773 	disable_hwirq(hc);
1774 	spin_unlock_irqrestore(&hc->lock, flags);
1775 	free_irq(hc->irq, hc);
1776 	return -EIO;
1777 }
1778 
1779 static int
1780 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1781 {
1782 	int	ret = 0;
1783 	u_char	slot;
1784 
1785 	switch (cq->op) {
1786 	case MISDN_CTRL_GETOP:
1787 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1788 			 MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
1789 		break;
1790 	case MISDN_CTRL_LOOP:
1791 		/* channel 0 disabled loop */
1792 		if (cq->channel < 0 || cq->channel > 2) {
1793 			ret = -EINVAL;
1794 			break;
1795 		}
1796 		if (cq->channel & 1) {
1797 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1798 				slot = 0xC0;
1799 			else
1800 				slot = 0x80;
1801 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1802 			       __func__, slot);
1803 			Write_hfc(hc, HFCPCI_B1_SSL, slot);
1804 			Write_hfc(hc, HFCPCI_B1_RSL, slot);
1805 			hc->hw.conn = (hc->hw.conn & ~7) | 6;
1806 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1807 		}
1808 		if (cq->channel & 2) {
1809 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1810 				slot = 0xC1;
1811 			else
1812 				slot = 0x81;
1813 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1814 			       __func__, slot);
1815 			Write_hfc(hc, HFCPCI_B2_SSL, slot);
1816 			Write_hfc(hc, HFCPCI_B2_RSL, slot);
1817 			hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1818 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1819 		}
1820 		if (cq->channel & 3)
1821 			hc->hw.trm |= 0x80;	/* enable IOM-loop */
1822 		else {
1823 			hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1824 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1825 			hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1826 		}
1827 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1828 		break;
1829 	case MISDN_CTRL_CONNECT:
1830 		if (cq->channel == cq->p1) {
1831 			ret = -EINVAL;
1832 			break;
1833 		}
1834 		if (cq->channel < 1 || cq->channel > 2 ||
1835 		    cq->p1 < 1 || cq->p1 > 2) {
1836 			ret = -EINVAL;
1837 			break;
1838 		}
1839 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1840 			slot = 0xC0;
1841 		else
1842 			slot = 0x80;
1843 		printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1844 		       __func__, slot);
1845 		Write_hfc(hc, HFCPCI_B1_SSL, slot);
1846 		Write_hfc(hc, HFCPCI_B2_RSL, slot);
1847 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1848 			slot = 0xC1;
1849 		else
1850 			slot = 0x81;
1851 		printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1852 		       __func__, slot);
1853 		Write_hfc(hc, HFCPCI_B2_SSL, slot);
1854 		Write_hfc(hc, HFCPCI_B1_RSL, slot);
1855 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1856 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1857 		hc->hw.trm |= 0x80;
1858 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1859 		break;
1860 	case MISDN_CTRL_DISCONNECT:
1861 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1862 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1863 		hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1864 		break;
1865 	case MISDN_CTRL_L1_TIMER3:
1866 		ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1867 		break;
1868 	default:
1869 		printk(KERN_WARNING "%s: unknown Op %x\n",
1870 		       __func__, cq->op);
1871 		ret = -EINVAL;
1872 		break;
1873 	}
1874 	return ret;
1875 }
1876 
1877 static int
1878 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1879 	      struct channel_req *rq)
1880 {
1881 	int err = 0;
1882 
1883 	if (debug & DEBUG_HW_OPEN)
1884 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1885 		       hc->dch.dev.id, __builtin_return_address(0));
1886 	if (rq->protocol == ISDN_P_NONE)
1887 		return -EINVAL;
1888 	if (rq->adr.channel == 1) {
1889 		/* TODO: E-Channel */
1890 		return -EINVAL;
