1 /* 2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards 3 * 4 * Author Andreas Eversberg (jolly@eversberg.eu) 5 * ported to mqueue mechanism: 6 * Peter Sprenger (sprengermoving-bytes.de) 7 * 8 * inspired by existing hfc-pci driver: 9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de) 10 * Copyright 2008 by Karsten Keil (kkeil@suse.de) 11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu) 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * 28 * Thanks to Cologne Chip AG for this great controller! 29 */ 30 31 /* 32 * module parameters: 33 * type: 34 * By default (0), the card is automatically detected. 35 * Or use the following combinations: 36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port) 37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports) 38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports) 39 * Bit 8 = 0x00100 = uLaw (instead of aLaw) 40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware 41 * Bit 10 = spare 42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto) 43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto) 44 * Bit 13 = spare 45 * Bit 14 = 0x04000 = Use external ram (128K) 46 * Bit 15 = 0x08000 = Use external ram (512K) 47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32 48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else 49 * Bit 18 = spare 50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog) 51 * (all other bits are reserved and shall be 0) 52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM 53 * bus (PCM master) 54 * 55 * port: (optional or required for all ports on all installed cards) 56 * HFC-4S/HFC-8S only bits: 57 * Bit 0 = 0x001 = Use master clock for this S/T interface 58 * (ony once per chip). 59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode) 60 * Don't use this unless you know what you are doing! 61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing) 62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock 63 * received from port 1 64 * 65 * HFC-E1 only bits: 66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical 67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode) 68 * Bit 2 = 0x0004 = Report LOS 69 * Bit 3 = 0x0008 = Report AIS 70 * Bit 4 = 0x0010 = Report SLIP 71 * Bit 5 = 0x0020 = Report RDI 72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame 73 * mode instead. 74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode. 75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode. 76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL. 77 * (E1 only) 78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0 79 * for default. 80 * (all other bits are reserved and shall be 0) 81 * 82 * debug: 83 * NOTE: only one debug value must be given for all cards 84 * enable debugging (see hfc_multi.h for debug options) 85 * 86 * poll: 87 * NOTE: only one poll value must be given for all cards 88 * Give the number of samples for each fifo process. 89 * By default 128 is used. Decrease to reduce delay, increase to 90 * reduce cpu load. If unsure, don't mess with it! 91 * Valid is 8, 16, 32, 64, 128, 256. 92 * 93 * pcm: 94 * NOTE: only one pcm value must be given for every card. 95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus. 96 * By default (0), the PCM bus id is 100 for the card that is PCM master. 97 * If multiple cards are PCM master (because they are not interconnected), 98 * each card with PCM master will have increasing PCM id. 99 * All PCM busses with the same ID are expected to be connected and have 100 * common time slots slots. 101 * Only one chip of the PCM bus must be master, the others slave. 102 * -1 means no support of PCM bus not even. 103 * Omit this value, if all cards are interconnected or none is connected. 104 * If unsure, don't give this parameter. 105 * 106 * dmask and bmask: 107 * NOTE: One dmask value must be given for every HFC-E1 card. 108 * If omitted, the E1 card has D-channel on time slot 16, which is default. 109 * dmask is a 32 bit mask. The bit must be set for an alternate time slot. 110 * If multiple bits are set, multiple virtual card fragments are created. 111 * For each bit set, a bmask value must be given. Each bit on the bmask 112 * value stands for a B-channel. The bmask may not overlap with dmask or 113 * with other bmask values for that card. 114 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000 115 * This will create one fragment with D-channel on slot 1 with 116 * B-channels on slots 2..15, and a second fragment with D-channel 117 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused. 118 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will 119 * not function. 120 * Example: dmask=0x00000001 bmask=0xfffffffe 121 * This will create a port with all 31 usable timeslots as 122 * B-channels. 123 * If no bits are set on bmask, no B-channel is created for that fragment. 124 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask) 125 * This will create 31 ports with one D-channel only. 126 * If you don't know how to use it, you don't need it! 127 * 128 * iomode: 129 * NOTE: only one mode value must be given for every card. 130 * -> See hfc_multi.h for HFC_IO_MODE_* values 131 * By default, the IO mode is pci memory IO (MEMIO). 132 * Some cards require specific IO mode, so it cannot be changed. 133 * It may be useful to set IO mode to register io (REGIO) to solve 134 * PCI bridge problems. 135 * If unsure, don't give this parameter. 136 * 137 * clockdelay_nt: 138 * NOTE: only one clockdelay_nt value must be given once for all cards. 139 * Give the value of the clock control register (A_ST_CLK_DLY) 140 * of the S/T interfaces in NT mode. 141 * This register is needed for the TBR3 certification, so don't change it. 142 * 143 * clockdelay_te: 144 * NOTE: only one clockdelay_te value must be given once 145 * Give the value of the clock control register (A_ST_CLK_DLY) 146 * of the S/T interfaces in TE mode. 147 * This register is needed for the TBR3 certification, so don't change it. 148 * 149 * clock: 150 * NOTE: only one clock value must be given once 151 * Selects interface with clock source for mISDN and applications. 152 * Set to card number starting with 1. Set to -1 to disable. 153 * By default, the first card is used as clock source. 154 * 155 * hwid: 156 * NOTE: only one hwid value must be given once 157 * Enable special embedded devices with XHFC controllers. 158 */ 159 160 /* 161 * debug register access (never use this, it will flood your system log) 162 * #define HFC_REGISTER_DEBUG 163 */ 164 165 #define HFC_MULTI_VERSION "2.03" 166 167 #include <linux/interrupt.h> 168 #include <linux/module.h> 169 #include <linux/slab.h> 170 #include <linux/pci.h> 171 #include <linux/delay.h> 172 #include <linux/mISDNhw.h> 173 #include <linux/mISDNdsp.h> 174 175 /* 176 #define IRQCOUNT_DEBUG 177 #define IRQ_DEBUG 178 */ 179 180 #include "hfc_multi.h" 181 #ifdef ECHOPREP 182 #include "gaintab.h" 183 #endif 184 185 #define MAX_CARDS 8 186 #define MAX_PORTS (8 * MAX_CARDS) 187 #define MAX_FRAGS (32 * MAX_CARDS) 188 189 static LIST_HEAD(HFClist); 190 static spinlock_t HFClock; /* global hfc list lock */ 191 192 static void ph_state_change(struct dchannel *); 193 194 static struct hfc_multi *syncmaster; 195 static int plxsd_master; /* if we have a master card (yet) */ 196 static spinlock_t plx_lock; /* may not acquire other lock inside */ 197 198 #define TYP_E1 1 199 #define TYP_4S 4 200 #define TYP_8S 8 201 202 static int poll_timer = 6; /* default = 128 samples = 16ms */ 203 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */ 204 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 }; 205 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */ 206 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode 207 (0x60 MUST be included!) */ 208 209 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */ 210 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */ 211 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */ 212 213 /* 214 * module stuff 215 */ 216 217 static uint type[MAX_CARDS]; 218 static int pcm[MAX_CARDS]; 219 static uint dmask[MAX_CARDS]; 220 static uint bmask[MAX_FRAGS]; 221 static uint iomode[MAX_CARDS]; 222 static uint port[MAX_PORTS]; 223 static uint debug; 224 static uint poll; 225 static int clock; 226 static uint timer; 227 static uint clockdelay_te = CLKDEL_TE; 228 static uint clockdelay_nt = CLKDEL_NT; 229 #define HWID_NONE 0 230 #define HWID_MINIP4 1 231 #define HWID_MINIP8 2 232 #define HWID_MINIP16 3 233 static uint hwid = HWID_NONE; 234 235 static int HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99; 236 237 MODULE_AUTHOR("Andreas Eversberg"); 238 MODULE_LICENSE("GPL"); 239 MODULE_VERSION(HFC_MULTI_VERSION); 240 module_param(debug, uint, S_IRUGO | S_IWUSR); 241 module_param(poll, uint, S_IRUGO | S_IWUSR); 242 module_param(clock, int, S_IRUGO | S_IWUSR); 243 module_param(timer, uint, S_IRUGO | S_IWUSR); 244 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR); 245 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR); 246 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR); 247 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR); 248 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR); 249 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR); 250 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR); 251 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR); 252 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */ 253 254 #ifdef HFC_REGISTER_DEBUG 255 #define HFC_outb(hc, reg, val) \ 256 (hc->HFC_outb(hc, reg, val, __func__, __LINE__)) 257 #define HFC_outb_nodebug(hc, reg, val) \ 258 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__)) 259 #define HFC_inb(hc, reg) \ 260 (hc->HFC_inb(hc, reg, __func__, __LINE__)) 261 #define HFC_inb_nodebug(hc, reg) \ 262 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__)) 263 #define HFC_inw(hc, reg) \ 264 (hc->HFC_inw(hc, reg, __func__, __LINE__)) 265 #define HFC_inw_nodebug(hc, reg) \ 266 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__)) 267 #define HFC_wait(hc) \ 268 (hc->HFC_wait(hc, __func__, __LINE__)) 269 #define HFC_wait_nodebug(hc) \ 270 (hc->HFC_wait_nodebug(hc, __func__, __LINE__)) 271 #else 272 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val)) 273 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val)) 274 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg)) 275 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg)) 276 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg)) 277 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg)) 278 #define HFC_wait(hc) (hc->HFC_wait(hc)) 279 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc)) 280 #endif 281 282 #ifdef CONFIG_MISDN_HFCMULTI_8xx 283 #include "hfc_multi_8xx.h" 284 #endif 285 286 /* HFC_IO_MODE_PCIMEM */ 287 static void 288 #ifdef HFC_REGISTER_DEBUG 289 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val, 290 const char *function, int line) 291 #else 292 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val) 293 #endif 294 { 295 writeb(val, hc->pci_membase + reg); 296 } 297 static u_char 298 #ifdef HFC_REGISTER_DEBUG 299 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line) 300 #else 301 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg) 302 #endif 303 { 304 return readb(hc->pci_membase + reg); 305 } 306 static u_short 307 #ifdef HFC_REGISTER_DEBUG 308 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line) 309 #else 310 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg) 311 #endif 312 { 313 return readw(hc->pci_membase + reg); 314 } 315 static void 316 #ifdef HFC_REGISTER_DEBUG 317 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line) 318 #else 319 HFC_wait_pcimem(struct hfc_multi *hc) 320 #endif 321 { 322 while (readb(hc->pci_membase + R_STATUS) & V_BUSY) 323 cpu_relax(); 324 } 325 326 /* HFC_IO_MODE_REGIO */ 327 static void 328 #ifdef HFC_REGISTER_DEBUG 329 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val, 330 const char *function, int line) 331 #else 332 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val) 333 #endif 334 { 335 outb(reg, hc->pci_iobase + 4); 336 outb(val, hc->pci_iobase); 337 } 338 static u_char 339 #ifdef HFC_REGISTER_DEBUG 340 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line) 341 #else 342 HFC_inb_regio(struct hfc_multi *hc, u_char reg) 343 #endif 344 { 345 outb(reg, hc->pci_iobase + 4); 346 return inb(hc->pci_iobase); 347 } 348 static u_short 349 #ifdef HFC_REGISTER_DEBUG 350 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line) 351 #else 352 HFC_inw_regio(struct hfc_multi *hc, u_char reg) 353 #endif 354 { 355 outb(reg, hc->pci_iobase + 4); 356 return inw(hc->pci_iobase); 357 } 358 static void 359 #ifdef HFC_REGISTER_DEBUG 360 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line) 361 #else 362 HFC_wait_regio(struct hfc_multi *hc) 363 #endif 364 { 365 outb(R_STATUS, hc->pci_iobase + 4); 366 while (inb(hc->pci_iobase) & V_BUSY) 367 cpu_relax(); 368 } 369 370 #ifdef HFC_REGISTER_DEBUG 371 static void 372 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val, 373 const char *function, int line) 374 { 375 char regname[256] = "", bits[9] = "xxxxxxxx"; 376 int i; 377 378 i = -1; 379 while (hfc_register_names[++i].name) { 380 if (hfc_register_names[i].reg == reg) 381 strcat(regname, hfc_register_names[i].name); 382 } 383 if (regname[0] == '\0') 384 strcpy(regname, "register"); 385 386 bits[7] = '0' + (!!(val & 1)); 387 bits[6] = '0' + (!!(val & 2)); 388 bits[5] = '0' + (!!(val & 4)); 389 bits[4] = '0' + (!!(val & 8)); 390 bits[3] = '0' + (!!(val & 16)); 391 bits[2] = '0' + (!!(val & 32)); 392 bits[1] = '0' + (!!(val & 64)); 393 bits[0] = '0' + (!!(val & 128)); 394 printk(KERN_DEBUG 395 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n", 396 hc->id, reg, regname, val, bits, function, line); 397 HFC_outb_nodebug(hc, reg, val); 398 } 399 static u_char 400 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line) 401 { 402 char regname[256] = "", bits[9] = "xxxxxxxx"; 403 u_char val = HFC_inb_nodebug(hc, reg); 404 int i; 405 406 i = 0; 407 while (hfc_register_names[i++].name) 408 ; 409 while (hfc_register_names[++i].name) { 410 if (hfc_register_names[i].reg == reg) 411 strcat(regname, hfc_register_names[i].name); 412 } 413 if (regname[0] == '\0') 414 strcpy(regname, "register"); 415 416 bits[7] = '0' + (!!(val & 1)); 417 bits[6] = '0' + (!!(val & 2)); 418 bits[5] = '0' + (!!(val & 4)); 419 bits[4] = '0' + (!!(val & 8)); 420 bits[3] = '0' + (!!(val & 16)); 421 bits[2] = '0' + (!!(val & 32)); 422 bits[1] = '0' + (!!(val & 64)); 423 bits[0] = '0' + (!!(val & 128)); 424 printk(KERN_DEBUG 425 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n", 426 hc->id, reg, regname, val, bits, function, line); 427 return val; 428 } 429 static u_short 430 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line) 431 { 432 char regname[256] = ""; 433 u_short val = HFC_inw_nodebug(hc, reg); 434 int i; 435 436 i = 0; 437 while (hfc_register_names[i++].name) 438 ; 439 while (hfc_register_names[++i].name) { 440 if (hfc_register_names[i].reg == reg) 441 strcat(regname, hfc_register_names[i].name); 442 } 443 if (regname[0] == '\0') 444 strcpy(regname, "register"); 445 446 printk(KERN_DEBUG 447 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n", 448 hc->id, reg, regname, val, function, line); 449 return val; 450 } 451 static void 452 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line) 453 { 454 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n", 455 hc->id, function, line); 456 HFC_wait_nodebug(hc); 457 } 458 #endif 459 460 /* write fifo data (REGIO) */ 461 static void 462 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len) 463 { 464 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4); 465 while (len >> 2) { 466 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase); 467 data += 4; 468 len -= 4; 469 } 470 while (len >> 1) { 471 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase); 472 data += 2; 473 len -= 2; 474 } 475 while (len) { 476 outb(*data, hc->pci_iobase); 477 data++; 478 len--; 479 } 480 } 481 /* write fifo data (PCIMEM) */ 482 static void 483 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len) 484 { 485 while (len >> 2) { 486 writel(cpu_to_le32(*(u32 *)data), 487 hc->pci_membase + A_FIFO_DATA0); 488 data += 4; 489 len -= 4; 490 } 491 while (len >> 1) { 492 writew(cpu_to_le16(*(u16 *)data), 493 hc->pci_membase + A_FIFO_DATA0); 494 data += 2; 495 len -= 2; 496 } 497 while (len) { 498 writeb(*data, hc->pci_membase + A_FIFO_DATA0); 499 data++; 500 len--; 501 } 502 } 503 504 /* read fifo data (REGIO) */ 505 static void 506 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len) 507 { 508 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4); 509 while (len >> 2) { 510 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase)); 511 data += 4; 512 len -= 4; 513 } 514 while (len >> 1) { 515 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase)); 516 data += 2; 517 len -= 2; 518 } 519 while (len) { 520 *data = inb(hc->pci_iobase); 521 data++; 522 len--; 523 } 524 } 525 526 /* read fifo data (PCIMEM) */ 527 static void 528 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len) 529 { 530 while (len >> 2) { 531 *(u32 *)data = 532 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0)); 533 data += 4; 534 len -= 4; 535 } 536 while (len >> 1) { 537 *(u16 *)data = 538 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0)); 539 data += 2; 540 len -= 2; 541 } 542 while (len) { 543 *data = readb(hc->pci_membase + A_FIFO_DATA0); 544 data++; 545 len--; 546 } 547 } 548 549 static void 550 enable_hwirq(struct hfc_multi *hc) 551 { 552 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN; 553 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl); 554 } 555 556 static void 557 disable_hwirq(struct hfc_multi *hc) 558 { 559 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN); 560 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl); 561 } 562 563 #define NUM_EC 2 564 #define MAX_TDM_CHAN 32 565 566 567 static inline void 568 enablepcibridge(struct hfc_multi *c) 569 { 570 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */ 571 } 572 573 static inline void 574 disablepcibridge(struct hfc_multi *c) 575 { 576 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */ 577 } 578 579 static inline unsigned char 580 readpcibridge(struct hfc_multi *hc, unsigned char address) 581 { 582 unsigned short cipv; 583 unsigned char data; 584 585 if (!hc->pci_iobase) 586 return 0; 587 588 /* slow down a PCI read access by 1 PCI clock cycle */ 589 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/ 590 591 if (address == 0) 592 cipv = 0x4000; 593 else 594 cipv = 0x5800; 595 596 /* select local bridge port address by writing to CIP port */ 597 /* data = HFC_inb(c, cipv); * was _io before */ 598 outw(cipv, hc->pci_iobase + 4); 599 data = inb(hc->pci_iobase); 600 601 /* restore R_CTRL for normal PCI read cycle speed */ 602 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */ 603 604 return data; 605 } 606 607 static inline void 608 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data) 609 { 610 unsigned short cipv; 611 unsigned int datav; 612 613 if (!hc->pci_iobase) 614 return; 615 616 if (address == 0) 617 cipv = 0x4000; 618 else 619 cipv = 0x5800; 620 621 /* select local bridge port address by writing to CIP port */ 622 outw(cipv, hc->pci_iobase + 4); 623 /* define a 32 bit dword with 4 identical bytes for write sequence */ 624 datav = data | ((__u32) data << 8) | ((__u32) data << 16) | 625 ((__u32) data << 24); 626 627 /* 628 * write this 32 bit dword to the bridge data port 629 * this will initiate a write sequence of up to 4 writes to the same 630 * address on the local bus interface the number of write accesses 631 * is undefined but >=1 and depends on the next PCI transaction 632 * during write sequence on the local bus 633 */ 634 outl(datav, hc->pci_iobase); 635 } 636 637 static inline void 638 cpld_set_reg(struct hfc_multi *hc, unsigned char reg) 639 { 640 /* Do data pin read low byte */ 641 HFC_outb(hc, R_GPIO_OUT1, reg); 642 } 643 644 static inline void 645 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val) 646 { 647 cpld_set_reg(hc, reg); 648 649 enablepcibridge(hc); 650 writepcibridge(hc, 1, val); 651 disablepcibridge(hc); 652 653 return; 654 } 655 656 static inline unsigned char 657 cpld_read_reg(struct hfc_multi *hc, unsigned char reg) 658 { 659 unsigned char bytein; 660 661 cpld_set_reg(hc, reg); 662 663 /* Do data pin read low byte */ 664 HFC_outb(hc, R_GPIO_OUT1, reg); 665 666 enablepcibridge(hc); 667 bytein = readpcibridge(hc, 1); 668 disablepcibridge(hc); 669 670 return bytein; 671 } 672 673 static inline void 674 vpm_write_address(struct hfc_multi *hc, unsigned short addr) 675 { 676 cpld_write_reg(hc, 0, 0xff & addr); 677 cpld_write_reg(hc, 1, 0x01 & (addr >> 8)); 678 } 679 680 static inline unsigned short 681 vpm_read_address(struct hfc_multi *c) 682 { 683 unsigned short addr; 684 unsigned short highbit; 685 686 addr = cpld_read_reg(c, 0); 687 highbit = cpld_read_reg(c, 1); 688 689 addr = addr | (highbit << 8); 690 691 return addr & 0x1ff; 692 } 693 694 static inline unsigned char 695 vpm_in(struct hfc_multi *c, int which, unsigned short