1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards 4 * 5 * Author Andreas Eversberg (jolly@eversberg.eu) 6 * ported to mqueue mechanism: 7 * Peter Sprenger (sprengermoving-bytes.de) 8 * 9 * inspired by existing hfc-pci driver: 10 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de) 11 * Copyright 2008 by Karsten Keil (kkeil@suse.de) 12 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu) 13 * 14 * Thanks to Cologne Chip AG for this great controller! 15 */ 16 17 /* 18 * module parameters: 19 * type: 20 * By default (0), the card is automatically detected. 21 * Or use the following combinations: 22 * Bit 0-7 = 0x00001 = HFC-E1 (1 port) 23 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports) 24 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports) 25 * Bit 8 = 0x00100 = uLaw (instead of aLaw) 26 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware 27 * Bit 10 = spare 28 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto) 29 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto) 30 * Bit 13 = spare 31 * Bit 14 = 0x04000 = Use external ram (128K) 32 * Bit 15 = 0x08000 = Use external ram (512K) 33 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32 34 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else 35 * Bit 18 = spare 36 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog) 37 * (all other bits are reserved and shall be 0) 38 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM 39 * bus (PCM master) 40 * 41 * port: (optional or required for all ports on all installed cards) 42 * HFC-4S/HFC-8S only bits: 43 * Bit 0 = 0x001 = Use master clock for this S/T interface 44 * (ony once per chip). 45 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode) 46 * Don't use this unless you know what you are doing! 47 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing) 48 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock 49 * received from port 1 50 * 51 * HFC-E1 only bits: 52 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical 53 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode) 54 * Bit 2 = 0x0004 = Report LOS 55 * Bit 3 = 0x0008 = Report AIS 56 * Bit 4 = 0x0010 = Report SLIP 57 * Bit 5 = 0x0020 = Report RDI 58 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame 59 * mode instead. 60 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode. 61 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode. 62 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL. 63 * (E1 only) 64 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0 65 * for default. 66 * (all other bits are reserved and shall be 0) 67 * 68 * debug: 69 * NOTE: only one debug value must be given for all cards 70 * enable debugging (see hfc_multi.h for debug options) 71 * 72 * poll: 73 * NOTE: only one poll value must be given for all cards 74 * Give the number of samples for each fifo process. 75 * By default 128 is used. Decrease to reduce delay, increase to 76 * reduce cpu load. If unsure, don't mess with it! 77 * Valid is 8, 16, 32, 64, 128, 256. 78 * 79 * pcm: 80 * NOTE: only one pcm value must be given for every card. 81 * The PCM bus id tells the mISDNdsp module about the connected PCM bus. 82 * By default (0), the PCM bus id is 100 for the card that is PCM master. 83 * If multiple cards are PCM master (because they are not interconnected), 84 * each card with PCM master will have increasing PCM id. 85 * All PCM busses with the same ID are expected to be connected and have 86 * common time slots slots. 87 * Only one chip of the PCM bus must be master, the others slave. 88 * -1 means no support of PCM bus not even. 89 * Omit this value, if all cards are interconnected or none is connected. 90 * If unsure, don't give this parameter. 91 * 92 * dmask and bmask: 93 * NOTE: One dmask value must be given for every HFC-E1 card. 94 * If omitted, the E1 card has D-channel on time slot 16, which is default. 95 * dmask is a 32 bit mask. The bit must be set for an alternate time slot. 96 * If multiple bits are set, multiple virtual card fragments are created. 97 * For each bit set, a bmask value must be given. Each bit on the bmask 98 * value stands for a B-channel. The bmask may not overlap with dmask or 99 * with other bmask values for that card. 100 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000 101 * This will create one fragment with D-channel on slot 1 with 102 * B-channels on slots 2..15, and a second fragment with D-channel 103 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused. 104 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will 105 * not function. 106 * Example: dmask=0x00000001 bmask=0xfffffffe 107 * This will create a port with all 31 usable timeslots as 108 * B-channels. 109 * If no bits are set on bmask, no B-channel is created for that fragment. 110 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask) 111 * This will create 31 ports with one D-channel only. 112 * If you don't know how to use it, you don't need it! 113 * 114 * iomode: 115 * NOTE: only one mode value must be given for every card. 116 * -> See hfc_multi.h for HFC_IO_MODE_* values 117 * By default, the IO mode is pci memory IO (MEMIO). 118 * Some cards require specific IO mode, so it cannot be changed. 119 * It may be useful to set IO mode to register io (REGIO) to solve 120 * PCI bridge problems. 121 * If unsure, don't give this parameter. 122 * 123 * clockdelay_nt: 124 * NOTE: only one clockdelay_nt value must be given once for all cards. 125 * Give the value of the clock control register (A_ST_CLK_DLY) 126 * of the S/T interfaces in NT mode. 127 * This register is needed for the TBR3 certification, so don't change it. 128 * 129 * clockdelay_te: 130 * NOTE: only one clockdelay_te value must be given once 131 * Give the value of the clock control register (A_ST_CLK_DLY) 132 * of the S/T interfaces in TE mode. 133 * This register is needed for the TBR3 certification, so don't change it. 134 * 135 * clock: 136 * NOTE: only one clock value must be given once 137 * Selects interface with clock source for mISDN and applications. 138 * Set to card number starting with 1. Set to -1 to disable. 139 * By default, the first card is used as clock source. 140 * 141 * hwid: 142 * NOTE: only one hwid value must be given once 143 * Enable special embedded devices with XHFC controllers. 144 */ 145 146 /* 147 * debug register access (never use this, it will flood your system log) 148 * #define HFC_REGISTER_DEBUG 149 */ 150 151 #define HFC_MULTI_VERSION "2.03" 152 153 #include <linux/interrupt.h> 154 #include <linux/module.h> 155 #include <linux/slab.h> 156 #include <linux/pci.h> 157 #include <linux/delay.h> 158 #include <linux/mISDNhw.h> 159 #include <linux/mISDNdsp.h> 160 161 /* 162 #define IRQCOUNT_DEBUG 163 #define IRQ_DEBUG 164 */ 165 166 #include "hfc_multi.h" 167 #ifdef ECHOPREP 168 #include "gaintab.h" 169 #endif 170 171 #define MAX_CARDS 8 172 #define MAX_PORTS (8 * MAX_CARDS) 173 #define MAX_FRAGS (32 * MAX_CARDS) 174 175 static LIST_HEAD(HFClist); 176 static DEFINE_SPINLOCK(HFClock); /* global hfc list lock */ 177 178 static void ph_state_change(struct dchannel *); 179 180 static struct hfc_multi *syncmaster; 181 static int plxsd_master; /* if we have a master card (yet) */ 182 static DEFINE_SPINLOCK(plx_lock); /* may not acquire other lock inside */ 183 184 #define TYP_E1 1 185 #define TYP_4S 4 186 #define TYP_8S 8 187 188 static int poll_timer = 6; /* default = 128 samples = 16ms */ 189 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */ 190 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 }; 191 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */ 192 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode 193 (0x60 MUST be included!) */ 194 195 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */ 196 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */ 197 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */ 198 199 /* 200 * module stuff 201 */ 202 203 static uint type[MAX_CARDS]; 204 static int pcm[MAX_CARDS]; 205 static uint dmask[MAX_CARDS]; 206 static uint bmask[MAX_FRAGS]; 207 static uint iomode[MAX_CARDS]; 208 static uint port[MAX_PORTS]; 209 static uint debug; 210 static uint poll; 211 static int clock; 212 static uint timer; 213 static uint clockdelay_te = CLKDEL_TE; 214 static uint clockdelay_nt = CLKDEL_NT; 215 #define HWID_NONE 0 216 #define HWID_MINIP4 1 217 #define HWID_MINIP8 2 218 #define HWID_MINIP16 3 219 static uint hwid = HWID_NONE; 220 221 static int HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99; 222 223 MODULE_AUTHOR("Andreas Eversberg"); 224 MODULE_LICENSE("GPL"); 225 MODULE_VERSION(HFC_MULTI_VERSION); 226 module_param(debug, uint, S_IRUGO | S_IWUSR); 227 module_param(poll, uint, S_IRUGO | S_IWUSR); 228 module_param(clock, int, S_IRUGO | S_IWUSR); 229 module_param(timer, uint, S_IRUGO | S_IWUSR); 230 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR); 231 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR); 232 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR); 233 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR); 234 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR); 235 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR); 236 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR); 237 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR); 238 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */ 239 240 #ifdef HFC_REGISTER_DEBUG 241 #define HFC_outb(hc, reg, val) \ 242 (hc->HFC_outb(hc, reg, val, __func__, __LINE__)) 243 #define HFC_outb_nodebug(hc, reg, val) \ 244 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__)) 245 #define HFC_inb(hc, reg) \ 246 (hc->HFC_inb(hc, reg, __func__, __LINE__)) 247 #define HFC_inb_nodebug(hc, reg) \ 248 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__)) 249 #define HFC_inw(hc, reg) \ 250 (hc->HFC_inw(hc, reg, __func__, __LINE__)) 251 #define HFC_inw_nodebug(hc, reg) \ 252 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__)) 253 #define HFC_wait(hc) \ 254 (hc->HFC_wait(hc, __func__, __LINE__)) 255 #define HFC_wait_nodebug(hc) \ 256 (hc->HFC_wait_nodebug(hc, __func__, __LINE__)) 257 #else 258 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val)) 259 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val)) 260 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg)) 261 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg)) 262 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg)) 263 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg)) 264 #define HFC_wait(hc) (hc->HFC_wait(hc)) 265 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc)) 266 #endif 267 268 #ifdef CONFIG_MISDN_HFCMULTI_8xx 269 #include "hfc_multi_8xx.h" 270 #endif 271 272 /* HFC_IO_MODE_PCIMEM */ 273 static void 274 #ifdef HFC_REGISTER_DEBUG 275 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val, 276 const char *function, int line) 277 #else 278 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val) 279 #endif 280 { 281 writeb(val, hc->pci_membase + reg); 282 } 283 static u_char 284 #ifdef HFC_REGISTER_DEBUG 285 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line) 286 #else 287 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg) 288 #endif 289 { 290 return readb(hc->pci_membase + reg); 291 } 292 static u_short 293 #ifdef HFC_REGISTER_DEBUG 294 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line) 295 #else 296 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg) 297 #endif 298 { 299 return readw(hc->pci_membase + reg); 300 } 301 static void 302 #ifdef HFC_REGISTER_DEBUG 303 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line) 304 #else 305 HFC_wait_pcimem(struct hfc_multi *hc) 306 #endif 307 { 308 while (readb(hc->pci_membase + R_STATUS) & V_BUSY) 309 cpu_relax(); 310 } 311 312 /* HFC_IO_MODE_REGIO */ 313 static void 314 #ifdef HFC_REGISTER_DEBUG 315 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val, 316 const char *function, int line) 317 #else 318 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val) 319 #endif 320 { 321 outb(reg, hc->pci_iobase + 4); 322 outb(val, hc->pci_iobase); 323 } 324 static u_char 325 #ifdef HFC_REGISTER_DEBUG 326 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line) 327 #else 328 HFC_inb_regio(struct hfc_multi *hc, u_char reg) 329 #endif 330 { 331 outb(reg, hc->pci_iobase + 4); 332 return inb(hc->pci_iobase); 333 } 334 static u_short 335 #ifdef HFC_REGISTER_DEBUG 336 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line) 337 #else 338 HFC_inw_regio(struct hfc_multi *hc, u_char reg) 339 #endif 340 { 341 outb(reg, hc->pci_iobase + 4); 342 return inw(hc->pci_iobase); 343 } 344 static void 345 #ifdef HFC_REGISTER_DEBUG 346 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line) 347 #else 348 HFC_wait_regio(struct hfc_multi *hc) 349 #endif 350 { 351 outb(R_STATUS, hc->pci_iobase + 4); 352 while (inb(hc->pci_iobase) & V_BUSY) 353 cpu_relax(); 354 } 355 356 #ifdef HFC_REGISTER_DEBUG 357 static void 358 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val, 359 const char *function, int line) 360 { 361 char regname[256] = "", bits[9] = "xxxxxxxx"; 362 int i; 363 364 i = -1; 365 while (hfc_register_names[++i].name) { 366 if (hfc_register_names[i].reg == reg) 367 strcat(regname, hfc_register_names[i].name); 368 } 369 if (regname[0] == '\0') 370 strcpy(regname, "register"); 371 372 bits[7] = '0' + (!!(val & 1)); 373 bits[6] = '0' + (!!(val & 2)); 374 bits[5] = '0' + (!!(val & 4)); 375 bits[4] = '0' + (!!(val & 8)); 376 bits[3] = '0' + (!!(val & 16)); 377 bits[2] = '0' + (!!(val & 32)); 378 bits[1] = '0' + (!!(val & 64)); 379 bits[0] = '0' + (!!(val & 128)); 380 printk(KERN_DEBUG 381 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n", 382 hc->id, reg, regname, val, bits, function, line); 383 HFC_outb_nodebug(hc, reg, val); 384 } 385 static u_char 386 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line) 387 { 388 char regname[256] = "", bits[9] = "xxxxxxxx"; 389 u_char val = HFC_inb_nodebug(hc, reg); 390 int i; 391 392 i = 0; 393 while (hfc_register_names[i++].name) 394 ; 395 while (hfc_register_names[++i].name) { 396 if (hfc_register_names[i].reg == reg) 397 strcat(regname, hfc_register_names[i].name); 398 } 399 if (regname[0] == '\0') 400 strcpy(regname, "register"); 401 402 bits[7] = '0' + (!!(val & 1)); 403 bits[6] = '0' + (!!(val & 2)); 404 bits[5] = '0' + (!!(val & 4)); 405 bits[4] = '0' + (!!(val & 8)); 406 bits[3] = '0' + (!!(val & 16)); 407 bits[2] = '0' + (!!(val & 32)); 408 bits[1] = '0' + (!!(val & 64)); 409 bits[0] = '0' + (!!