1891 	}
1892 	if (!hc->initdone) {
1893 		if (rq->protocol == ISDN_P_TE_S0) {
1894 			err = create_l1(&hc->dch, hfc_l1callback);
1895 			if (err)
1896 				return err;
1897 		}
1898 		hc->hw.protocol = rq->protocol;
1899 		ch->protocol = rq->protocol;
1900 		err = init_card(hc);
1901 		if (err)
1902 			return err;
1903 	} else {
1904 		if (rq->protocol != ch->protocol) {
1905 			if (hc->hw.protocol == ISDN_P_TE_S0)
1906 				l1_event(hc->dch.l1, CLOSE_CHANNEL);
1907 			if (rq->protocol == ISDN_P_TE_S0) {
1908 				err = create_l1(&hc->dch, hfc_l1callback);
1909 				if (err)
1910 					return err;
1911 			}
1912 			hc->hw.protocol = rq->protocol;
1913 			ch->protocol = rq->protocol;
1914 			hfcpci_setmode(hc);
1915 		}
1916 	}
1917 
1918 	if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1919 	    ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1920 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1921 			    0, NULL, GFP_KERNEL);
1922 	}
1923 	rq->ch = ch;
1924 	if (!try_module_get(THIS_MODULE))
1925 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1926 	return 0;
1927 }
1928 
1929 static int
1930 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1931 {
1932 	struct bchannel		*bch;
1933 
1934 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
1935 		return -EINVAL;
1936 	if (rq->protocol == ISDN_P_NONE)
1937 		return -EINVAL;
1938 	bch = &hc->bch[rq->adr.channel - 1];
1939 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1940 		return -EBUSY; /* b-channel can be only open once */
1941 	bch->ch.protocol = rq->protocol;
1942 	rq->ch = &bch->ch; /* TODO: E-channel */
1943 	if (!try_module_get(THIS_MODULE))
1944 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1945 	return 0;
1946 }
1947 
1948 /*
1949  * device control function
1950  */
1951 static int
1952 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1953 {
1954 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1955 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1956 	struct hfc_pci		*hc = dch->hw;
1957 	struct channel_req	*rq;
1958 	int			err = 0;
1959 
1960 	if (dch->debug & DEBUG_HW)
1961 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
1962 		       __func__, cmd, arg);
1963 	switch (cmd) {
1964 	case OPEN_CHANNEL:
1965 		rq = arg;
1966 		if ((rq->protocol == ISDN_P_TE_S0) ||
1967 		    (rq->protocol == ISDN_P_NT_S0))
1968 			err = open_dchannel(hc, ch, rq);
1969 		else
1970 			err = open_bchannel(hc, rq);
1971 		break;
1972 	case CLOSE_CHANNEL:
1973 		if (debug & DEBUG_HW_OPEN)
1974 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1975 			       __func__, hc->dch.dev.id,
1976 			       __builtin_return_address(0));
1977 		module_put(THIS_MODULE);
1978 		break;
1979 	case CONTROL_CHANNEL:
1980 		err = channel_ctrl(hc, arg);
1981 		break;
1982 	default:
1983 		if (dch->debug & DEBUG_HW)
1984 			printk(KERN_DEBUG "%s: unknown command %x\n",
1985 			       __func__, cmd);
1986 		return -EINVAL;
1987 	}
1988 	return err;
1989 }
1990 
1991 static int
1992 setup_hw(struct hfc_pci *hc)
1993 {
1994 	void	*buffer;
1995 
1996 	printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
1997 	hc->hw.cirm = 0;
1998 	hc->dch.state = 0;
1999 	pci_set_master(hc->pdev);
2000 	if (!hc->irq) {
2001 		printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2002 		return -EINVAL;
2003 	}
2004 	hc->hw.pci_io =
2005 		(char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2006 
2007 	if (!hc->hw.pci_io) {
2008 		printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2009 		return -ENOMEM;
2010 	}
2011 	/* Allocate memory for FIFOS */
2012 	/* the memory needs to be on a 32k boundary within the first 4G */
2013 	if (dma_set_mask(&hc->pdev->dev, 0xFFFF8000)) {
2014 		printk(KERN_WARNING
2015 		       "HFC-PCI: No usable DMA configuration!\n");
2016 		return -EIO;
2017 	}