addr) 696 { 697 unsigned char res; 698 699 vpm_write_address(c, addr); 700 701 if (!which) 702 cpld_set_reg(c, 2); 703 else 704 cpld_set_reg(c, 3); 705 706 enablepcibridge(c); 707 res = readpcibridge(c, 1); 708 disablepcibridge(c); 709 710 cpld_set_reg(c, 0); 711 712 return res; 713 } 714 715 static inline void 716 vpm_out(struct hfc_multi *c, int which, unsigned short addr, 717 unsigned char data) 718 { 719 vpm_write_address(c, addr); 720 721 enablepcibridge(c); 722 723 if (!which) 724 cpld_set_reg(c, 2); 725 else 726 cpld_set_reg(c, 3); 727 728 writepcibridge(c, 1, data); 729 730 cpld_set_reg(c, 0); 731 732 disablepcibridge(c); 733 734 { 735 unsigned char regin; 736 regin = vpm_in(c, which, addr); 737 if (regin != data) 738 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back " 739 "0x%x\n", data, addr, regin); 740 } 741 742 } 743 744 745 static void 746 vpm_init(struct hfc_multi *wc) 747 { 748 unsigned char reg; 749 unsigned int mask; 750 unsigned int i, x, y; 751 unsigned int ver; 752 753 for (x = 0; x < NUM_EC; x++) { 754 /* Setup GPIO's */ 755 if (!x) { 756 ver = vpm_in(wc, x, 0x1a0); 757 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver); 758 } 759 760 for (y = 0; y < 4; y++) { 761 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */ 762 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */ 763 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */ 764 } 765 766 /* Setup TDM path - sets fsync and tdm_clk as inputs */ 767 reg = vpm_in(wc, x, 0x1a3); /* misc_con */ 768 vpm_out(wc, x, 0x1a3, reg & ~2); 769 770 /* Setup Echo length (256 taps) */ 771 vpm_out(wc, x, 0x022, 1); 772 vpm_out(wc, x, 0x023, 0xff); 773 774 /* Setup timeslots */ 775 vpm_out(wc, x, 0x02f, 0x00); 776 mask = 0x02020202 << (x * 4); 777 778 /* Setup the tdm channel masks for all chips */ 779 for (i = 0; i < 4; i++) 780 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff); 781 782 /* Setup convergence rate */ 783 printk(KERN_DEBUG "VPM: A-law mode\n"); 784 reg = 0x00 | 0x10 | 0x01; 785 vpm_out(wc, x, 0x20, reg); 786 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg); 787 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */ 788 789 vpm_out(wc, x, 0x24, 0x02); 790 reg = vpm_in(wc, x, 0x24); 791 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg); 792 793 /* Initialize echo cans */ 794 for (i = 0; i < MAX_TDM_CHAN; i++) { 795 if (mask & (0x00000001 << i)) 796 vpm_out(wc, x, i, 0x00); 797 } 798 799 /* 800 * ARM arch at least disallows a udelay of 801 * more than 2ms... it gives a fake "__bad_udelay" 802 * reference at link-time. 803 * long delays in kernel code are pretty sucky anyway 804 * for now work around it using 5 x 2ms instead of 1 x 10ms 805 */ 806 807 udelay(2000); 808 udelay(2000); 809 udelay(2000); 810 udelay(2000); 811 udelay(2000); 812 813 /* Put in bypass mode */ 814 for (i = 0; i < MAX_TDM_CHAN; i++) { 815 if (mask & (0x00000001 << i)) 816 vpm_out(wc, x, i, 0x01); 817 } 818 819 /* Enable bypass */ 820 for (i = 0; i < MAX_TDM_CHAN; i++) { 821 if (mask & (0x00000001 << i)) 822 vpm_out(wc, x, 0x78 + i, 0x01); 823 } 824 825 } 826 } 827 828 #ifdef UNUSED 829 static void 830 vpm_check(struct hfc_multi *hctmp) 831 { 832 unsigned char gpi2; 833 834 gpi2 = HFC_inb(hctmp, R_GPI_IN2); 835 836 if ((gpi2 & 0x3) != 0x3) 837 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2); 838 } 839 #endif /* UNUSED */ 840 841 842 /* 843 * Interface to enable/disable the HW Echocan 844 * 845 * these functions are called within a spin_lock_irqsave on 846 * the channel instance lock, so we are not disturbed by irqs 847 * 848 * we can later easily change the interface to make other 849 * things configurable, for now we configure the taps 850 * 851 */ 852 853 static void 854 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps) 855 { 856 unsigned int timeslot; 857 unsigned int unit; 858 struct bchannel *bch = hc->chan[ch].bch; 859 #ifdef TXADJ 860 int txadj = -4; 861 struct sk_buff *skb; 862 #endif 863 if (hc->chan[ch].protocol != ISDN_P_B_RAW) 864 return; 865 866 if (!bch) 867 return; 868 869 #ifdef TXADJ 870 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX, 871 sizeof(int), &txadj, GFP_ATOMIC); 872 if (skb) 873 recv_Bchannel_skb(bch, skb); 874 #endif 875 876 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1; 877 unit = ch % 4; 878 879 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n", 880 taps, timeslot); 881 882 vpm_out(hc, unit, timeslot, 0x7e); 883 } 884 885 static void 886 vpm_echocan_off(struct hfc_multi *hc, int ch) 887 { 888 unsigned int timeslot; 889 unsigned int unit; 890 struct bchannel *bch = hc->chan[ch].bch; 891 #ifdef TXADJ 892 int txadj = 0; 893 struct sk_buff *skb; 894 #endif 895 896 if (hc->chan[ch].protocol != ISDN_P_B_RAW) 897 return; 898 899 if (!bch) 900 return; 901 902 #ifdef TXADJ 903 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX, 904 sizeof(int), &txadj, GFP_ATOMIC); 905 if (skb) 906 recv_Bchannel_skb(bch, skb); 907 #endif 908 909 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1; 910 unit = ch % 4; 911 912 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n", 913 timeslot); 914 /* FILLME */ 915 vpm_out(hc, unit, timeslot, 0x01); 916 } 917 918 919 /* 920 * Speech Design resync feature 921 * NOTE: This is called sometimes outside interrupt handler. 922 * We must lock irqsave, so no other interrupt (other card) will occur! 923 * Also multiple interrupts may nest, so must lock each access (lists, card)! 924 */ 925 static inline void 926 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm) 927 { 928 struct hfc_multi *hc, *next, *pcmmaster = NULL; 929 void __iomem *plx_acc_32; 930 u_int pv; 931 u_long flags; 932 933 spin_lock_irqsave(&HFClock, flags); 934 spin_lock(&plx_lock); /* must be locked inside other locks */ 935 936 if (debug & DEBUG_HFCMULTI_PLXSD) 937 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n", 938 __func__, syncmaster); 939 940 /* select new master */ 941 if (newmaster) { 942 if (debug & DEBUG_HFCMULTI_PLXSD) 943 printk(KERN_DEBUG "using provided controller\n"); 944 } else { 945 list_for_each_entry_safe(hc, next, &HFClist, list) { 946 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 947 if (hc->syncronized) { 948 newmaster = hc; 949 break; 950 } 951 } 952 } 953 } 954 955 /* Disable sync of all cards */ 956 list_for_each_entry_safe(hc, next, &HFClist, list) { 957 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 958 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 959 pv = readl(plx_acc_32); 960 pv &= ~PLX_SYNC_O_EN; 961 writel(pv, plx_acc_32); 962 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) { 963 pcmmaster = hc; 964 if (hc->ctype == HFC_TYPE_E1) { 965 if (debug & DEBUG_HFCMULTI_PLXSD) 966 printk(KERN_DEBUG 967 "Schedule SYNC_I\n"); 968 hc->e1_resync |= 1; /* get SYNC_I */ 969 } 970 } 971 } 972 } 973 974 if (newmaster) { 975 hc = newmaster; 976 if (debug & DEBUG_HFCMULTI_PLXSD) 977 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with " 978 "interface.\n", hc->id, hc); 979 /* Enable new sync master */ 980 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 981 pv = readl(plx_acc_32); 982 pv |= PLX_SYNC_O_EN; 983 writel(pv, plx_acc_32); 984 /* switch to jatt PLL, if not disabled by RX_SYNC */ 985 if (hc->ctype == HFC_TYPE_E1 986 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) { 987 if (debug & DEBUG_HFCMULTI_PLXSD) 988 printk(KERN_DEBUG "Schedule jatt PLL\n"); 989 hc->e1_resync |= 2; /* switch to jatt */ 990 } 991 } else { 992 if (pcmmaster) { 993 hc = pcmmaster; 994 if (debug & DEBUG_HFCMULTI_PLXSD) 995 printk(KERN_DEBUG 996 "id=%d (0x%p) = PCM master syncronized " 997 "with QUARTZ\n", hc->id, hc); 998 if (hc->ctype == HFC_TYPE_E1) { 999 /* Use the crystal clock for the PCM 1000 master card */ 1001 if (debug & DEBUG_HFCMULTI_PLXSD) 1002 printk(KERN_DEBUG 1003 "Schedule QUARTZ for HFC-E1\n"); 1004 hc->e1_resync |= 4; /* switch quartz */ 1005 } else { 1006 if (debug & DEBUG_HFCMULTI_PLXSD) 1007 printk(KERN_DEBUG 1008 "QUARTZ is automatically " 1009 "enabled by HFC-%dS\n", hc->ctype); 1010 } 1011 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1012 pv = readl(plx_acc_32); 1013 pv |= PLX_SYNC_O_EN; 1014 writel(pv, plx_acc_32); 1015 } else 1016 if (!rm) 1017 printk(KERN_ERR "%s no pcm master, this MUST " 1018 "not happen!\n", __func__); 1019 } 1020 syncmaster = newmaster; 1021 1022 spin_unlock(&plx_lock); 1023 spin_unlock_irqrestore(&HFClock, flags); 1024 } 1025 1026 /* This must be called AND hc must be locked irqsave!!! */ 1027 static inline void 1028 plxsd_checksync(struct hfc_multi *hc, int rm) 1029 { 1030 if (hc->syncronized) { 1031 if (syncmaster == NULL) { 1032 if (debug & DEBUG_HFCMULTI_PLXSD) 1033 printk(KERN_DEBUG "%s: GOT sync on card %d" 1034 " (id=%d)\n", __func__, hc->id + 1, 1035 hc->id); 1036 hfcmulti_resync(hc, hc, rm); 1037 } 1038 } else { 1039 if (syncmaster == hc) { 1040 if (debug & DEBUG_HFCMULTI_PLXSD) 1041 printk(KERN_DEBUG "%s: LOST sync on card %d" 1042 " (id=%d)\n", __func__, hc->id + 1, 1043 hc->id); 1044 hfcmulti_resync(hc, NULL, rm); 1045 } 1046 } 1047 } 1048 1049 1050 /* 1051 * free hardware resources used by driver 1052 */ 1053 static void 1054 release_io_hfcmulti(struct hfc_multi *hc) 1055 { 1056 void __iomem *plx_acc_32; 1057 u_int pv; 1058 u_long plx_flags; 1059 1060 if (debug & DEBUG_HFCMULTI_INIT) 1061 printk(KERN_DEBUG "%s: entered\n", __func__); 1062 1063 /* soft reset also masks all interrupts */ 1064 hc->hw.r_cirm |= V_SRES; 1065 HFC_outb(hc, R_CIRM, hc->hw.r_cirm); 1066 udelay(1000); 1067 hc->hw.r_cirm &= ~V_SRES; 1068 HFC_outb(hc, R_CIRM, hc->hw.r_cirm); 1069 udelay(1000); /* instead of 'wait' that may cause locking */ 1070 1071 /* release Speech Design card, if PLX was initialized */ 1072 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) { 1073 if (debug & DEBUG_HFCMULTI_PLXSD) 1074 printk(KERN_DEBUG "%s: release PLXSD card %d\n", 1075 __func__, hc->id + 1); 1076 spin_lock_irqsave(&plx_lock, plx_flags); 1077 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1078 writel(PLX_GPIOC_INIT, plx_acc_32); 1079 pv = readl(plx_acc_32); 1080 /* Termination off */ 1081 pv &= ~PLX_TERM_ON; 1082 /* Disconnect the PCM */ 1083 pv |= PLX_SLAVE_EN_N; 1084 pv &= ~PLX_MASTER_EN; 1085 pv &= ~PLX_SYNC_O_EN; 1086 /* Put the DSP in Reset */ 1087 pv &= ~PLX_DSP_RES_N; 1088 writel(pv, plx_acc_32); 1089 if (debug & DEBUG_HFCMULTI_INIT) 1090 printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n", 1091 __func__, pv); 1092 spin_unlock_irqrestore(&plx_lock, plx_flags); 1093 } 1094 1095 /* disable memory mapped ports / io ports */ 1096 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */ 1097 if (hc->pci_dev) 1098 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0); 1099 if (hc->pci_membase) 1100 iounmap(hc->pci_membase); 1101 if (hc->plx_membase) 1102 iounmap(hc->plx_membase); 1103 if (hc->pci_iobase) 1104 release_region(hc->pci_iobase, 8); 1105 if (hc->xhfc_membase) 1106 iounmap((void *)hc->xhfc_membase); 1107 1108 if (hc->pci_dev) { 1109 pci_disable_device(hc->pci_dev); 1110 pci_set_drvdata(hc->pci_dev, NULL); 1111 } 1112 if (debug & DEBUG_HFCMULTI_INIT) 1113 printk(KERN_DEBUG "%s: done\n", __func__); 1114 } 1115 1116 /* 1117 * function called to reset the HFC chip. A complete software reset of chip 1118 * and fifos is done. All configuration of the chip is done. 1119 */ 1120 1121 static int 1122 init_chip(struct hfc_multi *hc) 1123 { 1124 u_long flags, val, val2 = 0, rev; 1125 int i, err = 0; 1126 u_char r_conf_en, rval; 1127 void __iomem *plx_acc_32; 1128 u_int pv; 1129 u_long plx_flags, hfc_flags; 1130 int plx_count; 1131 struct hfc_multi *pos, *next, *plx_last_hc; 1132 1133 spin_lock_irqsave(&hc->lock, flags); 1134 /* reset all registers */ 1135 memset(&hc->hw, 0, sizeof(struct hfcm_hw)); 1136 1137 /* revision check */ 1138 if (debug & DEBUG_HFCMULTI_INIT) 1139 printk(KERN_DEBUG "%s: entered\n", __func__); 1140 val = HFC_inb(hc, R_CHIP_ID); 1141 if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe && 1142 (val >> 1) != 0x31) { 1143 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val); 1144 err = -EIO; 1145 goto out; 1146 } 1147 rev = HFC_inb(hc, R_CHIP_RV); 1148 printk(KERN_INFO 1149 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n", 1150 val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ? 1151 " (old FIFO handling)" : ""); 1152 if (hc->ctype != HFC_TYPE_XHFC && rev == 0) { 1153 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip); 1154 printk(KERN_WARNING 1155 "HFC_multi: NOTE: Your chip is revision 0, " 1156 "ask Cologne Chip for update. Newer chips " 1157 "have a better FIFO handling. Old chips " 1158 "still work but may have slightly lower " 1159 "HDLC transmit performance.\n"); 1160 } 1161 if (rev > 1) { 1162 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't " 1163 "consider chip revision = %ld. The chip / " 1164 "bridge may not work.\n", rev); 1165 } 1166 1167 /* set s-ram size */ 1168 hc->Flen = 0x10; 1169 hc->Zmin = 0x80; 1170 hc->Zlen = 384; 1171 hc->DTMFbase = 0x1000; 1172 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) { 1173 if (debug & DEBUG_HFCMULTI_INIT) 1174 printk(KERN_DEBUG "%s: changing to 128K external RAM\n", 1175 __func__); 1176 hc->hw.r_ctrl |= V_EXT_RAM; 1177 hc->hw.r_ram_sz = 1; 1178 hc->Flen = 0x20; 1179 hc->Zmin = 0xc0; 1180 hc->Zlen = 1856; 1181 hc->DTMFbase = 0x2000; 1182 } 1183 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) { 1184 if (debug & DEBUG_HFCMULTI_INIT) 1185 printk(KERN_DEBUG "%s: changing to 512K external RAM\n", 1186 __func__); 1187 hc->hw.r_ctrl |= V_EXT_RAM; 1188 hc->hw.r_ram_sz = 2; 1189 hc->Flen = 0x20; 1190 hc->Zmin = 0xc0; 1191 hc->Zlen = 8000; 1192 hc->DTMFbase = 0x2000; 1193 } 1194 if (hc->ctype == HFC_TYPE_XHFC) { 1195 hc->Flen = 0x8; 1196 hc->Zmin = 0x0; 1197 hc->Zlen = 64; 1198 hc->DTMFbase = 0x0; 1199 } 1200 hc->max_trans = poll << 1; 1201 if (hc->max_trans > hc->Zlen) 1202 hc->max_trans = hc->Zlen; 1203 1204 /* Speech Design PLX bridge */ 1205 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1206 if (debug & DEBUG_HFCMULTI_PLXSD) 1207 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n", 1208 __func__, hc->id + 1); 1209 spin_lock_irqsave(&plx_lock, plx_flags); 1210 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1211 writel(PLX_GPIOC_INIT, plx_acc_32); 1212 pv = readl(plx_acc_32); 1213 /* The first and the last cards are terminating the PCM bus */ 1214 pv |= PLX_TERM_ON; /* hc is currently the last */ 1215 /* Disconnect the PCM */ 1216 pv |= PLX_SLAVE_EN_N; 1217 pv &= ~PLX_MASTER_EN; 1218 pv &= ~PLX_SYNC_O_EN; 1219 /* Put the DSP in Reset */ 1220 pv &= ~PLX_DSP_RES_N; 1221 writel(pv, plx_acc_32); 1222 spin_unlock_irqrestore(&plx_lock, plx_flags); 1223 if (debug & DEBUG_HFCMULTI_INIT) 1224 printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n", 1225 __func__, pv); 1226 /* 1227 * If we are the 3rd PLXSD card or higher, we must turn 1228 * termination of last PLXSD card off. 1229 */ 1230 spin_lock_irqsave(&HFClock, hfc_flags); 1231 plx_count = 0; 1232 plx_last_hc = NULL; 1233 list_for_each_entry_safe(pos, next, &HFClist, list) { 1234 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) { 1235 plx_count++; 1236 if (pos != hc) 1237 plx_last_hc = pos; 1238 } 1239 } 1240 if (plx_count >= 3) { 1241 if (debug & DEBUG_HFCMULTI_PLXSD) 1242 printk(KERN_DEBUG "%s: card %d is between, so " 1243 "we disable termination\n", 1244 __func__, plx_last_hc->id + 1); 1245 spin_lock_irqsave(&plx_lock, plx_flags); 1246 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC; 1247 pv = readl(plx_acc_32); 1248 pv &= ~PLX_TERM_ON; 1249 writel(pv, plx_acc_32); 1250 spin_unlock_irqrestore(&plx_lock, plx_flags); 1251 if (debug & DEBUG_HFCMULTI_INIT) 1252 printk(KERN_DEBUG 1253 "%s: term off: PLX_GPIO=%x\n", 1254 __func__, pv); 1255 } 1256 spin_unlock_irqrestore(&HFClock, hfc_flags); 1257 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */ 1258 } 1259 1260 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) 1261 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */ 1262 1263 /* we only want the real Z2 read-pointer for revision > 0 */ 1264 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip)) 1265 hc->hw.r_ram_sz |= V_FZ_MD; 1266 1267 /* select pcm mode */ 1268 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { 1269 if (debug & DEBUG_HFCMULTI_INIT) 1270 printk(KERN_DEBUG "%s: setting PCM into slave mode\n", 1271 __func__); 1272 } else 1273 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) { 1274 if (debug & DEBUG_HFCMULTI_INIT) 1275 printk(KERN_DEBUG "%s: setting PCM into master mode\n", 1276 __func__); 1277 hc->hw.r_pcm_md0 |= V_PCM_MD; 1278 } else { 1279 if (debug & DEBUG_HFCMULTI_INIT) 1280 printk(KERN_DEBUG "%s: performing PCM auto detect\n", 1281 __func__); 1282 } 1283 1284 /* soft reset */ 1285 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl); 1286 if (hc->ctype == HFC_TYPE_XHFC) 1287 HFC_outb(hc, 0x0C /* R_FIFO_THRES */, 1288 0x11 /* 16 Bytes TX/RX */); 1289 else 1290 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz); 1291 HFC_outb(hc, R_FIFO_MD, 0); 1292 if (hc->ctype == HFC_TYPE_XHFC) 1293 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES; 1294 else 1295 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES 1296 | V_RLD_EPR; 1297 HFC_outb(hc, R_CIRM, hc->hw.r_cirm); 1298 udelay(100); 1299 hc->hw.r_cirm = 0; 1300 HFC_outb(hc, R_CIRM, hc->hw.r_cirm); 1301 udelay(100); 1302 if (hc->ctype != HFC_TYPE_XHFC) 1303 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz); 1304 1305 /* Speech Design PLX bridge pcm and sync mode */ 1306 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1307 spin_lock_irqsave(&plx_lock, plx_flags); 1308 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1309 pv = readl(plx_acc_32); 1310 /* Connect PCM */ 1311 if (hc->hw.r_pcm_md0 & V_PCM_MD) { 1312 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N; 1313 pv |= PLX_SYNC_O_EN; 1314 if (debug & DEBUG_HFCMULTI_INIT) 1315 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n", 1316 __func__, pv); 1317 } else { 1318 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N); 1319 pv &= ~PLX_SYNC_O_EN; 1320 if (debug & DEBUG_HFCMULTI_INIT) 1321 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n", 1322 __func__, pv); 1323 } 1324 writel(pv, plx_acc_32); 1325 spin_unlock_irqrestore(&plx_lock, plx_flags); 1326 } 1327 1328 /* PCM setup */ 1329 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90); 1330 if (hc->slots == 32) 1331 HFC_outb(hc, R_PCM_MD1, 0x00); 1332 if (hc->slots == 64) 1333 HFC_outb(hc, R_PCM_MD1, 0x10); 1334 if (hc->slots == 128) 1335 HFC_outb(hc, R_PCM_MD1, 0x20); 1336 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0); 1337 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) 1338 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */ 1339 else if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) 1340 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */ 1341 else 1342 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */ 1343 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00); 1344 for (i = 0; i < 256; i++) { 1345 HFC_outb_nodebug(hc, R_SLOT, i); 1346 HFC_outb_nodebug(hc, A_SL_CFG, 0); 1347 if (hc->ctype != HFC_TYPE_XHFC) 1348 HFC_outb_nodebug(hc, A_CONF, 0); 1349 hc->slot_owner[i] = -1; 1350 } 1351 1352 /* set clock speed */ 1353 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) { 1354 if (debug & DEBUG_HFCMULTI_INIT) 1355 printk(KERN_DEBUG 1356 "%s: setting double clock\n", __func__); 1357 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK); 1358 } 1359 1360 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) 1361 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */); 1362 1363 /* B410P GPIO */ 1364 if (test_bit(HFC_CHIP_B410P, &hc->chip)) { 1365 printk(KERN_NOTICE "Setting GPIOs\n"); 1366 HFC_outb(hc, R_GPIO_SEL, 0x30); 1367 HFC_outb(hc, R_GPIO_EN1, 0x3); 1368 udelay(1000); 1369 printk(KERN_NOTICE "calling vpm_init\n"); 1370 vpm_init(hc); 1371 } 1372 1373 /* check if R_F0_CNT counts (8 kHz frame count) */ 1374 val = HFC_inb(hc, R_F0_CNTL); 1375 val += HFC_inb(hc, R_F0_CNTH) << 8; 1376 if (debug & DEBUG_HFCMULTI_INIT) 1377 printk(KERN_DEBUG 1378 "HFC_multi F0_CNT %ld after reset\n", val); 1379 spin_unlock_irqrestore(&hc->lock, flags); 1380 set_current_state(TASK_UNINTERRUPTIBLE); 1381 schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */ 1382 spin_lock_irqsave(&hc->lock, flags); 1383 val2 = HFC_inb(hc, R_F0_CNTL); 1384 val2 += HFC_inb(hc, R_F0_CNTH) << 8; 1385 if (debug & DEBUG_HFCMULTI_INIT) 1386 printk(KERN_DEBUG 1387 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n", 1388 val2); 1389 if (val2 >= val + 8) { /* 1 ms */ 1390 /* it counts, so we keep the pcm mode */ 1391 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) 1392 printk(KERN_INFO "controller is PCM bus MASTER\n"); 1393 else 1394 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) 1395 printk(KERN_INFO "controller is PCM bus SLAVE\n"); 1396 else { 1397 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); 1398 printk(KERN_INFO "controller is PCM bus SLAVE " 1399 "(auto detected)\n"); 1400 } 1401 } else { 1402 /* does not count */ 1403 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) { 1404 controller_fail: 1405 printk(KERN_ERR "HFC_multi ERROR, getting no 125us " 1406 "pulse. Seems that controller fails.