(val & 128)); 410 printk(KERN_DEBUG 411 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n", 412 hc->id, reg, regname, val, bits, function, line); 413 return val; 414 } 415 static u_short 416 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line) 417 { 418 char regname[256] = ""; 419 u_short val = HFC_inw_nodebug(hc, reg); 420 int i; 421 422 i = 0; 423 while (hfc_register_names[i++].name) 424 ; 425 while (hfc_register_names[++i].name) { 426 if (hfc_register_names[i].reg == reg) 427 strcat(regname, hfc_register_names[i].name); 428 } 429 if (regname[0] == '\0') 430 strcpy(regname, "register"); 431 432 printk(KERN_DEBUG 433 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n", 434 hc->id, reg, regname, val, function, line); 435 return val; 436 } 437 static void 438 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line) 439 { 440 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n", 441 hc->id, function, line); 442 HFC_wait_nodebug(hc); 443 } 444 #endif 445 446 /* write fifo data (REGIO) */ 447 static void 448 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len) 449 { 450 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4); 451 while (len >> 2) { 452 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase); 453 data += 4; 454 len -= 4; 455 } 456 while (len >> 1) { 457 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase); 458 data += 2; 459 len -= 2; 460 } 461 while (len) { 462 outb(*data, hc->pci_iobase); 463 data++; 464 len--; 465 } 466 } 467 /* write fifo data (PCIMEM) */ 468 static void 469 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len) 470 { 471 while (len >> 2) { 472 writel(cpu_to_le32(*(u32 *)data), 473 hc->pci_membase + A_FIFO_DATA0); 474 data += 4; 475 len -= 4; 476 } 477 while (len >> 1) { 478 writew(cpu_to_le16(*(u16 *)data), 479 hc->pci_membase + A_FIFO_DATA0); 480 data += 2; 481 len -= 2; 482 } 483 while (len) { 484 writeb(*data, hc->pci_membase + A_FIFO_DATA0); 485 data++; 486 len--; 487 } 488 } 489 490 /* read fifo data (REGIO) */ 491 static void 492 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len) 493 { 494 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4); 495 while (len >> 2) { 496 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase)); 497 data += 4; 498 len -= 4; 499 } 500 while (len >> 1) { 501 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase)); 502 data += 2; 503 len -= 2; 504 } 505 while (len) { 506 *data = inb(hc->pci_iobase); 507 data++; 508 len--; 509 } 510 } 511 512 /* read fifo data (PCIMEM) */ 513 static void 514 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len) 515 { 516 while (len >> 2) { 517 *(u32 *)data = 518 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0)); 519 data += 4; 520 len -= 4; 521 } 522 while (len >> 1) { 523 *(u16 *)data = 524 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0)); 525 data += 2; 526 len -= 2; 527 } 528 while (len) { 529 *data = readb(hc->pci_membase + A_FIFO_DATA0); 530 data++; 531 len--; 532 } 533 } 534 535 static void 536 enable_hwirq(struct hfc_multi *hc) 537 { 538 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN; 539 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl); 540 } 541 542 static void 543 disable_hwirq(struct hfc_multi *hc) 544 { 545 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN); 546 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl); 547 } 548 549 #define NUM_EC 2 550 #define MAX_TDM_CHAN 32 551 552 553 static inline void 554 enablepcibridge(struct hfc_multi *c) 555 { 556 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */ 557 } 558 559 static inline void 560 disablepcibridge(struct hfc_multi *c) 561 { 562 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */ 563 } 564 565 static inline unsigned char 566 readpcibridge(struct hfc_multi *hc, unsigned char address) 567 { 568 unsigned short cipv; 569 unsigned char data; 570 571 if (!hc->pci_iobase) 572 return 0; 573 574 /* slow down a PCI read access by 1 PCI clock cycle */ 575 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/ 576 577 if (address == 0) 578 cipv = 0x4000; 579 else 580 cipv = 0x5800; 581 582 /* select local bridge port address by writing to CIP port */ 583 /* data = HFC_inb(c, cipv); * was _io before */ 584 outw(cipv, hc->pci_iobase + 4); 585 data = inb(hc->pci_iobase); 586 587 /* restore R_CTRL for normal PCI read cycle speed */ 588 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */ 589 590 return data; 591 } 592 593 static inline void 594 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data) 595 { 596 unsigned short cipv; 597 unsigned int datav; 598 599 if (!hc->pci_iobase) 600 return; 601 602 if (address == 0) 603 cipv = 0x4000; 604 else 605 cipv = 0x5800; 606 607 /* select local bridge port address by writing to CIP port */ 608 outw(cipv, hc->pci_iobase + 4); 609 /* define a 32 bit dword with 4 identical bytes for write sequence */ 610 datav = data | ((__u32) data << 8) | ((__u32) data << 16) | 611 ((__u32) data << 24); 612 613 /* 614 * write this 32 bit dword to the bridge data port 615 * this will initiate a write sequence of up to 4 writes to the same 616 * address on the local bus interface the number of write accesses 617 * is undefined but >=1 and depends on the next PCI transaction 618 * during write sequence on the local bus 619 */ 620 outl(datav, hc->pci_iobase); 621 } 622 623 static inline void 624 cpld_set_reg(struct hfc_multi *hc, unsigned char reg) 625 { 626 /* Do data pin read low byte */ 627 HFC_outb(hc, R_GPIO_OUT1, reg); 628 } 629 630 static inline void 631 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val) 632 { 633 cpld_set_reg(hc, reg); 634 635 enablepcibridge(hc); 636 writepcibridge(hc, 1, val); 637 disablepcibridge(hc); 638 639 return; 640 } 641 642 static inline void 643 vpm_write_address(struct hfc_multi *hc, unsigned short addr) 644 { 645 cpld_write_reg(hc, 0, 0xff & addr); 646 cpld_write_reg(hc, 1, 0x01 & (addr >> 8)); 647 } 648 649 static inline unsigned char 650 vpm_in(struct hfc_multi *c, int which, unsigned short addr) 651 { 652 unsigned char res; 653 654 vpm_write_address(c, addr); 655 656 if (!which) 657 cpld_set_reg(c, 2); 658 else 659 cpld_set_reg(c, 3); 660 661 enablepcibridge(c); 662 res = readpcibridge(c, 1); 663 disablepcibridge(c); 664 665 cpld_set_reg(c, 0); 666 667 return res; 668 } 669 670 static inline void 671 vpm_out(struct hfc_multi *c, int which, unsigned short addr, 672 unsigned char data) 673 { 674 vpm_write_address(c, addr); 675 676 enablepcibridge(c); 677 678 if (!which) 679 cpld_set_reg(c, 2); 680 else 681 cpld_set_reg(c, 3); 682 683 writepcibridge(c, 1, data); 684 685 cpld_set_reg(c, 0); 686 687 disablepcibridge(c); 688 689 { 690 unsigned char regin; 691 regin = vpm_in(c, which, addr); 692 if (regin != data) 693 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back " 694 "0x%x\n", data, addr, regin); 695 } 696 697 } 698 699 700 static void 701 vpm_init(struct hfc_multi *wc) 702 { 703 unsigned char reg; 704 unsigned int mask; 705 unsigned int i, x, y; 706 unsigned int ver; 707 708 for (x = 0; x < NUM_EC; x++) { 709 /* Setup GPIO's */ 710 if (!x) { 711 ver = vpm_in(wc, x, 0x1a0); 712 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver); 713 } 714 715 for (y = 0; y < 4; y++) { 716 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */ 717 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */ 718 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */ 719 } 720 721 /* Setup TDM path - sets fsync and tdm_clk as inputs */ 722 reg = vpm_in(wc, x, 0x1a3); /* misc_con */ 723 vpm_out(wc, x, 0x1a3, reg & ~2); 724 725 /* Setup Echo length (256 taps) */ 726 vpm_out(wc, x, 0x022, 1); 727 vpm_out(wc, x, 0x023, 0xff); 728 729 /* Setup timeslots */ 730 vpm_out(wc, x, 0x02f, 0x00); 731 mask = 0x02020202 << (x * 4); 732 733 /* Setup the tdm channel masks for all chips */ 734 for (i = 0; i < 4; i++) 735 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff); 736 737 /* Setup convergence rate */ 738 printk(KERN_DEBUG "VPM: A-law mode\n"); 739 reg = 0x00 | 0x10 | 0x01; 740 vpm_out(wc, x, 0x20, reg); 741 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg); 742 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */ 743 744 vpm_out(wc, x, 0x24, 0x02); 745 reg = vpm_in(wc, x, 0x24); 746 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg); 747 748 /* Initialize echo cans */ 749 for (i = 0; i < MAX_TDM_CHAN; i++) { 750 if (mask & (0x00000001 << i)) 751 vpm_out(wc, x, i, 0x00); 752 } 753 754 /* 755 * ARM arch at least disallows a udelay of 756 * more than 2ms... it gives a fake "__bad_udelay" 757 * reference at link-time. 758 * long delays in kernel code are pretty sucky anyway 759 * for now work around it using 5 x 2ms instead of 1 x 10ms 760 */ 761 762 udelay(2000); 763 udelay(2000); 764 udelay(2000); 765 udelay(2000); 766 udelay(2000); 767 768 /* Put in bypass mode */ 769 for (i = 0; i < MAX_TDM_CHAN; i++) { 770 if (mask & (0x00000001 << i)) 771 vpm_out(wc, x, i, 0x01); 772 } 773 774 /* Enable bypass */ 775 for (i = 0; i < MAX_TDM_CHAN; i++) { 776 if (mask & (0x00000001 << i)) 777 vpm_out(wc, x, 0x78 + i, 0x01); 778 } 779 780 } 781 } 782 783 #ifdef UNUSED 784 static void 785 vpm_check(struct hfc_multi *hctmp) 786 { 787 unsigned char gpi2; 788 789 gpi2 = HFC_inb(hctmp, R_GPI_IN2); 790 791 if ((gpi2 & 0x3) != 0x3) 792 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2); 793 } 794 #endif /* UNUSED */ 795 796 797 /* 798 * Interface to enable/disable the HW Echocan 799 * 800 * these functions are called within a spin_lock_irqsave on 801 * the channel instance lock, so we are not disturbed by irqs 802 * 803 * we can later easily change the interface to make other 804 * things configurable, for now we configure the taps 805 * 806 */ 807 808 static void 809 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps) 810 { 811 unsigned int timeslot; 812 unsigned int unit; 813 struct bchannel *bch = hc->chan[ch].bch; 814 #ifdef TXADJ 815 int txadj = -4; 816 struct sk_buff *skb; 817 #endif 818 if (hc->chan[ch].protocol != ISDN_P_B_RAW) 819 return; 820 821 if (!bch) 822 return; 823 824 #ifdef TXADJ 825 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX, 826 sizeof(int), &txadj, GFP_ATOMIC); 827 if (skb) 828 recv_Bchannel_skb(bch, skb); 829 #endif 830 831 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1; 832 unit = ch % 4; 833 834 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n", 835 taps, timeslot); 836 837 vpm_out(hc, unit, timeslot, 0x7e); 838 } 839 840 static void 841 vpm_echocan_off(struct hfc_multi *hc, int ch) 842 { 843 unsigned int timeslot; 844 unsigned int unit; 845 struct bchannel *bch = hc->chan[ch].bch; 846 #ifdef TXADJ 847 int txadj = 0; 848 struct sk_buff *skb; 849 #endif 850 851 if (hc->chan[ch].protocol != ISDN_P_B_RAW) 852 return; 853 854 if (!bch) 855 return; 856 857 #ifdef TXADJ 858 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX, 859 sizeof(int), &txadj, GFP_ATOMIC); 860 if (skb) 861 recv_Bchannel_skb(bch, skb); 862 #endif 863 864 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1; 865 unit = ch % 4; 866 867 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n", 868 timeslot); 869 /* FILLME */ 870 vpm_out(hc, unit, timeslot, 0x01); 871 } 872 873 874 /* 875 * Speech Design resync feature 876 * NOTE: This is called sometimes outside interrupt handler. 877 * We must lock irqsave, so no other interrupt (other card) will occur! 878 * Also multiple interrupts may nest, so must lock each access (lists, card)! 879 */ 880 static inline void 881 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm) 882 { 883 struct hfc_multi *hc, *next, *pcmmaster = NULL; 884 void __iomem *plx_acc_32; 885 u_int pv; 886 u_long flags; 887 888 spin_lock_irqsave(&HFClock, flags); 889 spin_lock(&plx_lock); /* must be locked inside other locks */ 890 891 if (debug & DEBUG_HFCMULTI_PLXSD) 892 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n", 893 __func__, syncmaster); 894 895 /* select new master */ 896 if (newmaster) { 897 if (debug & DEBUG_HFCMULTI_PLXSD) 898 printk(KERN_DEBUG "using provided controller\n"); 899 } else { 900 list_for_each_entry_safe(hc, next, &HFClist, list) { 901 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 902 if (hc->syncronized) { 903 newmaster = hc; 904 break; 905 } 906 } 907 } 908 } 909 910 /* Disable sync of all cards */ 911 list_for_each_entry_safe(hc, next, &HFClist, list) { 912 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 913 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 914 pv = readl(plx_acc_32); 915 pv &= ~PLX_SYNC_O_EN; 916 writel(pv, plx_acc_32); 917 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) { 918 pcmmaster = hc; 919 if (hc->ctype == HFC_TYPE_E1) { 920 if (debug & DEBUG_HFCMULTI_PLXSD) 921 printk(KERN_DEBUG 922 "Schedule SYNC_I\n"); 923 hc->e1_resync |= 1; /* get SYNC_I */ 924 } 925 } 926 } 927 } 928 929 if (newmaster) { 930 hc = newmaster; 931 if (debug & DEBUG_HFCMULTI_PLXSD) 932 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with " 933 "interface.\n", hc->id, hc); 934 /* Enable new sync master */ 935 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 936 pv = readl(plx_acc_32); 937 pv |= PLX_SYNC_O_EN; 938 writel(pv, plx_acc_32); 939 /* switch to jatt PLL, if not disabled by RX_SYNC */ 940 if (hc->ctype == HFC_TYPE_E1 941 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) { 942 if (debug & DEBUG_HFCMULTI_PLXSD) 943 printk(KERN_DEBUG "Schedule jatt PLL\n"); 944 hc->e1_resync |= 2; /* switch to jatt */ 945 } 946 } else { 947 if (pcmmaster) { 948 hc = pcmmaster; 949 if (debug & DEBUG_HFCMULTI_PLXSD) 950 printk(KERN_DEBUG 951 "id=%d (0x%p) = PCM master syncronized " 952 "with QUARTZ\n", hc->id, hc); 953 if (hc->ctype == HFC_TYPE_E1) { 954 /* Use the crystal clock for the PCM 955 master card */ 956 if (debug & DEBUG_HFCMULTI_PLXSD) 957 printk(KERN_DEBUG 958 "Schedule QUARTZ for HFC-E1\n"); 959 hc->e1_resync |= 4; /* switch quartz */ 960 } else { 961 if (debug & DEBUG_HFCMULTI_PLXSD) 962 printk(KERN_DEBUG 963 "QUARTZ is automatically " 964 "enabled by HFC-%dS\n", hc->ctype); 965 } 966 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 967 pv = readl(plx_acc_32); 968 pv |= PLX_SYNC_O_EN; 969 writel(pv, plx_acc_32); 970 } else 971 if (!rm) 972 printk(KERN_ERR "%s no pcm master, this MUST " 973 "not happen!\n", __func__); 974 } 975 syncmaster = newmaster; 976 977 spin_unlock(&plx_lock); 978 spin_unlock_irqrestore(&HFClock, flags); 979 } 980 981 /* This must be called AND hc must be locked irqsave!!! */ 982 static inline void 983 plxsd_checksync(struct hfc_multi *hc, int rm) 984 { 985 if (hc->syncronized) { 986 if (syncmaster == NULL) { 987 if (debug & DEBUG_HFCMULTI_PLXSD) 988 printk(KERN_DEBUG "%s: GOT sync on card %d" 989 " (id=%d)\n", __func__, hc->id + 1, 990 hc->id); 991 hfcmulti_resync(hc, hc, rm); 992 } 993 } else { 994 if (syncmaster == hc) { 995 if (debug & DEBUG_HFCMULTI_PLXSD) 996 printk(KERN_DEBUG "%s: LOST sync on card %d" 997 " (id=%d)\n", __func__, hc->id + 1, 998 hc->id); 999 hfcmulti_resync(hc, NULL, rm); 1000 } 1001 } 1002 } 1003 1004 1005 /* 1006 * free hardware resources used by driver 1007 */ 1008 static void 1009 release_io_hfcmulti(struct hfc_multi *hc) 1010 { 1011 void __iomem *plx_acc_32; 1012 u_int pv; 1013 u_long plx_flags; 1014 1015 if (debug & DEBUG_HFCMULTI_INIT) 1016 printk(KERN_DEBUG "%s: entered\n", __func__); 1017 1018 /* soft reset also masks all interrupts */ 1019 hc->hw.r_cirm |= V_SRES; 1020 HFC_outb(hc, R_CIRM, hc->hw.r_cirm); 1021 udelay(1000); 1022 hc->hw.r_cirm &= ~V_SRES; 1023 HFC_outb(hc, R_CIRM, hc->hw.r_cirm); 1024 udelay(1000); /* instead of 'wait' that may cause locking */ 1025 1026 /* release Speech Design card, if PLX was initialized */ 1027 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) { 1028 if (debug & DEBUG_HFCMULTI_PLXSD) 1029 printk(KERN_DEBUG "%s: release PLXSD card %d\n", 1030 __func__, hc->id + 1); 1031 spin_lock_irqsave(&plx_lock, plx_flags); 1032 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1033 writel(PLX_GPIOC_INIT, plx_acc_32); 1034 pv = readl(plx_acc_32); 1035 /* Termination off */ 1036 pv &= ~PLX_TERM_ON; 1037 /* Disconnect the PCM */ 1038 pv |= PLX_SLAVE_EN_N; 1039 pv &= ~PLX_MASTER_EN; 1040 pv &= ~PLX_SYNC_O_EN; 1041 /* Put the DSP in Reset */ 1042 pv &= ~PLX_DSP_RES_N; 1043 writel(pv, plx_acc_32); 1044 if (debug & DEBUG_HFCMULTI_INIT) 1045 printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n", 1046 __func__, pv); 1047 spin_unlock_irqrestore(&plx_lock, plx_flags); 1048 } 1049 1050 /* disable memory mapped ports / io ports */ 1051 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */ 1052 if (hc->pci_dev) 1053 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0); 1054 if (hc->pci_membase) 1055 iounmap(hc->pci_membase); 1056 if (hc->plx_membase) 1057 iounmap(hc->plx_membase); 1058 if (hc->pci_iobase) 1059 release_region(hc->pci_iobase, 8); 1060 if (hc->xhfc_membase) 1061 iounmap((void *)hc->xhfc_membase); 1062 1063 if (hc->pci_dev) { 1064 pci_disable_device(hc->pci_dev); 1065 pci_set_drvdata(hc->pci_dev, NULL); 1066 } 1067 if (debug & DEBUG_HFCMULTI_INIT) 1068 printk(KERN_DEBUG "%s: done\n", __func__); 1069 } 1070 1071 /* 1072 * function called to reset the HFC chip. A complete software reset of chip 1073 * and fifos is done. All configuration of the chip is done. 1074 */ 1075 1076 static int 1077 init_chip(struct hfc_multi *hc) 1078 { 1079 u_long flags, val, val2 = 0, rev; 1080 int i, err = 0; 1081 u_char r_conf_en, rval; 1082 void __iomem *plx_acc_32; 1083 u_int pv; 1084 u_long plx_flags, hfc_flags; 1085 int plx_count; 1086 struct hfc_multi *pos, *next, *plx_last_hc; 1087 1088 spin_lock_irqsave(&hc->lock, flags); 1089 /* reset all registers */ 1090 memset(&hc->hw, 0, sizeof(struct hfcm_hw)); 1091 1092 /* revision check */ 1093 if (debug & DEBUG_HFCMULTI_INIT) 1094 printk(KERN_DEBUG "%s: entered\n", __func__); 1095 val = HFC_inb(hc, R_CHIP_ID); 1096 if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe && 1097 (val >> 1) != 0x31) { 1098 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val); 1099 err = -EIO; 1100 goto out; 1101 } 1102 rev = HFC_inb(hc, R_CHIP_RV); 1103 printk(KERN_INFO 1104 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n", 1105 val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ? 1106 " (old FIFO handling)" : ""); 1107 if (hc->ctype != HFC_TYPE_XHFC && rev == 0) { 1108 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip); 1109 printk(KERN_WARNING 1110 "HFC_multi: NOTE: Your chip is revision 0, " 1111 "ask Cologne Chip for update. Newer chips " 1112 "have a better FIFO handling. Old chips " 1113 "still work but may have slightly lower " 1114 "HDLC transmit performance.\n"); 1115 } 1116 if (rev > 1) { 1117 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't " 1118 "consider chip revision = %ld. The chip / " 1119 "bridge may not work.