2018 	buffer = dma_alloc_coherent(&hc->pdev->dev, 0x8000, &hc->hw.dmahandle,
2019 				    GFP_KERNEL);
2020 	/* We silently assume the address is okay if nonzero */
2021 	if (!buffer) {
2022 		printk(KERN_WARNING
2023 		       "HFC-PCI: Error allocating memory for FIFO!\n");
2024 		return -ENOMEM;
2025 	}
2026 	hc->hw.fifos = buffer;
2027 	pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2028 	hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2029 	if (unlikely(!hc->hw.pci_io)) {
2030 		printk(KERN_WARNING
2031 		       "HFC-PCI: Error in ioremap for PCI!\n");
2032 		dma_free_coherent(&hc->pdev->dev, 0x8000, hc->hw.fifos,
2033 				  hc->hw.dmahandle);
2034 		return -ENOMEM;
2035 	}
2036 
2037 	printk(KERN_INFO
2038 	       "HFC-PCI: defined at mem %#lx fifo %p(%pad) IRQ %d HZ %d\n",
2039 	       (u_long) hc->hw.pci_io, hc->hw.fifos,
2040 	       &hc->hw.dmahandle, hc->irq, HZ);
2041 
2042 	/* enable memory mapped ports, disable busmaster */
2043 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2044 	hc->hw.int_m2 = 0;
2045 	disable_hwirq(hc);
2046 	hc->hw.int_m1 = 0;
2047 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2048 	/* At this point the needed PCI config is done */
2049 	/* fifos are still not enabled */
2050 	timer_setup(&hc->hw.timer, hfcpci_Timer, 0);
2051 	/* default PCM master */
2052 	test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2053 	return 0;
2054 }
2055 
2056 static void
2057 release_card(struct hfc_pci *hc) {
2058 	u_long	flags;
2059 
2060 	spin_lock_irqsave(&hc->lock, flags);
2061 	hc->hw.int_m2 = 0; /* interrupt output off ! */
2062 	disable_hwirq(hc);
2063 	mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2064 	mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2065 	if (hc->dch.timer.function != NULL) {
2066 		del_timer(&hc->dch.timer);
2067 		hc->dch.timer.function = NULL;
2068 	}
2069 	spin_unlock_irqrestore(&hc->lock, flags);
2070 	if (hc->hw.protocol == ISDN_P_TE_S0)
2071 		l1_event(hc->dch.l1, CLOSE_CHANNEL);
2072 	if (hc->initdone)
2073 		free_irq(hc->irq, hc);
2074 	release_io_hfcpci(hc); /* must release after free_irq! */
2075 	mISDN_unregister_device(&hc->dch.dev);
2076 	mISDN_freebchannel(&hc->bch[1]);
2077 	mISDN_freebchannel(&hc->bch[0]);
2078 	mISDN_freedchannel(&hc->dch);
2079 	pci_set_drvdata(hc->pdev, NULL);
2080 	kfree(hc);
2081 }
2082 
2083 static int
2084 setup_card(struct hfc_pci *card)
2085 {
2086 	int		err = -EINVAL;
2087 	u_int		i;
2088 	char		name[MISDN_MAX_IDLEN];
2089 
2090 	card->dch.debug = debug;
2091 	spin_lock_init(&card->lock);
2092 	mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2093 	card->dch.hw = card;
2094 	card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2095 	card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2096 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2097 	card->dch.dev.D.send = hfcpci_l2l1D;
2098 	card->dch.dev.D.ctrl = hfc_dctrl;
2099 	card->dch.dev.nrbchan = 2;
2100 	for (i = 0; i < 2; i++) {
2101 		card->bch[i].nr = i + 1;
2102 		set_channelmap(i + 1, card->dch.dev.channelmap);
2103 		card->bch[i].debug = debug;
2104 		mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2105 		card->bch[i].hw = card;
2106 		card->bch[i].ch.send = hfcpci_l2l1B;
2107 		card->bch[i].ch.ctrl = hfc_bctrl;
2108 		card->bch[i].ch.nr = i + 1;
2109 		list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2110 	}
2111 	err = setup_hw(card);
2112 	if (err)
2113 		goto error;
2114 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2115 	err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2116 	if (err)
2117 		goto error;
2118 	HFC_cnt++;
2119 	printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2120 	return 0;
2121 error:
2122 	mISDN_freebchannel(&card->bch[1]);
2123 	mISDN_freebchannel(&card->bch[0]);
2124 	mISDN_freedchannel(&card->dch);
2125 	kfree(card);