\n"); 1407 err = -EIO; 1408 goto out; 1409 } 1410 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { 1411 printk(KERN_INFO "controller is PCM bus SLAVE " 1412 "(ignoring missing PCM clock)\n"); 1413 } else { 1414 /* only one pcm master */ 1415 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) 1416 && plxsd_master) { 1417 printk(KERN_ERR "HFC_multi ERROR, no clock " 1418 "on another Speech Design card found. " 1419 "Please be sure to connect PCM cable.\n"); 1420 err = -EIO; 1421 goto out; 1422 } 1423 /* retry with master clock */ 1424 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1425 spin_lock_irqsave(&plx_lock, plx_flags); 1426 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1427 pv = readl(plx_acc_32); 1428 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N; 1429 pv |= PLX_SYNC_O_EN; 1430 writel(pv, plx_acc_32); 1431 spin_unlock_irqrestore(&plx_lock, plx_flags); 1432 if (debug & DEBUG_HFCMULTI_INIT) 1433 printk(KERN_DEBUG "%s: master: " 1434 "PLX_GPIO=%x\n", __func__, pv); 1435 } 1436 hc->hw.r_pcm_md0 |= V_PCM_MD; 1437 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00); 1438 spin_unlock_irqrestore(&hc->lock, flags); 1439 set_current_state(TASK_UNINTERRUPTIBLE); 1440 schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */ 1441 spin_lock_irqsave(&hc->lock, flags); 1442 val2 = HFC_inb(hc, R_F0_CNTL); 1443 val2 += HFC_inb(hc, R_F0_CNTH) << 8; 1444 if (debug & DEBUG_HFCMULTI_INIT) 1445 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after " 1446 "10 ms (2nd try)\n", val2); 1447 if (val2 >= val + 8) { /* 1 ms */ 1448 test_and_set_bit(HFC_CHIP_PCM_MASTER, 1449 &hc->chip); 1450 printk(KERN_INFO "controller is PCM bus MASTER " 1451 "(auto detected)\n"); 1452 } else 1453 goto controller_fail; 1454 } 1455 } 1456 1457 /* Release the DSP Reset */ 1458 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1459 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) 1460 plxsd_master = 1; 1461 spin_lock_irqsave(&plx_lock, plx_flags); 1462 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1463 pv = readl(plx_acc_32); 1464 pv |= PLX_DSP_RES_N; 1465 writel(pv, plx_acc_32); 1466 spin_unlock_irqrestore(&plx_lock, plx_flags); 1467 if (debug & DEBUG_HFCMULTI_INIT) 1468 printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n", 1469 __func__, pv); 1470 } 1471 1472 /* pcm id */ 1473 if (hc->pcm) 1474 printk(KERN_INFO "controller has given PCM BUS ID %d\n", 1475 hc->pcm); 1476 else { 1477 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) 1478 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1479 PCM_cnt++; /* SD has proprietary bridging */ 1480 } 1481 hc->pcm = PCM_cnt; 1482 printk(KERN_INFO "controller has PCM BUS ID %d " 1483 "(auto selected)\n", hc->pcm); 1484 } 1485 1486 /* set up timer */ 1487 HFC_outb(hc, R_TI_WD, poll_timer); 1488 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK; 1489 1490 /* set E1 state machine IRQ */ 1491 if (hc->ctype == HFC_TYPE_E1) 1492 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK; 1493 1494 /* set DTMF detection */ 1495 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) { 1496 if (debug & DEBUG_HFCMULTI_INIT) 1497 printk(KERN_DEBUG "%s: enabling DTMF detection " 1498 "for all B-channel\n", __func__); 1499 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP; 1500 if (test_bit(HFC_CHIP_ULAW, &hc->chip)) 1501 hc->hw.r_dtmf |= V_ULAW_SEL; 1502 HFC_outb(hc, R_DTMF_N, 102 - 1); 1503 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK; 1504 } 1505 1506 /* conference engine */ 1507 if (test_bit(HFC_CHIP_ULAW, &hc->chip)) 1508 r_conf_en = V_CONF_EN | V_ULAW; 1509 else 1510 r_conf_en = V_CONF_EN; 1511 if (hc->ctype != HFC_TYPE_XHFC) 1512 HFC_outb(hc, R_CONF_EN, r_conf_en); 1513 1514 /* setting leds */ 1515 switch (hc->leds) { 1516 case 1: /* HFC-E1 OEM */ 1517 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip)) 1518 HFC_outb(hc, R_GPIO_SEL, 0x32); 1519 else 1520 HFC_outb(hc, R_GPIO_SEL, 0x30); 1521 1522 HFC_outb(hc, R_GPIO_EN1, 0x0f); 1523 HFC_outb(hc, R_GPIO_OUT1, 0x00); 1524 1525 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3); 1526 break; 1527 1528 case 2: /* HFC-4S OEM */ 1529 case 3: 1530 HFC_outb(hc, R_GPIO_SEL, 0xf0); 1531 HFC_outb(hc, R_GPIO_EN1, 0xff); 1532 HFC_outb(hc, R_GPIO_OUT1, 0x00); 1533 break; 1534 } 1535 1536 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) { 1537 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */ 1538 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync); 1539 } 1540 1541 /* set master clock */ 1542 if (hc->masterclk >= 0) { 1543 if (debug & DEBUG_HFCMULTI_INIT) 1544 printk(KERN_DEBUG "%s: setting ST master clock " 1545 "to port %d (0..%d)\n", 1546 __func__, hc->masterclk, hc->ports - 1); 1547 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC); 1548 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync); 1549 } 1550 1551 1552 1553 /* setting misc irq */ 1554 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc); 1555 if (debug & DEBUG_HFCMULTI_INIT) 1556 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n", 1557 hc->hw.r_irqmsk_misc); 1558 1559 /* RAM access test */ 1560 HFC_outb(hc, R_RAM_ADDR0, 0); 1561 HFC_outb(hc, R_RAM_ADDR1, 0); 1562 HFC_outb(hc, R_RAM_ADDR2, 0); 1563 for (i = 0; i < 256; i++) { 1564 HFC_outb_nodebug(hc, R_RAM_ADDR0, i); 1565 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff)); 1566 } 1567 for (i = 0; i < 256; i++) { 1568 HFC_outb_nodebug(hc, R_RAM_ADDR0, i); 1569 HFC_inb_nodebug(hc, R_RAM_DATA); 1570 rval = HFC_inb_nodebug(hc, R_INT_DATA); 1571 if (rval != ((i * 3) & 0xff)) { 1572 printk(KERN_DEBUG 1573 "addr:%x val:%x should:%x\n", i, rval, 1574 (i * 3) & 0xff); 1575 err++; 1576 } 1577 } 1578 if (err) { 1579 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err); 1580 err = -EIO; 1581 goto out; 1582 } 1583 1584 if (debug & DEBUG_HFCMULTI_INIT) 1585 printk(KERN_DEBUG "%s: done\n", __func__); 1586 out: 1587 spin_unlock_irqrestore(&hc->lock, flags); 1588 return err; 1589 } 1590 1591 1592 /* 1593 * control the watchdog 1594 */ 1595 static void 1596 hfcmulti_watchdog(struct hfc_multi *hc) 1597 { 1598 hc->wdcount++; 1599 1600 if (hc->wdcount > 10) { 1601 hc->wdcount = 0; 1602 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ? 1603 V_GPIO_OUT3 : V_GPIO_OUT2; 1604 1605 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */ 1606 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3); 1607 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte); 1608 } 1609 } 1610 1611 1612 1613 /* 1614 * output leds 1615 */ 1616 static void 1617 hfcmulti_leds(struct hfc_multi *hc) 1618 { 1619 unsigned long lled; 1620 unsigned long leddw; 1621 int i, state, active, leds; 1622 struct dchannel *dch; 1623 int led[4]; 1624 1625 switch (hc->leds) { 1626 case 1: /* HFC-E1 OEM */ 1627 /* 2 red steady: LOS 1628 * 1 red steady: L1 not active 1629 * 2 green steady: L1 active 1630 * 1st green flashing: activity on TX 1631 * 2nd green flashing: activity on RX 1632 */ 1633 led[0] = 0; 1634 led[1] = 0; 1635 led[2] = 0; 1636 led[3] = 0; 1637 dch = hc->chan[hc->dnum[0]].dch; 1638 if (dch) { 1639 if (hc->chan[hc->dnum[0]].los) 1640 led[1] = 1; 1641 if (hc->e1_state != 1) { 1642 led[0] = 1; 1643 hc->flash[2] = 0; 1644 hc->flash[3] = 0; 1645 } else { 1646 led[2] = 1; 1647 led[3] = 1; 1648 if (!hc->flash[2] && hc->activity_tx) 1649 hc->flash[2] = poll; 1650 if (!hc->flash[3] && hc->activity_rx) 1651 hc->flash[3] = poll; 1652 if (hc->flash[2] && hc->flash[2] < 1024) 1653 led[2] = 0; 1654 if (hc->flash[3] && hc->flash[3] < 1024) 1655 led[3] = 0; 1656 if (hc->flash[2] >= 2048) 1657 hc->flash[2] = 0; 1658 if (hc->flash[3] >= 2048) 1659 hc->flash[3] = 0; 1660 if (hc->flash[2]) 1661 hc->flash[2] += poll; 1662 if (hc->flash[3]) 1663 hc->flash[3] += poll; 1664 } 1665 } 1666 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF; 1667 /* leds are inverted */ 1668 if (leds != (int)hc->ledstate) { 1669 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds); 1670 hc->ledstate = leds; 1671 } 1672 break; 1673 1674 case 2: /* HFC-4S OEM */ 1675 /* red steady: PH_DEACTIVATE 1676 * green steady: PH_ACTIVATE 1677 * green flashing: activity on TX 1678 */ 1679 for (i = 0; i < 4; i++) { 1680 state = 0; 1681 active = -1; 1682 dch = hc->chan[(i << 2) | 2].dch; 1683 if (dch) { 1684 state = dch->state; 1685 if (dch->dev.D.protocol == ISDN_P_NT_S0) 1686 active = 3; 1687 else 1688 active = 7; 1689 } 1690 if (state) { 1691 if (state == active) { 1692 led[i] = 1; /* led green */ 1693 hc->activity_tx |= hc->activity_rx; 1694 if (!hc->flash[i] && 1695 (hc->activity_tx & (1 << i))) 1696 hc->flash[i] = poll; 1697 if (hc->flash[i] && hc->flash[i] < 1024) 1698 led[i] = 0; /* led off */ 1699 if (hc->flash[i] >= 2048) 1700 hc->flash[i] = 0; 1701 if (hc->flash[i]) 1702 hc->flash[i] += poll; 1703 } else { 1704 led[i] = 2; /* led red */ 1705 hc->flash[i] = 0; 1706 } 1707 } else 1708 led[i] = 0; /* led off */ 1709 } 1710 if (test_bit(HFC_CHIP_B410P, &hc->chip)) { 1711 leds = 0; 1712 for (i = 0; i < 4; i++) { 1713 if (led[i] == 1) { 1714 /*green*/ 1715 leds |= (0x2 << (i * 2)); 1716 } else if (led[i] == 2) { 1717 /*red*/ 1718 leds |= (0x1 << (i * 2)); 1719 } 1720 } 1721 if (leds != (int)hc->ledstate) { 1722 vpm_out(hc, 0, 0x1a8 + 3, leds); 1723 hc->ledstate = leds; 1724 } 1725 } else { 1726 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) | 1727 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) | 1728 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) | 1729 ((led[0] & 1) << 6) | ((led[2] & 1) << 7); 1730 if (leds != (int)hc->ledstate) { 1731 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F); 1732 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4); 1733 hc->ledstate = leds; 1734 } 1735 } 1736 break; 1737 1738 case 3: /* HFC 1S/2S Beronet */ 1739 /* red steady: PH_DEACTIVATE 1740 * green steady: PH_ACTIVATE 1741 * green flashing: activity on TX 1742 */ 1743 for (i = 0; i < 2; i++) { 1744 state = 0; 1745 active = -1; 1746 dch = hc->chan[(i << 2) | 2].dch; 1747 if (dch) { 1748 state = dch->state; 1749 if (dch->dev.D.protocol == ISDN_P_NT_S0) 1750 active = 3; 1751 else 1752 active = 7; 1753 } 1754 if (state) { 1755 if (state == active) { 1756 led[i] = 1; /* led green */ 1757 hc->activity_tx |= hc->activity_rx; 1758 if (!hc->flash[i] && 1759 (hc->activity_tx & (1 << i))) 1760 hc->flash[i] = poll; 1761 if (hc->flash[i] < 1024) 1762 led[i] = 0; /* led off */ 1763 if (hc->flash[i] >= 2048) 1764 hc->flash[i] = 0; 1765 if (hc->flash[i]) 1766 hc->flash[i] += poll; 1767 } else { 1768 led[i] = 2; /* led red */ 1769 hc->flash[i] = 0; 1770 } 1771 } else 1772 led[i] = 0; /* led off */ 1773 } 1774 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2) 1775 | ((led[1]&1) << 3); 1776 if (leds != (int)hc->ledstate) { 1777 HFC_outb_nodebug(hc, R_GPIO_EN1, 1778 ((led[0] > 0) << 2) | ((led[1] > 0) << 3)); 1779 HFC_outb_nodebug(hc, R_GPIO_OUT1, 1780 ((led[0] & 1) << 2) | ((led[1] & 1) << 3)); 1781 hc->ledstate = leds; 1782 } 1783 break; 1784 case 8: /* HFC 8S+ Beronet */ 1785 /* off: PH_DEACTIVATE 1786 * steady: PH_ACTIVATE 1787 * flashing: activity on TX 1788 */ 1789 lled = 0xff; /* leds off */ 1790 for (i = 0; i < 8; i++) { 1791 state = 0; 1792 active = -1; 1793 dch = hc->chan[(i << 2) | 2].dch; 1794 if (dch) { 1795 state = dch->state; 1796 if (dch->dev.D.protocol == ISDN_P_NT_S0) 1797 active = 3; 1798 else 1799 active = 7; 1800 } 1801 if (state) { 1802 if (state == active) { 1803 lled &= ~(1 << i); /* led on */ 1804 hc->activity_tx |= hc->activity_rx; 1805 if (!hc->flash[i] && 1806 (hc->activity_tx & (1 << i))) 1807 hc->flash[i] = poll; 1808 if (hc->flash[i] < 1024) 1809 lled |= 1 << i; /* led off */ 1810 if (hc->flash[i] >= 2048) 1811 hc->flash[i] = 0; 1812 if (hc->flash[i]) 1813 hc->flash[i] += poll; 1814 } else 1815 hc->flash[i] = 0; 1816 } 1817 } 1818 leddw = lled << 24 | lled << 16 | lled << 8 | lled; 1819 if (leddw != hc->ledstate) { 1820 /* HFC_outb(hc, R_BRG_PCM_CFG, 1); 1821 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */ 1822 /* was _io before */ 1823 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK); 1824 outw(0x4000, hc->pci_iobase + 4); 1825 outl(leddw, hc->pci_iobase); 1826 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK); 1827 hc->ledstate = leddw; 1828 } 1829 break; 1830 } 1831 hc->activity_tx = 0; 1832 hc->activity_rx = 0; 1833 } 1834 /* 1835 * read dtmf coefficients 1836 */ 1837 1838 static void 1839 hfcmulti_dtmf(struct hfc_multi *hc) 1840 { 1841 s32 *coeff; 1842 u_int mantissa; 1843 int co, ch; 1844 struct bchannel *bch = NULL; 1845 u8 exponent; 1846 int dtmf = 0; 1847 int addr; 1848 u16 w_float; 1849 struct sk_buff *skb; 1850 struct mISDNhead *hh; 1851 1852 if (debug & DEBUG_HFCMULTI_DTMF) 1853 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__); 1854 for (ch = 0; ch <= 31; ch++) { 1855 /* only process enabled B-channels */ 1856 bch = hc->chan[ch].bch; 1857 if (!bch) 1858 continue; 1859 if (!hc->created[hc->chan[ch].port]) 1860 continue; 1861 if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) 1862 continue; 1863 if (debug & DEBUG_HFCMULTI_DTMF) 1864 printk(KERN_DEBUG "%s: dtmf channel %d:", 1865 __func__, ch); 1866 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]); 1867 dtmf = 1; 1868 for (co = 0; co < 8; co++) { 1869 /* read W(n-1) coefficient */ 1870 addr = hc->DTMFbase + ((co << 7) | (ch << 2)); 1871 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr); 1872 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8); 1873 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16) 1874 | V_ADDR_INC); 1875 w_float = HFC_inb_nodebug(hc, R_RAM_DATA); 1876 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8); 1877 if (debug & DEBUG_HFCMULTI_DTMF) 1878 printk(" %04x", w_float); 1879 1880 /* decode float (see chip doc) */ 1881 mantissa = w_float & 0x0fff; 1882 if (w_float & 0x8000) 1883 mantissa |= 0xfffff000; 1884 exponent = (w_float >> 12) & 0x7; 1885 if (exponent) { 1886 mantissa ^= 0x1000; 1887 mantissa <<= (exponent - 1); 1888 } 1889 1890 /* store coefficient */ 1891 coeff[co << 1] = mantissa; 1892 1893 /* read W(n) coefficient */ 1894 w_float = HFC_inb_nodebug(hc, R_RAM_DATA); 1895 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8); 1896 if (debug & DEBUG_HFCMULTI_DTMF) 1897 printk(" %04x", w_float); 1898 1899 /* decode float (see chip doc) */ 1900 mantissa = w_float & 0x0fff; 1901 if (w_float & 0x8000) 1902 mantissa |= 0xfffff000; 1903 exponent = (w_float >> 12) & 0x7; 1904 if (exponent) { 1905 mantissa ^= 0x1000; 1906 mantissa <<= (exponent - 1); 1907 } 1908 1909 /* store coefficient */ 1910 coeff[(co << 1) | 1] = mantissa; 1911 } 1912 if (debug & DEBUG_HFCMULTI_DTMF) 1913 printk(" DTMF ready %08x %08x %08x %08x " 1914 "%08x %08x %08x %08x\n", 1915 coeff[0], coeff[1], coeff[2], coeff[3], 1916 coeff[4], coeff[5], coeff[6], coeff[7]); 1917 hc->chan[ch].coeff_count++; 1918 if (hc->chan[ch].coeff_count == 8) { 1919 hc->chan[ch].coeff_count = 0; 1920 skb = mI_alloc_skb(512, GFP_ATOMIC); 1921 if (!skb) { 1922 printk(KERN_DEBUG "%s: No memory for skb\n", 1923 __func__); 1924 continue; 1925 } 1926 hh = mISDN_HEAD_P(skb); 1927 hh->prim = PH_CONTROL_IND; 1928 hh->id = DTMF_HFC_COEF; 1929 skb_put_data(skb, hc->chan[ch].coeff, 512); 1930 recv_Bchannel_skb(bch, skb); 1931 } 1932 } 1933 1934 /* restart DTMF processing */ 1935 hc->dtmf = dtmf; 1936 if (dtmf) 1937 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF); 1938 } 1939 1940 1941 /* 1942 * fill fifo as much as possible 1943 */ 1944 1945 static void 1946 hfcmulti_tx(struct hfc_multi *hc, int ch) 1947 { 1948 int i, ii, temp, len = 0; 1949 int Zspace, z1, z2; /* must be int for calculation */ 1950 int Fspace, f1, f2; 1951 u_char *d; 1952 int *txpending, slot_tx; 1953 struct bchannel *bch; 1954 struct dchannel *dch; 1955 struct sk_buff **sp = NULL; 1956 int *idxp; 1957 1958 bch = hc->chan[ch].bch; 1959 dch = hc->chan[ch].dch; 1960 if ((!dch) && (!bch)) 1961 return; 1962 1963 txpending = &hc->chan[ch].txpending; 1964 slot_tx = hc->chan[ch].slot_tx; 1965 if (dch) { 1966 if (!test_bit(FLG_ACTIVE, &dch->Flags)) 1967 return; 1968 sp = &dch->tx_skb; 1969 idxp = &dch->tx_idx; 1970 } else { 1971 if (!test_bit(FLG_ACTIVE, &bch->Flags)) 1972 return; 1973 sp = &bch->tx_skb; 1974 idxp = &bch->tx_idx; 1975 } 1976 if (*sp) 1977 len = (*sp)->len; 1978 1979 if ((!len) && *txpending != 1) 1980 return; /* no data */ 1981 1982 if (test_bit(HFC_CHIP_B410P, &hc->chip) && 1983 (hc->chan[ch].protocol == ISDN_P_B_RAW) && 1984 (hc->chan[ch].slot_rx < 0) && 1985 (hc->chan[ch].slot_tx < 0)) 1986 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1)); 1987 else 1988 HFC_outb_nodebug(hc, R_FIFO, ch << 1); 1989 HFC_wait_nodebug(hc); 1990 1991 if (*txpending == 2) { 1992 /* reset fifo */ 1993 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); 1994 HFC_wait_nodebug(hc); 1995 HFC_outb(hc, A_SUBCH_CFG, 0); 1996 *txpending = 1; 1997 } 1998 next_frame: 1999 if (dch || test_bit(FLG_HDLC, &bch->Flags)) { 2000 f1 = HFC_inb_nodebug(hc, A_F1); 2001 f2 = HFC_inb_nodebug(hc, A_F2); 2002 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) { 2003 if (debug & DEBUG_HFCMULTI_FIFO) 2004 printk(KERN_DEBUG 2005 "%s(card %d): reread f2 because %d!=%d\n", 2006 __func__, hc->id + 1, temp, f2); 2007 f2 = temp; /* repeat until F2 is equal */ 2008 } 2009 Fspace = f2 - f1 - 1; 2010 if (Fspace < 0) 2011 Fspace += hc->Flen; 2012 /* 2013 * Old FIFO handling doesn't give us the current Z2 read 2014 * pointer, so we cannot send the next frame before the fifo 2015 * is empty. It makes no difference except for a slightly 2016 * lower performance. 2017 */ 2018 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) { 2019 if (f1 != f2) 2020 Fspace = 0; 2021 else 2022 Fspace = 1; 2023 } 2024 /* one frame only for ST D-channels, to allow resending */ 2025 if (hc->ctype != HFC_TYPE_E1 && dch) { 2026 if (f1 != f2) 2027 Fspace = 0; 2028 } 2029 /* F-counter full condition */ 2030 if (Fspace == 0) 2031 return; 2032 } 2033 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin; 2034 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin; 2035 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) { 2036 if (debug & DEBUG_HFCMULTI_FIFO) 2037 printk(KERN_DEBUG "%s(card %d): reread z2 because " 2038 "%d!=%d\n", __func__, hc->id + 1, temp, z2); 2039 z2 = temp; /* repeat unti Z2 is equal */ 2040 } 2041 hc->chan[ch].Zfill = z1 - z2; 2042 if (hc->chan[ch].Zfill < 0) 2043 hc->chan[ch].Zfill += hc->Zlen; 2044 Zspace = z2 - z1; 2045 if (Zspace <= 0) 2046 Zspace += hc->Zlen; 2047 Zspace -= 4; /* keep not too full, so pointers will not overrun */ 2048 /* fill transparent data only to maxinum transparent load (minus 4) */ 2049 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags)) 2050 Zspace = Zspace - hc->Zlen + hc->max_trans; 2051 if (Zspace <= 0) /* no space of 4 bytes */ 2052 return; 2053 2054 /* if no data */ 2055 if (!len) { 2056 if (z1 == z2) { /* empty */ 2057 /* if done with FIFO audio data during PCM connection */ 2058 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && 2059 *txpending && slot_tx >= 0) { 2060 if (debug & DEBUG_HFCMULTI_MODE) 2061 printk(KERN_DEBUG 2062 "%s: reconnecting PCM due to no " 2063 "more FIFO data: channel %d " 2064 "slot_tx %d\n", 2065 __func__, ch, slot_tx); 2066 /* connect slot */ 2067 if (hc->ctype == HFC_TYPE_XHFC) 2068 HFC_outb(hc, A_CON_HDLC, 0xc0 2069 | 0x07 << 2 | V_HDLC_TRP | V_IFF); 2070 /* Enable FIFO, no interrupt */ 2071 else 2072 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 | 2073 V_HDLC_TRP | V_IFF); 2074 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1); 2075 HFC_wait_nodebug(hc); 2076 if (hc->ctype == HFC_TYPE_XHFC) 2077 HFC_outb(hc, A_CON_HDLC, 0xc0 2078 | 0x07 << 2 | V_HDLC_TRP | V_IFF); 2079 /* Enable FIFO, no interrupt */ 2080 else 2081 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 | 2082 V_HDLC_TRP | V_IFF); 2083 HFC_outb_nodebug(hc, R_FIFO, ch << 1); 2084 HFC_wait_nodebug(hc); 2085 } 2086 *txpending = 0; 2087 } 2088 return; /* no data */ 2089 } 2090 2091 /* "fill fifo if empty" feature */ 2092 if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags) 2093 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) { 2094 if (debug & DEBUG_HFCMULTI_FILL) 2095 printk(KERN_DEBUG "%s: buffer empty, so we have " 2096 "underrun\n", __func__); 2097 /* fill buffer, to prevent future underrun */ 2098 hc->write_fifo(hc, hc->silence_data, poll >> 1); 2099 Zspace -= (poll >> 1); 2100 } 2101 2102 /* if audio data and connected slot */ 2103 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending) 2104 && slot_tx >= 0) { 2105 if (debug & DEBUG_HFCMULTI_MODE) 2106 printk(KERN_DEBUG "%s: disconnecting PCM due to " 2107 "FIFO data: channel %d slot_tx %d\n", 2108 __func__, ch, slot_tx); 2109 /* disconnect slot */ 2110 if (hc->ctype == HFC_TYPE_XHFC) 2111 HFC_outb(hc, A_CON_HDLC, 0x80 2112 | 0x07 << 2 | V_HDLC_TRP | V_IFF); 2113 /* Enable FIFO, no interrupt */ 2114 else 2115 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | 2116 V_HDLC_TRP | V_IFF); 2117 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1); 2118 HFC_wait_nodebug(hc); 2119 if (hc->ctype == HFC_TYPE_XHFC) 2120 HFC_outb(hc, A_CON_HDLC, 0x80 2121 | 0x07 << 2 | V_HDLC_TRP | V_IFF); 2122 /* Enable FIFO, no interrupt */ 2123 else 2124 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | 2125 V_HDLC_TRP | V_IFF); 2126 HFC_outb_nodebug(hc, R_FIFO, ch << 1); 2127 HFC_wait_nodebug(hc); 2128 } 2129 *txpending = 1; 2130 2131 /* show activity */ 2132 if (dch) 2133 hc->activity_tx |= 1 << hc->chan[ch].port; 2134 2135 /* fill fifo to what we have left */ 2136 ii = len; 2137 if (dch || test_bit(FLG_HDLC, &bch->Flags)) 2138 temp = 1; 2139 else 2140 temp = 0; 2141 i = *idxp; 2142 d = (*sp)->data + i; 2143 if (ii - i > Zspace) 2144 ii = Zspace + i; 2145 if (debug & DEBUG_HFCMULTI_FIFO) 2146 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space " 2147 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n", 2148 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i, 2149 temp ? "HDLC" : "TRANS"); 2150 2151 /* Have to prep the audio data */ 2152 hc->write_fifo(hc, d, ii - i); 2153 hc->chan[ch].Zfill += ii - i; 2154 *idxp = ii; 2155 2156 /* if not all data has been written */ 2157 if (ii != len) { 2158 /* NOTE: fifo is started by the calling function */ 2159 return; 2160 } 2161 2162 /* if all data has been written, terminate frame */ 2163 if (dch || test_bit(FLG_HDLC, &bch->Flags)) { 2164 /* increment f-counter */ 2165 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F); 2166 HFC_wait_nodebug(hc); 2167 } 2168 2169 dev_kfree_skb(*sp); 2170 /* check for next frame */ 2171 if (bch && get_next_bframe(bch)) { 2172 len = (*sp)->len; 2173 goto next_frame; 2174 } 2175 if (dch && get_next_dframe(dch)) { 2176 len = (*sp)->len; 2177 goto next_frame; 2178 } 2179 2180 /* 2181 * now we have no more data, so in case of transparent, 2182 * we set the last byte in fifo to 'silence' in case we will get 2183 * no more data at all. this prevents sending an undefined value. 