\n", rev); 1120 } 1121 1122 /* set s-ram size */ 1123 hc->Flen = 0x10; 1124 hc->Zmin = 0x80; 1125 hc->Zlen = 384; 1126 hc->DTMFbase = 0x1000; 1127 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) { 1128 if (debug & DEBUG_HFCMULTI_INIT) 1129 printk(KERN_DEBUG "%s: changing to 128K external RAM\n", 1130 __func__); 1131 hc->hw.r_ctrl |= V_EXT_RAM; 1132 hc->hw.r_ram_sz = 1; 1133 hc->Flen = 0x20; 1134 hc->Zmin = 0xc0; 1135 hc->Zlen = 1856; 1136 hc->DTMFbase = 0x2000; 1137 } 1138 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) { 1139 if (debug & DEBUG_HFCMULTI_INIT) 1140 printk(KERN_DEBUG "%s: changing to 512K external RAM\n", 1141 __func__); 1142 hc->hw.r_ctrl |= V_EXT_RAM; 1143 hc->hw.r_ram_sz = 2; 1144 hc->Flen = 0x20; 1145 hc->Zmin = 0xc0; 1146 hc->Zlen = 8000; 1147 hc->DTMFbase = 0x2000; 1148 } 1149 if (hc->ctype == HFC_TYPE_XHFC) { 1150 hc->Flen = 0x8; 1151 hc->Zmin = 0x0; 1152 hc->Zlen = 64; 1153 hc->DTMFbase = 0x0; 1154 } 1155 hc->max_trans = poll << 1; 1156 if (hc->max_trans > hc->Zlen) 1157 hc->max_trans = hc->Zlen; 1158 1159 /* Speech Design PLX bridge */ 1160 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1161 if (debug & DEBUG_HFCMULTI_PLXSD) 1162 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n", 1163 __func__, hc->id + 1); 1164 spin_lock_irqsave(&plx_lock, plx_flags); 1165 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1166 writel(PLX_GPIOC_INIT, plx_acc_32); 1167 pv = readl(plx_acc_32); 1168 /* The first and the last cards are terminating the PCM bus */ 1169 pv |= PLX_TERM_ON; /* hc is currently the last */ 1170 /* Disconnect the PCM */ 1171 pv |= PLX_SLAVE_EN_N; 1172 pv &= ~PLX_MASTER_EN; 1173 pv &= ~PLX_SYNC_O_EN; 1174 /* Put the DSP in Reset */ 1175 pv &= ~PLX_DSP_RES_N; 1176 writel(pv, plx_acc_32); 1177 spin_unlock_irqrestore(&plx_lock, plx_flags); 1178 if (debug & DEBUG_HFCMULTI_INIT) 1179 printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n", 1180 __func__, pv); 1181 /* 1182 * If we are the 3rd PLXSD card or higher, we must turn 1183 * termination of last PLXSD card off. 1184 */ 1185 spin_lock_irqsave(&HFClock, hfc_flags); 1186 plx_count = 0; 1187 plx_last_hc = NULL; 1188 list_for_each_entry_safe(pos, next, &HFClist, list) { 1189 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) { 1190 plx_count++; 1191 if (pos != hc) 1192 plx_last_hc = pos; 1193 } 1194 } 1195 if (plx_count >= 3) { 1196 if (debug & DEBUG_HFCMULTI_PLXSD) 1197 printk(KERN_DEBUG "%s: card %d is between, so " 1198 "we disable termination\n", 1199 __func__, plx_last_hc->id + 1); 1200 spin_lock_irqsave(&plx_lock, plx_flags); 1201 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC; 1202 pv = readl(plx_acc_32); 1203 pv &= ~PLX_TERM_ON; 1204 writel(pv, plx_acc_32); 1205 spin_unlock_irqrestore(&plx_lock, plx_flags); 1206 if (debug & DEBUG_HFCMULTI_INIT) 1207 printk(KERN_DEBUG 1208 "%s: term off: PLX_GPIO=%x\n", 1209 __func__, pv); 1210 } 1211 spin_unlock_irqrestore(&HFClock, hfc_flags); 1212 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */ 1213 } 1214 1215 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) 1216 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */ 1217 1218 /* we only want the real Z2 read-pointer for revision > 0 */ 1219 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip)) 1220 hc->hw.r_ram_sz |= V_FZ_MD; 1221 1222 /* select pcm mode */ 1223 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { 1224 if (debug & DEBUG_HFCMULTI_INIT) 1225 printk(KERN_DEBUG "%s: setting PCM into slave mode\n", 1226 __func__); 1227 } else 1228 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) { 1229 if (debug & DEBUG_HFCMULTI_INIT) 1230 printk(KERN_DEBUG "%s: setting PCM into master mode\n", 1231 __func__); 1232 hc->hw.r_pcm_md0 |= V_PCM_MD; 1233 } else { 1234 if (debug & DEBUG_HFCMULTI_INIT) 1235 printk(KERN_DEBUG "%s: performing PCM auto detect\n", 1236 __func__); 1237 } 1238 1239 /* soft reset */ 1240 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl); 1241 if (hc->ctype == HFC_TYPE_XHFC) 1242 HFC_outb(hc, 0x0C /* R_FIFO_THRES */, 1243 0x11 /* 16 Bytes TX/RX */); 1244 else 1245 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz); 1246 HFC_outb(hc, R_FIFO_MD, 0); 1247 if (hc->ctype == HFC_TYPE_XHFC) 1248 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES; 1249 else 1250 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES 1251 | V_RLD_EPR; 1252 HFC_outb(hc, R_CIRM, hc->hw.r_cirm); 1253 udelay(100); 1254 hc->hw.r_cirm = 0; 1255 HFC_outb(hc, R_CIRM, hc->hw.r_cirm); 1256 udelay(100); 1257 if (hc->ctype != HFC_TYPE_XHFC) 1258 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz); 1259 1260 /* Speech Design PLX bridge pcm and sync mode */ 1261 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1262 spin_lock_irqsave(&plx_lock, plx_flags); 1263 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1264 pv = readl(plx_acc_32); 1265 /* Connect PCM */ 1266 if (hc->hw.r_pcm_md0 & V_PCM_MD) { 1267 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N; 1268 pv |= PLX_SYNC_O_EN; 1269 if (debug & DEBUG_HFCMULTI_INIT) 1270 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n", 1271 __func__, pv); 1272 } else { 1273 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N); 1274 pv &= ~PLX_SYNC_O_EN; 1275 if (debug & DEBUG_HFCMULTI_INIT) 1276 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n", 1277 __func__, pv); 1278 } 1279 writel(pv, plx_acc_32); 1280 spin_unlock_irqrestore(&plx_lock, plx_flags); 1281 } 1282 1283 /* PCM setup */ 1284 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90); 1285 if (hc->slots == 32) 1286 HFC_outb(hc, R_PCM_MD1, 0x00); 1287 if (hc->slots == 64) 1288 HFC_outb(hc, R_PCM_MD1, 0x10); 1289 if (hc->slots == 128) 1290 HFC_outb(hc, R_PCM_MD1, 0x20); 1291 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0); 1292 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) 1293 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */ 1294 else if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) 1295 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */ 1296 else 1297 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */ 1298 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00); 1299 for (i = 0; i < 256; i++) { 1300 HFC_outb_nodebug(hc, R_SLOT, i); 1301 HFC_outb_nodebug(hc, A_SL_CFG, 0); 1302 if (hc->ctype != HFC_TYPE_XHFC) 1303 HFC_outb_nodebug(hc, A_CONF, 0); 1304 hc->slot_owner[i] = -1; 1305 } 1306 1307 /* set clock speed */ 1308 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) { 1309 if (debug & DEBUG_HFCMULTI_INIT) 1310 printk(KERN_DEBUG 1311 "%s: setting double clock\n", __func__); 1312 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK); 1313 } 1314 1315 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) 1316 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */); 1317 1318 /* B410P GPIO */ 1319 if (test_bit(HFC_CHIP_B410P, &hc->chip)) { 1320 printk(KERN_NOTICE "Setting GPIOs\n"); 1321 HFC_outb(hc, R_GPIO_SEL, 0x30); 1322 HFC_outb(hc, R_GPIO_EN1, 0x3); 1323 udelay(1000); 1324 printk(KERN_NOTICE "calling vpm_init\n"); 1325 vpm_init(hc); 1326 } 1327 1328 /* check if R_F0_CNT counts (8 kHz frame count) */ 1329 val = HFC_inb(hc, R_F0_CNTL); 1330 val += HFC_inb(hc, R_F0_CNTH) << 8; 1331 if (debug & DEBUG_HFCMULTI_INIT) 1332 printk(KERN_DEBUG 1333 "HFC_multi F0_CNT %ld after reset\n", val); 1334 spin_unlock_irqrestore(&hc->lock, flags); 1335 set_current_state(TASK_UNINTERRUPTIBLE); 1336 schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */ 1337 spin_lock_irqsave(&hc->lock, flags); 1338 val2 = HFC_inb(hc, R_F0_CNTL); 1339 val2 += HFC_inb(hc, R_F0_CNTH) << 8; 1340 if (debug & DEBUG_HFCMULTI_INIT) 1341 printk(KERN_DEBUG 1342 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n", 1343 val2); 1344 if (val2 >= val + 8) { /* 1 ms */ 1345 /* it counts, so we keep the pcm mode */ 1346 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) 1347 printk(KERN_INFO "controller is PCM bus MASTER\n"); 1348 else 1349 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) 1350 printk(KERN_INFO "controller is PCM bus SLAVE\n"); 1351 else { 1352 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); 1353 printk(KERN_INFO "controller is PCM bus SLAVE " 1354 "(auto detected)\n"); 1355 } 1356 } else { 1357 /* does not count */ 1358 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) { 1359 controller_fail: 1360 printk(KERN_ERR "HFC_multi ERROR, getting no 125us " 1361 "pulse. Seems that controller fails.\n"); 1362 err = -EIO; 1363 goto out; 1364 } 1365 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { 1366 printk(KERN_INFO "controller is PCM bus SLAVE " 1367 "(ignoring missing PCM clock)\n"); 1368 } else { 1369 /* only one pcm master */ 1370 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) 1371 && plxsd_master) { 1372 printk(KERN_ERR "HFC_multi ERROR, no clock " 1373 "on another Speech Design card found. " 1374 "Please be sure to connect PCM cable.\n"); 1375 err = -EIO; 1376 goto out; 1377 } 1378 /* retry with master clock */ 1379 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1380 spin_lock_irqsave(&plx_lock, plx_flags); 1381 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1382 pv = readl(plx_acc_32); 1383 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N; 1384 pv |= PLX_SYNC_O_EN; 1385 writel(pv, plx_acc_32); 1386 spin_unlock_irqrestore(&plx_lock, plx_flags); 1387 if (debug & DEBUG_HFCMULTI_INIT) 1388 printk(KERN_DEBUG "%s: master: " 1389 "PLX_GPIO=%x\n", __func__, pv); 1390 } 1391 hc->hw.r_pcm_md0 |= V_PCM_MD; 1392 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00); 1393 spin_unlock_irqrestore(&hc->lock, flags); 1394 set_current_state(TASK_UNINTERRUPTIBLE); 1395 schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */ 1396 spin_lock_irqsave(&hc->lock, flags); 1397 val2 = HFC_inb(hc, R_F0_CNTL); 1398 val2 += HFC_inb(hc, R_F0_CNTH) << 8; 1399 if (debug & DEBUG_HFCMULTI_INIT) 1400 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after " 1401 "10 ms (2nd try)\n", val2); 1402 if (val2 >= val + 8) { /* 1 ms */ 1403 test_and_set_bit(HFC_CHIP_PCM_MASTER, 1404 &hc->chip); 1405 printk(KERN_INFO "controller is PCM bus MASTER " 1406 "(auto detected)\n"); 1407 } else 1408 goto controller_fail; 1409 } 1410 } 1411 1412 /* Release the DSP Reset */ 1413 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1414 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) 1415 plxsd_master = 1; 1416 spin_lock_irqsave(&plx_lock, plx_flags); 1417 plx_acc_32 = hc->plx_membase + PLX_GPIOC; 1418 pv = readl(plx_acc_32); 1419 pv |= PLX_DSP_RES_N; 1420 writel(pv, plx_acc_32); 1421 spin_unlock_irqrestore(&plx_lock, plx_flags); 1422 if (debug & DEBUG_HFCMULTI_INIT) 1423 printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n", 1424 __func__, pv); 1425 } 1426 1427 /* pcm id */ 1428 if (hc->pcm) 1429 printk(KERN_INFO "controller has given PCM BUS ID %d\n", 1430 hc->pcm); 1431 else { 1432 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) 1433 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 1434 PCM_cnt++; /* SD has proprietary bridging */ 1435 } 1436 hc->pcm = PCM_cnt; 1437 printk(KERN_INFO "controller has PCM BUS ID %d " 1438 "(auto selected)\n", hc->pcm); 1439 } 1440 1441 /* set up timer */ 1442 HFC_outb(hc, R_TI_WD, poll_timer); 1443 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK; 1444 1445 /* set E1 state machine IRQ */ 1446 if (hc->ctype == HFC_TYPE_E1) 1447 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK; 1448 1449 /* set DTMF detection */ 1450 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) { 1451 if (debug & DEBUG_HFCMULTI_INIT) 1452 printk(KERN_DEBUG "%s: enabling DTMF detection " 1453 "for all B-channel\n", __func__); 1454 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP; 1455 if (test_bit(HFC_CHIP_ULAW, &hc->chip)) 1456 hc->hw.r_dtmf |= V_ULAW_SEL; 1457 HFC_outb(hc, R_DTMF_N, 102 - 1); 1458 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK; 1459 } 1460 1461 /* conference engine */ 1462 if (test_bit(HFC_CHIP_ULAW, &hc->chip)) 1463 r_conf_en = V_CONF_EN | V_ULAW; 1464 else 1465 r_conf_en = V_CONF_EN; 1466 if (hc->ctype != HFC_TYPE_XHFC) 1467 HFC_outb(hc, R_CONF_EN, r_conf_en); 1468 1469 /* setting leds */ 1470 switch (hc->leds) { 1471 case 1: /* HFC-E1 OEM */ 1472 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip)) 1473 HFC_outb(hc, R_GPIO_SEL, 0x32); 1474 else 1475 HFC_outb(hc, R_GPIO_SEL, 0x30); 1476 1477 HFC_outb(hc, R_GPIO_EN1, 0x0f); 1478 HFC_outb(hc, R_GPIO_OUT1, 0x00); 1479 1480 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3); 1481 break; 1482 1483 case 2: /* HFC-4S OEM */ 1484 case 3: 1485 HFC_outb(hc, R_GPIO_SEL, 0xf0); 1486 HFC_outb(hc, R_GPIO_EN1, 0xff); 1487 HFC_outb(hc, R_GPIO_OUT1, 0x00); 1488 break; 1489 } 1490 1491 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) { 1492 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */ 1493 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync); 1494 } 1495 1496 /* set master clock */ 1497 if (hc->masterclk >= 0) { 1498 if (debug & DEBUG_HFCMULTI_INIT) 1499 printk(KERN_DEBUG "%s: setting ST master clock " 1500 "to port %d (0..%d)\n", 1501 __func__, hc->masterclk, hc->ports - 1); 1502 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC); 1503 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync); 1504 } 1505 1506 1507 1508 /* setting misc irq */ 1509 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc); 1510 if (debug & DEBUG_HFCMULTI_INIT) 1511 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n", 1512 hc->hw.r_irqmsk_misc); 1513 1514 /* RAM access test */ 1515 HFC_outb(hc, R_RAM_ADDR0, 0); 1516 HFC_outb(hc, R_RAM_ADDR1, 0); 1517 HFC_outb(hc, R_RAM_ADDR2, 0); 1518 for (i = 0; i < 256; i++) { 1519 HFC_outb_nodebug(hc, R_RAM_ADDR0, i); 1520 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff)); 1521 } 1522 for (i = 0; i < 256; i++) { 1523 HFC_outb_nodebug(hc, R_RAM_ADDR0, i); 1524 HFC_inb_nodebug(hc, R_RAM_DATA); 1525 rval = HFC_inb_nodebug(hc, R_INT_DATA); 1526 if (rval != ((i * 3) & 0xff)) { 1527 printk(KERN_DEBUG 1528 "addr:%x val:%x should:%x\n", i, rval, 1529 (i * 3) & 0xff); 1530 err++; 1531 } 1532 } 1533 if (err) { 1534 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err); 1535 err = -EIO; 1536 goto out; 1537 } 1538 1539 if (debug & DEBUG_HFCMULTI_INIT) 1540 printk(KERN_DEBUG "%s: done\n", __func__); 1541 out: 1542 spin_unlock_irqrestore(&hc->lock, flags); 1543 return err; 1544 } 1545 1546 1547 /* 1548 * control the watchdog 1549 */ 1550 static void 1551 hfcmulti_watchdog(struct hfc_multi *hc) 1552 { 1553 hc->wdcount++; 1554 1555 if (hc->wdcount > 10) { 1556 hc->wdcount = 0; 1557 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ? 1558 V_GPIO_OUT3 : V_GPIO_OUT2; 1559 1560 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */ 1561 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3); 1562 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte); 1563 } 1564 } 1565 1566 1567 1568 /* 1569 * output leds 1570 */ 1571 static void 1572 hfcmulti_leds(struct hfc_multi *hc) 1573 { 1574 unsigned long lled; 1575 unsigned long leddw; 1576 int i, state, active, leds; 1577 struct dchannel *dch; 1578 int led[4]; 1579 1580 switch (hc->leds) { 1581 case 1: /* HFC-E1 OEM */ 1582 /* 2 red steady: LOS 1583 * 1 red steady: L1 not active 1584 * 2 green steady: L1 active 1585 * 1st green flashing: activity on TX 1586 * 2nd green flashing: activity on RX 1587 */ 1588 led[0] = 0; 1589 led[1] = 0; 1590 led[2] = 0; 1591 led[3] = 0; 1592 dch = hc->chan[hc->dnum[0]].dch; 1593 if (dch) { 1594 if (hc->chan[hc->dnum[0]].los) 1595 led[1] = 1; 1596 if (hc->e1_state != 1) { 1597 led[0] = 1; 1598 hc->flash[2] = 0; 1599 hc->flash[3] = 0; 1600 } else { 1601 led[2] = 1; 1602 led[3] = 1; 1603 if (!hc->flash[2] && hc->activity_tx) 1604 hc->flash[2] = poll; 1605 if (!hc->flash[3] && hc->activity_rx) 1606 hc->flash[3] = poll; 1607 if (hc->flash[2] && hc->flash[2] < 1024) 1608 led[2] = 0; 1609 if (hc->flash[3] && hc->flash[3] < 1024) 1610 led[3] = 0; 1611 if (hc->flash[2] >= 2048) 1612 hc->flash[2] = 0; 1613 if (hc->flash[3] >= 2048) 1614 hc->flash[3] = 0; 1615 if (hc->flash[2]) 1616 hc->flash[2] += poll; 1617 if (hc->flash[3]) 1618 hc->flash[3] += poll; 1619 } 1620 } 1621 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF; 1622 /* leds are inverted */ 1623 if (leds != (int)hc->ledstate) { 1624 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds); 1625 hc->ledstate = leds; 1626 } 1627 break; 1628 1629 case 2: /* HFC-4S OEM */ 1630 /* red steady: PH_DEACTIVATE 1631 * green steady: PH_ACTIVATE 1632 * green flashing: activity on TX 1633 */ 1634 for (i = 0; i < 4; i++) { 1635 state = 0; 1636 active = -1; 1637 dch = hc->chan[(i << 2) | 2].dch; 1638 if (dch) { 1639 state = dch->state; 1640 if (dch->dev.D.protocol == ISDN_P_NT_S0) 1641 active = 3; 1642 else 1643 active = 7; 1644 } 1645 if (state) { 1646 if (state == active) { 1647 led[i] = 1; /* led green */ 1648 hc->activity_tx |= hc->activity_rx; 1649 if (!hc->flash[i] && 1650 (hc->activity_tx & (1 << i))) 1651 hc->flash[i] = poll; 1652 if (hc->flash[i] && hc->flash[i] < 1024) 1653 led[i] = 0; /* led off */ 1654 if (hc->flash[i] >= 2048) 1655 hc->flash[i] = 0; 1656 if (hc->flash[i]) 1657 hc->flash[i] += poll; 1658 } else { 1659 led[i] = 2; /* led red */ 1660 hc->flash[i] = 0; 1661 } 1662 } else 1663 led[i] = 0; /* led off */ 1664 } 1665 if (test_bit(HFC_CHIP_B410P, &hc->chip)) { 1666 leds = 0; 1667 for (i = 0; i < 4; i++) { 1668 if (led[i] == 1) { 1669 /*green*/ 1670 leds |= (0x2 << (i * 2)); 1671 } else if (led[i] == 2) { 1672 /*red*/ 1673 leds |= (0x1 << (i * 2)); 1674 } 1675 } 1676 if (leds != (int)hc->ledstate) { 1677 vpm_out(hc, 0, 0x1a8 + 3, leds); 1678 hc->ledstate = leds; 1679 } 1680 } else { 1681 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) | 