2126 	return err;
2127 }
2128 
2129 /* private data in the PCI devices list */
2130 struct _hfc_map {
2131 	u_int	subtype;
2132 	u_int	flag;
2133 	char	*name;
2134 };
2135 
2136 static const struct _hfc_map hfc_map[] =
2137 {
2138 	{HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2139 	{HFC_CCD_B000, 0, "Billion B000"},
2140 	{HFC_CCD_B006, 0, "Billion B006"},
2141 	{HFC_CCD_B007, 0, "Billion B007"},
2142 	{HFC_CCD_B008, 0, "Billion B008"},
2143 	{HFC_CCD_B009, 0, "Billion B009"},
2144 	{HFC_CCD_B00A, 0, "Billion B00A"},
2145 	{HFC_CCD_B00B, 0, "Billion B00B"},
2146 	{HFC_CCD_B00C, 0, "Billion B00C"},
2147 	{HFC_CCD_B100, 0, "Seyeon B100"},
2148 	{HFC_CCD_B700, 0, "Primux II S0 B700"},
2149 	{HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2150 	{HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2151 	{HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2152 	{HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2153 	{HFC_BERKOM_A1T, 0, "German telekom A1T"},
2154 	{HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2155 	{HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2156 	{HFC_DIGI_DF_M_IOM2_E, 0,
2157 	 "Digi International DataFire Micro V IOM2 (Europe)"},
2158 	{HFC_DIGI_DF_M_E, 0,
2159 	 "Digi International DataFire Micro V (Europe)"},
2160 	{HFC_DIGI_DF_M_IOM2_A, 0,
2161 	 "Digi International DataFire Micro V IOM2 (North America)"},
2162 	{HFC_DIGI_DF_M_A, 0,
2163 	 "Digi International DataFire Micro V (North America)"},
2164 	{HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2165 	{},
2166 };
2167 
2168 static const struct pci_device_id hfc_ids[] =
2169 {
2170 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2171 	  (unsigned long) &hfc_map[0] },
2172 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2173 	  (unsigned long) &hfc_map[1] },
2174 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2175 	  (unsigned long) &hfc_map[2] },
2176 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2177 	  (unsigned long) &hfc_map[3] },
2178 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2179 	  (unsigned long) &hfc_map[4] },
2180 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2181 	  (unsigned long) &hfc_map[5] },
2182 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2183 	  (unsigned long) &hfc_map[6] },
2184 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2185 	  (unsigned long) &hfc_map[7] },
2186 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2187 	  (unsigned long) &hfc_map[8] },
2188 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2189 	  (unsigned long) &hfc_map[9] },
2190 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2191 	  (unsigned long) &hfc_map[10] },
2192 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2193 	  (unsigned long) &hfc_map[11] },
2194 	{ PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2195 	  (unsigned long) &hfc_map[12] },
2196 	{ PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2197 	  (unsigned long) &hfc_map[13] },
2198 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2199 	  (unsigned long) &hfc_map[14] },
2200 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2201 	  (unsigned long) &hfc_map[15] },
2202 	{ PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2203 	  (unsigned long) &hfc_map[16] },
2204 	{ PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2205 	  (unsigned long) &hfc_map[17] },
2206 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2207 	  (unsigned long) &hfc_map[18] },
2208 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2209 	  (unsigned long) &hfc_map[19] },
2210 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2211 	  (unsigned long) &hfc_map[20] },
2212 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2213 	  (unsigned long) &hfc_map[21] },
2214 	{ PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2215 	  (unsigned long) &hfc_map[22] },