2184 */ 2185 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags)) 2186 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); 2187 } 2188 2189 2190 /* NOTE: only called if E1 card is in active state */ 2191 static void 2192 hfcmulti_rx(struct hfc_multi *hc, int ch) 2193 { 2194 int temp; 2195 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */ 2196 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */ 2197 int again = 0; 2198 struct bchannel *bch; 2199 struct dchannel *dch = NULL; 2200 struct sk_buff *skb, **sp = NULL; 2201 int maxlen; 2202 2203 bch = hc->chan[ch].bch; 2204 if (bch) { 2205 if (!test_bit(FLG_ACTIVE, &bch->Flags)) 2206 return; 2207 } else if (hc->chan[ch].dch) { 2208 dch = hc->chan[ch].dch; 2209 if (!test_bit(FLG_ACTIVE, &dch->Flags)) 2210 return; 2211 } else { 2212 return; 2213 } 2214 next_frame: 2215 /* on first AND before getting next valid frame, R_FIFO must be written 2216 to. */ 2217 if (test_bit(HFC_CHIP_B410P, &hc->chip) && 2218 (hc->chan[ch].protocol == ISDN_P_B_RAW) && 2219 (hc->chan[ch].slot_rx < 0) && 2220 (hc->chan[ch].slot_tx < 0)) 2221 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1); 2222 else 2223 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1); 2224 HFC_wait_nodebug(hc); 2225 2226 /* ignore if rx is off BUT change fifo (above) to start pending TX */ 2227 if (hc->chan[ch].rx_off) { 2228 if (bch) 2229 bch->dropcnt += poll; /* not exact but fair enough */ 2230 return; 2231 } 2232 2233 if (dch || test_bit(FLG_HDLC, &bch->Flags)) { 2234 f1 = HFC_inb_nodebug(hc, A_F1); 2235 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) { 2236 if (debug & DEBUG_HFCMULTI_FIFO) 2237 printk(KERN_DEBUG 2238 "%s(card %d): reread f1 because %d!=%d\n", 2239 __func__, hc->id + 1, temp, f1); 2240 f1 = temp; /* repeat until F1 is equal */ 2241 } 2242 f2 = HFC_inb_nodebug(hc, A_F2); 2243 } 2244 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin; 2245 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) { 2246 if (debug & DEBUG_HFCMULTI_FIFO) 2247 printk(KERN_DEBUG "%s(card %d): reread z2 because " 2248 "%d!=%d\n", __func__, hc->id + 1, temp, z2); 2249 z1 = temp; /* repeat until Z1 is equal */ 2250 } 2251 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin; 2252 Zsize = z1 - z2; 2253 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2) 2254 /* complete hdlc frame */ 2255 Zsize++; 2256 if (Zsize < 0) 2257 Zsize += hc->Zlen; 2258 /* if buffer is empty */ 2259 if (Zsize <= 0) 2260 return; 2261 2262 if (bch) { 2263 maxlen = bchannel_get_rxbuf(bch, Zsize); 2264 if (maxlen < 0) { 2265 pr_warning("card%d.B%d: No bufferspace for %d bytes\n", 2266 hc->id + 1, bch->nr, Zsize); 2267 return; 2268 } 2269 sp = &bch->rx_skb; 2270 maxlen = bch->maxlen; 2271 } else { /* Dchannel */ 2272 sp = &dch->rx_skb; 2273 maxlen = dch->maxlen + 3; 2274 if (*sp == NULL) { 2275 *sp = mI_alloc_skb(maxlen, GFP_ATOMIC); 2276 if (*sp == NULL) { 2277 pr_warning("card%d: No mem for dch rx_skb\n", 2278 hc->id + 1); 2279 return; 2280 } 2281 } 2282 } 2283 /* show activity */ 2284 if (dch) 2285 hc->activity_rx |= 1 << hc->chan[ch].port; 2286 2287 /* empty fifo with what we have */ 2288 if (dch || test_bit(FLG_HDLC, &bch->Flags)) { 2289 if (debug & DEBUG_HFCMULTI_FIFO) 2290 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d " 2291 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) " 2292 "got=%d (again %d)\n", __func__, hc->id + 1, ch, 2293 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE", 2294 f1, f2, Zsize + (*sp)->len, again); 2295 /* HDLC */ 2296 if ((Zsize + (*sp)->len) > maxlen) { 2297 if (debug & DEBUG_HFCMULTI_FIFO) 2298 printk(KERN_DEBUG 2299 "%s(card %d): hdlc-frame too large.\n", 2300 __func__, hc->id + 1); 2301 skb_trim(*sp, 0); 2302 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); 2303 HFC_wait_nodebug(hc); 2304 return; 2305 } 2306 2307 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize); 2308 2309 if (f1 != f2) { 2310 /* increment Z2,F2-counter */ 2311 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F); 2312 HFC_wait_nodebug(hc); 2313 /* check size */ 2314 if ((*sp)->len < 4) { 2315 if (debug & DEBUG_HFCMULTI_FIFO) 2316 printk(KERN_DEBUG 2317 "%s(card %d): Frame below minimum " 2318 "size\n", __func__, hc->id + 1); 2319 skb_trim(*sp, 0); 2320 goto next_frame; 2321 } 2322 /* there is at least one complete frame, check crc */ 2323 if ((*sp)->data[(*sp)->len - 1]) { 2324 if (debug & DEBUG_HFCMULTI_CRC) 2325 printk(KERN_DEBUG 2326 "%s: CRC-error\n", __func__); 2327 skb_trim(*sp, 0); 2328 goto next_frame; 2329 } 2330 skb_trim(*sp, (*sp)->len - 3); 2331 if ((*sp)->len < MISDN_COPY_SIZE) { 2332 skb = *sp; 2333 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC); 2334 if (*sp) { 2335 skb_put_data(*sp, skb->data, skb->len); 2336 skb_trim(skb, 0); 2337 } else { 2338 printk(KERN_DEBUG "%s: No mem\n", 2339 __func__); 2340 *sp = skb; 2341 skb = NULL; 2342 } 2343 } else { 2344 skb = NULL; 2345 } 2346 if (debug & DEBUG_HFCMULTI_FIFO) { 2347 printk(KERN_DEBUG "%s(card %d):", 2348 __func__, hc->id + 1); 2349 temp = 0; 2350 while (temp < (*sp)->len) 2351 printk(" %02x", (*sp)->data[temp++]); 2352 printk("\n"); 2353 } 2354 if (dch) 2355 recv_Dchannel(dch); 2356 else 2357 recv_Bchannel(bch, MISDN_ID_ANY, false); 2358 *sp = skb; 2359 again++; 2360 goto next_frame; 2361 } 2362 /* there is an incomplete frame */ 2363 } else { 2364 /* transparent */ 2365 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize); 2366 if (debug & DEBUG_HFCMULTI_FIFO) 2367 printk(KERN_DEBUG 2368 "%s(card %d): fifo(%d) reading %d bytes " 2369 "(z1=%04x, z2=%04x) TRANS\n", 2370 __func__, hc->id + 1, ch, Zsize, z1, z2); 2371 /* only bch is transparent */ 2372 recv_Bchannel(bch, hc->chan[ch].Zfill, false); 2373 } 2374 } 2375 2376 2377 /* 2378 * Interrupt handler 2379 */ 2380 static void 2381 signal_state_up(struct dchannel *dch, int info, char *msg) 2382 { 2383 struct sk_buff *skb; 2384 int id, data = info; 2385 2386 if (debug & DEBUG_HFCMULTI_STATE) 2387 printk(KERN_DEBUG "%s: %s\n", __func__, msg); 2388 2389 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */ 2390 2391 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data, 2392 GFP_ATOMIC); 2393 if (!skb) 2394 return; 2395 recv_Dchannel_skb(dch, skb); 2396 } 2397 2398 static inline void 2399 handle_timer_irq(struct hfc_multi *hc) 2400 { 2401 int ch, temp; 2402 struct dchannel *dch; 2403 u_long flags; 2404 2405 /* process queued resync jobs */ 2406 if (hc->e1_resync) { 2407 /* lock, so e1_resync gets not changed */ 2408 spin_lock_irqsave(&HFClock, flags); 2409 if (hc->e1_resync & 1) { 2410 if (debug & DEBUG_HFCMULTI_PLXSD) 2411 printk(KERN_DEBUG "Enable SYNC_I\n"); 2412 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC); 2413 /* disable JATT, if RX_SYNC is set */ 2414 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) 2415 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX); 2416 } 2417 if (hc->e1_resync & 2) { 2418 if (debug & DEBUG_HFCMULTI_PLXSD) 2419 printk(KERN_DEBUG "Enable jatt PLL\n"); 2420 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS); 2421 } 2422 if (hc->e1_resync & 4) { 2423 if (debug & DEBUG_HFCMULTI_PLXSD) 2424 printk(KERN_DEBUG 2425 "Enable QUARTZ for HFC-E1\n"); 2426 /* set jatt to quartz */ 2427 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC 2428 | V_JATT_OFF); 2429 /* switch to JATT, in case it is not already */ 2430 HFC_outb(hc, R_SYNC_OUT, 0); 2431 } 2432 hc->e1_resync = 0; 2433 spin_unlock_irqrestore(&HFClock, flags); 2434 } 2435 2436 if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1) 2437 for (ch = 0; ch <= 31; ch++) { 2438 if (hc->created[hc->chan[ch].port]) { 2439 hfcmulti_tx(hc, ch); 2440 /* fifo is started when switching to rx-fifo */ 2441 hfcmulti_rx(hc, ch); 2442 if (hc->chan[ch].dch && 2443 hc->chan[ch].nt_timer > -1) { 2444 dch = hc->chan[ch].dch; 2445 if (!(--hc->chan[ch].nt_timer)) { 2446 schedule_event(dch, 2447 FLG_PHCHANGE); 2448 if (debug & 2449 DEBUG_HFCMULTI_STATE) 2450 printk(KERN_DEBUG 2451 "%s: nt_timer at " 2452 "state %x\n", 2453 __func__, 2454 dch->state); 2455 } 2456 } 2457 } 2458 } 2459 if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) { 2460 dch = hc->chan[hc->dnum[0]].dch; 2461 /* LOS */ 2462 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS; 2463 hc->chan[hc->dnum[0]].los = temp; 2464 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) { 2465 if (!temp && hc->chan[hc->dnum[0]].los) 2466 signal_state_up(dch, L1_SIGNAL_LOS_ON, 2467 "LOS detected"); 2468 if (temp && !hc->chan[hc->dnum[0]].los) 2469 signal_state_up(dch, L1_SIGNAL_LOS_OFF, 2470 "LOS gone"); 2471 } 2472 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) { 2473 /* AIS */ 2474 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS; 2475 if (!temp && hc->chan[hc->dnum[0]].ais) 2476 signal_state_up(dch, L1_SIGNAL_AIS_ON, 2477 "AIS detected"); 2478 if (temp && !hc->chan[hc->dnum[0]].ais) 2479 signal_state_up(dch, L1_SIGNAL_AIS_OFF, 2480 "AIS gone"); 2481 hc->chan[hc->dnum[0]].ais = temp; 2482 } 2483 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) { 2484 /* SLIP */ 2485 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX; 2486 if (!temp && hc->chan[hc->dnum[0]].slip_rx) 2487 signal_state_up(dch, L1_SIGNAL_SLIP_RX, 2488 " bit SLIP detected RX"); 2489 hc->chan[hc->dnum[0]].slip_rx = temp; 2490 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX; 2491 if (!temp && hc->chan[hc->dnum[0]].slip_tx) 2492 signal_state_up(dch, L1_SIGNAL_SLIP_TX, 2493 " bit SLIP detected TX"); 2494 hc->chan[hc->dnum[0]].slip_tx = temp; 2495 } 2496 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) { 2497 /* RDI */ 2498 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A; 2499 if (!temp && hc->chan[hc->dnum[0]].rdi) 2500 signal_state_up(dch, L1_SIGNAL_RDI_ON, 2501 "RDI detected"); 2502 if (temp && !hc->chan[hc->dnum[0]].rdi) 2503 signal_state_up(dch, L1_SIGNAL_RDI_OFF, 2504 "RDI gone"); 2505 hc->chan[hc->dnum[0]].rdi = temp; 2506 } 2507 temp = HFC_inb_nodebug(hc, R_JATT_DIR); 2508 switch (hc->chan[hc->dnum[0]].sync) { 2509 case 0: 2510 if ((temp & 0x60) == 0x60) { 2511 if (debug & DEBUG_HFCMULTI_SYNC) 2512 printk(KERN_DEBUG 2513 "%s: (id=%d) E1 now " 2514 "in clock sync\n", 2515 __func__, hc->id); 2516 HFC_outb(hc, R_RX_OFF, 2517 hc->chan[hc->dnum[0]].jitter | V_RX_INIT); 2518 HFC_outb(hc, R_TX_OFF, 2519 hc->chan[hc->dnum[0]].jitter | V_RX_INIT); 2520 hc->chan[hc->dnum[0]].sync = 1; 2521 goto check_framesync; 2522 } 2523 break; 2524 case 1: 2525 if ((temp & 0x60) != 0x60) { 2526 if (debug & DEBUG_HFCMULTI_SYNC) 2527 printk(KERN_DEBUG 2528 "%s: (id=%d) E1 " 2529 "lost clock sync\n", 2530 __func__, hc->id); 2531 hc->chan[hc->dnum[0]].sync = 0; 2532 break; 2533 } 2534 check_framesync: 2535 temp = HFC_inb_nodebug(hc, R_SYNC_STA); 2536 if (temp == 0x27) { 2537 if (debug & DEBUG_HFCMULTI_SYNC) 2538 printk(KERN_DEBUG 2539 "%s: (id=%d) E1 " 2540 "now in frame sync\n", 2541 __func__, hc->id); 2542 hc->chan[hc->dnum[0]].sync = 2; 2543 } 2544 break; 2545 case 2: 2546 if ((temp & 0x60) != 0x60) { 2547 if (debug & DEBUG_HFCMULTI_SYNC) 2548 printk(KERN_DEBUG 2549 "%s: (id=%d) E1 lost " 2550 "clock & frame sync\n", 2551 __func__, hc->id); 2552 hc->chan[hc->dnum[0]].sync = 0; 2553 break; 2554 } 2555 temp = HFC_inb_nodebug(hc, R_SYNC_STA); 2556 if (temp != 0x27) { 2557 if (debug & DEBUG_HFCMULTI_SYNC) 2558 printk(KERN_DEBUG 2559 "%s: (id=%d) E1 " 2560 "lost frame sync\n", 2561 __func__, hc->id); 2562 hc->chan[hc->dnum[0]].sync = 1; 2563 } 2564 break; 2565 } 2566 } 2567 2568 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip)) 2569 hfcmulti_watchdog(hc); 2570 2571 if (hc->leds) 2572 hfcmulti_leds(hc); 2573 } 2574 2575 static void 2576 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech) 2577 { 2578 struct dchannel *dch; 2579 int ch; 2580 int active; 2581 u_char st_status, temp; 2582 2583 /* state machine */ 2584 for (ch = 0; ch <= 31; ch++) { 2585 if (hc->chan[ch].dch) { 2586 dch = hc->chan[ch].dch; 2587 if (r_irq_statech & 1) { 2588 HFC_outb_nodebug(hc, R_ST_SEL, 2589 hc->chan[ch].port); 2590 /* undocumented: delay after R_ST_SEL */ 2591 udelay(1); 2592 /* undocumented: status changes during read */ 2593 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE); 2594 while (st_status != (temp = 2595 HFC_inb_nodebug(hc, A_ST_RD_STATE))) { 2596 if (debug & DEBUG_HFCMULTI_STATE) 2597 printk(KERN_DEBUG "%s: reread " 2598 "STATE because %d!=%d\n", 2599 __func__, temp, 2600 st_status); 2601 st_status = temp; /* repeat */ 2602 } 2603 2604 /* Speech Design TE-sync indication */ 2605 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && 2606 dch->dev.D.protocol == ISDN_P_TE_S0) { 2607 if (st_status & V_FR_SYNC_ST) 2608 hc->syncronized |= 2609 (1 << hc->chan[ch].port); 2610 else 2611 hc->syncronized &= 2612 ~(1 << hc->chan[ch].port); 2613 } 2614 dch->state = st_status & 0x0f; 2615 if (dch->dev.D.protocol == ISDN_P_NT_S0) 2616 active = 3; 2617 else 2618 active = 7; 2619 if (dch->state == active) { 2620 HFC_outb_nodebug(hc, R_FIFO, 2621 (ch << 1) | 1); 2622 HFC_wait_nodebug(hc); 2623 HFC_outb_nodebug(hc, 2624 R_INC_RES_FIFO, V_RES_F); 2625 HFC_wait_nodebug(hc); 2626 dch->tx_idx = 0; 2627 } 2628 schedule_event(dch, FLG_PHCHANGE); 2629 if (debug & DEBUG_HFCMULTI_STATE) 2630 printk(KERN_DEBUG 2631 "%s: S/T newstate %x port %d\n", 2632 __func__, dch->state, 2633 hc->chan[ch].port); 2634 } 2635 r_irq_statech >>= 1; 2636 } 2637 } 2638 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) 2639 plxsd_checksync(hc, 0); 2640 } 2641 2642 static void 2643 fifo_irq(struct hfc_multi *hc, int block) 2644 { 2645 int ch, j; 2646 struct dchannel *dch; 2647 struct bchannel *bch; 2648 u_char r_irq_fifo_bl; 2649 2650 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block); 2651 j = 0; 2652 while (j < 8) { 2653 ch = (block << 2) + (j >> 1); 2654 dch = hc->chan[ch].dch; 2655 bch = hc->chan[ch].bch; 2656 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) { 2657 j += 2; 2658 continue; 2659 } 2660 if (dch && (r_irq_fifo_bl & (1 << j)) && 2661 test_bit(FLG_ACTIVE, &dch->Flags)) { 2662 hfcmulti_tx(hc, ch); 2663 /* start fifo */ 2664 HFC_outb_nodebug(hc, R_FIFO, 0); 2665 HFC_wait_nodebug(hc); 2666 } 2667 if (bch && (r_irq_fifo_bl & (1 << j)) && 2668 test_bit(FLG_ACTIVE, &bch->Flags)) { 2669 hfcmulti_tx(hc, ch); 2670 /* start fifo */ 2671 HFC_outb_nodebug(hc, R_FIFO, 0); 2672 HFC_wait_nodebug(hc); 2673 } 2674 j++; 2675 if (dch && (r_irq_fifo_bl & (1 << j)) && 2676 test_bit(FLG_ACTIVE, &dch->Flags)) { 2677 hfcmulti_rx(hc, ch); 2678 } 2679 if (bch && (r_irq_fifo_bl & (1 << j)) && 2680 test_bit(FLG_ACTIVE, &bch->Flags)) { 2681 hfcmulti_rx(hc, ch); 2682 } 2683 j++; 2684 } 2685 } 2686 2687 #ifdef IRQ_DEBUG 2688 int irqsem; 2689 #endif 2690 static irqreturn_t 2691 hfcmulti_interrupt(int intno, void *dev_id) 2692 { 2693 #ifdef IRQCOUNT_DEBUG 2694 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0, 2695 iq5 = 0, iq6 = 0, iqcnt = 0; 2696 #endif 2697 struct hfc_multi *hc = dev_id; 2698 struct dchannel *dch; 2699 u_char r_irq_statech, status, r_irq_misc, r_irq_oview; 2700 int i; 2701 void __iomem *plx_acc; 2702 u_short wval; 2703 u_char e1_syncsta, temp, temp2; 2704 u_long flags; 2705 2706 if (!hc) { 2707 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n"); 2708 return IRQ_NONE; 2709 } 2710 2711 spin_lock(&hc->lock); 2712 2713 #ifdef IRQ_DEBUG 2714 if (irqsem) 2715 printk(KERN_ERR "irq for card %d during irq from " 2716 "card %d, this is no bug.\n", hc->id + 1, irqsem); 2717 irqsem = hc->id + 1; 2718 #endif 2719 #ifdef CONFIG_MISDN_HFCMULTI_8xx 2720 if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk) 2721 goto irq_notforus; 2722 #endif 2723 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 2724 spin_lock_irqsave(&plx_lock, flags); 2725 plx_acc = hc->plx_membase + PLX_INTCSR; 2726 wval = readw(plx_acc); 2727 spin_unlock_irqrestore(&plx_lock, flags); 2728 if (!(wval & PLX_INTCSR_LINTI1_STATUS)) 2729 goto irq_notforus; 2730 } 2731 2732 status = HFC_inb_nodebug(hc, R_STATUS); 2733 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH); 2734 #ifdef IRQCOUNT_DEBUG 2735 if (r_irq_statech) 2736 iq1++; 2737 if (status & V_DTMF_STA) 2738 iq2++; 2739 if (status & V_LOST_STA) 2740 iq3++; 2741 if (status & V_EXT_IRQSTA) 2742 iq4++; 2743 if (status & V_MISC_IRQSTA) 2744 iq5++; 2745 if (status & V_FR_IRQSTA) 2746 iq6++; 2747 if (iqcnt++ > 5000) { 2748 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n", 2749 iq1, iq2, iq3, iq4, iq5, iq6); 2750 iqcnt = 0; 2751 } 2752 #endif 2753 2754 if (!r_irq_statech && 2755 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA | 2756 V_MISC_IRQSTA | V_FR_IRQSTA))) { 2757 /* irq is not for us */ 2758 goto irq_notforus; 2759 } 2760 hc->irqcnt++; 2761 if (r_irq_statech) { 2762 if (hc->ctype != HFC_TYPE_E1) 2763 ph_state_irq(hc, r_irq_statech); 2764 } 2765 if (status & V_EXT_IRQSTA) 2766 ; /* external IRQ */ 2767 if (status & V_LOST_STA) { 2768 /* LOST IRQ */ 2769 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */ 2770 } 2771 if (status & V_MISC_IRQSTA) { 2772 /* misc IRQ */ 2773 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC); 2774 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */ 2775 if (r_irq_misc & V_STA_IRQ) { 2776 if (hc->ctype == HFC_TYPE_E1) { 2777 /* state machine */ 2778 dch = hc->chan[hc->dnum[0]].dch; 2779 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA); 2780 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) 2781 && hc->e1_getclock) { 2782 if (e1_syncsta & V_FR_SYNC_E1) 2783 hc->syncronized = 1; 2784 else 2785 hc->syncronized = 0; 2786 } 2787 /* undocumented: status changes during read */ 2788 temp = HFC_inb_nodebug(hc, R_E1_RD_STA); 2789 while (temp != (temp2 = 2790 HFC_inb_nodebug(hc, R_E1_RD_STA))) { 2791 if (debug & DEBUG_HFCMULTI_STATE) 2792 printk(KERN_DEBUG "%s: reread " 2793 "STATE because %d!=%d\n", 2794 __func__, temp, temp2); 2795 temp = temp2; /* repeat */ 2796 } 2797 /* broadcast state change to all fragments */ 2798 if (debug & DEBUG_HFCMULTI_STATE) 2799 printk(KERN_DEBUG 2800 "%s: E1 (id=%d) newstate %x\n", 2801 __func__, hc->id, temp & 0x7); 2802 for (i = 0; i < hc->ports; i++) { 2803 dch = hc->chan[hc->dnum[i]].dch; 2804 dch->state = temp & 0x7; 2805 schedule_event(dch, FLG_PHCHANGE); 2806 } 2807 2808 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) 2809 plxsd_checksync(hc, 0); 2810 } 2811 } 2812 if (r_irq_misc & V_TI_IRQ) { 2813 if (hc->iclock_on) 2814 mISDN_clock_update(hc->iclock, poll, NULL); 2815 handle_timer_irq(hc); 2816 } 2817 2818 if (r_irq_misc & V_DTMF_IRQ) 2819 hfcmulti_dtmf(hc); 2820 2821 if (r_irq_misc & V_IRQ_PROC) { 2822 static int irq_proc_cnt; 2823 if (!irq_proc_cnt++) 2824 printk(KERN_DEBUG "%s: got V_IRQ_PROC -" 2825 " this should not happen\n", __func__); 2826 } 2827 2828 } 2829 if (status & V_FR_IRQSTA) { 2830 /* FIFO IRQ */ 2831 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW); 2832 for (i = 0; i < 8; i++) { 2833 if (r_irq_oview & (1 << i)) 2834 fifo_irq(hc, i); 2835 } 2836 } 2837 2838 #ifdef IRQ_DEBUG 2839 irqsem = 0; 2840 #endif 2841 spin_unlock(&hc->lock); 2842 return IRQ_HANDLED; 2843 2844 irq_notforus: 2845 #ifdef IRQ_DEBUG 2846 irqsem = 0; 2847 #endif 2848 spin_unlock(&hc->lock); 2849 return IRQ_NONE; 2850 } 2851 2852 2853 /* 2854 * timer callback for D-chan busy resolution. Currently no function 2855 */ 2856 2857 static void 2858 hfcmulti_dbusy_timer(struct timer_list *t) 2859 { 2860 } 2861 2862 2863 /* 2864 * activate/deactivate hardware for selected channels and mode 2865 * 2866 * configure B-channel with the given protocol 2867 * ch eqals to the HFC-channel (0-31) 2868 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31 2869 * for S/T, 1-31 for E1) 2870 * the hdlc interrupts will be set/unset 2871 */ 2872 static int 2873 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx, 2874 int bank_tx, int slot_rx, int bank_rx) 2875 { 2876 int flow_tx = 0, flow_rx = 0, routing = 0; 2877 int oslot_tx, oslot_rx; 2878 int conf; 2879 2880 if (ch < 0 || ch > 31) 2881 return -EINVAL; 2882 oslot_tx = hc->chan[ch].slot_tx; 2883 oslot_rx = hc->chan[ch].slot_rx; 2884 conf = hc->chan[ch].conf; 2885 2886 if (debug & DEBUG_HFCMULTI_MODE) 2887 printk(KERN_DEBUG 2888 "%s: card %d channel %d protocol %x slot old=%d new=%d " 2889 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n", 2890 __func__, hc->id, ch, protocol, oslot_tx, slot_tx, 2891 bank_tx, oslot_rx, slot_rx, bank_rx); 2892 2893 if (oslot_tx >= 0 && slot_tx != oslot_tx) { 2894 /* remove from slot */ 2895 if (debug & DEBUG_HFCMULTI_MODE) 2896 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n", 2897 __func__, oslot_tx); 2898 if (hc->slot_owner[oslot_tx << 1] == ch) { 2899 HFC_outb(hc, R_SLOT, oslot_tx << 1); 2900 HFC_outb(hc, A_SL_CFG, 0); 2901 if (hc->ctype != HFC_TYPE_XHFC) 2902 HFC_outb(hc, A_CONF, 0); 2903 hc->slot_owner[oslot_tx << 1] = -1; 2904 } else { 2905 if (debug & DEBUG_HFCMULTI_MODE) 2906 printk(KERN_DEBUG 2907 "%s: we are not owner of this tx slot " 2908 "anymore, channel %d is.