1682 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) | 1683 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) | 1684 ((led[0] & 1) << 6) | ((led[2] & 1) << 7); 1685 if (leds != (int)hc->ledstate) { 1686 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F); 1687 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4); 1688 hc->ledstate = leds; 1689 } 1690 } 1691 break; 1692 1693 case 3: /* HFC 1S/2S Beronet */ 1694 /* red steady: PH_DEACTIVATE 1695 * green steady: PH_ACTIVATE 1696 * green flashing: activity on TX 1697 */ 1698 for (i = 0; i < 2; i++) { 1699 state = 0; 1700 active = -1; 1701 dch = hc->chan[(i << 2) | 2].dch; 1702 if (dch) { 1703 state = dch->state; 1704 if (dch->dev.D.protocol == ISDN_P_NT_S0) 1705 active = 3; 1706 else 1707 active = 7; 1708 } 1709 if (state) { 1710 if (state == active) { 1711 led[i] = 1; /* led green */ 1712 hc->activity_tx |= hc->activity_rx; 1713 if (!hc->flash[i] && 1714 (hc->activity_tx & (1 << i))) 1715 hc->flash[i] = poll; 1716 if (hc->flash[i] < 1024) 1717 led[i] = 0; /* led off */ 1718 if (hc->flash[i] >= 2048) 1719 hc->flash[i] = 0; 1720 if (hc->flash[i]) 1721 hc->flash[i] += poll; 1722 } else { 1723 led[i] = 2; /* led red */ 1724 hc->flash[i] = 0; 1725 } 1726 } else 1727 led[i] = 0; /* led off */ 1728 } 1729 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2) 1730 | ((led[1]&1) << 3); 1731 if (leds != (int)hc->ledstate) { 1732 HFC_outb_nodebug(hc, R_GPIO_EN1, 1733 ((led[0] > 0) << 2) | ((led[1] > 0) << 3)); 1734 HFC_outb_nodebug(hc, R_GPIO_OUT1, 1735 ((led[0] & 1) << 2) | ((led[1] & 1) << 3)); 1736 hc->ledstate = leds; 1737 } 1738 break; 1739 case 8: /* HFC 8S+ Beronet */ 1740 /* off: PH_DEACTIVATE 1741 * steady: PH_ACTIVATE 1742 * flashing: activity on TX 1743 */ 1744 lled = 0xff; /* leds off */ 1745 for (i = 0; i < 8; i++) { 1746 state = 0; 1747 active = -1; 1748 dch = hc->chan[(i << 2) | 2].dch; 1749 if (dch) { 1750 state = dch->state; 1751 if (dch->dev.D.protocol == ISDN_P_NT_S0) 1752 active = 3; 1753 else 1754 active = 7; 1755 } 1756 if (state) { 1757 if (state == active) { 1758 lled &= ~(1 << i); /* led on */ 1759 hc->activity_tx |= hc->activity_rx; 1760 if (!hc->flash[i] && 1761 (hc->activity_tx & (1 << i))) 1762 hc->flash[i] = poll; 1763 if (hc->flash[i] < 1024) 1764 lled |= 1 << i; /* led off */ 1765 if (hc->flash[i] >= 2048) 1766 hc->flash[i] = 0; 1767 if (hc->flash[i]) 1768 hc->flash[i] += poll; 1769 } else 1770 hc->flash[i] = 0; 1771 } 1772 } 1773 leddw = lled << 24 | lled << 16 | lled << 8 | lled; 1774 if (leddw != hc->ledstate) { 1775 /* HFC_outb(hc, R_BRG_PCM_CFG, 1); 1776 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */ 1777 /* was _io before */ 1778 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK); 1779 outw(0x4000, hc->pci_iobase + 4); 1780 outl(leddw, hc->pci_iobase); 1781 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK); 1782 hc->ledstate = leddw; 1783 } 1784 break; 1785 } 1786 hc->activity_tx = 0; 1787 hc->activity_rx = 0; 1788 } 1789 /* 1790 * read dtmf coefficients 1791 */ 1792 1793 static void 1794 hfcmulti_dtmf(struct hfc_multi *hc) 1795 { 1796 s32 *coeff; 1797 u_int mantissa; 1798 int co, ch; 1799 struct bchannel *bch = NULL; 1800 u8 exponent; 1801 int dtmf = 0; 1802 int addr; 1803 u16 w_float; 1804 struct sk_buff *skb; 1805 struct mISDNhead *hh; 1806 1807 if (debug & DEBUG_HFCMULTI_DTMF) 1808 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__); 1809 for (ch = 0; ch <= 31; ch++) { 1810 /* only process enabled B-channels */ 1811 bch = hc->chan[ch].bch; 1812 if (!bch) 1813 continue; 1814 if (!hc->created[hc->chan[ch].port]) 1815 continue; 1816 if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) 1817 continue; 1818 if (debug & DEBUG_HFCMULTI_DTMF) 1819 printk(KERN_DEBUG "%s: dtmf channel %d:", 1820 __func__, ch); 1821 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]); 1822 dtmf = 1; 1823 for (co = 0; co < 8; co++) { 1824 /* read W(n-1) coefficient */ 1825 addr = hc->DTMFbase + ((co << 7) | (ch << 2)); 1826 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr); 1827 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8); 1828 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16) 1829 | V_ADDR_INC); 1830 w_float = HFC_inb_nodebug(hc, R_RAM_DATA); 1831 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8); 1832 if (debug & DEBUG_HFCMULTI_DTMF) 1833 printk(" %04x", w_float); 1834 1835 /* decode float (see chip doc) */ 1836 mantissa = w_float & 0x0fff; 1837 if (w_float & 0x8000) 1838 mantissa |= 0xfffff000; 1839 exponent = (w_float >> 12) & 0x7; 1840 if (exponent) { 1841 mantissa ^= 0x1000; 1842 mantissa <<= (exponent - 1); 1843 } 1844 1845 /* store coefficient */ 1846 coeff[co << 1] = mantissa; 1847 1848 /* read W(n) coefficient */ 1849 w_float = HFC_inb_nodebug(hc, R_RAM_DATA); 1850 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8); 1851 if (debug & DEBUG_HFCMULTI_DTMF) 1852 printk(" %04x", w_float); 1853 1854 /* decode float (see chip doc) */ 1855 mantissa = w_float & 0x0fff; 1856 if (w_float & 0x8000) 1857 mantissa |= 0xfffff000; 1858 exponent = (w_float >> 12) & 0x7; 1859 if (exponent) { 1860 mantissa ^= 0x1000; 1861 mantissa <<= (exponent - 1); 1862 } 1863 1864 /* store coefficient */ 1865 coeff[(co << 1) | 1] = mantissa; 1866 } 1867 if (debug & DEBUG_HFCMULTI_DTMF) 1868 printk(" DTMF ready %08x %08x %08x %08x " 1869 "%08x %08x %08x %08x\n", 1870 coeff[0], coeff[1], coeff[2], coeff[3], 1871 coeff[4], coeff[5], coeff[6], coeff[7]); 1872 hc->chan[ch].coeff_count++; 1873 if (hc->chan[ch].coeff_count == 8) { 1874 hc->chan[ch].coeff_count = 0; 1875 skb = mI_alloc_skb(512, GFP_ATOMIC); 1876 if (!skb) { 1877 printk(KERN_DEBUG "%s: No memory for skb\n", 1878 __func__); 1879 continue; 1880 } 1881 hh = mISDN_HEAD_P(skb); 1882 hh->prim = PH_CONTROL_IND; 1883 hh->id = DTMF_HFC_COEF; 1884 skb_put_data(skb, hc->chan[ch].coeff, 512); 1885 recv_Bchannel_skb(bch, skb); 1886 } 1887 } 1888 1889 /* restart DTMF processing */ 1890 hc->dtmf = dtmf; 1891 if (dtmf) 1892 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF); 1893 } 1894 1895 1896 /* 1897 * fill fifo as much as possible 1898 */ 1899 1900 static void 1901 hfcmulti_tx(struct hfc_multi *hc, int ch) 1902 { 1903 int i, ii, temp, len = 0; 1904 int Zspace, z1, z2; /* must be int for calculation */ 1905 int Fspace, f1, f2; 1906 u_char *d; 1907 int *txpending, slot_tx; 1908 struct bchannel *bch; 1909 struct dchannel *dch; 1910 struct sk_buff **sp = NULL; 1911 int *idxp; 1912 1913 bch = hc->chan[ch].bch; 1914 dch = hc->chan[ch].dch; 1915 if ((!dch) && (!bch)) 1916 return; 1917 1918 txpending = &hc->chan[ch].txpending; 1919 slot_tx = hc->chan[ch].slot_tx; 1920 if (dch) { 1921 if (!test_bit(FLG_ACTIVE, &dch->Flags)) 1922 return; 1923 sp = &dch->tx_skb; 1924 idxp = &dch->tx_idx; 1925 } else { 1926 if (!test_bit(FLG_ACTIVE, &bch->Flags)) 1927 return; 1928 sp = &bch->tx_skb; 1929 idxp = &bch->tx_idx; 1930 } 1931 if (*sp) 1932 len = (*sp)->len; 1933 1934 if ((!len) && *txpending != 1) 1935 return; /* no data */ 1936 1937 if (test_bit(HFC_CHIP_B410P, &hc->chip) && 1938 (hc->chan[ch].protocol == ISDN_P_B_RAW) && 1939 (hc->chan[ch].slot_rx < 0) && 1940 (hc->chan[ch].slot_tx < 0)) 1941 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1)); 1942 else 1943 HFC_outb_nodebug(hc, R_FIFO, ch << 1); 1944 HFC_wait_nodebug(hc); 1945 1946 if (*txpending == 2) { 1947 /* reset fifo */ 1948 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); 1949 HFC_wait_nodebug(hc); 1950 HFC_outb(hc, A_SUBCH_CFG, 0); 1951 *txpending = 1; 1952 } 1953 next_frame: 1954 if (dch || test_bit(FLG_HDLC, &bch->Flags)) { 1955 f1 = HFC_inb_nodebug(hc, A_F1); 1956 f2 = HFC_inb_nodebug(hc, A_F2); 1957 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) { 1958 if (debug & DEBUG_HFCMULTI_FIFO) 1959 printk(KERN_DEBUG 1960 "%s(card %d): reread f2 because %d!=%d\n", 1961 __func__, hc->id + 1, temp, f2); 1962 f2 = temp; /* repeat until F2 is equal */ 1963 } 1964 Fspace = f2 - f1 - 1; 1965 if (Fspace < 0) 1966 Fspace += hc->Flen; 1967 /* 1968 * Old FIFO handling doesn't give us the current Z2 read 1969 * pointer, so we cannot send the next frame before the fifo 1970 * is empty. It makes no difference except for a slightly 1971 * lower performance. 1972 */ 1973 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) { 1974 if (f1 != f2) 1975 Fspace = 0; 1976 else 1977 Fspace = 1; 1978 } 1979 /* one frame only for ST D-channels, to allow resending */ 1980 if (hc->ctype != HFC_TYPE_E1 && dch) { 1981 if (f1 != f2) 1982 Fspace = 0; 1983 } 1984 /* F-counter full condition */ 1985 if (Fspace == 0) 1986 return; 1987 } 1988 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin; 1989 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin; 1990 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) { 1991 if (debug & DEBUG_HFCMULTI_FIFO) 1992 printk(KERN_DEBUG "%s(card %d): reread z2 because " 1993 "%d!=%d\n", __func__, hc->id + 1, temp, z2); 1994 z2 = temp; /* repeat unti Z2 is equal */ 1995 } 1996 hc->chan[ch].Zfill = z1 - z2; 1997 if (hc->chan[ch].Zfill < 0) 1998 hc->chan[ch].Zfill += hc->Zlen; 1999 Zspace = z2 - z1; 2000 if (Zspace <= 0) 2001 Zspace += hc->Zlen; 2002 Zspace -= 4; /* keep not too full, so pointers will not overrun */ 2003 /* fill transparent data only to maxinum transparent load (minus 4) */ 2004 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags)) 2005 Zspace = Zspace - hc->Zlen + hc->max_trans; 2006 if (Zspace <= 0) /* no space of 4 bytes */ 2007 return; 2008 2009 /* if no data */ 2010 if (!len) { 2011 if (z1 == z2) { /* empty */ 2012 /* if done with FIFO audio data during PCM connection */ 2013 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && 2014 *txpending && slot_tx >= 0) { 2015 if (debug & DEBUG_HFCMULTI_MODE) 2016 printk(KERN_DEBUG 2017 "%s: reconnecting PCM due to no " 2018 "more FIFO data: channel %d " 2019 "slot_tx %d\n", 2020 __func__, ch, slot_tx); 2021 /* connect slot */ 2022 if (hc->ctype == HFC_TYPE_XHFC) 2023 HFC_outb(hc, A_CON_HDLC, 0xc0 2024 | 0x07 << 2 | V_HDLC_TRP | V_IFF); 2025 /* Enable FIFO, no interrupt */ 2026 else 2027 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 | 2028 V_HDLC_TRP | V_IFF); 2029 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1); 2030 HFC_wait_nodebug(hc); 2031 if (hc->ctype == HFC_TYPE_XHFC) 2032 HFC_outb(hc, A_CON_HDLC, 0xc0 2033 | 0x07 << 2 | V_HDLC_TRP | V_IFF); 2034 /* Enable FIFO, no interrupt */ 2035 else 2036 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 | 2037 V_HDLC_TRP | V_IFF); 2038 HFC_outb_nodebug(hc, R_FIFO, ch << 1); 2039 HFC_wait_nodebug(hc); 2040 } 2041 *txpending = 0; 2042 } 2043 return; /* no data */ 2044 } 2045 2046 /* "fill fifo if empty" feature */ 2047 if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags) 2048 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) { 2049 if (debug & DEBUG_HFCMULTI_FILL) 2050 printk(KERN_DEBUG "%s: buffer empty, so we have " 2051 "underrun\n", __func__); 2052 /* fill buffer, to prevent future underrun */ 2053 hc->write_fifo(hc, hc->silence_data, poll >> 1); 2054 Zspace -= (poll >> 1); 2055 } 2056 2057 /* if audio data and connected slot */ 2058 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending) 2059 && slot_tx >= 0) { 2060 if (debug & DEBUG_HFCMULTI_MODE) 2061 printk(KERN_DEBUG "%s: disconnecting PCM due to " 2062 "FIFO data: channel %d slot_tx %d\n", 2063 __func__, ch, slot_tx); 2064 /* disconnect slot */ 2065 if (hc->ctype == HFC_TYPE_XHFC) 2066 HFC_outb(hc, A_CON_HDLC, 0x80 2067 | 0x07 << 2 | V_HDLC_TRP | V_IFF); 2068 /* Enable FIFO, no interrupt */ 2069 else 2070 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | 2071 V_HDLC_TRP | V_IFF); 2072 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1); 2073 HFC_wait_nodebug(hc); 2074 if (hc->ctype == HFC_TYPE_XHFC) 2075 HFC_outb(hc, A_CON_HDLC, 0x80 2076 | 0x07 << 2 | V_HDLC_TRP | V_IFF); 2077 /* Enable FIFO, no interrupt */ 2078 else 2079 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | 2080 V_HDLC_TRP | V_IFF); 2081 HFC_outb_nodebug(hc, R_FIFO, ch << 1); 2082 HFC_wait_nodebug(hc); 2083 } 2084 *txpending = 1; 2085 2086 /* show activity */ 2087 if (dch) 2088 hc->activity_tx |= 1 << hc->chan[ch].port; 2089 2090 /* fill fifo to what we have left */ 2091 ii = len; 2092 if (dch || test_bit(FLG_HDLC, &bch->Flags)) 2093 temp = 1; 2094 else 2095 temp = 0; 2096 i = *idxp; 2097 d = (*sp)->data + i; 2098 if (ii - i > Zspace) 2099 ii = Zspace + i; 2100 if (debug & DEBUG_HFCMULTI_FIFO) 2101 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space " 2102 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n", 2103 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i, 2104 temp ? "HDLC" : "TRANS"); 2105 2106 /* Have to prep the audio data */ 2107 hc->write_fifo(hc, d, ii - i); 2108 hc->chan[ch].Zfill += ii - i; 2109 *idxp = ii; 2110 2111 /* if not all data has been written */ 2112 if (ii != len) { 2113 /* NOTE: fifo is started by the calling function */ 2114 return; 2115 } 2116 2117 /* if all data has been written, terminate frame */ 2118 if (dch || test_bit(FLG_HDLC, &bch->Flags)) { 2119 /* increment f-counter */ 2120 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F); 2121 HFC_wait_nodebug(hc); 2122 } 2123 2124 dev_kfree_skb(*sp); 2125 /* check for next frame */ 2126 if (bch && get_next_bframe(bch)) { 2127 len = (*sp)->len; 2128 goto next_frame; 2129 } 2130 if (dch && get_next_dframe(dch)) { 2131 len = (*sp)->len; 2132 goto next_frame; 2133 } 2134 2135 /* 2136 * now we have no more data, so in case of transparent, 2137 * we set the last byte in fifo to 'silence' in case we will get 2138 * no more data at all. this prevents sending an undefined value. 2139 */ 2140 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags)) 2141 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); 2142 } 2143 2144 2145 /* NOTE: only called if E1 card is in active state */ 2146 static void 2147 hfcmulti_rx(struct hfc_multi *hc, int ch) 2148 { 2149 int temp; 2150 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */ 2151 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */ 2152 int again = 0; 2153 struct bchannel *bch; 2154 struct dchannel *dch = NULL; 2155 struct sk_buff *skb, **sp = NULL; 2156 int maxlen; 2157 2158 bch = hc->chan[ch].bch; 2159 if (bch) { 2160 if (!test_bit(FLG_ACTIVE, &bch->Flags)) 2161 return; 2162 } else if (hc->chan[ch].dch) { 2163 dch = hc->chan[ch].dch; 2164 if (!test_bit(FLG_ACTIVE, &dch->Flags)) 2165 return; 2166 } else { 2167 return; 2168 } 2169 next_frame: 2170 /* on first AND before getting next valid frame, R_FIFO must be written 2171 to. */ 2172 if (test_bit(HFC_CHIP_B410P, &hc->chip) && 2173 (hc->chan[ch].protocol == ISDN_P_B_RAW) && 2174 (hc->chan[ch].slot_rx < 0) && 2175 (hc->chan[ch].slot_tx < 0)) 2176 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1); 2177 else 2178 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1); 2179 HFC_wait_nodebug(hc); 2180 2181 /* ignore if rx is off BUT change fifo (above) to start pending TX */ 2182 if (hc->chan[ch].rx_off) { 2183 if (bch) 2184 bch->dropcnt += poll; /* not exact but fair enough */ 2185 return; 2186 } 2187 2188 if (dch || test_bit(FLG_HDLC, &bch->Flags)) { 2189 f1 = HFC_inb_nodebug(hc, A_F1); 2190 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) { 2191 if (debug & DEBUG_HFCMULTI_FIFO) 2192 printk(KERN_DEBUG 2193 "%s(card %d): reread f1 because %d!=%d\n", 2194 __func__, hc->id + 1, temp, f1); 2195 f1 = temp; /* repeat until F1 is equal */ 2196 } 2197 f2 = HFC_inb_nodebug(hc, A_F2); 2198 } 2199 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin; 2200 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) { 2201 if (debug & DEBUG_HFCMULTI_FIFO) 2202 printk(KERN_DEBUG "%s(card %d): reread z2 because " 2203 "%d!=%d\n", __func__, hc->id + 1, temp, z2); 2204 z1 = temp; /* repeat until Z1 is equal */ 2205 } 2206 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin; 2207 Zsize = z1 - z2; 2208 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2) 2209 /* complete hdlc frame */ 2210 Zsize++; 2211 if (Zsize < 0) 2212 Zsize += hc->Zlen; 2213 /* if buffer is empty */ 2214 if (Zsize <= 0) 2215 return; 2216 2217 if (bch) { 2218 maxlen = bchannel_get_rxbuf(bch, Zsize); 2219 if (maxlen < 0) { 2220 pr_warn("card%d.B%d: No bufferspace for %d bytes\n", 2221 hc->id + 1, bch->nr, Zsize); 2222 return; 2223 } 2224 sp = &bch->rx_skb; 2225 maxlen = bch->maxlen; 2226 } else { /* Dchannel */ 2227 sp = &dch->rx_skb; 2228 maxlen = dch->maxlen + 3; 2229 if (*sp == NULL) { 2230 *sp = mI_alloc_skb(maxlen, GFP_ATOMIC); 2231 if (*sp == NULL) { 2232 pr_warn("card%d: No mem for dch rx_skb\n", 2233 hc->id + 1); 2234 return; 2235 } 2236 } 2237 } 2238 /* show activity */ 2239 if (dch) 2240 hc->activity_rx |= 1 << hc->chan[ch].port; 2241 2242 /* empty fifo with what we have */ 2243 if (dch || test_bit(FLG_HDLC, &bch->Flags)) { 2244 if (debug & DEBUG_HFCMULTI_FIFO) 2245 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d " 2246 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) " 2247 "got=%d (again %d)\n", __func__, hc->id + 1, ch, 2248 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE", 2249 f1, f2, Zsize + (*sp)->len, again); 2250 /* HDLC */ 2251 if ((Zsize + (*sp)->len) > maxlen) { 2252 if (debug & DEBUG_HFCMULTI_FIFO) 2253 printk(KERN_DEBUG 2254 "%s(card %d): hdlc-frame too large.