2216 	{},
2217 };
2218 
2219 static int
2220 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2221 {
2222 	int		err = -ENOMEM;
2223 	struct hfc_pci	*card;
2224 	struct _hfc_map	*m = (struct _hfc_map *)ent->driver_data;
2225 
2226 	card = kzalloc(sizeof(struct hfc_pci), GFP_KERNEL);
2227 	if (!card) {
2228 		printk(KERN_ERR "No kmem for HFC card\n");
2229 		return err;
2230 	}
2231 	card->pdev = pdev;
2232 	card->subtype = m->subtype;
2233 	err = pci_enable_device(pdev);
2234 	if (err) {
2235 		kfree(card);
2236 		return err;
2237 	}
2238 
2239 	printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2240 	       m->name, pci_name(pdev));
2241 
2242 	card->irq = pdev->irq;
2243 	pci_set_drvdata(pdev, card);
2244 	err = setup_card(card);
2245 	if (err)
2246 		pci_set_drvdata(pdev, NULL);
2247 	return err;
2248 }
2249 
2250 static void
2251 hfc_remove_pci(struct pci_dev *pdev)
2252 {
2253 	struct hfc_pci	*card = pci_get_drvdata(pdev);
2254 
2255 	if (card)
2256 		release_card(card);
2257 	else
2258 		if (debug)
2259 			printk(KERN_DEBUG "%s: drvdata already removed\n",
2260 			       __func__);
2261 }
2262 
2263 
2264 static struct pci_driver hfc_driver = {
2265 	.name = "hfcpci",
2266 	.probe = hfc_probe,
2267 	.remove = hfc_remove_pci,
2268 	.id_table = hfc_ids,
2269 };
2270 
2271 static int
2272 _hfcpci_softirq(struct device *dev, void *unused)
2273 {
2274 	struct hfc_pci  *hc = dev_get_drvdata(dev);
2275 	struct bchannel *bch;
2276 	if (hc == NULL)
2277 		return 0;
2278 
2279 	if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2280 		spin_lock_irq(&hc->lock);
2281 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2282 		if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2283 			main_rec_hfcpci(bch);
2284 			tx_birq(bch);
2285 		}
2286 		bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2287 		if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2288 			main_rec_hfcpci(bch);
2289 			tx_birq(bch);
2290 		}
2291 		spin_unlock_irq(&hc->lock);
2292 	}
2293 	return 0;
2294 }
2295 
2296 static void
2297 hfcpci_softirq(struct timer_list *unused)
2298 {
2299 	WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, NULL,
2300 				      _hfcpci_softirq) != 0);
2301 
2302 	/* if next event would be in the past ... */
2303 	if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2304 		hfc_jiffies = jiffies + 1;
2305 	else
2306 		hfc_jiffies += tics;
2307 	hfc_tl.expires = hfc_jiffies;
2308 	add_timer(&hfc_tl);
2309 }
2310 
2311 static int __init
2312 HFC_init(void)
2313 {
2314 	int		err;
2315 
2316 	if (!poll)
2317 		poll = HFCPCI_BTRANS_THRESHOLD;
2318 
2319 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2320 		tics = (poll * HZ) / 8000;
2321 		if (tics < 1)
2322 			tics = 1;
2323 		poll = (tics * 8000) / HZ;
2324 		if (poll > 256 || poll < 8) {
2325 			printk(KERN_ERR "%s: Wrong poll value %d not in range "
2326 			       "of 8..256.\n", __func__, poll);
2327 			err = -EINVAL;
2328 			return err;
2329 		}
2330 	}
2331 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2332 		printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2333 		       __func__, poll);
2334 		timer_setup(&hfc_tl, hfcpci_softirq, 0);
2335 		hfc_tl.expires = jiffies + tics;
2336 		hfc_jiffies = hfc_tl.expires;
2337 		add_timer(&hfc_tl);
2338 	} else
2339 		tics = 0; /* indicate the use of controller's timer */
2340 
2341 	err = pci_register_driver(&hfc_driver);
2342 	if (err) {
2343 		if (timer_pending(&hfc_tl))
2344 			del_timer(&hfc_tl);
2345 	}
2346 
2347 	return err;
2348 }
2349 
2350 static void __exit
2351 HFC_cleanup(void)
2352 {
2353 	del_timer_sync(&hfc_tl);
2354 
2355 	pci_unregister_driver(&hfc_driver);
2356 }
2357 
2358 module_init(HFC_init);
2359 module_exit(HFC_cleanup);
2360 
2361 MODULE_DEVICE_TABLE(pci, hfc_ids);
2362