\n", 2909 __func__, hc->slot_owner[oslot_tx << 1]); 2910 } 2911 } 2912 2913 if (oslot_rx >= 0 && slot_rx != oslot_rx) { 2914 /* remove from slot */ 2915 if (debug & DEBUG_HFCMULTI_MODE) 2916 printk(KERN_DEBUG 2917 "%s: remove from slot %d (RX)\n", 2918 __func__, oslot_rx); 2919 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) { 2920 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR); 2921 HFC_outb(hc, A_SL_CFG, 0); 2922 hc->slot_owner[(oslot_rx << 1) | 1] = -1; 2923 } else { 2924 if (debug & DEBUG_HFCMULTI_MODE) 2925 printk(KERN_DEBUG 2926 "%s: we are not owner of this rx slot " 2927 "anymore, channel %d is.\n", 2928 __func__, 2929 hc->slot_owner[(oslot_rx << 1) | 1]); 2930 } 2931 } 2932 2933 if (slot_tx < 0) { 2934 flow_tx = 0x80; /* FIFO->ST */ 2935 /* disable pcm slot */ 2936 hc->chan[ch].slot_tx = -1; 2937 hc->chan[ch].bank_tx = 0; 2938 } else { 2939 /* set pcm slot */ 2940 if (hc->chan[ch].txpending) 2941 flow_tx = 0x80; /* FIFO->ST */ 2942 else 2943 flow_tx = 0xc0; /* PCM->ST */ 2944 /* put on slot */ 2945 routing = bank_tx ? 0xc0 : 0x80; 2946 if (conf >= 0 || bank_tx > 1) 2947 routing = 0x40; /* loop */ 2948 if (debug & DEBUG_HFCMULTI_MODE) 2949 printk(KERN_DEBUG "%s: put channel %d to slot %d bank" 2950 " %d flow %02x routing %02x conf %d (TX)\n", 2951 __func__, ch, slot_tx, bank_tx, 2952 flow_tx, routing, conf); 2953 HFC_outb(hc, R_SLOT, slot_tx << 1); 2954 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing); 2955 if (hc->ctype != HFC_TYPE_XHFC) 2956 HFC_outb(hc, A_CONF, 2957 (conf < 0) ? 0 : (conf | V_CONF_SL)); 2958 hc->slot_owner[slot_tx << 1] = ch; 2959 hc->chan[ch].slot_tx = slot_tx; 2960 hc->chan[ch].bank_tx = bank_tx; 2961 } 2962 if (slot_rx < 0) { 2963 /* disable pcm slot */ 2964 flow_rx = 0x80; /* ST->FIFO */ 2965 hc->chan[ch].slot_rx = -1; 2966 hc->chan[ch].bank_rx = 0; 2967 } else { 2968 /* set pcm slot */ 2969 if (hc->chan[ch].txpending) 2970 flow_rx = 0x80; /* ST->FIFO */ 2971 else 2972 flow_rx = 0xc0; /* ST->(FIFO,PCM) */ 2973 /* put on slot */ 2974 routing = bank_rx ? 0x80 : 0xc0; /* reversed */ 2975 if (conf >= 0 || bank_rx > 1) 2976 routing = 0x40; /* loop */ 2977 if (debug & DEBUG_HFCMULTI_MODE) 2978 printk(KERN_DEBUG "%s: put channel %d to slot %d bank" 2979 " %d flow %02x routing %02x conf %d (RX)\n", 2980 __func__, ch, slot_rx, bank_rx, 2981 flow_rx, routing, conf); 2982 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR); 2983 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing); 2984 hc->slot_owner[(slot_rx << 1) | 1] = ch; 2985 hc->chan[ch].slot_rx = slot_rx; 2986 hc->chan[ch].bank_rx = bank_rx; 2987 } 2988 2989 switch (protocol) { 2990 case (ISDN_P_NONE): 2991 /* disable TX fifo */ 2992 HFC_outb(hc, R_FIFO, ch << 1); 2993 HFC_wait(hc); 2994 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF); 2995 HFC_outb(hc, A_SUBCH_CFG, 0); 2996 HFC_outb(hc, A_IRQ_MSK, 0); 2997 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 2998 HFC_wait(hc); 2999 /* disable RX fifo */ 3000 HFC_outb(hc, R_FIFO, (ch << 1) | 1); 3001 HFC_wait(hc); 3002 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00); 3003 HFC_outb(hc, A_SUBCH_CFG, 0); 3004 HFC_outb(hc, A_IRQ_MSK, 0); 3005 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3006 HFC_wait(hc); 3007 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) { 3008 hc->hw.a_st_ctrl0[hc->chan[ch].port] &= 3009 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN; 3010 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); 3011 /* undocumented: delay after R_ST_SEL */ 3012 udelay(1); 3013 HFC_outb(hc, A_ST_CTRL0, 3014 hc->hw.a_st_ctrl0[hc->chan[ch].port]); 3015 } 3016 if (hc->chan[ch].bch) { 3017 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags); 3018 test_and_clear_bit(FLG_TRANSPARENT, 3019 &hc->chan[ch].bch->Flags); 3020 } 3021 break; 3022 case (ISDN_P_B_RAW): /* B-channel */ 3023 3024 if (test_bit(HFC_CHIP_B410P, &hc->chip) && 3025 (hc->chan[ch].slot_rx < 0) && 3026 (hc->chan[ch].slot_tx < 0)) { 3027 3028 printk(KERN_DEBUG 3029 "Setting B-channel %d to echo cancelable " 3030 "state on PCM slot %d\n", ch, 3031 ((ch / 4) * 8) + ((ch % 4) * 4) + 1); 3032 printk(KERN_DEBUG 3033 "Enabling pass through for channel\n"); 3034 vpm_out(hc, ch, ((ch / 4) * 8) + 3035 ((ch % 4) * 4) + 1, 0x01); 3036 /* rx path */ 3037 /* S/T -> PCM */ 3038 HFC_outb(hc, R_FIFO, (ch << 1)); 3039 HFC_wait(hc); 3040 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF); 3041 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) + 3042 ((ch % 4) * 4) + 1) << 1); 3043 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1)); 3044 3045 /* PCM -> FIFO */ 3046 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1); 3047 HFC_wait(hc); 3048 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF); 3049 HFC_outb(hc, A_SUBCH_CFG, 0); 3050 HFC_outb(hc, A_IRQ_MSK, 0); 3051 if (hc->chan[ch].protocol != protocol) { 3052 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3053 HFC_wait(hc); 3054 } 3055 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) + 3056 ((ch % 4) * 4) + 1) << 1) | 1); 3057 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1); 3058 3059 /* tx path */ 3060 /* PCM -> S/T */ 3061 HFC_outb(hc, R_FIFO, (ch << 1) | 1); 3062 HFC_wait(hc); 3063 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF); 3064 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) + 3065 ((ch % 4) * 4)) << 1) | 1); 3066 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1); 3067 3068 /* FIFO -> PCM */ 3069 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1)); 3070 HFC_wait(hc); 3071 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF); 3072 HFC_outb(hc, A_SUBCH_CFG, 0); 3073 HFC_outb(hc, A_IRQ_MSK, 0); 3074 if (hc->chan[ch].protocol != protocol) { 3075 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3076 HFC_wait(hc); 3077 } 3078 /* tx silence */ 3079 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); 3080 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) + 3081 ((ch % 4) * 4)) << 1); 3082 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1)); 3083 } else { 3084 /* enable TX fifo */ 3085 HFC_outb(hc, R_FIFO, ch << 1); 3086 HFC_wait(hc); 3087 if (hc->ctype == HFC_TYPE_XHFC) 3088 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 | 3089 V_HDLC_TRP | V_IFF); 3090 /* Enable FIFO, no interrupt */ 3091 else 3092 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | 3093 V_HDLC_TRP | V_IFF); 3094 HFC_outb(hc, A_SUBCH_CFG, 0); 3095 HFC_outb(hc, A_IRQ_MSK, 0); 3096 if (hc->chan[ch].protocol != protocol) { 3097 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3098 HFC_wait(hc); 3099 } 3100 /* tx silence */ 3101 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); 3102 /* enable RX fifo */ 3103 HFC_outb(hc, R_FIFO, (ch << 1) | 1); 3104 HFC_wait(hc); 3105 if (hc->ctype == HFC_TYPE_XHFC) 3106 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 | 3107 V_HDLC_TRP); 3108 /* Enable FIFO, no interrupt*/ 3109 else 3110 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | 3111 V_HDLC_TRP); 3112 HFC_outb(hc, A_SUBCH_CFG, 0); 3113 HFC_outb(hc, A_IRQ_MSK, 0); 3114 if (hc->chan[ch].protocol != protocol) { 3115 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3116 HFC_wait(hc); 3117 } 3118 } 3119 if (hc->ctype != HFC_TYPE_E1) { 3120 hc->hw.a_st_ctrl0[hc->chan[ch].port] |= 3121 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN; 3122 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); 3123 /* undocumented: delay after R_ST_SEL */ 3124 udelay(1); 3125 HFC_outb(hc, A_ST_CTRL0, 3126 hc->hw.a_st_ctrl0[hc->chan[ch].port]); 3127 } 3128 if (hc->chan[ch].bch) 3129 test_and_set_bit(FLG_TRANSPARENT, 3130 &hc->chan[ch].bch->Flags); 3131 break; 3132 case (ISDN_P_B_HDLC): /* B-channel */ 3133 case (ISDN_P_TE_S0): /* D-channel */ 3134 case (ISDN_P_NT_S0): 3135 case (ISDN_P_TE_E1): 3136 case (ISDN_P_NT_E1): 3137 /* enable TX fifo */ 3138 HFC_outb(hc, R_FIFO, ch << 1); 3139 HFC_wait(hc); 3140 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) { 3141 /* E1 or B-channel */ 3142 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04); 3143 HFC_outb(hc, A_SUBCH_CFG, 0); 3144 } else { 3145 /* D-Channel without HDLC fill flags */ 3146 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF); 3147 HFC_outb(hc, A_SUBCH_CFG, 2); 3148 } 3149 HFC_outb(hc, A_IRQ_MSK, V_IRQ); 3150 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3151 HFC_wait(hc); 3152 /* enable RX fifo */ 3153 HFC_outb(hc, R_FIFO, (ch << 1) | 1); 3154 HFC_wait(hc); 3155 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04); 3156 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) 3157 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */ 3158 else 3159 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */ 3160 HFC_outb(hc, A_IRQ_MSK, V_IRQ); 3161 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3162 HFC_wait(hc); 3163 if (hc->chan[ch].bch) { 3164 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags); 3165 if (hc->ctype != HFC_TYPE_E1) { 3166 hc->hw.a_st_ctrl0[hc->chan[ch].port] |= 3167 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN; 3168 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); 3169 /* undocumented: delay after R_ST_SEL */ 3170 udelay(1); 3171 HFC_outb(hc, A_ST_CTRL0, 3172 hc->hw.a_st_ctrl0[hc->chan[ch].port]); 3173 } 3174 } 3175 break; 3176 default: 3177 printk(KERN_DEBUG "%s: protocol not known %x\n", 3178 __func__, protocol); 3179 hc->chan[ch].protocol = ISDN_P_NONE; 3180 return -ENOPROTOOPT; 3181 } 3182 hc->chan[ch].protocol = protocol; 3183 return 0; 3184 } 3185 3186 3187 /* 3188 * connect/disconnect PCM 3189 */ 3190 3191 static void 3192 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx, 3193 int slot_rx, int bank_rx) 3194 { 3195 if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) { 3196 /* disable PCM */ 3197 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0); 3198 return; 3199 } 3200 3201 /* enable pcm */ 3202 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx, 3203 slot_rx, bank_rx); 3204 } 3205 3206 /* 3207 * set/disable conference 3208 */ 3209 3210 static void 3211 hfcmulti_conf(struct hfc_multi *hc, int ch, int num) 3212 { 3213 if (num >= 0 && num <= 7) 3214 hc->chan[ch].conf = num; 3215 else 3216 hc->chan[ch].conf = -1; 3217 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx, 3218 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx, 3219 hc->chan[ch].bank_rx); 3220 } 3221 3222 3223 /* 3224 * set/disable sample loop 3225 */ 3226 3227 /* NOTE: this function is experimental and therefore disabled */ 3228 3229 /* 3230 * Layer 1 callback function 3231 */ 3232 static int 3233 hfcm_l1callback(struct dchannel *dch, u_int cmd) 3234 { 3235 struct hfc_multi *hc = dch->hw; 3236 u_long flags; 3237 3238 switch (cmd) { 3239 case INFO3_P8: 3240 case INFO3_P10: 3241 break; 3242 case HW_RESET_REQ: 3243 /* start activation */ 3244 spin_lock_irqsave(&hc->lock, flags); 3245 if (hc->ctype == HFC_TYPE_E1) { 3246 if (debug & DEBUG_HFCMULTI_MSG) 3247 printk(KERN_DEBUG 3248 "%s: HW_RESET_REQ no BRI\n", 3249 __func__); 3250 } else { 3251 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); 3252 /* undocumented: delay after R_ST_SEL */ 3253 udelay(1); 3254 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */ 3255 udelay(6); /* wait at least 5,21us */ 3256 HFC_outb(hc, A_ST_WR_STATE, 3); 3257 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3)); 3258 /* activate */ 3259 } 3260 spin_unlock_irqrestore(&hc->lock, flags); 3261 l1_event(dch->l1, HW_POWERUP_IND); 3262 break; 3263 case HW_DEACT_REQ: 3264 /* start deactivation */ 3265 spin_lock_irqsave(&hc->lock, flags); 3266 if (hc->ctype == HFC_TYPE_E1) { 3267 if (debug & DEBUG_HFCMULTI_MSG) 3268 printk(KERN_DEBUG 3269 "%s: HW_DEACT_REQ no BRI\n", 3270 __func__); 3271 } else { 3272 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); 3273 /* undocumented: delay after R_ST_SEL */ 3274 udelay(1); 3275 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2); 3276 /* deactivate */ 3277 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 3278 hc->syncronized &= 3279 ~(1 << hc->chan[dch->slot].port); 3280 plxsd_checksync(hc, 0); 3281 } 3282 } 3283 skb_queue_purge(&dch->squeue); 3284 if (dch->tx_skb) { 3285 dev_kfree_skb(dch->tx_skb); 3286 dch->tx_skb = NULL; 3287 } 3288 dch->tx_idx = 0; 3289 if (dch->rx_skb) { 3290 dev_kfree_skb(dch->rx_skb); 3291 dch->rx_skb = NULL; 3292 } 3293 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 3294 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 3295 del_timer(&dch->timer); 3296 spin_unlock_irqrestore(&hc->lock, flags); 3297 break; 3298 case HW_POWERUP_REQ: 3299 spin_lock_irqsave(&hc->lock, flags); 3300 if (hc->ctype == HFC_TYPE_E1) { 3301 if (debug & DEBUG_HFCMULTI_MSG) 3302 printk(KERN_DEBUG 3303 "%s: HW_POWERUP_REQ no BRI\n", 3304 __func__); 3305 } else { 3306 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); 3307 /* undocumented: delay after R_ST_SEL */ 3308 udelay(1); 3309 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */ 3310 udelay(6); /* wait at least 5,21us */ 3311 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */ 3312 } 3313 spin_unlock_irqrestore(&hc->lock, flags); 3314 break; 3315 case PH_ACTIVATE_IND: 3316 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 3317 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 3318 GFP_ATOMIC); 3319 break; 3320 case PH_DEACTIVATE_IND: 3321 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 3322 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 3323 GFP_ATOMIC); 3324 break; 3325 default: 3326 if (dch->debug & DEBUG_HW) 3327 printk(KERN_DEBUG "%s: unknown command %x\n", 3328 __func__, cmd); 3329 return -1; 3330 } 3331 return 0; 3332 } 3333 3334 /* 3335 * Layer2 -> Layer 1 Transfer 3336 */ 3337 3338 static int 3339 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb) 3340 { 3341 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 3342 struct dchannel *dch = container_of(dev, struct dchannel, dev); 3343 struct hfc_multi *hc = dch->hw; 3344 struct mISDNhead *hh = mISDN_HEAD_P(skb); 3345 int ret = -EINVAL; 3346 unsigned int id; 3347 u_long flags; 3348 3349 switch (hh->prim) { 3350 case PH_DATA_REQ: 3351 if (skb->len < 1) 3352 break; 3353 spin_lock_irqsave(&hc->lock, flags); 3354 ret = dchannel_senddata(dch, skb); 3355 if (ret > 0) { /* direct TX */ 3356 id = hh->id; /* skb can be freed */ 3357 hfcmulti_tx(hc, dch->slot); 3358 ret = 0; 3359 /* start fifo */ 3360 HFC_outb(hc, R_FIFO, 0); 3361 HFC_wait(hc); 3362 spin_unlock_irqrestore(&hc->lock, flags); 3363 queue_ch_frame(ch, PH_DATA_CNF, id, NULL); 3364 } else 3365 spin_unlock_irqrestore(&hc->lock, flags); 3366 return ret; 3367 case PH_ACTIVATE_REQ: 3368 if (dch->dev.D.protocol != ISDN_P_TE_S0) { 3369 spin_lock_irqsave(&hc->lock, flags); 3370 ret = 0; 3371 if (debug & DEBUG_HFCMULTI_MSG) 3372 printk(KERN_DEBUG 3373 "%s: PH_ACTIVATE port %d (0..%d)\n", 3374 __func__, hc->chan[dch->slot].port, 3375 hc->ports - 1); 3376 /* start activation */ 3377 if (hc->ctype == HFC_TYPE_E1) { 3378 ph_state_change(dch); 3379 if (debug & DEBUG_HFCMULTI_STATE) 3380 printk(KERN_DEBUG 3381 "%s: E1 report state %x \n", 3382 __func__, dch->state); 3383 } else { 3384 HFC_outb(hc, R_ST_SEL, 3385 hc->chan[dch->slot].port); 3386 /* undocumented: delay after R_ST_SEL */ 3387 udelay(1); 3388 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1); 3389 /* G1 */ 3390 udelay(6); /* wait at least 5,21us */ 3391 HFC_outb(hc, A_ST_WR_STATE, 1); 3392 HFC_outb(hc, A_ST_WR_STATE, 1 | 3393 (V_ST_ACT * 3)); /* activate */ 3394 dch->state = 1; 3395 } 3396 spin_unlock_irqrestore(&hc->lock, flags); 3397 } else 3398 ret = l1_event(dch->l1, hh->prim); 3399 break; 3400 case PH_DEACTIVATE_REQ: 3401 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 3402 if (dch->dev.D.protocol != ISDN_P_TE_S0) { 3403 spin_lock_irqsave(&hc->lock, flags); 3404 if (debug & DEBUG_HFCMULTI_MSG) 3405 printk(KERN_DEBUG 3406 "%s: PH_DEACTIVATE port %d (0..%d)\n", 3407 __func__, hc->chan[dch->slot].port, 3408 hc->ports - 1); 3409 /* start deactivation */ 3410 if (hc->ctype == HFC_TYPE_E1) { 3411 if (debug & DEBUG_HFCMULTI_MSG) 3412 printk(KERN_DEBUG 3413 "%s: PH_DEACTIVATE no BRI\n", 3414 __func__); 3415 } else { 3416 HFC_outb(hc, R_ST_SEL, 3417 hc->chan[dch->slot].port); 3418 /* undocumented: delay after R_ST_SEL */ 3419 udelay(1); 3420 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2); 3421 /* deactivate */ 3422 dch->state = 1; 3423 } 3424 skb_queue_purge(&dch->squeue); 3425 if (dch->tx_skb) { 3426 dev_kfree_skb(dch->tx_skb); 3427 dch->tx_skb = NULL; 3428 } 3429 dch->tx_idx = 0; 3430 if (dch->rx_skb) { 3431 dev_kfree_skb(dch->rx_skb); 3432 dch->rx_skb = NULL; 3433 } 3434 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 3435 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 3436 del_timer(&dch->timer); 3437 #ifdef FIXME 3438 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) 3439 dchannel_sched_event(&hc->dch, D_CLEARBUSY); 3440 #endif 3441 ret = 0; 3442 spin_unlock_irqrestore(&hc->lock, flags); 3443 } else 3444 ret = l1_event(dch->l1, hh->prim); 3445 break; 3446 } 3447 if (!ret) 3448 dev_kfree_skb(skb); 3449 return ret; 3450 } 3451 3452 static void 3453 deactivate_bchannel(struct bchannel *bch) 3454 { 3455 struct hfc_multi *hc = bch->hw; 3456 u_long flags; 3457 3458 spin_lock_irqsave(&hc->lock, flags); 3459 mISDN_clear_bchannel(bch); 3460 hc->chan[bch->slot].coeff_count = 0; 3461 hc->chan[bch->slot].rx_off = 0; 3462 hc->chan[bch->slot].conf = -1; 3463 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0); 3464 spin_unlock_irqrestore(&hc->lock, flags); 3465 } 3466 3467 static int 3468 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb) 3469 { 3470 struct bchannel *bch = container_of(ch, struct bchannel, ch); 3471 struct hfc_multi *hc = bch->hw; 3472 int ret = -EINVAL; 3473 struct mISDNhead *hh = mISDN_HEAD_P(skb); 3474 unsigned long flags; 3475 3476 switch (hh->prim) { 3477 case PH_DATA_REQ: 3478 if (!skb->len) 3479 break; 3480 spin_lock_irqsave(&hc->lock, flags); 3481 ret = bchannel_senddata(bch, skb); 3482 if (ret > 0) { /* direct TX */ 3483 hfcmulti_tx(hc, bch->slot); 3484 ret = 0; 3485 /* start fifo */ 3486 HFC_outb_nodebug(hc, R_FIFO, 0); 3487 HFC_wait_nodebug(hc); 3488 } 3489 spin_unlock_irqrestore(&hc->lock, flags); 3490 return ret; 3491 case PH_ACTIVATE_REQ: 3492 if (debug & DEBUG_HFCMULTI_MSG) 3493 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n", 3494 __func__, bch->slot); 3495 spin_lock_irqsave(&hc->lock, flags); 3496 /* activate B-channel if not already activated */ 3497 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { 3498 hc->chan[bch->slot].txpending = 0; 3499 ret = mode_hfcmulti(hc, bch->slot, 3500 ch->protocol, 3501 hc->chan[bch->slot].slot_tx, 3502 hc->chan[bch->slot].bank_tx, 3503 hc->chan[bch->slot].slot_rx, 3504 hc->chan[bch->slot].bank_rx); 3505 if (!ret) { 3506 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf 3507 && test_bit(HFC_CHIP_DTMF, &hc->chip)) { 3508 /* start decoder */ 3509 hc->dtmf = 1; 3510 if (debug & DEBUG_HFCMULTI_DTMF) 3511 printk(KERN_DEBUG 3512 "%s: start dtmf decoder\n", 3513 __func__); 3514 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf | 3515 V_RST_DTMF); 3516 } 3517 } 3518 } else 3519 ret = 0; 3520 spin_unlock_irqrestore(&hc->lock, flags); 3521 if (!ret) 3522 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, 3523 GFP_KERNEL); 3524 break; 3525 case PH_CONTROL_REQ: 3526 spin_lock_irqsave(&hc->lock, flags); 3527 switch (hh->id) { 3528 case HFC_SPL_LOOP_ON: /* set sample loop */ 3529 if (debug & DEBUG_HFCMULTI_MSG) 3530 printk(KERN_DEBUG 3531 "%s: HFC_SPL_LOOP_ON (len = %d)\n", 3532 __func__, skb->len); 3533 ret = 0; 3534 break; 3535 case HFC_SPL_LOOP_OFF: /* set silence */ 3536 if (debug & DEBUG_HFCMULTI_MSG) 3537 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n", 3538 __func__); 3539 ret = 0; 3540 