\n", 2255 __func__, hc->id + 1); 2256 skb_trim(*sp, 0); 2257 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); 2258 HFC_wait_nodebug(hc); 2259 return; 2260 } 2261 2262 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize); 2263 2264 if (f1 != f2) { 2265 /* increment Z2,F2-counter */ 2266 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F); 2267 HFC_wait_nodebug(hc); 2268 /* check size */ 2269 if ((*sp)->len < 4) { 2270 if (debug & DEBUG_HFCMULTI_FIFO) 2271 printk(KERN_DEBUG 2272 "%s(card %d): Frame below minimum " 2273 "size\n", __func__, hc->id + 1); 2274 skb_trim(*sp, 0); 2275 goto next_frame; 2276 } 2277 /* there is at least one complete frame, check crc */ 2278 if ((*sp)->data[(*sp)->len - 1]) { 2279 if (debug & DEBUG_HFCMULTI_CRC) 2280 printk(KERN_DEBUG 2281 "%s: CRC-error\n", __func__); 2282 skb_trim(*sp, 0); 2283 goto next_frame; 2284 } 2285 skb_trim(*sp, (*sp)->len - 3); 2286 if ((*sp)->len < MISDN_COPY_SIZE) { 2287 skb = *sp; 2288 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC); 2289 if (*sp) { 2290 skb_put_data(*sp, skb->data, skb->len); 2291 skb_trim(skb, 0); 2292 } else { 2293 printk(KERN_DEBUG "%s: No mem\n", 2294 __func__); 2295 *sp = skb; 2296 skb = NULL; 2297 } 2298 } else { 2299 skb = NULL; 2300 } 2301 if (debug & DEBUG_HFCMULTI_FIFO) { 2302 printk(KERN_DEBUG "%s(card %d):", 2303 __func__, hc->id + 1); 2304 temp = 0; 2305 while (temp < (*sp)->len) 2306 printk(" %02x", (*sp)->data[temp++]); 2307 printk("\n"); 2308 } 2309 if (dch) 2310 recv_Dchannel(dch); 2311 else 2312 recv_Bchannel(bch, MISDN_ID_ANY, false); 2313 *sp = skb; 2314 again++; 2315 goto next_frame; 2316 } 2317 /* there is an incomplete frame */ 2318 } else { 2319 /* transparent */ 2320 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize); 2321 if (debug & DEBUG_HFCMULTI_FIFO) 2322 printk(KERN_DEBUG 2323 "%s(card %d): fifo(%d) reading %d bytes " 2324 "(z1=%04x, z2=%04x) TRANS\n", 2325 __func__, hc->id + 1, ch, Zsize, z1, z2); 2326 /* only bch is transparent */ 2327 recv_Bchannel(bch, hc->chan[ch].Zfill, false); 2328 } 2329 } 2330 2331 2332 /* 2333 * Interrupt handler 2334 */ 2335 static void 2336 signal_state_up(struct dchannel *dch, int info, char *msg) 2337 { 2338 struct sk_buff *skb; 2339 int id, data = info; 2340 2341 if (debug & DEBUG_HFCMULTI_STATE) 2342 printk(KERN_DEBUG "%s: %s\n", __func__, msg); 2343 2344 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */ 2345 2346 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data, 2347 GFP_ATOMIC); 2348 if (!skb) 2349 return; 2350 recv_Dchannel_skb(dch, skb); 2351 } 2352 2353 static inline void 2354 handle_timer_irq(struct hfc_multi *hc) 2355 { 2356 int ch, temp; 2357 struct dchannel *dch; 2358 u_long flags; 2359 2360 /* process queued resync jobs */ 2361 if (hc->e1_resync) { 2362 /* lock, so e1_resync gets not changed */ 2363 spin_lock_irqsave(&HFClock, flags); 2364 if (hc->e1_resync & 1) { 2365 if (debug & DEBUG_HFCMULTI_PLXSD) 2366 printk(KERN_DEBUG "Enable SYNC_I\n"); 2367 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC); 2368 /* disable JATT, if RX_SYNC is set */ 2369 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) 2370 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX); 2371 } 2372 if (hc->e1_resync & 2) { 2373 if (debug & DEBUG_HFCMULTI_PLXSD) 2374 printk(KERN_DEBUG "Enable jatt PLL\n"); 2375 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS); 2376 } 2377 if (hc->e1_resync & 4) { 2378 if (debug & DEBUG_HFCMULTI_PLXSD) 2379 printk(KERN_DEBUG 2380 "Enable QUARTZ for HFC-E1\n"); 2381 /* set jatt to quartz */ 2382 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC 2383 | V_JATT_OFF); 2384 /* switch to JATT, in case it is not already */ 2385 HFC_outb(hc, R_SYNC_OUT, 0); 2386 } 2387 hc->e1_resync = 0; 2388 spin_unlock_irqrestore(&HFClock, flags); 2389 } 2390 2391 if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1) 2392 for (ch = 0; ch <= 31; ch++) { 2393 if (hc->created[hc->chan[ch].port]) { 2394 hfcmulti_tx(hc, ch); 2395 /* fifo is started when switching to rx-fifo */ 2396 hfcmulti_rx(hc, ch); 2397 if (hc->chan[ch].dch && 2398 hc->chan[ch].nt_timer > -1) { 2399 dch = hc->chan[ch].dch; 2400 if (!(--hc->chan[ch].nt_timer)) { 2401 schedule_event(dch, 2402 FLG_PHCHANGE); 2403 if (debug & 2404 DEBUG_HFCMULTI_STATE) 2405 printk(KERN_DEBUG 2406 "%s: nt_timer at " 2407 "state %x\n", 2408 __func__, 2409 dch->state); 2410 } 2411 } 2412 } 2413 } 2414 if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) { 2415 dch = hc->chan[hc->dnum[0]].dch; 2416 /* LOS */ 2417 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS; 2418 hc->chan[hc->dnum[0]].los = temp; 2419 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) { 2420 if (!temp && hc->chan[hc->dnum[0]].los) 2421 signal_state_up(dch, L1_SIGNAL_LOS_ON, 2422 "LOS detected"); 2423 if (temp && !hc->chan[hc->dnum[0]].los) 2424 signal_state_up(dch, L1_SIGNAL_LOS_OFF, 2425 "LOS gone"); 2426 } 2427 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) { 2428 /* AIS */ 2429 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS; 2430 if (!temp && hc->chan[hc->dnum[0]].ais) 2431 signal_state_up(dch, L1_SIGNAL_AIS_ON, 2432 "AIS detected"); 2433 if (temp && !hc->chan[hc->dnum[0]].ais) 2434 signal_state_up(dch, L1_SIGNAL_AIS_OFF, 2435 "AIS gone"); 2436 hc->chan[hc->dnum[0]].ais = temp; 2437 } 2438 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) { 2439 /* SLIP */ 2440 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX; 2441 if (!temp && hc->chan[hc->dnum[0]].slip_rx) 2442 signal_state_up(dch, L1_SIGNAL_SLIP_RX, 2443 " bit SLIP detected RX"); 2444 hc->chan[hc->dnum[0]].slip_rx = temp; 2445 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX; 2446 if (!temp && hc->chan[hc->dnum[0]].slip_tx) 2447 signal_state_up(dch, L1_SIGNAL_SLIP_TX, 2448 " bit SLIP detected TX"); 2449 hc->chan[hc->dnum[0]].slip_tx = temp; 2450 } 2451 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) { 2452 /* RDI */ 2453 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A; 2454 if (!temp && hc->chan[hc->dnum[0]].rdi) 2455 signal_state_up(dch, L1_SIGNAL_RDI_ON, 2456 "RDI detected"); 2457 if (temp && !hc->chan[hc->dnum[0]].rdi) 2458 signal_state_up(dch, L1_SIGNAL_RDI_OFF, 2459 "RDI gone"); 2460 hc->chan[hc->dnum[0]].rdi = temp; 2461 } 2462 temp = HFC_inb_nodebug(hc, R_JATT_DIR); 2463 switch (hc->chan[hc->dnum[0]].sync) { 2464 case 0: 2465 if ((temp & 0x60) == 0x60) { 2466 if (debug & DEBUG_HFCMULTI_SYNC) 2467 printk(KERN_DEBUG 2468 "%s: (id=%d) E1 now " 2469 "in clock sync\n", 2470 __func__, hc->id); 2471 HFC_outb(hc, R_RX_OFF, 2472 hc->chan[hc->dnum[0]].jitter | V_RX_INIT); 2473 HFC_outb(hc, R_TX_OFF, 2474 hc->chan[hc->dnum[0]].jitter | V_RX_INIT); 2475 hc->chan[hc->dnum[0]].sync = 1; 2476 goto check_framesync; 2477 } 2478 break; 2479 case 1: 2480 if ((temp & 0x60) != 0x60) { 2481 if (debug & DEBUG_HFCMULTI_SYNC) 2482 printk(KERN_DEBUG 2483 "%s: (id=%d) E1 " 2484 "lost clock sync\n", 2485 __func__, hc->id); 2486 hc->chan[hc->dnum[0]].sync = 0; 2487 break; 2488 } 2489 check_framesync: 2490 temp = HFC_inb_nodebug(hc, R_SYNC_STA); 2491 if (temp == 0x27) { 2492 if (debug & DEBUG_HFCMULTI_SYNC) 2493 printk(KERN_DEBUG 2494 "%s: (id=%d) E1 " 2495 "now in frame sync\n", 2496 __func__, hc->id); 2497 hc->chan[hc->dnum[0]].sync = 2; 2498 } 2499 break; 2500 case 2: 2501 if ((temp & 0x60) != 0x60) { 2502 if (debug & DEBUG_HFCMULTI_SYNC) 2503 printk(KERN_DEBUG 2504 "%s: (id=%d) E1 lost " 2505 "clock & frame sync\n", 2506 __func__, hc->id); 2507 hc->chan[hc->dnum[0]].sync = 0; 2508 break; 2509 } 2510 temp = HFC_inb_nodebug(hc, R_SYNC_STA); 2511 if (temp != 0x27) { 2512 if (debug & DEBUG_HFCMULTI_SYNC) 2513 printk(KERN_DEBUG 2514 "%s: (id=%d) E1 " 2515 "lost frame sync\n", 2516 __func__, hc->id); 2517 hc->chan[hc->dnum[0]].sync = 1; 2518 } 2519 break; 2520 } 2521 } 2522 2523 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip)) 2524 hfcmulti_watchdog(hc); 2525 2526 if (hc->leds) 2527 hfcmulti_leds(hc); 2528 } 2529 2530 static void 2531 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech) 2532 { 2533 struct dchannel *dch; 2534 int ch; 2535 int active; 2536 u_char st_status, temp; 2537 2538 /* state machine */ 2539 for (ch = 0; ch <= 31; ch++) { 2540 if (hc->chan[ch].dch) { 2541 dch = hc->chan[ch].dch; 2542 if (r_irq_statech & 1) { 2543 HFC_outb_nodebug(hc, R_ST_SEL, 2544 hc->chan[ch].port); 2545 /* undocumented: delay after R_ST_SEL */ 2546 udelay(1); 2547 /* undocumented: status changes during read */ 2548 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE); 2549 while (st_status != (temp = 2550 HFC_inb_nodebug(hc, A_ST_RD_STATE))) { 2551 if (debug & DEBUG_HFCMULTI_STATE) 2552 printk(KERN_DEBUG "%s: reread " 2553 "STATE because %d!=%d\n", 2554 __func__, temp, 2555 st_status); 2556 st_status = temp; /* repeat */ 2557 } 2558 2559 /* Speech Design TE-sync indication */ 2560 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && 2561 dch->dev.D.protocol == ISDN_P_TE_S0) { 2562 if (st_status & V_FR_SYNC_ST) 2563 hc->syncronized |= 2564 (1 << hc->chan[ch].port); 2565 else 2566 hc->syncronized &= 2567 ~(1 << hc->chan[ch].port); 2568 } 2569 dch->state = st_status & 0x0f; 2570 if (dch->dev.D.protocol == ISDN_P_NT_S0) 2571 active = 3; 2572 else 2573 active = 7; 2574 if (dch->state == active) { 2575 HFC_outb_nodebug(hc, R_FIFO, 2576 (ch << 1) | 1); 2577 HFC_wait_nodebug(hc); 2578 HFC_outb_nodebug(hc, 2579 R_INC_RES_FIFO, V_RES_F); 2580 HFC_wait_nodebug(hc); 2581 dch->tx_idx = 0; 2582 } 2583 schedule_event(dch, FLG_PHCHANGE); 2584 if (debug & DEBUG_HFCMULTI_STATE) 2585 printk(KERN_DEBUG 2586 "%s: S/T newstate %x port %d\n", 2587 __func__, dch->state, 2588 hc->chan[ch].port); 2589 } 2590 r_irq_statech >>= 1; 2591 } 2592 } 2593 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) 2594 plxsd_checksync(hc, 0); 2595 } 2596 2597 static void 2598 fifo_irq(struct hfc_multi *hc, int block) 2599 { 2600 int ch, j; 2601 struct dchannel *dch; 2602 struct bchannel *bch; 2603 u_char r_irq_fifo_bl; 2604 2605 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block); 2606 j = 0; 2607 while (j < 8) { 2608 ch = (block << 2) + (j >> 1); 2609 dch = hc->chan[ch].dch; 2610 bch = hc->chan[ch].bch; 2611 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) { 2612 j += 2; 2613 continue; 2614 } 2615 if (dch && (r_irq_fifo_bl & (1 << j)) && 2616 test_bit(FLG_ACTIVE, &dch->Flags)) { 2617 hfcmulti_tx(hc, ch); 2618 /* start fifo */ 2619 HFC_outb_nodebug(hc, R_FIFO, 0); 2620 HFC_wait_nodebug(hc); 2621 } 2622 if (bch && (r_irq_fifo_bl & (1 << j)) && 2623 test_bit(FLG_ACTIVE, &bch->Flags)) { 2624 hfcmulti_tx(hc, ch); 2625 /* start fifo */ 2626 HFC_outb_nodebug(hc, R_FIFO, 0); 2627 HFC_wait_nodebug(hc); 2628 } 2629 j++; 2630 if (dch && (r_irq_fifo_bl & (1 << j)) && 2631 test_bit(FLG_ACTIVE, &dch->Flags)) { 2632 hfcmulti_rx(hc, ch); 2633 } 2634 if (bch && (r_irq_fifo_bl & (1 << j)) && 2635 test_bit(FLG_ACTIVE, &bch->Flags)) { 2636 hfcmulti_rx(hc, ch); 2637 } 2638 j++; 2639 } 2640 } 2641 2642 #ifdef IRQ_DEBUG 2643 int irqsem; 2644 #endif 2645 static irqreturn_t 2646 hfcmulti_interrupt(int intno, void *dev_id) 2647 { 2648 #ifdef IRQCOUNT_DEBUG 2649 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0, 2650 iq5 = 0, iq6 = 0, iqcnt = 0; 2651 #endif 2652 struct hfc_multi *hc = dev_id; 2653 struct dchannel *dch; 2654 u_char r_irq_statech, status, r_irq_misc, r_irq_oview; 2655 int i; 2656 void __iomem *plx_acc; 2657 u_short wval; 2658 u_char e1_syncsta, temp, temp2; 2659 u_long flags; 2660 2661 if (!hc) { 2662 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n"); 2663 return IRQ_NONE; 2664 } 2665 2666 spin_lock(&hc->lock); 2667 2668 #ifdef IRQ_DEBUG 2669 if (irqsem) 2670 printk(KERN_ERR "irq for card %d during irq from " 2671 "card %d, this is no bug.\n", hc->id + 1, irqsem); 2672 irqsem = hc->id + 1; 2673 #endif 2674 #ifdef CONFIG_MISDN_HFCMULTI_8xx 2675 if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk) 2676 goto irq_notforus; 2677 #endif 2678 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 2679 spin_lock_irqsave(&plx_lock, flags); 2680 plx_acc = hc->plx_membase + PLX_INTCSR; 2681 wval = readw(plx_acc); 2682 spin_unlock_irqrestore(&plx_lock, flags); 2683 if (!(wval & PLX_INTCSR_LINTI1_STATUS)) 2684 goto irq_notforus; 2685 } 2686 2687 status = HFC_inb_nodebug(hc, R_STATUS); 2688 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH); 2689 #ifdef IRQCOUNT_DEBUG 2690 if (r_irq_statech) 2691 iq1++; 2692 if (status & V_DTMF_STA) 2693 iq2++; 2694 if (status & V_LOST_STA) 2695 iq3++; 2696 if (status & V_EXT_IRQSTA) 2697 iq4++; 2698 if (status & V_MISC_IRQSTA) 2699 iq5++; 2700 if (status & V_FR_IRQSTA) 2701 iq6++; 2702 if (iqcnt++ > 5000) { 2703 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n", 2704 iq1, iq2, iq3, iq4, iq5, iq6); 2705 iqcnt = 0; 2706 } 2707 #endif 2708 2709 if (!r_irq_statech && 2710 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA | 2711 V_MISC_IRQSTA | V_FR_IRQSTA))) { 2712 /* irq is not for us */ 2713 goto irq_notforus; 2714 } 2715 hc->irqcnt++; 2716 if (r_irq_statech) { 2717 if (hc->ctype != HFC_TYPE_E1) 2718 ph_state_irq(hc, r_irq_statech); 2719 } 2720 if (status & V_LOST_STA) { 2721 /* LOST IRQ */ 2722 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */ 2723 } 2724 if (status & V_MISC_IRQSTA) { 2725 /* misc IRQ */ 2726 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC); 2727 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */ 2728 if (r_irq_misc & V_STA_IRQ) { 2729 if (hc->ctype == HFC_TYPE_E1) { 2730 /* state machine */ 2731 dch = hc->chan[hc->dnum[0]].dch; 2732 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA); 2733 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) 2734 && hc->e1_getclock) { 2735 if (e1_syncsta & V_FR_SYNC_E1) 2736 hc->syncronized = 1; 2737 else 2738 hc->syncronized = 0; 2739 } 2740 /* undocumented: status changes during read */ 2741 temp = HFC_inb_nodebug(hc, R_E1_RD_STA); 2742 while (temp != (temp2 = 2743 HFC_inb_nodebug(hc, R_E1_RD_STA))) { 2744 if (debug & DEBUG_HFCMULTI_STATE) 2745 printk(KERN_DEBUG "%s: reread " 2746 "STATE because %d!=%d\n", 2747 __func__, temp, temp2); 2748 temp = temp2; /* repeat */ 2749 } 2750 /* broadcast state change to all fragments */ 2751 if (debug & DEBUG_HFCMULTI_STATE) 2752 printk(KERN_DEBUG 2753 "%s: E1 (id=%d) newstate %x\n", 2754 __func__, hc->id, temp & 0x7); 2755 for (i = 0; i < hc->ports; i++) { 2756 dch = hc->chan[hc->dnum[i]].dch; 2757 dch->state = temp & 0x7; 2758 schedule_event(dch, FLG_PHCHANGE); 2759 } 2760 2761 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) 2762 plxsd_checksync(hc, 0); 2763 } 2764 } 2765 if (r_irq_misc & V_TI_IRQ) { 2766 if (hc->iclock_on) 2767 mISDN_clock_update(hc->iclock, poll, NULL); 2768 handle_timer_irq(hc); 2769 } 2770 2771 if (r_irq_misc & V_DTMF_IRQ) 2772 hfcmulti_dtmf(hc); 2773 2774 if (r_irq_misc & V_IRQ_PROC) { 2775 static int irq_proc_cnt; 2776 if (!irq_proc_cnt++) 2777 printk(KERN_DEBUG "%s: got V_IRQ_PROC -" 2778 " this should not happen\n", __func__); 2779 } 2780 2781 } 2782 if (status & V_FR_IRQSTA) { 2783 /* FIFO IRQ */ 2784 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW); 2785 for (i = 0; i < 8; i++) { 2786 if (r_irq_oview & (1 << i)) 2787 fifo_irq(hc, i); 2788 } 2789 } 2790 2791 #ifdef IRQ_DEBUG 2792 irqsem = 0; 2793 #endif 2794 spin_unlock(&hc->lock); 2795 return IRQ_HANDLED; 2796 2797 irq_notforus: 2798 #ifdef IRQ_DEBUG 2799 irqsem = 0; 2800 #endif 2801 spin_unlock(&hc->lock); 2802 return IRQ_NONE; 2803 } 2804 2805 2806 /* 2807 * timer callback for D-chan busy resolution. Currently no function 2808 */ 2809 2810 static void 2811 hfcmulti_dbusy_timer(struct timer_list *t) 2812 { 2813 } 2814 2815 2816 /* 2817 * activate/deactivate hardware for selected channels and mode 2818 * 2819 * configure B-channel with the given protocol 2820 * ch eqals to the HFC-channel (0-31) 2821 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31 2822 * for S/T, 1-31 for E1) 2823 * the hdlc interrupts will be set/unset 2824 */ 2825 static int 2826 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx, 2827 int bank_tx, int slot_rx, int bank_rx) 2828 { 2829 int flow_tx = 0, flow_rx = 0, routing = 0; 2830 int oslot_tx, oslot_rx; 2831 int conf; 2832 2833 if (ch < 0 || ch > 31) 2834 return -EINVAL; 2835 oslot_tx = hc->chan[ch].slot_tx; 2836 oslot_rx = hc->chan[ch].slot_rx; 2837 conf = hc->chan[ch].conf; 2838 2839 if (debug & DEBUG_HFCMULTI_MODE) 2840 printk(KERN_DEBUG 2841 "%s: card %d channel %d protocol %x slot old=%d new=%d " 2842 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n", 2843 __func__, hc->id, ch, protocol, oslot_tx, slot_tx, 2844 bank_tx, oslot_rx, slot_rx, bank_rx); 2845 2846 if (oslot_tx >= 0 && slot_tx != oslot_tx) { 2847 /* remove from slot */ 2848 if (debug & DEBUG_HFCMULTI_MODE) 2849 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n", 2850 __func__, oslot_tx); 2851 if (hc->slot_owner[oslot_tx << 1] == ch) { 2852 HFC_outb(hc, R_SLOT, oslot_tx << 1); 2853 HFC_outb(hc, A_SL_CFG, 0); 2854 if (hc->ctype != HFC_TYPE_XHFC) 2855 HFC_outb(hc, A_CONF, 0); 2856 hc->slot_owner[oslot_tx << 1] = -1; 2857 } else { 2858 if (debug & DEBUG_HFCMULTI_MODE) 2859 printk(KERN_DEBUG 2860 "%s: we are not owner of this tx slot " 2861 "anymore, channel %d is.