break; 3541 default: 3542 printk(KERN_ERR 3543 "%s: unknown PH_CONTROL_REQ info %x\n", 3544 __func__, hh->id); 3545 ret = -EINVAL; 3546 } 3547 spin_unlock_irqrestore(&hc->lock, flags); 3548 break; 3549 case PH_DEACTIVATE_REQ: 3550 deactivate_bchannel(bch); /* locked there */ 3551 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL, 3552 GFP_KERNEL); 3553 ret = 0; 3554 break; 3555 } 3556 if (!ret) 3557 dev_kfree_skb(skb); 3558 return ret; 3559 } 3560 3561 /* 3562 * bchannel control function 3563 */ 3564 static int 3565 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) 3566 { 3567 int ret = 0; 3568 struct dsp_features *features = 3569 (struct dsp_features *)(*((u_long *)&cq->p1)); 3570 struct hfc_multi *hc = bch->hw; 3571 int slot_tx; 3572 int bank_tx; 3573 int slot_rx; 3574 int bank_rx; 3575 int num; 3576 3577 switch (cq->op) { 3578 case MISDN_CTRL_GETOP: 3579 ret = mISDN_ctrl_bchannel(bch, cq); 3580 cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP; 3581 break; 3582 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */ 3583 ret = mISDN_ctrl_bchannel(bch, cq); 3584 hc->chan[bch->slot].rx_off = !!cq->p1; 3585 if (!hc->chan[bch->slot].rx_off) { 3586 /* reset fifo on rx on */ 3587 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1); 3588 HFC_wait_nodebug(hc); 3589 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); 3590 HFC_wait_nodebug(hc); 3591 } 3592 if (debug & DEBUG_HFCMULTI_MSG) 3593 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n", 3594 __func__, bch->nr, hc->chan[bch->slot].rx_off); 3595 break; 3596 case MISDN_CTRL_FILL_EMPTY: 3597 ret = mISDN_ctrl_bchannel(bch, cq); 3598 hc->silence = bch->fill[0]; 3599 memset(hc->silence_data, hc->silence, sizeof(hc->silence_data)); 3600 break; 3601 case MISDN_CTRL_HW_FEATURES: /* fill features structure */ 3602 if (debug & DEBUG_HFCMULTI_MSG) 3603 printk(KERN_DEBUG "%s: HW_FEATURE request\n", 3604 __func__); 3605 /* create confirm */ 3606 features->hfc_id = hc->id; 3607 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) 3608 features->hfc_dtmf = 1; 3609 if (test_bit(HFC_CHIP_CONF, &hc->chip)) 3610 features->hfc_conf = 1; 3611 features->hfc_loops = 0; 3612 if (test_bit(HFC_CHIP_B410P, &hc->chip)) { 3613 features->hfc_echocanhw = 1; 3614 } else { 3615 features->pcm_id = hc->pcm; 3616 features->pcm_slots = hc->slots; 3617 features->pcm_banks = 2; 3618 } 3619 break; 3620 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */ 3621 slot_tx = cq->p1 & 0xff; 3622 bank_tx = cq->p1 >> 8; 3623 slot_rx = cq->p2 & 0xff; 3624 bank_rx = cq->p2 >> 8; 3625 if (debug & DEBUG_HFCMULTI_MSG) 3626 printk(KERN_DEBUG 3627 "%s: HFC_PCM_CONN slot %d bank %d (TX) " 3628 "slot %d bank %d (RX)\n", 3629 __func__, slot_tx, bank_tx, 3630 slot_rx, bank_rx); 3631 if (slot_tx < hc->slots && bank_tx <= 2 && 3632 slot_rx < hc->slots && bank_rx <= 2) 3633 hfcmulti_pcm(hc, bch->slot, 3634 slot_tx, bank_tx, slot_rx, bank_rx); 3635 else { 3636 printk(KERN_WARNING 3637 "%s: HFC_PCM_CONN slot %d bank %d (TX) " 3638 "slot %d bank %d (RX) out of range\n", 3639 __func__, slot_tx, bank_tx, 3640 slot_rx, bank_rx); 3641 ret = -EINVAL; 3642 } 3643 break; 3644 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */ 3645 if (debug & DEBUG_HFCMULTI_MSG) 3646 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n", 3647 __func__); 3648 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0); 3649 break; 3650 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */ 3651 num = cq->p1 & 0xff; 3652 if (debug & DEBUG_HFCMULTI_MSG) 3653 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n", 3654 __func__, num); 3655 if (num <= 7) 3656 hfcmulti_conf(hc, bch->slot, num); 3657 else { 3658 printk(KERN_WARNING 3659 "%s: HW_CONF_JOIN conf %d out of range\n", 3660 __func__, num); 3661 ret = -EINVAL; 3662 } 3663 break; 3664 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */ 3665 if (debug & DEBUG_HFCMULTI_MSG) 3666 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__); 3667 hfcmulti_conf(hc, bch->slot, -1); 3668 break; 3669 case MISDN_CTRL_HFC_ECHOCAN_ON: 3670 if (debug & DEBUG_HFCMULTI_MSG) 3671 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__); 3672 if (test_bit(HFC_CHIP_B410P, &hc->chip)) 3673 vpm_echocan_on(hc, bch->slot, cq->p1); 3674 else 3675 ret = -EINVAL; 3676 break; 3677 3678 case MISDN_CTRL_HFC_ECHOCAN_OFF: 3679 if (debug & DEBUG_HFCMULTI_MSG) 3680 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n", 3681 __func__); 3682 if (test_bit(HFC_CHIP_B410P, &hc->chip)) 3683 vpm_echocan_off(hc, bch->slot); 3684 else 3685 ret = -EINVAL; 3686 break; 3687 default: 3688 ret = mISDN_ctrl_bchannel(bch, cq); 3689 break; 3690 } 3691 return ret; 3692 } 3693 3694 static int 3695 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 3696 { 3697 struct bchannel *bch = container_of(ch, struct bchannel, ch); 3698 struct hfc_multi *hc = bch->hw; 3699 int err = -EINVAL; 3700 u_long flags; 3701 3702 if (bch->debug & DEBUG_HW) 3703 printk(KERN_DEBUG "%s: cmd:%x %p\n", 3704 __func__, cmd, arg); 3705 switch (cmd) { 3706 case CLOSE_CHANNEL: 3707 test_and_clear_bit(FLG_OPEN, &bch->Flags); 3708 deactivate_bchannel(bch); /* locked there */ 3709 ch->protocol = ISDN_P_NONE; 3710 ch->peer = NULL; 3711 module_put(THIS_MODULE); 3712 err = 0; 3713 break; 3714 case CONTROL_CHANNEL: 3715 spin_lock_irqsave(&hc->lock, flags); 3716 err = channel_bctrl(bch, arg); 3717 spin_unlock_irqrestore(&hc->lock, flags); 3718 break; 3719 default: 3720 printk(KERN_WARNING "%s: unknown prim(%x)\n", 3721 __func__, cmd); 3722 } 3723 return err; 3724 } 3725 3726 /* 3727 * handle D-channel events 3728 * 3729 * handle state change event 3730 */ 3731 static void 3732 ph_state_change(struct dchannel *dch) 3733 { 3734 struct hfc_multi *hc; 3735 int ch, i; 3736 3737 if (!dch) { 3738 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__); 3739 return; 3740 } 3741 hc = dch->hw; 3742 ch = dch->slot; 3743 3744 if (hc->ctype == HFC_TYPE_E1) { 3745 if (dch->dev.D.protocol == ISDN_P_TE_E1) { 3746 if (debug & DEBUG_HFCMULTI_STATE) 3747 printk(KERN_DEBUG 3748 "%s: E1 TE (id=%d) newstate %x\n", 3749 __func__, hc->id, dch->state); 3750 } else { 3751 if (debug & DEBUG_HFCMULTI_STATE) 3752 printk(KERN_DEBUG 3753 "%s: E1 NT (id=%d) newstate %x\n", 3754 __func__, hc->id, dch->state); 3755 } 3756 switch (dch->state) { 3757 case (1): 3758 if (hc->e1_state != 1) { 3759 for (i = 1; i <= 31; i++) { 3760 /* reset fifos on e1 activation */ 3761 HFC_outb_nodebug(hc, R_FIFO, 3762 (i << 1) | 1); 3763 HFC_wait_nodebug(hc); 3764 HFC_outb_nodebug(hc, R_INC_RES_FIFO, 3765 V_RES_F); 3766 HFC_wait_nodebug(hc); 3767 } 3768 } 3769 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 3770 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 3771 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 3772 break; 3773 3774 default: 3775 if (hc->e1_state != 1) 3776 return; 3777 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 3778 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, 3779 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 3780 } 3781 hc->e1_state = dch->state; 3782 } else { 3783 if (dch->dev.D.protocol == ISDN_P_TE_S0) { 3784 if (debug & DEBUG_HFCMULTI_STATE) 3785 printk(KERN_DEBUG 3786 "%s: S/T TE newstate %x\n", 3787 __func__, dch->state); 3788 switch (dch->state) { 3789 case (0): 3790 l1_event(dch->l1, HW_RESET_IND); 3791 break; 3792 case (3): 3793 l1_event(dch->l1, HW_DEACT_IND); 3794 break; 3795 case (5): 3796 case (8): 3797 l1_event(dch->l1, ANYSIGNAL); 3798 break; 3799 case (6): 3800 l1_event(dch->l1, INFO2); 3801 break; 3802 case (7): 3803 l1_event(dch->l1, INFO4_P8); 3804 break; 3805 } 3806 } else { 3807 if (debug & DEBUG_HFCMULTI_STATE) 3808 printk(KERN_DEBUG "%s: S/T NT newstate %x\n", 3809 __func__, dch->state); 3810 switch (dch->state) { 3811 case (2): 3812 if (hc->chan[ch].nt_timer == 0) { 3813 hc->chan[ch].nt_timer = -1; 3814 HFC_outb(hc, R_ST_SEL, 3815 hc->chan[ch].port); 3816 /* undocumented: delay after R_ST_SEL */ 3817 udelay(1); 3818 HFC_outb(hc, A_ST_WR_STATE, 4 | 3819 V_ST_LD_STA); /* G4 */ 3820 udelay(6); /* wait at least 5,21us */ 3821 HFC_outb(hc, A_ST_WR_STATE, 4); 3822 dch->state = 4; 3823 } else { 3824 /* one extra count for the next event */ 3825 hc->chan[ch].nt_timer = 3826 nt_t1_count[poll_timer] + 1; 3827 HFC_outb(hc, R_ST_SEL, 3828 hc->chan[ch].port); 3829 /* undocumented: delay after R_ST_SEL */ 3830 udelay(1); 3831 /* allow G2 -> G3 transition */ 3832 HFC_outb(hc, A_ST_WR_STATE, 2 | 3833 V_SET_G2_G3); 3834 } 3835 break; 3836 case (1): 3837 hc->chan[ch].nt_timer = -1; 3838 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 3839 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, 3840 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 3841 break; 3842 case (4): 3843 hc->chan[ch].nt_timer = -1; 3844 break; 3845 case (3): 3846 hc->chan[ch].nt_timer = -1; 3847 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 3848 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 3849 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 3850 break; 3851 } 3852 } 3853 } 3854 } 3855 3856 /* 3857 * called for card mode init message 3858 */ 3859 3860 static void 3861 hfcmulti_initmode(struct dchannel *dch) 3862 { 3863 struct hfc_multi *hc = dch->hw; 3864 u_char a_st_wr_state, r_e1_wr_sta; 3865 int i, pt; 3866 3867 if (debug & DEBUG_HFCMULTI_INIT) 3868 printk(KERN_DEBUG "%s: entered\n", __func__); 3869 3870 i = dch->slot; 3871 pt = hc->chan[i].port; 3872 if (hc->ctype == HFC_TYPE_E1) { 3873 /* E1 */ 3874 hc->chan[hc->dnum[pt]].slot_tx = -1; 3875 hc->chan[hc->dnum[pt]].slot_rx = -1; 3876 hc->chan[hc->dnum[pt]].conf = -1; 3877 if (hc->dnum[pt]) { 3878 mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol, 3879 -1, 0, -1, 0); 3880 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0); 3881 } 3882 for (i = 1; i <= 31; i++) { 3883 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */ 3884 continue; 3885 hc->chan[i].slot_tx = -1; 3886 hc->chan[i].slot_rx = -1; 3887 hc->chan[i].conf = -1; 3888 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0); 3889 } 3890 } 3891 if (hc->ctype == HFC_TYPE_E1 && pt == 0) { 3892 /* E1, port 0 */ 3893 dch = hc->chan[hc->dnum[0]].dch; 3894 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) { 3895 HFC_outb(hc, R_LOS0, 255); /* 2 ms */ 3896 HFC_outb(hc, R_LOS1, 255); /* 512 ms */ 3897 } 3898 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) { 3899 HFC_outb(hc, R_RX0, 0); 3900 hc->hw.r_tx0 = 0 | V_OUT_EN; 3901 } else { 3902 HFC_outb(hc, R_RX0, 1); 3903 hc->hw.r_tx0 = 1 | V_OUT_EN; 3904 } 3905 hc->hw.r_tx1 = V_ATX | V_NTRI; 3906 HFC_outb(hc, R_TX0, hc->hw.r_tx0); 3907 HFC_outb(hc, R_TX1, hc->hw.r_tx1); 3908 HFC_outb(hc, R_TX_FR0, 0x00); 3909 HFC_outb(hc, R_TX_FR1, 0xf8); 3910 3911 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg)) 3912 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E); 3913 3914 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0); 3915 3916 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg)) 3917 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC); 3918 3919 if (dch->dev.D.protocol == ISDN_P_NT_E1) { 3920 if (debug & DEBUG_HFCMULTI_INIT) 3921 printk(KERN_DEBUG "%s: E1 port is NT-mode\n", 3922 __func__); 3923 r_e1_wr_sta = 0; /* G0 */ 3924 hc->e1_getclock = 0; 3925 } else { 3926 if (debug & DEBUG_HFCMULTI_INIT) 3927 printk(KERN_DEBUG "%s: E1 port is TE-mode\n", 3928 __func__); 3929 r_e1_wr_sta = 0; /* F0 */ 3930 hc->e1_getclock = 1; 3931 } 3932 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) 3933 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX); 3934 else 3935 HFC_outb(hc, R_SYNC_OUT, 0); 3936 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip)) 3937 hc->e1_getclock = 1; 3938 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip)) 3939 hc->e1_getclock = 0; 3940 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { 3941 /* SLAVE (clock master) */ 3942 if (debug & DEBUG_HFCMULTI_INIT) 3943 printk(KERN_DEBUG 3944 "%s: E1 port is clock master " 3945 "(clock from PCM)\n", __func__); 3946 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC); 3947 } else { 3948 if (hc->e1_getclock) { 3949 /* MASTER (clock slave) */ 3950 if (debug & DEBUG_HFCMULTI_INIT) 3951 printk(KERN_DEBUG 3952 "%s: E1 port is clock slave " 3953 "(clock to PCM)\n", __func__); 3954 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS); 3955 } else { 3956 /* MASTER (clock master) */ 3957 if (debug & DEBUG_HFCMULTI_INIT) 3958 printk(KERN_DEBUG "%s: E1 port is " 3959 "clock master " 3960 "(clock from QUARTZ)\n", 3961 __func__); 3962 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | 3963 V_PCM_SYNC | V_JATT_OFF); 3964 HFC_outb(hc, R_SYNC_OUT, 0); 3965 } 3966 } 3967 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */ 3968 HFC_outb(hc, R_PWM_MD, V_PWM0_MD); 3969 HFC_outb(hc, R_PWM0, 0x50); 3970 HFC_outb(hc, R_PWM1, 0xff); 3971 /* state machine setup */ 3972 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA); 3973 udelay(6); /* wait at least 5,21us */ 3974 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta); 3975 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 3976 hc->syncronized = 0; 3977 plxsd_checksync(hc, 0); 3978 } 3979 } 3980 if (hc->ctype != HFC_TYPE_E1) { 3981 /* ST */ 3982 hc->chan[i].slot_tx = -1; 3983 hc->chan[i].slot_rx = -1; 3984 hc->chan[i].conf = -1; 3985 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0); 3986 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0); 3987 hc->chan[i - 2].slot_tx = -1; 3988 hc->chan[i - 2].slot_rx = -1; 3989 hc->chan[i - 2].conf = -1; 3990 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0); 3991 hc->chan[i - 1].slot_tx = -1; 3992 hc->chan[i - 1].slot_rx = -1; 3993 hc->chan[i - 1].conf = -1; 3994 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0); 3995 /* select interface */ 3996 HFC_outb(hc, R_ST_SEL, pt); 3997 /* undocumented: delay after R_ST_SEL */ 3998 udelay(1); 3999 if (dch->dev.D.protocol == ISDN_P_NT_S0) { 4000 if (debug & DEBUG_HFCMULTI_INIT) 4001 printk(KERN_DEBUG 4002 "%s: ST port %d is NT-mode\n", 4003 __func__, pt); 4004 /* clock delay */ 4005 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt); 4006 a_st_wr_state = 1; /* G1 */ 4007 hc->hw.a_st_ctrl0[pt] = V_ST_MD; 4008 } else { 4009 if (debug & DEBUG_HFCMULTI_INIT) 4010 printk(KERN_DEBUG 4011 "%s: ST port %d is TE-mode\n", 4012 __func__, pt); 4013 /* clock delay */ 4014 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te); 4015 a_st_wr_state = 2; /* F2 */ 4016 hc->hw.a_st_ctrl0[pt] = 0; 4017 } 4018 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg)) 4019 hc->hw.a_st_ctrl0[pt] |= V_TX_LI; 4020 if (hc->ctype == HFC_TYPE_XHFC) { 4021 hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */; 4022 HFC_outb(hc, 0x35 /* A_ST_CTRL3 */, 4023 0x7c << 1 /* V_ST_PULSE */); 4024 } 4025 /* line setup */ 4026 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]); 4027 /* disable E-channel */ 4028 if ((dch->dev.D.protocol == ISDN_P_NT_S0) || 4029 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg)) 4030 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO); 4031 else 4032 HFC_outb(hc, A_ST_CTRL1, 0); 4033 /* enable B-channel receive */ 4034 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN); 4035 /* state machine setup */ 4036 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA); 4037 udelay(6); /* wait at least 5,21us */ 4038 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state); 4039 hc->hw.r_sci_msk |= 1 << pt; 4040 /* state machine interrupts */ 4041 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk); 4042 /* unset sync on port */ 4043 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4044 hc->syncronized &= 4045 ~(1 << hc->chan[dch->slot].port); 4046 plxsd_checksync(hc, 0); 4047 } 4048 } 4049 if (debug & DEBUG_HFCMULTI_INIT) 4050 printk("%s: done\n", __func__); 4051 } 4052 4053 4054 static int 4055 open_dchannel(struct hfc_multi *hc, struct dchannel *dch, 4056 struct channel_req *rq) 4057 { 4058 int err = 0; 4059 u_long flags; 4060 4061 if (debug & DEBUG_HW_OPEN) 4062 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__, 4063 dch->dev.id, __builtin_return_address(0)); 4064 if (rq->protocol == ISDN_P_NONE) 4065 return -EINVAL; 4066 if ((dch->dev.D.protocol != ISDN_P_NONE) && 4067 (dch->dev.D.protocol != rq->protocol)) { 4068 if (debug & DEBUG_HFCMULTI_MODE) 4069 printk(KERN_DEBUG "%s: change protocol %x to %x\n", 4070 __func__, dch->dev.D.protocol, rq->protocol); 4071 } 4072 if ((dch->dev.D.protocol == ISDN_P_TE_S0) && 4073 (rq->protocol != ISDN_P_TE_S0)) 4074 l1_event(dch->l1, CLOSE_CHANNEL); 4075 if (dch->dev.D.protocol != rq->protocol) { 4076 if (rq->protocol == ISDN_P_TE_S0) { 4077 err = create_l1(dch, hfcm_l1callback); 4078 if (err) 4079 return err; 4080 } 4081 dch->dev.D.protocol = rq->protocol; 4082 spin_lock_irqsave(&hc->lock, flags); 4083 hfcmulti_initmode(dch); 4084 spin_unlock_irqrestore(&hc->lock, flags); 4085 } 4086 if (test_bit(FLG_ACTIVE, &dch->Flags)) 4087 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 4088 0, NULL, GFP_KERNEL); 4089 rq->ch = &dch->dev.D; 4090 if (!try_module_get(THIS_MODULE)) 4091 printk(KERN_WARNING "%s:cannot get module\n", __func__); 4092 return 0; 4093 } 4094 4095 static int 4096 open_bchannel(struct hfc_multi *hc, struct dchannel *dch, 4097 struct channel_req *rq) 4098 { 4099 struct bchannel *bch; 4100 int ch; 4101 4102 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap)) 4103 return -EINVAL; 4104 if (rq->protocol == ISDN_P_NONE) 4105 return -EINVAL; 4106 if (hc->ctype == HFC_TYPE_E1) 4107 ch = rq->adr.channel; 4108 else 4109 ch = (rq->adr.channel - 1) + (dch->slot - 2); 4110 bch = hc->chan[ch].bch; 4111 if (!bch) { 4112 printk(KERN_ERR "%s:internal error ch %d has no bch\n", 4113 __func__, ch); 4114 return -EINVAL; 4115 } 4116 if (test_and_set_bit(FLG_OPEN, &bch->Flags)) 4117 return -EBUSY; /* b-channel can be only open once */ 4118 bch->ch.protocol = rq->protocol; 4119 hc->chan[ch].rx_off = 0; 4120 rq->ch = &bch->ch; 4121 if (!try_module_get(THIS_MODULE)) 4122 printk(KERN_WARNING "%s:cannot get module\n", __func__); 4123 return 0; 4124 } 4125 4126 /* 4127 * device control function 4128 */ 4129 static int 4130 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq) 4131 { 4132 struct hfc_multi *hc = dch->hw; 4133 int ret = 0; 4134 int wd_mode, wd_cnt; 4135 4136 switch (cq->op) { 4137 case MISDN_CTRL_GETOP: 4138 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3; 4139 break; 4140 case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */ 4141 wd_cnt = cq->p1 & 0xf; 4142 wd_mode = !!(cq->p1 >> 4); 4143 if (debug & DEBUG_HFCMULTI_MSG) 4144 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s" 4145 ", counter 0x%x\n", __func__, 4146 wd_mode ? "AUTO" : "MANUAL", wd_cnt); 4147 /* set the watchdog timer */ 4148 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4)); 4149 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0); 4150 if (hc->ctype == HFC_TYPE_XHFC) 4151 hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */; 4152 /* init the watchdog register and reset the counter */ 4153 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES); 4154 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4155 /* enable the watchdog output for Speech-Design */ 4156 HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7); 4157 HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15); 4158 HFC_outb(hc, R_GPIO_OUT1, 0); 4159 HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15); 4160 } 4161 break; 4162 case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */ 4163 if (debug & DEBUG_HFCMULTI_MSG) 4164 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n", 4165 __func__); 4166 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES); 4167 break; 4168 case MISDN_CTRL_L1_TIMER3: 4169 ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff)); 4170 break; 4171 default: 4172 printk(KERN_WARNING "%s: unknown Op %x\n", 4173 __func__, cq->op); 4174 ret = -EINVAL; 4175 break; 4176 } 4177 return ret; 4178 } 4179 4180 static int 4181 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 4182 { 4183 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 4184 struct dchannel *dch = container_of(dev, struct dchannel, dev); 4185 struct hfc_multi *hc = dch->hw; 4186 struct channel_req *rq; 4187 int err = 0; 4188 u_long flags; 4189 4190 if (dch->debug & DEBUG_HW) 4191 printk(KERN_DEBUG "%s: cmd:%x %p\n", 4192 __func__, cmd, arg); 4193 switch (cmd) { 4194 case OPEN_CHANNEL: 4195 rq = arg; 4196 switch (rq->protocol) { 4197 case ISDN_P_TE_S0: 4198 case ISDN_P_NT_S0: 4199 if (hc->ctype == HFC_TYPE_E1) { 4200 err = -EINVAL; 4201 break; 4202 } 4203 err = open_dchannel(hc, dch, rq); /* locked there */ 4204 break; 4205 case ISDN_P_TE_E1: 4206 case ISDN_P_NT_E1: 4207 if (hc->ctype != HFC_TYPE_E1) { 4208 err = -EINVAL; 4209 break; 4210 } 4211 err = open_dchannel(hc, dch, rq); /* locked there */ 4212 break; 4213 default: 4214 spin_lock_irqsave(&hc->lock, flags); 4215 err = open_bchannel(hc, dch, rq); 4216 spin_unlock_irqrestore(&hc->lock, flags); 4217 } 4218 break; 4219 case CLOSE_CHANNEL: 4220 if (debug & DEBUG_HW_OPEN) 4221 printk(KERN_DEBUG "%s: dev(%d) close from %p\n", 4222 __func__, dch->dev.id, 4223 __builtin_return_address(0)); 4224 module_put(THIS_MODULE); 4225 break; 4226 case CONTROL_CHANNEL: 4227 spin_lock_irqsave(&hc->lock, flags); 4228 err = channel_dctrl(dch, arg); 4229 spin_unlock_irqrestore(&hc->lock, flags); 4230 break; 4231 default: 4232 if (dch->debug & DEBUG_HW) 4233 printk(KERN_DEBUG "%s: unknown command %x\n", 4234 __func__, cmd); 4235 err = -EINVAL; 4236 } 4237 return err; 4238 } 4239 4240 static int 4241 clockctl(void *priv, int enable) 4242 { 4243 struct hfc_multi *hc = priv; 4244 4245 hc->iclock_on = enable; 4246 return 0; 4247 } 4248 4249 /* 4250 * initialize the card 4251 */ 4252 4253 /* 4254 * start timer irq, wait some time and check if we have interrupts. 