\n", 2862 __func__, hc->slot_owner[oslot_tx << 1]); 2863 } 2864 } 2865 2866 if (oslot_rx >= 0 && slot_rx != oslot_rx) { 2867 /* remove from slot */ 2868 if (debug & DEBUG_HFCMULTI_MODE) 2869 printk(KERN_DEBUG 2870 "%s: remove from slot %d (RX)\n", 2871 __func__, oslot_rx); 2872 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) { 2873 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR); 2874 HFC_outb(hc, A_SL_CFG, 0); 2875 hc->slot_owner[(oslot_rx << 1) | 1] = -1; 2876 } else { 2877 if (debug & DEBUG_HFCMULTI_MODE) 2878 printk(KERN_DEBUG 2879 "%s: we are not owner of this rx slot " 2880 "anymore, channel %d is.\n", 2881 __func__, 2882 hc->slot_owner[(oslot_rx << 1) | 1]); 2883 } 2884 } 2885 2886 if (slot_tx < 0) { 2887 flow_tx = 0x80; /* FIFO->ST */ 2888 /* disable pcm slot */ 2889 hc->chan[ch].slot_tx = -1; 2890 hc->chan[ch].bank_tx = 0; 2891 } else { 2892 /* set pcm slot */ 2893 if (hc->chan[ch].txpending) 2894 flow_tx = 0x80; /* FIFO->ST */ 2895 else 2896 flow_tx = 0xc0; /* PCM->ST */ 2897 /* put on slot */ 2898 routing = bank_tx ? 0xc0 : 0x80; 2899 if (conf >= 0 || bank_tx > 1) 2900 routing = 0x40; /* loop */ 2901 if (debug & DEBUG_HFCMULTI_MODE) 2902 printk(KERN_DEBUG "%s: put channel %d to slot %d bank" 2903 " %d flow %02x routing %02x conf %d (TX)\n", 2904 __func__, ch, slot_tx, bank_tx, 2905 flow_tx, routing, conf); 2906 HFC_outb(hc, R_SLOT, slot_tx << 1); 2907 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing); 2908 if (hc->ctype != HFC_TYPE_XHFC) 2909 HFC_outb(hc, A_CONF, 2910 (conf < 0) ? 0 : (conf | V_CONF_SL)); 2911 hc->slot_owner[slot_tx << 1] = ch; 2912 hc->chan[ch].slot_tx = slot_tx; 2913 hc->chan[ch].bank_tx = bank_tx; 2914 } 2915 if (slot_rx < 0) { 2916 /* disable pcm slot */ 2917 flow_rx = 0x80; /* ST->FIFO */ 2918 hc->chan[ch].slot_rx = -1; 2919 hc->chan[ch].bank_rx = 0; 2920 } else { 2921 /* set pcm slot */ 2922 if (hc->chan[ch].txpending) 2923 flow_rx = 0x80; /* ST->FIFO */ 2924 else 2925 flow_rx = 0xc0; /* ST->(FIFO,PCM) */ 2926 /* put on slot */ 2927 routing = bank_rx ? 0x80 : 0xc0; /* reversed */ 2928 if (conf >= 0 || bank_rx > 1) 2929 routing = 0x40; /* loop */ 2930 if (debug & DEBUG_HFCMULTI_MODE) 2931 printk(KERN_DEBUG "%s: put channel %d to slot %d bank" 2932 " %d flow %02x routing %02x conf %d (RX)\n", 2933 __func__, ch, slot_rx, bank_rx, 2934 flow_rx, routing, conf); 2935 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR); 2936 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing); 2937 hc->slot_owner[(slot_rx << 1) | 1] = ch; 2938 hc->chan[ch].slot_rx = slot_rx; 2939 hc->chan[ch].bank_rx = bank_rx; 2940 } 2941 2942 switch (protocol) { 2943 case (ISDN_P_NONE): 2944 /* disable TX fifo */ 2945 HFC_outb(hc, R_FIFO, ch << 1); 2946 HFC_wait(hc); 2947 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF); 2948 HFC_outb(hc, A_SUBCH_CFG, 0); 2949 HFC_outb(hc, A_IRQ_MSK, 0); 2950 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 2951 HFC_wait(hc); 2952 /* disable RX fifo */ 2953 HFC_outb(hc, R_FIFO, (ch << 1) | 1); 2954 HFC_wait(hc); 2955 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00); 2956 HFC_outb(hc, A_SUBCH_CFG, 0); 2957 HFC_outb(hc, A_IRQ_MSK, 0); 2958 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 2959 HFC_wait(hc); 2960 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) { 2961 hc->hw.a_st_ctrl0[hc->chan[ch].port] &= 2962 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN; 2963 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); 2964 /* undocumented: delay after R_ST_SEL */ 2965 udelay(1); 2966 HFC_outb(hc, A_ST_CTRL0, 2967 hc->hw.a_st_ctrl0[hc->chan[ch].port]); 2968 } 2969 if (hc->chan[ch].bch) { 2970 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags); 2971 test_and_clear_bit(FLG_TRANSPARENT, 2972 &hc->chan[ch].bch->Flags); 2973 } 2974 break; 2975 case (ISDN_P_B_RAW): /* B-channel */ 2976 2977 if (test_bit(HFC_CHIP_B410P, &hc->chip) && 2978 (hc->chan[ch].slot_rx < 0) && 2979 (hc->chan[ch].slot_tx < 0)) { 2980 2981 printk(KERN_DEBUG 2982 "Setting B-channel %d to echo cancelable " 2983 "state on PCM slot %d\n", ch, 2984 ((ch / 4) * 8) + ((ch % 4) * 4) + 1); 2985 printk(KERN_DEBUG 2986 "Enabling pass through for channel\n"); 2987 vpm_out(hc, ch, ((ch / 4) * 8) + 2988 ((ch % 4) * 4) + 1, 0x01); 2989 /* rx path */ 2990 /* S/T -> PCM */ 2991 HFC_outb(hc, R_FIFO, (ch << 1)); 2992 HFC_wait(hc); 2993 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF); 2994 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) + 2995 ((ch % 4) * 4) + 1) << 1); 2996 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1)); 2997 2998 /* PCM -> FIFO */ 2999 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1); 3000 HFC_wait(hc); 3001 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF); 3002 HFC_outb(hc, A_SUBCH_CFG, 0); 3003 HFC_outb(hc, A_IRQ_MSK, 0); 3004 if (hc->chan[ch].protocol != protocol) { 3005 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3006 HFC_wait(hc); 3007 } 3008 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) + 3009 ((ch % 4) * 4) + 1) << 1) | 1); 3010 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1); 3011 3012 /* tx path */ 3013 /* PCM -> S/T */ 3014 HFC_outb(hc, R_FIFO, (ch << 1) | 1); 3015 HFC_wait(hc); 3016 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF); 3017 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) + 3018 ((ch % 4) * 4)) << 1) | 1); 3019 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1); 3020 3021 /* FIFO -> PCM */ 3022 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1)); 3023 HFC_wait(hc); 3024 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF); 3025 HFC_outb(hc, A_SUBCH_CFG, 0); 3026 HFC_outb(hc, A_IRQ_MSK, 0); 3027 if (hc->chan[ch].protocol != protocol) { 3028 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3029 HFC_wait(hc); 3030 } 3031 /* tx silence */ 3032 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); 3033 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) + 3034 ((ch % 4) * 4)) << 1); 3035 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1)); 3036 } else { 3037 /* enable TX fifo */ 3038 HFC_outb(hc, R_FIFO, ch << 1); 3039 HFC_wait(hc); 3040 if (hc->ctype == HFC_TYPE_XHFC) 3041 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 | 3042 V_HDLC_TRP | V_IFF); 3043 /* Enable FIFO, no interrupt */ 3044 else 3045 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | 3046 V_HDLC_TRP | V_IFF); 3047 HFC_outb(hc, A_SUBCH_CFG, 0); 3048 HFC_outb(hc, A_IRQ_MSK, 0); 3049 if (hc->chan[ch].protocol != protocol) { 3050 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3051 HFC_wait(hc); 3052 } 3053 /* tx silence */ 3054 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); 3055 /* enable RX fifo */ 3056 HFC_outb(hc, R_FIFO, (ch << 1) | 1); 3057 HFC_wait(hc); 3058 if (hc->ctype == HFC_TYPE_XHFC) 3059 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 | 3060 V_HDLC_TRP); 3061 /* Enable FIFO, no interrupt*/ 3062 else 3063 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | 3064 V_HDLC_TRP); 3065 HFC_outb(hc, A_SUBCH_CFG, 0); 3066 HFC_outb(hc, A_IRQ_MSK, 0); 3067 if (hc->chan[ch].protocol != protocol) { 3068 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3069 HFC_wait(hc); 3070 } 3071 } 3072 if (hc->ctype != HFC_TYPE_E1) { 3073 hc->hw.a_st_ctrl0[hc->chan[ch].port] |= 3074 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN; 3075 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); 3076 /* undocumented: delay after R_ST_SEL */ 3077 udelay(1); 3078 HFC_outb(hc, A_ST_CTRL0, 3079 hc->hw.a_st_ctrl0[hc->chan[ch].port]); 3080 } 3081 if (hc->chan[ch].bch) 3082 test_and_set_bit(FLG_TRANSPARENT, 3083 &hc->chan[ch].bch->Flags); 3084 break; 3085 case (ISDN_P_B_HDLC): /* B-channel */ 3086 case (ISDN_P_TE_S0): /* D-channel */ 3087 case (ISDN_P_NT_S0): 3088 case (ISDN_P_TE_E1): 3089 case (ISDN_P_NT_E1): 3090 /* enable TX fifo */ 3091 HFC_outb(hc, R_FIFO, ch << 1); 3092 HFC_wait(hc); 3093 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) { 3094 /* E1 or B-channel */ 3095 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04); 3096 HFC_outb(hc, A_SUBCH_CFG, 0); 3097 } else { 3098 /* D-Channel without HDLC fill flags */ 3099 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF); 3100 HFC_outb(hc, A_SUBCH_CFG, 2); 3101 } 3102 HFC_outb(hc, A_IRQ_MSK, V_IRQ); 3103 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3104 HFC_wait(hc); 3105 /* enable RX fifo */ 3106 HFC_outb(hc, R_FIFO, (ch << 1) | 1); 3107 HFC_wait(hc); 3108 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04); 3109 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) 3110 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */ 3111 else 3112 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */ 3113 HFC_outb(hc, A_IRQ_MSK, V_IRQ); 3114 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); 3115 HFC_wait(hc); 3116 if (hc->chan[ch].bch) { 3117 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags); 3118 if (hc->ctype != HFC_TYPE_E1) { 3119 hc->hw.a_st_ctrl0[hc->chan[ch].port] |= 3120 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN; 3121 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); 3122 /* undocumented: delay after R_ST_SEL */ 3123 udelay(1); 3124 HFC_outb(hc, A_ST_CTRL0, 3125 hc->hw.a_st_ctrl0[hc->chan[ch].port]); 3126 } 3127 } 3128 break; 3129 default: 3130 printk(KERN_DEBUG "%s: protocol not known %x\n", 3131 __func__, protocol); 3132 hc->chan[ch].protocol = ISDN_P_NONE; 3133 return -ENOPROTOOPT; 3134 } 3135 hc->chan[ch].protocol = protocol; 3136 return 0; 3137 } 3138 3139 3140 /* 3141 * connect/disconnect PCM 3142 */ 3143 3144 static void 3145 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx, 3146 int slot_rx, int bank_rx) 3147 { 3148 if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) { 3149 /* disable PCM */ 3150 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0); 3151 return; 3152 } 3153 3154 /* enable pcm */ 3155 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx, 3156 slot_rx, bank_rx); 3157 } 3158 3159 /* 3160 * set/disable conference 3161 */ 3162 3163 static void 3164 hfcmulti_conf(struct hfc_multi *hc, int ch, int num) 3165 { 3166 if (num >= 0 && num <= 7) 3167 hc->chan[ch].conf = num; 3168 else 3169 hc->chan[ch].conf = -1; 3170 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx, 3171 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx, 3172 hc->chan[ch].bank_rx); 3173 } 3174 3175 3176 /* 3177 * set/disable sample loop 3178 */ 3179 3180 /* NOTE: this function is experimental and therefore disabled */ 3181 3182 /* 3183 * Layer 1 callback function 3184 */ 3185 static int 3186 hfcm_l1callback(struct dchannel *dch, u_int cmd) 3187 { 3188 struct hfc_multi *hc = dch->hw; 3189 struct sk_buff_head free_queue; 3190 u_long flags; 3191 3192 switch (cmd) { 3193 case INFO3_P8: 3194 case INFO3_P10: 3195 break; 3196 case HW_RESET_REQ: 3197 /* start activation */ 3198 spin_lock_irqsave(&hc->lock, flags); 3199 if (hc->ctype == HFC_TYPE_E1) { 3200 if (debug & DEBUG_HFCMULTI_MSG) 3201 printk(KERN_DEBUG 3202 "%s: HW_RESET_REQ no BRI\n", 3203 __func__); 3204 } else { 3205 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); 3206 /* undocumented: delay after R_ST_SEL */ 3207 udelay(1); 3208 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */ 3209 udelay(6); /* wait at least 5,21us */ 3210 HFC_outb(hc, A_ST_WR_STATE, 3); 3211 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3)); 3212 /* activate */ 3213 } 3214 spin_unlock_irqrestore(&hc->lock, flags); 3215 l1_event(dch->l1, HW_POWERUP_IND); 3216 break; 3217 case HW_DEACT_REQ: 3218 __skb_queue_head_init(&free_queue); 3219 /* start deactivation */ 3220 spin_lock_irqsave(&hc->lock, flags); 3221 if (hc->ctype == HFC_TYPE_E1) { 3222 if (debug & DEBUG_HFCMULTI_MSG) 3223 printk(KERN_DEBUG 3224 "%s: HW_DEACT_REQ no BRI\n", 3225 __func__); 3226 } else { 3227 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); 3228 /* undocumented: delay after R_ST_SEL */ 3229 udelay(1); 3230 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2); 3231 /* deactivate */ 3232 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 3233 hc->syncronized &= 3234 ~(1 << hc->chan[dch->slot].port); 3235 plxsd_checksync(hc, 0); 3236 } 3237 } 3238 skb_queue_splice_init(&dch->squeue, &free_queue); 3239 if (dch->tx_skb) { 3240 __skb_queue_tail(&free_queue, dch->tx_skb); 3241 dch->tx_skb = NULL; 3242 } 3243 dch->tx_idx = 0; 3244 if (dch->rx_skb) { 3245 __skb_queue_tail(&free_queue, dch->rx_skb); 3246 dch->rx_skb = NULL; 3247 } 3248 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 3249 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 3250 del_timer(&dch->timer); 3251 spin_unlock_irqrestore(&hc->lock, flags); 3252 __skb_queue_purge(&free_queue); 3253 break; 3254 case HW_POWERUP_REQ: 3255 spin_lock_irqsave(&hc->lock, flags); 3256 if (hc->ctype == HFC_TYPE_E1) { 3257 if (debug & DEBUG_HFCMULTI_MSG) 3258 printk(KERN_DEBUG 3259 "%s: HW_POWERUP_REQ no BRI\n", 3260 __func__); 3261 } else { 3262 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); 3263 /* undocumented: delay after R_ST_SEL */ 3264 udelay(1); 3265 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */ 3266 udelay(6); /* wait at least 5,21us */ 3267 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */ 3268 } 3269 spin_unlock_irqrestore(&hc->lock, flags); 3270 break; 3271 case PH_ACTIVATE_IND: 3272 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 3273 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 3274 GFP_ATOMIC); 3275 break; 3276 case PH_DEACTIVATE_IND: 3277 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 3278 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 3279 GFP_ATOMIC); 3280 break; 3281 default: 3282 if (dch->debug & DEBUG_HW) 3283 printk(KERN_DEBUG "%s: unknown command %x\n", 3284 __func__, cmd); 3285 return -1; 3286 } 3287 return 0; 3288 } 3289 3290 /* 3291 * Layer2 -> Layer 1 Transfer 3292 */ 3293 3294 static int 3295 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb) 3296 { 3297 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 3298 struct dchannel *dch = container_of(dev, struct dchannel, dev); 3299 struct hfc_multi *hc = dch->hw; 3300 struct mISDNhead *hh = mISDN_HEAD_P(skb); 3301 int ret = -EINVAL; 3302 unsigned int id; 3303 u_long flags; 3304 3305 switch (hh->prim) { 3306 case PH_DATA_REQ: 3307 if (skb->len < 1) 3308 break; 3309 spin_lock_irqsave(&hc->lock, flags); 3310 ret = dchannel_senddata(dch, skb); 3311 if (ret > 0) { /* direct TX */ 3312 id = hh->id; /* skb can be freed */ 3313 hfcmulti_tx(hc, dch->slot); 3314 ret = 0; 3315 /* start fifo */ 3316 HFC_outb(hc, R_FIFO, 0); 3317 HFC_wait(hc); 3318 spin_unlock_irqrestore(&hc->lock, flags); 3319 queue_ch_frame(ch, PH_DATA_CNF, id, NULL); 3320 } else 3321 spin_unlock_irqrestore(&hc->lock, flags); 3322 return ret; 3323 case PH_ACTIVATE_REQ: 3324 if (dch->dev.D.protocol != ISDN_P_TE_S0) { 3325 spin_lock_irqsave(&hc->lock, flags); 3326 ret = 0; 3327 if (debug & DEBUG_HFCMULTI_MSG) 3328 printk(KERN_DEBUG 3329 "%s: PH_ACTIVATE port %d (0..%d)\n", 3330 __func__, hc->chan[dch->slot].port, 3331 hc->ports - 1); 3332 /* start activation */ 3333 if (hc->ctype == HFC_TYPE_E1) { 3334 ph_state_change(dch); 3335 if (debug & DEBUG_HFCMULTI_STATE) 3336 printk(KERN_DEBUG 3337 "%s: E1 report state %x \n", 3338 __func__, dch->state); 3339 } else { 3340 HFC_outb(hc, R_ST_SEL, 3341 hc->chan[dch->slot].port); 3342 /* undocumented: delay after R_ST_SEL */ 3343 udelay(1); 3344 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1); 3345 /* G1 */ 3346 udelay(6); /* wait at least 5,21us */ 3347 HFC_outb(hc, A_ST_WR_STATE, 1); 3348 HFC_outb(hc, A_ST_WR_STATE, 1 | 3349 (V_ST_ACT * 3)); /* activate */ 3350 dch->state = 1; 3351 } 3352 spin_unlock_irqrestore(&hc->lock, flags); 3353 } else 3354 ret = l1_event(dch->l1, hh->prim); 3355 break; 3356 case PH_DEACTIVATE_REQ: 3357 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 3358 if (dch->dev.D.protocol != ISDN_P_TE_S0) { 3359 struct sk_buff_head free_queue; 3360 3361 __skb_queue_head_init(&free_queue); 3362 spin_lock_irqsave(&hc->lock, flags); 3363 if (debug & DEBUG_HFCMULTI_MSG) 3364 printk(KERN_DEBUG 3365 "%s: PH_DEACTIVATE port %d (0..%d)\n", 3366 __func__, hc->chan[dch->slot].port, 3367 hc->ports - 1); 3368 /* start deactivation */ 3369 if (hc->ctype == HFC_TYPE_E1) { 3370 if (debug & DEBUG_HFCMULTI_MSG) 3371 printk(KERN_DEBUG 3372 "%s: PH_DEACTIVATE no BRI\n", 3373 __func__); 3374 } else { 3375 HFC_outb(hc, R_ST_SEL, 3376 hc->chan[dch->slot].port); 3377 /* undocumented: delay after R_ST_SEL */ 3378 udelay(1); 3379 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2); 3380 /* deactivate */ 3381 dch->state = 1; 3382 } 3383 skb_queue_splice_init(&dch->squeue, &free_queue); 3384 if (dch->tx_skb) { 3385 __skb_queue_tail(&free_queue, dch->tx_skb); 3386 dch->tx_skb = NULL; 3387 } 3388 dch->tx_idx = 0; 3389 if (dch->rx_skb) { 3390 __skb_queue_tail(&free_queue, dch->rx_skb); 3391 dch->rx_skb = NULL; 3392 } 3393 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 3394 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 3395 del_timer(&dch->timer); 3396 #ifdef FIXME 3397 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) 3398 dchannel_sched_event(&hc->dch, D_CLEARBUSY); 3399 #endif 3400 ret = 0; 3401 spin_unlock_irqrestore(&hc->lock, flags); 3402 __skb_queue_purge(&free_queue); 3403 } else 3404 ret = l1_event(dch->l1, hh->prim); 3405 break; 3406 } 3407 if (!ret) 3408 dev_kfree_skb(skb); 3409 return ret; 3410 } 3411 3412 static void 3413 deactivate_bchannel(struct bchannel *bch) 3414 { 3415 struct hfc_multi *hc = bch->hw; 3416 u_long flags; 3417 3418 spin_lock_irqsave(&hc->lock, flags); 3419 mISDN_clear_bchannel(bch); 3420 hc->chan[bch->slot].coeff_count = 0; 3421 hc->chan[bch->slot].rx_off = 0; 3422 hc->chan[bch->slot].conf = -1; 3423 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0); 3424 spin_unlock_irqrestore(&hc->lock, flags); 3425 } 3426 3427 static int 3428 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb) 3429 { 3430 struct bchannel *bch = container_of(ch, struct bchannel, ch); 3431 struct hfc_multi *hc = bch->hw; 3432 int ret = -EINVAL; 3433 struct mISDNhead *hh = mISDN_HEAD_P(skb); 3434 unsigned long flags; 3435 3436 switch (hh->prim) { 3437 case PH_DATA_REQ: 3438 if (!skb->len) 3439 break; 3440 spin_lock_irqsave(&hc->lock, flags); 3441 ret = bchannel_senddata(bch, skb); 3442 if (ret > 0) { /* direct TX */ 3443 hfcmulti_tx(hc, bch->slot); 3444 ret = 0; 3445 /* start fifo */ 3446 HFC_outb_nodebug(hc, R_FIFO, 0); 3447 HFC_wait_nodebug(hc); 3448 } 3449 spin_unlock_irqrestore(&hc->lock, flags); 3450 return ret; 3451 case PH_ACTIVATE_REQ: 3452 if (debug & DEBUG_HFCMULTI_MSG) 3453 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n", 3454 __func__, bch->slot); 3455 spin_lock_irqsave(&hc->lock, flags); 3456 /* activate B-channel if not already activated */ 3457 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { 3458 hc->chan[bch->slot].txpending = 0; 3459 ret = mode_hfcmulti(hc, bch->slot, 3460 ch->protocol, 3461 hc->chan[bch->slot].slot_tx, 3462 hc->chan[bch->slot].bank_tx, 3463 hc->chan[bch->slot].slot_rx, 3464 hc->chan[bch->slot].bank_rx); 3465 if (!ret) { 3466 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf 3467 && test_bit(HFC_CHIP_DTMF, &hc->chip)) { 3468 /* start decoder */ 3469 hc->dtmf = 1; 3470 if (debug & DEBUG_HFCMULTI_DTMF) 3471 printk(KERN_DEBUG 3472 "%s: start dtmf decoder\n", 3473 __func__); 3474 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf | 3475 V_RST_DTMF); 3476 } 3477 } 3478 } else 3479 ret = 0; 3480 spin_unlock_irqrestore(&hc->lock, flags); 3481 if (!ret) 3482 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, 3483 GFP_KERNEL); 3484 break; 3485 case PH_CONTROL_REQ: 3486 spin_lock_irqsave(&hc->lock, flags); 3487 switch (hh->id) { 3488 case HFC_SPL_LOOP_ON: /* set sample loop */ 3489 if (debug & DEBUG_HFCMULTI_MSG) 3490 printk(KERN_DEBUG 3491 "%s: HFC_SPL_LOOP_ON (len = %d)\n", 3492 __func__, skb->len); 3493 ret = 0; 3494 break; 3495 case HFC_SPL_LOOP_OFF: /* set silence */ 3496 if (debug & DEBUG_HFCMULTI_MSG) 3497 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n", 3498 __func__); 3499 ret = 0; 3500 break; 3501 default: 3502 printk(KERN_ERR 3503 "%s: unknown PH_CONTROL_REQ info %x\n", 3504 __func__, hh->id); 3505 ret = -EINVAL; 3506 } 3507 spin_unlock_irqrestore(&hc->lock, flags); 3508 break; 3509 case PH_DEACTIVATE_REQ: 3510 deactivate_bchannel(bch); /* locked there */ 3511 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL, 3512 GFP_KERNEL); 3513 ret = 0; 3514 break; 3515 } 3516 if (!ret) 3517 dev_kfree_skb(skb); 3518 return ret; 3519 } 3520 3521 /* 3522 * bchannel control function 3523 */ 3524 static int 3525 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) 3526 { 3527 int ret = 0; 3528 struct dsp_features *features = 3529 (struct dsp_features *)(*((u_long *)&cq->p1)); 3530 struct hfc_multi *hc = bch->hw; 3531 int slot_tx; 3532 int bank_tx; 3533 int slot_rx; 3534 int bank_rx; 3535 int num; 3536 3537 switch (cq->op) { 3538 case MISDN_CTRL_GETOP: 3539 ret = mISDN_ctrl_bchannel(bch, cq); 3540 cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP; 3541 break; 3542 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */ 3543 ret = mISDN_ctrl_bchannel(bch, cq); 3544 hc->chan[bch->slot].rx_off = !!cq->p1; 3545 if (!hc->chan[bch->slot].rx_off) { 3546 /* reset fifo on rx on */ 3547 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1); 3548 HFC_wait_nodebug(hc); 3549 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); 3550 HFC_wait_nodebug(hc); 3551 } 3552 if (debug & DEBUG_HFCMULTI_MSG) 3553 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n", 3554 __func__, bch->nr, hc->chan[bch->slot].rx_off); 3555 break; 3556 case MISDN_CTRL_FILL_EMPTY: 3557 ret = mISDN_ctrl_bchannel(bch, cq); 3558 hc->silence = bch->fill[0]; 3559 memset(hc->silence_data, hc->silence, sizeof(hc->silence_data)); 3560 break; 3561 case MISDN_CTRL_HW_FEATURES: /* fill features structure */ 3562 if (debug & DEBUG_HFCMULTI_MSG) 3563 printk(KERN_DEBUG "%s: HW_FEATURE request\n", 3564 __func__); 3565 /* create confirm */ 3566 features->hfc_id = hc->id; 3567 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) 3568 features->hfc_dtmf = 1; 3569 if (test_bit(HFC_CHIP_CONF, &hc->chip)) 3570 features->hfc_conf = 1; 3571 features->hfc_loops = 0; 3572 if (test_bit(HFC_CHIP_B410P, &hc->chip)) { 3573 features->hfc_echocanhw = 1; 3574 } else { 3575 features->pcm_id = hc->pcm; 3576 features->pcm_slots = hc->slots; 3577 features->pcm_banks = 2; 3578 } 3579 break; 3580 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */ 3581 slot_tx = cq->p1 & 0xff; 3582 bank_tx = cq->p1 >> 8; 3583 slot_rx = cq->p2 & 0xff; 3584 bank_rx = cq->p2 >> 8; 3585 if (debug & DEBUG_HFCMULTI_MSG) 3586 printk(KERN_DEBUG 3587 "%s: HFC_PCM_CONN slot %d bank %d (TX) " 3588 "slot %d bank %d (RX)\n", 3589 __func__, slot_tx, bank_tx, 3590 slot_rx, bank_rx); 3591 if (slot_tx < hc->slots && bank_tx <= 2 && 3592 slot_rx < hc->slots && bank_rx <= 2) 3593 hfcmulti_pcm(hc, bch->slot, 3594 slot_tx, bank_tx, slot_rx, bank_rx); 3595 else { 3596 printk(KERN_WARNING 3597 "%s: HFC_PCM_CONN slot %d bank %d (TX) " 3598 "slot %d bank %d (RX) out of range\n", 3599 __func__, slot_tx, bank_tx, 3600 slot_rx, bank_rx); 3601 ret = -EINVAL; 3602 } 3603 break; 3604 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */ 3605 if (debug & DEBUG_HFCMULTI_MSG) 3606 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n", 3607 __func__); 3608 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0); 3609 break; 3610 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */ 3611 num = cq->p1 & 0xff; 3612 if (debug & DEBUG_HFCMULTI_MSG) 3613 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n", 3614 __func__, num); 3615 if (num <= 7) 3616 hfcmulti_conf(hc, bch->slot, num); 3617 else { 3618 printk(KERN_WARNING 3619 "%s: HW_CONF_JOIN conf %d out of range\n", 3620 __func__, num); 3621 ret = -EINVAL; 3622 } 3623 break; 3624 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */ 3625 if (debug & DEBUG_HFCMULTI_MSG) 3626 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__); 3627 hfcmulti_conf(hc, bch->slot, -1); 3628 break; 3629 case MISDN_CTRL_HFC_ECHOCAN_ON: 3630 if (debug & DEBUG_HFCMULTI_MSG) 3631 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__); 3632 if (test_bit(HFC_CHIP_B410P, &hc->chip)) 3633 vpm_echocan_on(hc, bch->slot, cq->p1); 3634 else 3635 ret = -EINVAL; 3636 break; 3637 3638 case MISDN_CTRL_HFC_ECHOCAN_OFF: 3639 if (debug & DEBUG_HFCMULTI_MSG) 3640 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n", 3641 __func__); 3642 if (test_bit(HFC_CHIP_B410P, &hc->chip)) 3643 vpm_echocan_off(hc, bch->slot); 3644 else 3645 ret = -EINVAL; 3646 break; 3647 default: 3648 ret = mISDN_ctrl_bchannel(bch, cq); 3649 break; 3650 } 3651 return ret; 3652 } 3653 3654 static int 3655 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 3656 { 3657 struct bchannel *bch = container_of(ch, struct bchannel, ch); 3658 struct hfc_multi *hc = bch->hw; 3659 int err = -EINVAL; 3660 u_long flags; 3661 3662 if (bch->debug & DEBUG_HW) 3663 printk(KERN_DEBUG "%s: cmd:%x %p\n", 3664 __func__, cmd, arg); 3665 switch (cmd) { 3666 case CLOSE_CHANNEL: 3667 test_and_clear_bit(FLG_OPEN, &bch->Flags); 3668 deactivate_bchannel(bch); /* locked there */ 3669 ch->protocol = ISDN_P_NONE; 3670 ch->peer = NULL; 3671 module_put(THIS_MODULE); 3672 err = 0; 3673 break; 3674 case CONTROL_CHANNEL: 3675 spin_lock_irqsave(&hc->lock, flags); 3676 err = channel_bctrl(bch, arg); 3677 spin_unlock_irqrestore(&hc->lock, flags); 3678 break; 3679 default: 3680 printk(KERN_WARNING "%s: unknown prim(%x)\n", 3681 __func__, cmd); 3682 } 3683 return err; 3684 } 3685 3686 /* 3687 * handle D-channel events 3688 * 3689 * handle state change event 3690 */ 3691 static void 3692 ph_state_change(struct dchannel *dch) 3693 { 3694 struct hfc_multi *hc; 3695 int ch, i; 3696 3697 if (!dch) { 3698 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__); 3699 return; 3700 } 3701 hc = dch->hw; 3702 ch = dch->slot; 3703 3704 if (hc->ctype == HFC_TYPE_E1) { 3705 if (dch->dev.D.protocol == ISDN_P_TE_E1) { 3706 if (debug & DEBUG_HFCMULTI_STATE) 3707 printk(KERN_DEBUG 3708 "%s: E1 TE (id=%d) newstate %x\n", 3709 __func__, hc->id, dch->state); 3710 } else { 3711 if (debug & DEBUG_HFCMULTI_STATE) 3712 printk(KERN_DEBUG 3713 "%s: E1 NT (id=%d) newstate %x\n", 3714 __func__, hc->id, dch->state); 3715 } 3716 switch (dch->state) { 3717 case (1): 3718 if (hc->e1_state != 1) { 3719 for (i = 1; i <= 31; i++) { 3720 /* reset fifos on e1 activation */ 3721 HFC_outb_nodebug(hc, R_FIFO, 3722 (i << 1) | 1); 3723 HFC_wait_nodebug(hc); 3724 HFC_outb_nodebug(hc, R_INC_RES_FIFO, 3725 V_RES_F); 3726 HFC_wait_nodebug(hc); 3727 } 3728 } 3729 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 3730 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 3731 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 3732 break; 3733 3734 default: 3735 if (hc->e1_state != 1) 3736 return; 3737 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 3738 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, 3739 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 3740 } 3741 hc->e1_state = dch->state; 3742 } else { 3743 if (dch->dev.D.protocol == ISDN_P_TE_S0) { 3744 if (debug & DEBUG_HFCMULTI_STATE) 3745 printk(KERN_DEBUG 3746 "%s: S/T TE newstate %x\n", 3747 __func__, dch->state); 3748 switch (dch->state) { 3749 case (0): 3750 l1_event(dch->l1, HW_RESET_IND); 3751 break; 3752 case (3): 3753 l1_event(dch->l1, HW_DEACT_IND); 3754 break; 3755 case (5): 3756 case (8): 3757 l1_event(dch->l1, ANYSIGNAL); 3758 break; 3759 case (6): 3760 l1_event(dch->l1, INFO2); 3761 break; 3762 case (7): 3763 l1_event(dch->l1, INFO4_P8); 3764 break; 3765 } 3766 } else { 3767 if (debug & DEBUG_HFCMULTI_STATE) 3768 printk(KERN_DEBUG "%s: S/T NT newstate %x\n", 3769 __func__, dch->state); 3770 switch (dch->state) { 3771 case (2): 3772 if (hc->chan[ch].nt_timer == 0) { 3773 hc->chan[ch].nt_timer = -1; 3774 HFC_outb(hc, R_ST_SEL, 3775 hc->chan[ch].port); 3776 /* undocumented: delay after R_ST_SEL */ 3777 udelay(1); 3778 HFC_outb(hc, A_ST_WR_STATE, 4 | 3779 V_ST_LD_STA); /* G4 */ 3780 udelay(6); /* wait at least 5,21us */ 3781 HFC_outb(hc, A_ST_WR_STATE, 4); 3782 dch->state = 4; 3783 } else { 3784 /* one extra count for the next event */ 3785 hc->chan[ch].nt_timer = 3786 nt_t1_count[poll_timer] + 1; 3787 HFC_outb(hc, R_ST_SEL, 3788 hc->chan[ch].port); 3789 /* undocumented: delay after R_ST_SEL */ 3790 udelay(1); 3791 /* allow G2 -> G3 transition */ 3792 HFC_outb(hc, A_ST_WR_STATE, 2 | 3793 V_SET_G2_G3); 3794 } 3795 break; 3796 case (1): 3797 hc->chan[ch].nt_timer = -1; 3798 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 3799 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, 3800 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 3801 break; 3802 case (4): 3803 hc->chan[ch].nt_timer = -1; 3804 break; 3805 case (3): 3806 hc->chan[ch].nt_timer = -1; 3807 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 3808 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 3809 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 3810 break; 3811 } 3812 } 3813 } 3814 } 3815 3816 /* 3817 * called for card mode init message 3818 */ 3819 3820 static void 3821 hfcmulti_initmode(struct dchannel *dch) 3822 { 3823 struct hfc_multi *hc = dch->hw; 3824 u_char a_st_wr_state, r_e1_wr_sta; 3825 int i, pt; 3826 3827 if (debug & DEBUG_HFCMULTI_INIT) 3828 printk(KERN_DEBUG "%s: entered\n", __func__); 3829 3830 i = dch->slot; 3831 pt = hc->chan[i].port; 3832 if (hc->ctype == HFC_TYPE_E1) { 3833 /* E1 */ 3834 hc->chan[hc->dnum[pt]].slot_tx = -1; 3835 hc->chan[hc->dnum[pt]].slot_rx = -1; 3836 hc->chan[hc->dnum[pt]].conf = -1; 3837 if (hc->dnum[pt]) { 3838 mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol, 3839 -1, 0, -1, 0); 3840 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0); 3841 } 3842 for (i = 1; i <= 31; i++) { 3843 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */ 3844 continue; 3845 hc->chan[i].slot_tx = -1; 3846 hc->chan[i].slot_rx = -1; 3847 hc->chan[i].conf = -1; 3848 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0); 3849 } 3850 } 3851 if (hc->ctype == HFC_TYPE_E1 && pt == 0) { 3852 /* E1, port 0 */ 3853 dch = hc->chan[hc->dnum[0]].dch; 3854 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) { 3855 HFC_outb(hc, R_LOS0, 255); /* 2 ms */ 3856 HFC_outb(hc, R_LOS1, 255); /* 512 ms */ 3857 } 3858 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) { 3859 HFC_outb(hc, R_RX0, 0); 3860 hc->hw.r_tx0 = 0 | V_OUT_EN; 3861 } else { 3862 HFC_outb(hc, R_RX0, 1); 3863 hc->hw.r_tx0 = 1 | V_OUT_EN; 3864 } 3865 hc->hw.r_tx1 = V_ATX | V_NTRI; 3866 HFC_outb(hc, R_TX0, hc->hw.r_tx0); 3867 HFC_outb(hc, R_TX1, hc->hw.r_tx1); 3868 HFC_outb(hc, R_TX_FR0, 0x00); 3869 HFC_outb(hc, R_TX_FR1, 0xf8); 3870 3871 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg)) 3872 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E); 3873 3874 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0); 3875 3876 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg)) 3877 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC); 3878 3879 if (dch->dev.D.protocol == ISDN_P_NT_E1) { 3880 if (debug & DEBUG_HFCMULTI_INIT) 3881 printk(KERN_DEBUG "%s: E1 port is NT-mode\n", 3882 __func__); 3883 r_e1_wr_sta = 0; /* G0 */ 3884 hc->e1_getclock = 0; 3885 } else { 3886 if (debug & DEBUG_HFCMULTI_INIT) 3887 printk(KERN_DEBUG "%s: E1 port is TE-mode\n", 3888 __func__); 3889 r_e1_wr_sta = 0; /* F0 */ 3890 hc->e1_getclock = 1; 3891 } 3892 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) 3893 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX); 3894 else 3895 HFC_outb(hc, R_SYNC_OUT, 0); 3896 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip)) 3897 hc->e1_getclock = 1; 3898 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip)) 3899 hc->e1_getclock = 0; 3900 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { 3901 /* SLAVE (clock master) */ 3902 if (debug & DEBUG_HFCMULTI_INIT) 3903 printk(KERN_DEBUG 3904 "%s: E1 port is clock master " 3905 "(clock from PCM)\n", __func__); 3906 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC); 3907 } else { 3908 if (hc->e1_getclock) { 3909 /* MASTER (clock slave) */ 3910 if (debug & DEBUG_HFCMULTI_INIT) 3911 printk(KERN_DEBUG 3912 "%s: E1 port is clock slave " 3913 "(clock to PCM)\n", __func__); 3914 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS); 3915 } else { 3916 /* MASTER (clock master) */ 3917 if (debug & DEBUG_HFCMULTI_INIT) 3918 printk(KERN_DEBUG "%s: E1 port is " 3919 "clock master " 3920 "(clock from QUARTZ)\n", 3921 __func__); 3922 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | 3923 V_PCM_SYNC | V_JATT_OFF); 3924 HFC_outb(hc, R_SYNC_OUT, 0); 3925 } 3926 } 3927 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */ 3928 HFC_outb(hc, R_PWM_MD, V_PWM0_MD); 3929 HFC_outb(hc, R_PWM0, 0x50); 3930 HFC_outb(hc, R_PWM1, 0xff); 3931 /* state machine setup */ 3932 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA); 3933 udelay(6); /* wait at least 5,21us */ 3934 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta); 3935 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 3936 hc->syncronized = 0; 3937 plxsd_checksync(hc, 0); 3938 } 3939 } 3940 if (hc->ctype != HFC_TYPE_E1) { 3941 /* ST */ 3942 hc->chan[i].slot_tx = -1; 3943 hc->chan[i].slot_rx = -1; 3944 hc->chan[i].conf = -1; 3945 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0); 3946 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0); 3947 hc->chan[i - 2].slot_tx = -1; 3948 hc->chan[i - 