4255 * if not, reset chip and try again. 4256 */ 4257 static int 4258 init_card(struct hfc_multi *hc) 4259 { 4260 int err = -EIO; 4261 u_long flags; 4262 void __iomem *plx_acc; 4263 u_long plx_flags; 4264 4265 if (debug & DEBUG_HFCMULTI_INIT) 4266 printk(KERN_DEBUG "%s: entered\n", __func__); 4267 4268 spin_lock_irqsave(&hc->lock, flags); 4269 /* set interrupts but leave global interrupt disabled */ 4270 hc->hw.r_irq_ctrl = V_FIFO_IRQ; 4271 disable_hwirq(hc); 4272 spin_unlock_irqrestore(&hc->lock, flags); 4273 4274 if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED, 4275 "HFC-multi", hc)) { 4276 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n", 4277 hc->irq); 4278 hc->irq = 0; 4279 return -EIO; 4280 } 4281 4282 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4283 spin_lock_irqsave(&plx_lock, plx_flags); 4284 plx_acc = hc->plx_membase + PLX_INTCSR; 4285 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE), 4286 plx_acc); /* enable PCI & LINT1 irq */ 4287 spin_unlock_irqrestore(&plx_lock, plx_flags); 4288 } 4289 4290 if (debug & DEBUG_HFCMULTI_INIT) 4291 printk(KERN_DEBUG "%s: IRQ %d count %d\n", 4292 __func__, hc->irq, hc->irqcnt); 4293 err = init_chip(hc); 4294 if (err) 4295 goto error; 4296 /* 4297 * Finally enable IRQ output 4298 * this is only allowed, if an IRQ routine is already 4299 * established for this HFC, so don't do that earlier 4300 */ 4301 spin_lock_irqsave(&hc->lock, flags); 4302 enable_hwirq(hc); 4303 spin_unlock_irqrestore(&hc->lock, flags); 4304 /* printk(KERN_DEBUG "no master irq set!!!\n"); */ 4305 set_current_state(TASK_UNINTERRUPTIBLE); 4306 schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */ 4307 /* turn IRQ off until chip is completely initialized */ 4308 spin_lock_irqsave(&hc->lock, flags); 4309 disable_hwirq(hc); 4310 spin_unlock_irqrestore(&hc->lock, flags); 4311 if (debug & DEBUG_HFCMULTI_INIT) 4312 printk(KERN_DEBUG "%s: IRQ %d count %d\n", 4313 __func__, hc->irq, hc->irqcnt); 4314 if (hc->irqcnt) { 4315 if (debug & DEBUG_HFCMULTI_INIT) 4316 printk(KERN_DEBUG "%s: done\n", __func__); 4317 4318 return 0; 4319 } 4320 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { 4321 printk(KERN_INFO "ignoring missing interrupts\n"); 4322 return 0; 4323 } 4324 4325 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n", 4326 hc->irq); 4327 4328 err = -EIO; 4329 4330 error: 4331 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4332 spin_lock_irqsave(&plx_lock, plx_flags); 4333 plx_acc = hc->plx_membase + PLX_INTCSR; 4334 writew(0x00, plx_acc); /*disable IRQs*/ 4335 spin_unlock_irqrestore(&plx_lock, plx_flags); 4336 } 4337 4338 if (debug & DEBUG_HFCMULTI_INIT) 4339 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq); 4340 if (hc->irq) { 4341 free_irq(hc->irq, hc); 4342 hc->irq = 0; 4343 } 4344 4345 if (debug & DEBUG_HFCMULTI_INIT) 4346 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err); 4347 return err; 4348 } 4349 4350 /* 4351 * find pci device and set it up 4352 */ 4353 4354 static int 4355 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev, 4356 const struct pci_device_id *ent) 4357 { 4358 struct hm_map *m = (struct hm_map *)ent->driver_data; 4359 4360 printk(KERN_INFO 4361 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n", 4362 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal"); 4363 4364 hc->pci_dev = pdev; 4365 if (m->clock2) 4366 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip); 4367 4368 if (ent->vendor == PCI_VENDOR_ID_DIGIUM && 4369 ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) { 4370 test_and_set_bit(HFC_CHIP_B410P, &hc->chip); 4371 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip); 4372 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); 4373 hc->slots = 32; 4374 } 4375 4376 if (hc->pci_dev->irq <= 0) { 4377 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n"); 4378 return -EIO; 4379 } 4380 if (pci_enable_device(hc->pci_dev)) { 4381 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n"); 4382 return -EIO; 4383 } 4384 hc->leds = m->leds; 4385 hc->ledstate = 0xAFFEAFFE; 4386 hc->opticalsupport = m->opticalsupport; 4387 4388 hc->pci_iobase = 0; 4389 hc->pci_membase = NULL; 4390 hc->plx_membase = NULL; 4391 4392 /* set memory access methods */ 4393 if (m->io_mode) /* use mode from card config */ 4394 hc->io_mode = m->io_mode; 4395 switch (hc->io_mode) { 4396 case HFC_IO_MODE_PLXSD: 4397 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip); 4398 hc->slots = 128; /* required */ 4399 hc->HFC_outb = HFC_outb_pcimem; 4400 hc->HFC_inb = HFC_inb_pcimem; 4401 hc->HFC_inw = HFC_inw_pcimem; 4402 hc->HFC_wait = HFC_wait_pcimem; 4403 hc->read_fifo = read_fifo_pcimem; 4404 hc->write_fifo = write_fifo_pcimem; 4405 hc->plx_origmembase = hc->pci_dev->resource[0].start; 4406 /* MEMBASE 1 is PLX PCI Bridge */ 4407 4408 if (!hc->plx_origmembase) { 4409 printk(KERN_WARNING 4410 "HFC-multi: No IO-Memory for PCI PLX bridge found\n"); 4411 pci_disable_device(hc->pci_dev); 4412 return -EIO; 4413 } 4414 4415 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80); 4416 if (!hc->plx_membase) { 4417 printk(KERN_WARNING 4418 "HFC-multi: failed to remap plx address space. " 4419 "(internal error)\n"); 4420 pci_disable_device(hc->pci_dev); 4421 return -EIO; 4422 } 4423 printk(KERN_INFO 4424 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n", 4425 (u_long)hc->plx_membase, hc->plx_origmembase); 4426 4427 hc->pci_origmembase = hc->pci_dev->resource[2].start; 4428 /* MEMBASE 1 is PLX PCI Bridge */ 4429 if (!hc->pci_origmembase) { 4430 printk(KERN_WARNING 4431 "HFC-multi: No IO-Memory for PCI card found\n"); 4432 pci_disable_device(hc->pci_dev); 4433 return -EIO; 4434 } 4435 4436 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400); 4437 if (!hc->pci_membase) { 4438 printk(KERN_WARNING "HFC-multi: failed to remap io " 4439 "address space. (internal error)\n"); 4440 pci_disable_device(hc->pci_dev); 4441 return -EIO; 4442 } 4443 4444 printk(KERN_INFO 4445 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d " 4446 "leds-type %d\n", 4447 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase, 4448 hc->pci_dev->irq, HZ, hc->leds); 4449 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO); 4450 break; 4451 case HFC_IO_MODE_PCIMEM: 4452 hc->HFC_outb = HFC_outb_pcimem; 4453 hc->HFC_inb = HFC_inb_pcimem; 4454 hc->HFC_inw = HFC_inw_pcimem; 4455 hc->HFC_wait = HFC_wait_pcimem; 4456 hc->read_fifo = read_fifo_pcimem; 4457 hc->write_fifo = write_fifo_pcimem; 4458 hc->pci_origmembase = hc->pci_dev->resource[1].start; 4459 if (!hc->pci_origmembase) { 4460 printk(KERN_WARNING 4461 "HFC-multi: No IO-Memory for PCI card found\n"); 4462 pci_disable_device(hc->pci_dev); 4463 return -EIO; 4464 } 4465 4466 hc->pci_membase = ioremap(hc->pci_origmembase, 256); 4467 if (!hc->pci_membase) { 4468 printk(KERN_WARNING 4469 "HFC-multi: failed to remap io address space. " 4470 "(internal error)\n"); 4471 pci_disable_device(hc->pci_dev); 4472 return -EIO; 4473 } 4474 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ " 4475 "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase, 4476 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds); 4477 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO); 4478 break; 4479 case HFC_IO_MODE_REGIO: 4480 hc->HFC_outb = HFC_outb_regio; 4481 hc->HFC_inb = HFC_inb_regio; 4482 hc->HFC_inw = HFC_inw_regio; 4483 hc->HFC_wait = HFC_wait_regio; 4484 hc->read_fifo = read_fifo_regio; 4485 hc->write_fifo = write_fifo_regio; 4486 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start; 4487 if (!hc->pci_iobase) { 4488 printk(KERN_WARNING 4489 "HFC-multi: No IO for PCI card found\n"); 4490 pci_disable_device(hc->pci_dev); 4491 return -EIO; 4492 } 4493 4494 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) { 4495 printk(KERN_WARNING "HFC-multi: failed to request " 4496 "address space at 0x%08lx (internal error)\n", 4497 hc->pci_iobase); 4498 pci_disable_device(hc->pci_dev); 4499 return -EIO; 4500 } 4501 4502 printk(KERN_INFO 4503 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n", 4504 m->vendor_name, m->card_name, (u_int) hc->pci_iobase, 4505 hc->pci_dev->irq, HZ, hc->leds); 4506 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO); 4507 break; 4508 default: 4509 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n"); 4510 pci_disable_device(hc->pci_dev); 4511 return -EIO; 4512 } 4513 4514 pci_set_drvdata(hc->pci_dev, hc); 4515 4516 /* At this point the needed PCI config is done */ 4517 /* fifos are still not enabled */ 4518 return 0; 4519 } 4520 4521 4522 /* 4523 * remove port 4524 */ 4525 4526 static void 4527 release_port(struct hfc_multi *hc, struct dchannel *dch) 4528 { 4529 int pt, ci, i = 0; 4530 u_long flags; 4531 struct bchannel *pb; 4532 4533 ci = dch->slot; 4534 pt = hc->chan[ci].port; 4535 4536 if (debug & DEBUG_HFCMULTI_INIT) 4537 printk(KERN_DEBUG "%s: entered for port %d\n", 4538 __func__, pt + 1); 4539 4540 if (pt >= hc->ports) { 4541 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n", 4542 __func__, pt + 1); 4543 return; 4544 } 4545 4546 if (debug & DEBUG_HFCMULTI_INIT) 4547 printk(KERN_DEBUG "%s: releasing port=%d\n", 4548 __func__, pt + 1); 4549 4550 if (dch->dev.D.protocol == ISDN_P_TE_S0) 4551 l1_event(dch->l1, CLOSE_CHANNEL); 4552 4553 hc->chan[ci].dch = NULL; 4554 4555 if (hc->created[pt]) { 4556 hc->created[pt] = 0; 4557 mISDN_unregister_device(&dch->dev); 4558 } 4559 4560 spin_lock_irqsave(&hc->lock, flags); 4561 4562 if (dch->timer.function) { 4563 del_timer(&dch->timer); 4564 dch->timer.function = NULL; 4565 } 4566 4567 if (hc->ctype == HFC_TYPE_E1) { /* E1 */ 4568 /* remove sync */ 4569 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4570 hc->syncronized = 0; 4571 plxsd_checksync(hc, 1); 4572 } 4573 /* free channels */ 4574 for (i = 0; i <= 31; i++) { 4575 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */ 4576 continue; 4577 if (hc->chan[i].bch) { 4578 if (debug & DEBUG_HFCMULTI_INIT) 4579 printk(KERN_DEBUG 4580 "%s: free port %d channel %d\n", 4581 __func__, hc->chan[i].port + 1, i); 4582 pb = hc->chan[i].bch; 4583 hc->chan[i].bch = NULL; 4584 spin_unlock_irqrestore(&hc->lock, flags); 4585 mISDN_freebchannel(pb); 4586 kfree(pb); 4587 kfree(hc->chan[i].coeff); 4588 spin_lock_irqsave(&hc->lock, flags); 4589 } 4590 } 4591 } else { 4592 /* remove sync */ 4593 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4594 hc->syncronized &= 4595 ~(1 << hc->chan[ci].port); 4596 plxsd_checksync(hc, 1); 4597 } 4598 /* free channels */ 4599 if (hc->chan[ci - 2].bch) { 4600 if (debug & DEBUG_HFCMULTI_INIT) 4601 printk(KERN_DEBUG 4602 "%s: free port %d channel %d\n", 4603 __func__, hc->chan[ci - 2].port + 1, 4604 ci - 2); 4605 pb = hc->chan[ci - 2].bch; 4606 hc->chan[ci - 2].bch = NULL; 4607 spin_unlock_irqrestore(&hc->lock, flags); 4608 mISDN_freebchannel(pb); 4609 kfree(pb); 4610 kfree(hc->chan[ci - 2].coeff); 4611 spin_lock_irqsave(&hc->lock, flags); 4612 } 4613 if (hc->chan[ci - 1].bch) { 4614 if (debug & DEBUG_HFCMULTI_INIT) 4615 printk(KERN_DEBUG 4616 "%s: free port %d channel %d\n", 4617 __func__, hc->chan[ci - 1].port + 1, 4618 ci - 1); 4619 pb = hc->chan[ci - 1].bch; 4620 hc->chan[ci - 1].bch = NULL; 4621 spin_unlock_irqrestore(&hc->lock, flags); 4622 mISDN_freebchannel(pb); 4623 kfree(pb); 4624 kfree(hc->chan[ci - 1].coeff); 4625 spin_lock_irqsave(&hc->lock, flags); 4626 } 4627 } 4628 4629 spin_unlock_irqrestore(&hc->lock, flags); 4630 4631 if (debug & DEBUG_HFCMULTI_INIT) 4632 printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__, 4633 pt+1, ci); 4634 mISDN_freedchannel(dch); 4635 kfree(dch); 4636 4637 if (debug & DEBUG_HFCMULTI_INIT) 4638 printk(KERN_DEBUG "%s: done!\n", __func__); 4639 } 4640 4641 static void 4642 release_card(struct hfc_multi *hc) 4643 { 4644 u_long flags; 4645 int ch; 4646 4647 if (debug & DEBUG_HFCMULTI_INIT) 4648 printk(KERN_DEBUG "%s: release card (%d) entered\n", 4649 __func__, hc->id); 4650 4651 /* unregister clock source */ 4652 if (hc->iclock) 4653 mISDN_unregister_clock(hc->iclock); 4654 4655 /* disable and free irq */ 4656 spin_lock_irqsave(&hc->lock, flags); 4657 disable_hwirq(hc); 4658 spin_unlock_irqrestore(&hc->lock, flags); 4659 udelay(1000); 4660 if (hc->irq) { 4661 if (debug & DEBUG_HFCMULTI_INIT) 4662 printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n", 4663 __func__, hc->irq, hc); 4664 free_irq(hc->irq, hc); 4665 hc->irq = 0; 4666 4667 } 4668 4669 /* disable D-channels & B-channels */ 4670 if (debug & DEBUG_HFCMULTI_INIT) 4671 printk(KERN_DEBUG "%s: disable all channels (d and b)\n", 4672 __func__); 4673 for (ch = 0; ch <= 31; ch++) { 4674 if (hc->chan[ch].dch) 4675 release_port(hc, hc->chan[ch].dch); 4676 } 4677 4678 /* dimm leds */ 4679 if (hc->leds) 4680 hfcmulti_leds(hc); 4681 4682 /* release hardware */ 4683 release_io_hfcmulti(hc); 4684 4685 if (debug & DEBUG_HFCMULTI_INIT) 4686 printk(KERN_DEBUG "%s: remove instance from list\n", 4687 __func__); 4688 list_del(&hc->list); 4689 4690 if (debug & DEBUG_HFCMULTI_INIT) 4691 printk(KERN_DEBUG "%s: delete instance\n", __func__); 4692 if (hc == syncmaster) 4693 syncmaster = NULL; 4694 kfree(hc); 4695 if (debug & DEBUG_HFCMULTI_INIT) 4696 printk(KERN_DEBUG "%s: card successfully removed\n", 4697 __func__); 4698 } 4699 4700 static void 4701 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m) 4702 { 4703 /* set optical line type */ 4704 if (port[Port_cnt] & 0x001) { 4705 if (!m->opticalsupport) { 4706 printk(KERN_INFO 4707 "This board has no optical " 4708 "support\n"); 4709 } else { 4710 if (debug & DEBUG_HFCMULTI_INIT) 4711 printk(KERN_DEBUG 4712 "%s: PORT set optical " 4713 "interfacs: card(%d) " 4714 "port(%d)\n", 4715 __func__, 4716 HFC_cnt + 1, 1); 4717 test_and_set_bit(HFC_CFG_OPTICAL, 4718 &hc->chan[hc->dnum[0]].cfg); 4719 } 4720 } 4721 /* set LOS report */ 4722 if (port[Port_cnt] & 0x004) { 4723 if (debug & DEBUG_HFCMULTI_INIT) 4724 printk(KERN_DEBUG "%s: PORT set " 4725 "LOS report: card(%d) port(%d)\n", 4726 __func__, HFC_cnt + 1, 1); 4727 test_and_set_bit(HFC_CFG_REPORT_LOS, 4728 &hc->chan[hc->dnum[0]].cfg); 4729 } 4730 /* set AIS report */ 4731 if (port[Port_cnt] & 0x008) { 4732 if (debug & DEBUG_HFCMULTI_INIT) 4733 printk(KERN_DEBUG "%s: PORT set " 4734 "AIS report: card(%d) port(%d)\n", 4735 __func__, HFC_cnt + 1, 1); 4736 test_and_set_bit(HFC_CFG_REPORT_AIS, 4737 &hc->chan[hc->dnum[0]].cfg); 4738 } 4739 /* set SLIP report */ 4740 if (port[Port_cnt] & 0x010) { 4741 if (debug & DEBUG_HFCMULTI_INIT) 4742 printk(KERN_DEBUG 4743 "%s: PORT set SLIP report: " 4744 "card(%d) port(%d)\n", 4745 __func__, HFC_cnt + 1, 1); 4746 test_and_set_bit(HFC_CFG_REPORT_SLIP, 4747 &hc->chan[hc->dnum[0]].cfg); 4748 } 4749 /* set RDI report */ 4750 if (port[Port_cnt] & 0x020) { 4751 if (debug & DEBUG_HFCMULTI_INIT) 4752 printk(KERN_DEBUG 4753 "%s: PORT set RDI report: " 4754 "card(%d) port(%d)\n", 4755 __func__, HFC_cnt + 1, 1); 4756 test_and_set_bit(HFC_CFG_REPORT_RDI, 4757 &hc->chan[hc->dnum[0]].cfg); 4758 } 4759 /* set CRC-4 Mode */ 4760 if (!(port[Port_cnt] & 0x100)) { 4761 if (debug & DEBUG_HFCMULTI_INIT) 4762 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:" 4763 " card(%d) port(%d)\n", 4764 __func__, HFC_cnt + 1, 1); 4765 test_and_set_bit(HFC_CFG_CRC4, 4766 &hc->chan[hc->dnum[0]].cfg); 4767 } else { 4768 if (debug & DEBUG_HFCMULTI_INIT) 4769 printk(KERN_DEBUG "%s: PORT turn off CRC4" 4770 " report: card(%d) port(%d)\n", 4771 __func__, HFC_cnt + 1, 1); 4772 } 4773 /* set forced clock */ 4774 if (port[Port_cnt] & 0x0200) { 4775 if (debug & DEBUG_HFCMULTI_INIT) 4776 printk(KERN_DEBUG "%s: PORT force getting clock from " 4777 "E1: card(%d) port(%d)\n", 4778 __func__, HFC_cnt + 1, 1); 4779 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip); 4780 } else 4781 if (port[Port_cnt] & 0x0400) { 4782 if (debug & DEBUG_HFCMULTI_INIT) 4783 printk(KERN_DEBUG "%s: PORT force putting clock to " 4784 "E1: card(%d) port(%d)\n", 4785 __func__, HFC_cnt + 1, 1); 4786 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip); 4787 } 4788 /* set JATT PLL */ 4789 if (port[Port_cnt] & 0x0800) { 4790 if (debug & DEBUG_HFCMULTI_INIT) 4791 printk(KERN_DEBUG "%s: PORT disable JATT PLL on " 4792 "E1: card(%d) port(%d)\n", 4793 __func__, HFC_cnt + 1, 1); 4794 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip); 4795 } 4796 /* set elastic jitter buffer */ 4797 if (port[Port_cnt] & 0x3000) { 4798 hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3; 4799 if (debug & DEBUG_HFCMULTI_INIT) 4800 printk(KERN_DEBUG 4801 "%s: PORT set elastic " 4802 "buffer to %d: card(%d) port(%d)\n", 4803 __func__, hc->chan[hc->dnum[0]].jitter, 4804 HFC_cnt + 1, 1); 4805 } else 4806 hc->chan[hc->dnum[0]].jitter = 2; /* default */ 4807 } 4808 4809 static int 4810 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt) 4811 { 4812 struct dchannel *dch; 4813 struct bchannel *bch; 4814 int ch, ret = 0; 4815 char name[MISDN_MAX_IDLEN]; 4816 int bcount = 0; 4817 4818 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL); 4819 if (!dch) 4820 return -ENOMEM; 4821 dch->debug = debug; 4822 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change); 4823 dch->hw = hc; 4824 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1); 4825 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | 4826 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); 4827 dch->dev.D.send = handle_dmsg; 4828 dch->dev.D.ctrl = hfcm_dctrl; 4829 dch->slot = hc->dnum[pt]; 4830 hc->chan[hc->dnum[pt]].dch = dch; 4831 hc->chan[hc->dnum[pt]].port = pt; 4832 hc->chan[hc->dnum[pt]].nt_timer = -1; 4833 for (ch = 1; ch <= 31; ch++) { 4834 if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */ 4835 continue; 4836 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL); 4837 if (!bch) { 4838 printk(KERN_ERR "%s: no memory for bchannel\n", 4839 __func__); 4840 ret = -ENOMEM; 4841 goto free_chan; 4842 } 4843 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL); 4844 if (!hc->chan[ch].coeff) { 4845 printk(KERN_ERR "%s: no memory for coeffs\n", 4846 __func__); 4847 ret = -ENOMEM; 4848 kfree(bch); 4849 goto free_chan; 4850 } 4851 bch->nr = ch; 4852 bch->slot = ch; 4853 bch->debug = debug; 4854 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1); 4855 bch->hw = hc; 4856 bch->ch.send = handle_bmsg; 4857 bch->ch.ctrl = hfcm_bctrl; 4858 bch->ch.nr = ch; 4859 list_add(&bch->ch.list, &dch->dev.bchannels); 4860 hc->chan[ch].bch = bch; 4861 hc->chan[ch].port = pt; 4862 set_channelmap(bch->nr, dch->dev.channelmap); 4863 bcount++; 4864 } 4865 dch->dev.nrbchan = bcount; 4866 if (pt == 0) 4867 init_e1_port_hw(hc, m); 4868 if (hc->ports > 1) 4869 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d", 4870 HFC_cnt + 1, pt+1); 4871 else 4872 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1); 4873 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name); 4874 if (ret) 4875 goto free_chan; 4876 hc->created[pt] = 1; 4877 return ret; 4878 free_chan: 4879 release_port(hc, dch); 4880 return ret; 4881 } 4882 4883 static int 4884 init_multi_port(struct hfc_multi *hc, int pt) 4885 { 4886 struct dchannel *dch; 4887 struct bchannel *bch; 4888 int ch, i, ret = 0; 4889 char name[MISDN_MAX_IDLEN]; 4890 4891 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL); 4892 if (!dch) 4893 return -ENOMEM; 4894 dch->debug = debug; 4895 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change); 4896 dch->hw = hc; 4897 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); 4898 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | 4899 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); 4900 dch->dev.D.send = handle_dmsg; 4901 dch->dev.D.ctrl = hfcm_dctrl; 4902 dch->dev.nrbchan = 2; 4903 i = pt << 2; 4904 dch->slot = i + 2; 4905 hc->chan[i + 2].dch = dch; 4906 hc->chan[i + 2].port = pt; 4907 hc->chan[i + 2].nt_timer = -1; 4908 for (ch = 0; ch < dch->dev.nrbchan; ch++) { 4909 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL); 4910 if (!bch) { 4911 printk(KERN_ERR "%s: no memory for bchannel\n", 4912 __func__); 4913 ret = -ENOMEM; 4914 goto free_chan; 4915 } 4916 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL); 4917 if (!hc->chan[i + ch].coeff) { 4918 printk(KERN_ERR "%s: no memory for coeffs\n", 4919 __func__); 4920 ret = -ENOMEM; 4921 kfree(bch); 4922 goto free_chan; 4923 } 4924 bch->nr = ch + 1; 4925 bch->slot = i + ch; 4926 bch->debug = debug; 4927 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1); 4928 bch->hw = hc; 4929 bch->ch.send = handle_bmsg; 4930 bch->ch.ctrl = hfcm_bctrl; 4931 bch->ch.nr = ch + 1; 4932 list_add(&bch->ch.list, &dch->dev.bchannels); 4933 hc->chan[i + ch].bch = bch; 4934 hc->chan[i + ch].port = pt; 4935 set_channelmap(bch->nr, dch->dev.channelmap); 4936 } 4937 /* set master clock */ 4938 if (port[Port_cnt] & 0x001) { 4939 if (debug & DEBUG_HFCMULTI_INIT) 4940 printk(KERN_DEBUG 4941 "%s: PROTOCOL set master clock: " 4942 "card(%d) port(%d)\n", 4943 __func__, HFC_cnt + 1, pt + 1); 4944 if (dch->dev.D.protocol != ISDN_P_TE_S0) { 4945 printk(KERN_ERR "Error: Master clock " 4946 "for port(%d) of card(%d) is only" 4947 " possible with TE-mode\n", 4948 pt + 1, HFC_cnt + 1); 4949 ret = -EINVAL; 4950 goto free_chan; 4951 } 4952 if (hc->masterclk >= 0) { 4953 printk(KERN_ERR "Error: Master clock " 4954 "for port(%d) of card(%d) already " 4955 "defined for port(%d)\n", 4956 pt + 1, HFC_cnt + 1, hc->masterclk + 1); 4957 ret = -EINVAL; 4958 goto free_chan; 4959 } 4960 hc->masterclk = pt; 4961 } 4962 /* set transmitter line to non capacitive */ 4963 if (port[Port_cnt] & 0x002) { 4964 if (debug & DEBUG_HFCMULTI_INIT) 4965 printk(KERN_DEBUG 4966 "%s: PROTOCOL set non capacitive " 4967 "transmitter: card(%d) port(%d)\n", 4968 __func__, HFC_cnt + 1, pt + 1); 4969 test_and_set_bit(HFC_CFG_NONCAP_TX, 4970 &hc->chan[i + 2].cfg); 4971 } 4972 /* disable E-channel */ 4973 if (port[Port_cnt] & 0x004) { 4974 if (debug & DEBUG_HFCMULTI_INIT) 4975 printk(KERN_DEBUG 4976 "%s: PROTOCOL disable E-channel: " 4977 "card(%d) port(%d)\n", 4978 __func__, HFC_cnt + 1, pt + 1); 4979 test_and_set_bit(HFC_CFG_DIS_ECHANNEL, 4980 &hc->chan[i + 2].cfg); 4981 } 4982 if (hc->ctype == HFC_TYPE_XHFC) { 4983 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d", 4984 HFC_cnt + 1, pt + 1); 4985 ret = mISDN_register_device(&dch->dev, NULL, name); 4986 } else { 4987 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d", 4988 hc->ctype, HFC_cnt + 1, pt + 1); 4989 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name); 4990 } 4991 if (ret) 4992 goto free_chan; 4993 hc->created[pt] = 1; 4994 return ret; 4995 free_chan: 4996 release_port(hc, dch); 4997 return ret; 4998 } 4999 5000 static int 5001 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev, 5002 const struct pci_device_id *ent) 5003 { 5004 int ret_err = 0; 5005 int pt; 5006 struct hfc_multi *hc; 5007 u_long flags; 5008 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */ 5009 int i, ch; 5010 u_int maskcheck; 5011 5012 if (HFC_cnt >= MAX_CARDS) { 5013 printk(KERN_ERR "too many cards (max=%d).\n", 5014 MAX_CARDS); 5015 return -EINVAL; 5016 } 5017 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) { 5018 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but " 5019 "type[%d] %d was supplied as module parameter\n", 5020 m->vendor_name, m->card_name, m->type, HFC_cnt, 5021 type[HFC_cnt] & 0xff); 5022 printk(KERN_WARNING "HFC-MULTI: Load module without parameters " 5023 "first, to see cards and their types."); 5024 return -EINVAL; 5025 } 5026 if (debug & DEBUG_HFCMULTI_INIT) 5027 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n", 5028 __func__, m->vendor_name, m->card_name, m->type, 5029 type[HFC_cnt]); 5030 5031 /* allocate card+fifo structure */ 5032 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL); 5033 if (!hc) { 5034 printk(KERN_ERR "No kmem for HFC-Multi card\n"); 5035 return -ENOMEM; 5036 } 5037 spin_lock_init(&hc->lock); 5038 hc->mtyp = m; 5039 hc->ctype = m->type; 5040 hc->ports = m->ports; 5041 hc->id = HFC_cnt; 5042 hc->pcm = pcm[HFC_cnt]; 5043 hc->io_mode = iomode[HFC_cnt]; 5044 if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) { 5045 /* fragment card */ 5046 pt = 0; 5047 maskcheck = 0; 5048 for (ch = 0; ch <= 31; ch++) { 5049 if (!((1 << ch) & dmask[E1_cnt])) 5050 continue; 5051 hc->dnum[pt] = ch; 5052 hc->bmask[pt] = bmask[bmask_cnt++]; 5053 if ((maskcheck & hc->bmask[pt]) 5054 || (dmask[E1_cnt] & hc->bmask[pt])) { 5055 printk(KERN_INFO 5056 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n", 5057 E1_cnt + 1, pt); 5058 kfree(hc); 5059 return -EINVAL; 5060 } 5061 maskcheck |= hc->bmask[pt]; 5062 printk(KERN_INFO 5063 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n", 5064 E1_cnt + 1, ch, hc->bmask[pt]); 5065 pt++; 5066 } 5067 hc->ports = pt; 5068 } 5069 if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) { 5070 /* default card layout */ 5071 hc->dnum[0] = 16; 5072 hc->bmask[0] = 0xfffefffe; 5073 hc->ports = 1; 5074 } 5075 5076 /* set chip specific features */ 5077 hc->masterclk = -1; 5078 if (type[HFC_cnt] & 0x100) { 5079 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip); 5080 hc->silence = 0xff; /* ulaw silence */ 5081 } else 5082 hc->silence = 0x2a; /* alaw silence */ 5083 if ((poll >> 1) > sizeof(hc->silence_data)) { 5084 printk(KERN_ERR "HFCMULTI error: silence_data too small, " 5085 "please fix\n"); 5086 kfree(hc); 5087 return -EINVAL; 5088 } 5089 for (i = 0; i < (poll >> 1); i++) 5090 hc->silence_data[i] = hc->silence; 5091 5092 if (hc->ctype != HFC_TYPE_XHFC) { 5093 if (!(type[HFC_cnt] & 0x200)) 5094 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip); 5095 test_and_set_bit(HFC_CHIP_CONF, &hc->chip); 5096 } 5097 5098 if (type[HFC_cnt] & 0x800) 5099 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); 5100 if (type[HFC_cnt] & 0x1000) { 5101 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip); 5102 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); 5103 } 5104 if (type[HFC_cnt] & 0x4000) 5105 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip); 5106 if (type[HFC_cnt] & 0x8000) 5107 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip); 5108 hc->slots = 32; 5109 if (type[HFC_cnt] & 0x10000) 5110 hc->slots = 64; 5111 if (type[HFC_cnt] & 0x20000) 5112 hc->slots = 128; 5113 if (type[HFC_cnt] & 0x80000) { 5114 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip); 5115 hc->wdcount = 0; 5116 hc->wdbyte = V_GPIO_OUT2; 5117 printk(KERN_NOTICE "Watchdog enabled\n"); 5118 } 5119 5120 if (pdev && ent) 5121 /* setup pci, hc->slots may change due to PLXSD */ 5122 ret_err = setup_pci(hc, pdev, ent); 5123 else 5124 #ifdef CONFIG_MISDN_HFCMULTI_8xx 5125 ret_err = setup_embedded(hc, m); 5126 #else 5127 { 5128 printk(KERN_WARNING "Embedded IO Mode not selected\n"); 5129 ret_err = -EIO; 5130 } 5131 #endif 5132 if (ret_err) { 5133 if (hc == syncmaster) 5134 syncmaster = NULL; 5135 kfree(hc); 5136 return ret_err; 5137 } 5138 5139 hc->HFC_outb_nodebug = hc->HFC_outb; 5140 hc->HFC_inb_nodebug = hc->HFC_inb; 5141 hc->HFC_inw_nodebug = hc->HFC_inw; 5142 hc->HFC_wait_nodebug = hc->HFC_wait; 5143 #ifdef HFC_REGISTER_DEBUG 5144 hc->HFC_outb = HFC_outb_debug; 5145 hc->HFC_inb = HFC_inb_debug; 5146 hc->HFC_inw = HFC_inw_debug; 5147 hc->HFC_wait = HFC_wait_debug; 5148 #endif 5149 /* create channels */ 5150 for (pt = 0; pt < hc->ports; pt++) { 5151 if (Port_cnt >= MAX_PORTS) { 5152 printk(KERN_ERR "too many ports (max=%d).\n", 5153 MAX_PORTS); 5154 ret_err = -EINVAL; 5155 goto free_card; 5156 } 5157 if (hc->ctype == HFC_TYPE_E1) 5158 ret_err = init_e1_port(hc, m, pt); 5159 else 5160 ret_err = init_multi_port(hc, pt); 5161 if (debug & DEBUG_HFCMULTI_INIT) 5162 printk(KERN_DEBUG 5163 "%s: Registering D-channel, card(%d) port(%d) " 5164 "result %d\n", 5165 __func__, HFC_cnt + 1, pt + 1, ret_err); 5166 5167 if (ret_err) { 5168 while (pt) { /* release already registered ports */ 5169 pt--; 5170 if (hc->ctype == HFC_TYPE_E1) 5171 release_port(hc, 5172 hc->chan[hc->dnum[pt]].dch); 5173 else 5174 release_port(hc, 5175 hc->chan[(pt << 2) + 2].dch); 5176 } 5177 goto free_card; 5178 } 5179 if (hc->ctype != HFC_TYPE_E1) 5180 Port_cnt++; /* for each S0 port */ 5181 } 5182 if (hc->ctype == HFC_TYPE_E1) { 5183 Port_cnt++; /* for each E1 port */ 5184 E1_cnt++; 5185 } 5186 5187 /* disp switches */ 5188 switch (m->dip_type) { 5189 case DIP_4S: 5190 /* 5191 * Get DIP setting for beroNet 1S/2S/4S cards 5192 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) + 5193 * GPI 19/23 (R_GPI_IN2)) 5194 */ 5195 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) | 5196 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) | 5197 (~HFC_inb(hc, R_GPI_IN2) & 0x08); 5198 5199 /* Port mode (TE/NT) jumpers */ 5200 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf); 5201 5202 if (test_bit(HFC_CHIP_B410P, &hc->chip)) 5203 pmj = ~pmj & 0xf; 5204 5205 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n", 5206 m->vendor_name, m->card_name, dips, pmj); 5207 break; 5208 case DIP_8S: 5209 /* 5210 * Get DIP Setting for beroNet 8S0+ cards 5211 * Enable PCI auxbridge function 5212 */ 5213 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK); 5214 /* prepare access to auxport */ 5215 outw(0x4000, hc->pci_iobase + 4); 5216 /* 5217 * some dummy reads are required to 5218 * read valid DIP switch data 5219 */ 5220 dips = inb(hc->pci_iobase); 5221 dips = inb(hc->pci_iobase); 5222 dips = inb(hc->pci_iobase); 5223 dips = ~inb(hc->pci_iobase) & 0x3F; 5224 outw(0x0, hc->pci_iobase + 4); 5225 /* disable PCI auxbridge function */ 5226 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK); 5227 printk(KERN_INFO "%s: %s DIPs(0x%x)\n", 5228 m->vendor_name, m->card_name, dips); 5229 break; 5230 case DIP_E1: 5231 /* 5232 * get DIP Setting for beroNet E1 cards 5233 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0) 5234 */ 5235 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4; 5236 printk(KERN_INFO "%s: %s DIPs(0x%x)\n", 5237 m->vendor_name, m->card_name, dips); 5238 break; 5239 } 5240 5241 /* add to list */ 5242 spin_lock_irqsave(&HFClock, flags); 5243 list_add_tail(&hc->list, &HFClist); 5244 spin_unlock_irqrestore(&HFClock, flags); 5245 5246 /* use as clock source */ 5247 if (clock == HFC_cnt + 1) 5248 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc); 5249 5250 /* initialize hardware */ 5251 hc->irq = (m->irq) ? : hc->pci_dev->irq; 5252 ret_err = init_card(hc); 5253 if (ret_err) { 5254 printk(KERN_ERR "init card returns %d\n", ret_err); 5255 release_card(hc); 5256 return ret_err; 5257 } 5258 5259 /* start IRQ and return */ 5260 spin_lock_irqsave(&hc->lock, flags); 5261 enable_hwirq(hc); 5262 spin_unlock_irqrestore(&hc->lock, flags); 5263 return 0; 5264 5265 free_card: 5266 release_io_hfcmulti(hc); 5267 if (hc == syncmaster) 5268 syncmaster = NULL; 5269 kfree(hc); 5270 return ret_err; 5271 } 5272 5273 static void hfc_remove_pci(struct pci_dev *pdev) 5274 { 5275 struct hfc_multi *card = pci_get_drvdata(pdev); 5276 u_long flags; 5277 5278 if (debug) 5279 printk(KERN_INFO "removing hfc_multi card vendor:%x " 5280 "device:%x subvendor:%x subdevice:%x\n", 5281 pdev->vendor, pdev->device, 5282 pdev->subsystem_vendor, pdev->subsystem_device); 5283 5284 if (card) { 5285 spin_lock_irqsave(&HFClock, flags); 5286 release_card(card); 5287 spin_unlock_irqrestore(&HFClock, flags); 5288 } else { 5289 if (debug) 5290 printk(KERN_DEBUG "%s: drvdata already removed\n", 5291 __func__); 5292 } 5293 } 5294 5295 #define VENDOR_CCD "Cologne Chip AG" 5296 #define VENDOR_BN "beroNet GmbH" 5297 #define VENDOR_DIG "Digium Inc." 5298 #define VENDOR_JH "Junghanns.NET GmbH" 5299 #define VENDOR_PRIM "PrimuX" 5300 5301 static const struct hm_map hfcm_map[] = { 5302 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0}, 5303 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, 5304 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, 5305 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, 5306 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0}, 5307 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0}, 5308 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, 5309 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0}, 5310 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0}, 5311 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0}, 5312 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0}, 5313 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0}, 5314 5315 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0}, 5316 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S, 5317 HFC_IO_MODE_REGIO, 0}, 5318 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0}, 5319 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0}, 5320 5321 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0}, 5322 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0}, 5323 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0}, 5324 5325 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, 5326 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0}, 5327 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, 5328 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, 5329 5330 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0}, 5331 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0}, 5332 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0}, 5333 5334 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0, 5335 HFC_IO_MODE_PLXSD, 0}, 5336 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0, 5337 HFC_IO_MODE_PLXSD, 0}, 5338 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0}, 5339 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0}, 5340 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0}, 5341 /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0, 5342 HFC_IO_MODE_EMBSD, XHFC_IRQ}, 5343 /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0}, 5344 /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, 5345 /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, 5346 }; 5347 5348 #undef H 5349 #define H(x) ((unsigned long)&hfcm_map[x]) 5350 static const struct pci_device_id hfmultipci_ids[] = { 5351 5352 /* Cards with HFC-4S Chip */ 5353 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5354 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */ 5355 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5356 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */ 5357 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5358 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */ 5359 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5360 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */ 5361 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5362 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */ 5363 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5364 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */ 5365 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5366 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */ 5367 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5368 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */ 5369 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 5370 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)}, 5371 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5372 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */ 5373 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5374 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)}, 5375 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5376 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */ 5377 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5378 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */ 5379 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5380 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */ 5381 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5382 0xb761, 0, 0, H(33)}, /* BN2S PCIe */ 5383 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5384 0xb762, 0, 0, H(34)}, /* BN4S PCIe */ 5385 5386 /* Cards with HFC-8S Chip */ 5387 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5388 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */ 5389 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5390 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */ 5391 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5392 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */ 5393 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5394 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */ 5395 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5396 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */ 5397 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5398 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */ 5399 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5400 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */ 5401 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5402 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */ 5403 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5404 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */ 5405 5406 5407 /* Cards with HFC-E1 Chip */ 5408 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5409 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */ 5410 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5411 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */ 5412 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5413 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */ 5414 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5415 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */ 5416 5417 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5418 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */ 5419 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5420 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */ 5421 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5422 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */ 5423 5424 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD, 5425 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */ 5426 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD, 5427 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */ 5428 5429 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5430 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */ 5431 5432 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 }, 5433 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 }, 5434 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 }, 5435 {0, } 5436 }; 5437 #undef H 5438 5439 MODULE_DEVICE_TABLE(pci, hfmultipci_ids); 5440 5441 static int 5442 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5443 { 5444 struct hm_map *m = (struct hm_map *)ent->driver_data; 5445 int ret; 5446 5447 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && ( 5448 ent->device == PCI_DEVICE_ID_CCD_HFC4S || 5449 ent->device == PCI_DEVICE_ID_CCD_HFC8S || 5450 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) { 5451 printk(KERN_ERR 5452 "Unknown HFC multiport controller (vendor:%04x device:%04x " 5453 "subvendor:%04x subdevice:%04x)\n", pdev->vendor, 5454 pdev->device, pdev->subsystem_vendor, 5455 pdev->subsystem_device); 5456 printk(KERN_ERR 5457 "Please contact the driver maintainer for support.\n"); 5458 return -ENODEV; 5459 } 5460 ret = hfcmulti_init(m, pdev, ent); 5461 if (ret) 5462 return ret; 5463 HFC_cnt++; 5464 printk(KERN_INFO "%d devices registered\n", HFC_cnt); 5465 return 0; 5466 } 5467 5468 static struct pci_driver hfcmultipci_driver = { 5469 .name = "hfc_multi", 5470 .probe = hfcmulti_probe, 5471 .remove = hfc_remove_pci, 5472 .id_table = hfmultipci_ids, 5473 }; 5474 5475 static void __exit 5476 HFCmulti_cleanup(void) 5477 { 5478 struct hfc_multi *card, *next; 5479 5480 /* get rid of all devices of this driver */ 5481 list_for_each_entry_safe(card, next, &HFClist, list) 5482 release_card(card); 5483 pci_unregister_driver(&hfcmultipci_driver); 5484 } 5485 5486 static int __init 5487 HFCmulti_init(void) 5488 { 5489 int err; 5490 int i, xhfc = 0; 5491 struct hm_map m; 5492 5493 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION); 5494 5495 #ifdef IRQ_DEBUG 5496 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__); 5497 #endif 5498 5499 spin_lock_init(&HFClock); 5500 spin_lock_init(&plx_lock); 5501 5502 if (debug & DEBUG_HFCMULTI_INIT) 5503 printk(KERN_DEBUG "%s: init entered\n", __func__); 5504 5505 switch (poll) { 5506 case 0: 5507 poll_timer = 6; 5508 poll = 128; 5509 break; 5510 case 8: 5511 poll_timer = 2; 5512 break; 5513 case 16: 5514 poll_timer = 3; 5515 break; 5516 case 32: 5517 poll_timer = 4; 5518 break; 5519 case 64: 5520 poll_timer = 5; 5521 break; 5522 case 128: 5523 poll_timer = 6; 5524 break; 5525 case 256: 5526 poll_timer = 7; 5527 break; 5528 default: 5529 printk(KERN_ERR 5530 "%s: Wrong poll value (%d).\n", __func__, poll); 5531 err = -EINVAL; 5532 return err; 5533 5534 } 5535 5536 if (!clock) 5537 clock = 1; 5538 5539 /* Register the embedded devices. 5540 * This should be done before the PCI cards registration */ 5541 switch (hwid) { 5542 case HWID_MINIP4: 5543 xhfc = 1; 5544 m = hfcm_map[31]; 5545 break; 5546 case HWID_MINIP8: 5547 xhfc = 2; 5548 m = hfcm_map[31]; 5549 break; 5550 case HWID_MINIP16: 5551 xhfc = 4; 5552 m = hfcm_map[31]; 5553 break; 5554 default: 5555 xhfc = 0; 5556 } 5557 5558 for (i = 0; i < xhfc; ++i) { 5559 err = hfcmulti_init(&m, NULL, NULL); 5560 if (err) { 5561 printk(KERN_ERR "error registering embedded driver: " 5562 "%x\n", err); 5563 return err; 5564 } 5565 HFC_cnt++; 5566 printk(KERN_INFO "%d devices registered\n", HFC_cnt); 5567 } 5568 5569 /* Register the PCI cards */ 5570 err = pci_register_driver(&hfcmultipci_driver); 5571 if (err < 0) { 5572 printk(KERN_ERR "error registering pci driver: %x\n", err); 5573 return err; 5574 } 5575 5576 return 0; 5577 } 5578 5579 5580 module_init(HFCmulti_init); 5581 module_exit(HFCmulti_cleanup); 5582