2].slot_rx = -1; 3949 hc->chan[i - 2].conf = -1; 3950 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0); 3951 hc->chan[i - 1].slot_tx = -1; 3952 hc->chan[i - 1].slot_rx = -1; 3953 hc->chan[i - 1].conf = -1; 3954 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0); 3955 /* select interface */ 3956 HFC_outb(hc, R_ST_SEL, pt); 3957 /* undocumented: delay after R_ST_SEL */ 3958 udelay(1); 3959 if (dch->dev.D.protocol == ISDN_P_NT_S0) { 3960 if (debug & DEBUG_HFCMULTI_INIT) 3961 printk(KERN_DEBUG 3962 "%s: ST port %d is NT-mode\n", 3963 __func__, pt); 3964 /* clock delay */ 3965 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt); 3966 a_st_wr_state = 1; /* G1 */ 3967 hc->hw.a_st_ctrl0[pt] = V_ST_MD; 3968 } else { 3969 if (debug & DEBUG_HFCMULTI_INIT) 3970 printk(KERN_DEBUG 3971 "%s: ST port %d is TE-mode\n", 3972 __func__, pt); 3973 /* clock delay */ 3974 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te); 3975 a_st_wr_state = 2; /* F2 */ 3976 hc->hw.a_st_ctrl0[pt] = 0; 3977 } 3978 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg)) 3979 hc->hw.a_st_ctrl0[pt] |= V_TX_LI; 3980 if (hc->ctype == HFC_TYPE_XHFC) { 3981 hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */; 3982 HFC_outb(hc, 0x35 /* A_ST_CTRL3 */, 3983 0x7c << 1 /* V_ST_PULSE */); 3984 } 3985 /* line setup */ 3986 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]); 3987 /* disable E-channel */ 3988 if ((dch->dev.D.protocol == ISDN_P_NT_S0) || 3989 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg)) 3990 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO); 3991 else 3992 HFC_outb(hc, A_ST_CTRL1, 0); 3993 /* enable B-channel receive */ 3994 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN); 3995 /* state machine setup */ 3996 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA); 3997 udelay(6); /* wait at least 5,21us */ 3998 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state); 3999 hc->hw.r_sci_msk |= 1 << pt; 4000 /* state machine interrupts */ 4001 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk); 4002 /* unset sync on port */ 4003 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4004 hc->syncronized &= 4005 ~(1 << hc->chan[dch->slot].port); 4006 plxsd_checksync(hc, 0); 4007 } 4008 } 4009 if (debug & DEBUG_HFCMULTI_INIT) 4010 printk("%s: done\n", __func__); 4011 } 4012 4013 4014 static int 4015 open_dchannel(struct hfc_multi *hc, struct dchannel *dch, 4016 struct channel_req *rq) 4017 { 4018 int err = 0; 4019 u_long flags; 4020 4021 if (debug & DEBUG_HW_OPEN) 4022 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__, 4023 dch->dev.id, __builtin_return_address(0)); 4024 if (rq->protocol == ISDN_P_NONE) 4025 return -EINVAL; 4026 if ((dch->dev.D.protocol != ISDN_P_NONE) && 4027 (dch->dev.D.protocol != rq->protocol)) { 4028 if (debug & DEBUG_HFCMULTI_MODE) 4029 printk(KERN_DEBUG "%s: change protocol %x to %x\n", 4030 __func__, dch->dev.D.protocol, rq->protocol); 4031 } 4032 if ((dch->dev.D.protocol == ISDN_P_TE_S0) && 4033 (rq->protocol != ISDN_P_TE_S0)) 4034 l1_event(dch->l1, CLOSE_CHANNEL); 4035 if (dch->dev.D.protocol != rq->protocol) { 4036 if (rq->protocol == ISDN_P_TE_S0) { 4037 err = create_l1(dch, hfcm_l1callback); 4038 if (err) 4039 return err; 4040 } 4041 dch->dev.D.protocol = rq->protocol; 4042 spin_lock_irqsave(&hc->lock, flags); 4043 hfcmulti_initmode(dch); 4044 spin_unlock_irqrestore(&hc->lock, flags); 4045 } 4046 if (test_bit(FLG_ACTIVE, &dch->Flags)) 4047 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 4048 0, NULL, GFP_KERNEL); 4049 rq->ch = &dch->dev.D; 4050 if (!try_module_get(THIS_MODULE)) 4051 printk(KERN_WARNING "%s:cannot get module\n", __func__); 4052 return 0; 4053 } 4054 4055 static int 4056 open_bchannel(struct hfc_multi *hc, struct dchannel *dch, 4057 struct channel_req *rq) 4058 { 4059 struct bchannel *bch; 4060 int ch; 4061 4062 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap)) 4063 return -EINVAL; 4064 if (rq->protocol == ISDN_P_NONE) 4065 return -EINVAL; 4066 if (hc->ctype == HFC_TYPE_E1) 4067 ch = rq->adr.channel; 4068 else 4069 ch = (rq->adr.channel - 1) + (dch->slot - 2); 4070 bch = hc->chan[ch].bch; 4071 if (!bch) { 4072 printk(KERN_ERR "%s:internal error ch %d has no bch\n", 4073 __func__, ch); 4074 return -EINVAL; 4075 } 4076 if (test_and_set_bit(FLG_OPEN, &bch->Flags)) 4077 return -EBUSY; /* b-channel can be only open once */ 4078 bch->ch.protocol = rq->protocol; 4079 hc->chan[ch].rx_off = 0; 4080 rq->ch = &bch->ch; 4081 if (!try_module_get(THIS_MODULE)) 4082 printk(KERN_WARNING "%s:cannot get module\n", __func__); 4083 return 0; 4084 } 4085 4086 /* 4087 * device control function 4088 */ 4089 static int 4090 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq) 4091 { 4092 struct hfc_multi *hc = dch->hw; 4093 int ret = 0; 4094 int wd_mode, wd_cnt; 4095 4096 switch (cq->op) { 4097 case MISDN_CTRL_GETOP: 4098 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3; 4099 break; 4100 case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */ 4101 wd_cnt = cq->p1 & 0xf; 4102 wd_mode = !!(cq->p1 >> 4); 4103 if (debug & DEBUG_HFCMULTI_MSG) 4104 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s" 4105 ", counter 0x%x\n", __func__, 4106 wd_mode ? "AUTO" : "MANUAL", wd_cnt); 4107 /* set the watchdog timer */ 4108 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4)); 4109 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0); 4110 if (hc->ctype == HFC_TYPE_XHFC) 4111 hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */; 4112 /* init the watchdog register and reset the counter */ 4113 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES); 4114 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4115 /* enable the watchdog output for Speech-Design */ 4116 HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7); 4117 HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15); 4118 HFC_outb(hc, R_GPIO_OUT1, 0); 4119 HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15); 4120 } 4121 break; 4122 case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */ 4123 if (debug & DEBUG_HFCMULTI_MSG) 4124 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n", 4125 __func__); 4126 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES); 4127 break; 4128 case MISDN_CTRL_L1_TIMER3: 4129 ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff)); 4130 break; 4131 default: 4132 printk(KERN_WARNING "%s: unknown Op %x\n", 4133 __func__, cq->op); 4134 ret = -EINVAL; 4135 break; 4136 } 4137 return ret; 4138 } 4139 4140 static int 4141 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 4142 { 4143 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 4144 struct dchannel *dch = container_of(dev, struct dchannel, dev); 4145 struct hfc_multi *hc = dch->hw; 4146 struct channel_req *rq; 4147 int err = 0; 4148 u_long flags; 4149 4150 if (dch->debug & DEBUG_HW) 4151 printk(KERN_DEBUG "%s: cmd:%x %p\n", 4152 __func__, cmd, arg); 4153 switch (cmd) { 4154 case OPEN_CHANNEL: 4155 rq = arg; 4156 switch (rq->protocol) { 4157 case ISDN_P_TE_S0: 4158 case ISDN_P_NT_S0: 4159 if (hc->ctype == HFC_TYPE_E1) { 4160 err = -EINVAL; 4161 break; 4162 } 4163 err = open_dchannel(hc, dch, rq); /* locked there */ 4164 break; 4165 case ISDN_P_TE_E1: 4166 case ISDN_P_NT_E1: 4167 if (hc->ctype != HFC_TYPE_E1) { 4168 err = -EINVAL; 4169 break; 4170 } 4171 err = open_dchannel(hc, dch, rq); /* locked there */ 4172 break; 4173 default: 4174 spin_lock_irqsave(&hc->lock, flags); 4175 err = open_bchannel(hc, dch, rq); 4176 spin_unlock_irqrestore(&hc->lock, flags); 4177 } 4178 break; 4179 case CLOSE_CHANNEL: 4180 if (debug & DEBUG_HW_OPEN) 4181 printk(KERN_DEBUG "%s: dev(%d) close from %p\n", 4182 __func__, dch->dev.id, 4183 __builtin_return_address(0)); 4184 module_put(THIS_MODULE); 4185 break; 4186 case CONTROL_CHANNEL: 4187 spin_lock_irqsave(&hc->lock, flags); 4188 err = channel_dctrl(dch, arg); 4189 spin_unlock_irqrestore(&hc->lock, flags); 4190 break; 4191 default: 4192 if (dch->debug & DEBUG_HW) 4193 printk(KERN_DEBUG "%s: unknown command %x\n", 4194 __func__, cmd); 4195 err = -EINVAL; 4196 } 4197 return err; 4198 } 4199 4200 static int 4201 clockctl(void *priv, int enable) 4202 { 4203 struct hfc_multi *hc = priv; 4204 4205 hc->iclock_on = enable; 4206 return 0; 4207 } 4208 4209 /* 4210 * initialize the card 4211 */ 4212 4213 /* 4214 * start timer irq, wait some time and check if we have interrupts. 4215 * if not, reset chip and try again. 4216 */ 4217 static int 4218 init_card(struct hfc_multi *hc) 4219 { 4220 int err = -EIO; 4221 u_long flags; 4222 void __iomem *plx_acc; 4223 u_long plx_flags; 4224 4225 if (debug & DEBUG_HFCMULTI_INIT) 4226 printk(KERN_DEBUG "%s: entered\n", __func__); 4227 4228 spin_lock_irqsave(&hc->lock, flags); 4229 /* set interrupts but leave global interrupt disabled */ 4230 hc->hw.r_irq_ctrl = V_FIFO_IRQ; 4231 disable_hwirq(hc); 4232 spin_unlock_irqrestore(&hc->lock, flags); 4233 4234 if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED, 4235 "HFC-multi", hc)) { 4236 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n", 4237 hc->irq); 4238 hc->irq = 0; 4239 return -EIO; 4240 } 4241 4242 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4243 spin_lock_irqsave(&plx_lock, plx_flags); 4244 plx_acc = hc->plx_membase + PLX_INTCSR; 4245 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE), 4246 plx_acc); /* enable PCI & LINT1 irq */ 4247 spin_unlock_irqrestore(&plx_lock, plx_flags); 4248 } 4249 4250 if (debug & DEBUG_HFCMULTI_INIT) 4251 printk(KERN_DEBUG "%s: IRQ %d count %d\n", 4252 __func__, hc->irq, hc->irqcnt); 4253 err = init_chip(hc); 4254 if (err) 4255 goto error; 4256 /* 4257 * Finally enable IRQ output 4258 * this is only allowed, if an IRQ routine is already 4259 * established for this HFC, so don't do that earlier 4260 */ 4261 spin_lock_irqsave(&hc->lock, flags); 4262 enable_hwirq(hc); 4263 spin_unlock_irqrestore(&hc->lock, flags); 4264 /* printk(KERN_DEBUG "no master irq set!!!\n"); */ 4265 set_current_state(TASK_UNINTERRUPTIBLE); 4266 schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */ 4267 /* turn IRQ off until chip is completely initialized */ 4268 spin_lock_irqsave(&hc->lock, flags); 4269 disable_hwirq(hc); 4270 spin_unlock_irqrestore(&hc->lock, flags); 4271 if (debug & DEBUG_HFCMULTI_INIT) 4272 printk(KERN_DEBUG "%s: IRQ %d count %d\n", 4273 __func__, hc->irq, hc->irqcnt); 4274 if (hc->irqcnt) { 4275 if (debug & DEBUG_HFCMULTI_INIT) 4276 printk(KERN_DEBUG "%s: done\n", __func__); 4277 4278 return 0; 4279 } 4280 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { 4281 printk(KERN_INFO "ignoring missing interrupts\n"); 4282 return 0; 4283 } 4284 4285 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n", 4286 hc->irq); 4287 4288 err = -EIO; 4289 4290 error: 4291 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4292 spin_lock_irqsave(&plx_lock, plx_flags); 4293 plx_acc = hc->plx_membase + PLX_INTCSR; 4294 writew(0x00, plx_acc); /*disable IRQs*/ 4295 spin_unlock_irqrestore(&plx_lock, plx_flags); 4296 } 4297 4298 if (debug & DEBUG_HFCMULTI_INIT) 4299 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq); 4300 if (hc->irq) { 4301 free_irq(hc->irq, hc); 4302 hc->irq = 0; 4303 } 4304 4305 if (debug & DEBUG_HFCMULTI_INIT) 4306 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err); 4307 return err; 4308 } 4309 4310 /* 4311 * find pci device and set it up 4312 */ 4313 4314 static int 4315 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev, 4316 const struct pci_device_id *ent) 4317 { 4318 struct hm_map *m = (struct hm_map *)ent->driver_data; 4319 4320 printk(KERN_INFO 4321 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n", 4322 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal"); 4323 4324 hc->pci_dev = pdev; 4325 if (m->clock2) 4326 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip); 4327 4328 if (ent->vendor == PCI_VENDOR_ID_DIGIUM && 4329 ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) { 4330 test_and_set_bit(HFC_CHIP_B410P, &hc->chip); 4331 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip); 4332 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); 4333 hc->slots = 32; 4334 } 4335 4336 if (hc->pci_dev->irq <= 0) { 4337 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n"); 4338 return -EIO; 4339 } 4340 if (pci_enable_device(hc->pci_dev)) { 4341 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n"); 4342 return -EIO; 4343 } 4344 hc->leds = m->leds; 4345 hc->ledstate = 0xAFFEAFFE; 4346 hc->opticalsupport = m->opticalsupport; 4347 4348 hc->pci_iobase = 0; 4349 hc->pci_membase = NULL; 4350 hc->plx_membase = NULL; 4351 4352 /* set memory access methods */ 4353 if (m->io_mode) /* use mode from card config */ 4354 hc->io_mode = m->io_mode; 4355 switch (hc->io_mode) { 4356 case HFC_IO_MODE_PLXSD: 4357 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip); 4358 hc->slots = 128; /* required */ 4359 hc->HFC_outb = HFC_outb_pcimem; 4360 hc->HFC_inb = HFC_inb_pcimem; 4361 hc->HFC_inw = HFC_inw_pcimem; 4362 hc->HFC_wait = HFC_wait_pcimem; 4363 hc->read_fifo = read_fifo_pcimem; 4364 hc->write_fifo = write_fifo_pcimem; 4365 hc->plx_origmembase = hc->pci_dev->resource[0].start; 4366 /* MEMBASE 1 is PLX PCI Bridge */ 4367 4368 if (!hc->plx_origmembase) { 4369 printk(KERN_WARNING 4370 "HFC-multi: No IO-Memory for PCI PLX bridge found\n"); 4371 pci_disable_device(hc->pci_dev); 4372 return -EIO; 4373 } 4374 4375 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80); 4376 if (!hc->plx_membase) { 4377 printk(KERN_WARNING 4378 "HFC-multi: failed to remap plx address space. " 4379 "(internal error)\n"); 4380 pci_disable_device(hc->pci_dev); 4381 return -EIO; 4382 } 4383 printk(KERN_INFO 4384 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n", 4385 (u_long)hc->plx_membase, hc->plx_origmembase); 4386 4387 hc->pci_origmembase = hc->pci_dev->resource[2].start; 4388 /* MEMBASE 1 is PLX PCI Bridge */ 4389 if (!hc->pci_origmembase) { 4390 printk(KERN_WARNING 4391 "HFC-multi: No IO-Memory for PCI card found\n"); 4392 pci_disable_device(hc->pci_dev); 4393 return -EIO; 4394 } 4395 4396 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400); 4397 if (!hc->pci_membase) { 4398 printk(KERN_WARNING "HFC-multi: failed to remap io " 4399 "address space. (internal error)\n"); 4400 pci_disable_device(hc->pci_dev); 4401 return -EIO; 4402 } 4403 4404 printk(KERN_INFO 4405 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d " 4406 "leds-type %d\n", 4407 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase, 4408 hc->pci_dev->irq, HZ, hc->leds); 4409 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO); 4410 break; 4411 case HFC_IO_MODE_PCIMEM: 4412 hc->HFC_outb = HFC_outb_pcimem; 4413 hc->HFC_inb = HFC_inb_pcimem; 4414 hc->HFC_inw = HFC_inw_pcimem; 4415 hc->HFC_wait = HFC_wait_pcimem; 4416 hc->read_fifo = read_fifo_pcimem; 4417 hc->write_fifo = write_fifo_pcimem; 4418 hc->pci_origmembase = hc->pci_dev->resource[1].start; 4419 if (!hc->pci_origmembase) { 4420 printk(KERN_WARNING 4421 "HFC-multi: No IO-Memory for PCI card found\n"); 4422 pci_disable_device(hc->pci_dev); 4423 return -EIO; 4424 } 4425 4426 hc->pci_membase = ioremap(hc->pci_origmembase, 256); 4427 if (!hc->pci_membase) { 4428 printk(KERN_WARNING 4429 "HFC-multi: failed to remap io address space. " 4430 "(internal error)\n"); 4431 pci_disable_device(hc->pci_dev); 4432 return -EIO; 4433 } 4434 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ " 4435 "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase, 4436 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds); 4437 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO); 4438 break; 4439 case HFC_IO_MODE_REGIO: 4440 hc->HFC_outb = HFC_outb_regio; 4441 hc->HFC_inb = HFC_inb_regio; 4442 hc->HFC_inw = HFC_inw_regio; 4443 hc->HFC_wait = HFC_wait_regio; 4444 hc->read_fifo = read_fifo_regio; 4445 hc->write_fifo = write_fifo_regio; 4446 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start; 4447 if (!hc->pci_iobase) { 4448 printk(KERN_WARNING 4449 "HFC-multi: No IO for PCI card found\n"); 4450 pci_disable_device(hc->pci_dev); 4451 return -EIO; 4452 } 4453 4454 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) { 4455 printk(KERN_WARNING "HFC-multi: failed to request " 4456 "address space at 0x%08lx (internal error)\n", 4457 hc->pci_iobase); 4458 pci_disable_device(hc->pci_dev); 4459 return -EIO; 4460 } 4461 4462 printk(KERN_INFO 4463 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n", 4464 m->vendor_name, m->card_name, (u_int) hc->pci_iobase, 4465 hc->pci_dev->irq, HZ, hc->leds); 4466 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO); 4467 break; 4468 default: 4469 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n"); 4470 pci_disable_device(hc->pci_dev); 4471 return -EIO; 4472 } 4473 4474 pci_set_drvdata(hc->pci_dev, hc); 4475 4476 /* At this point the needed PCI config is done */ 4477 /* fifos are still not enabled */ 4478 return 0; 4479 } 4480 4481 4482 /* 4483 * remove port 4484 */ 4485 4486 static void 4487 release_port(struct hfc_multi *hc, struct dchannel *dch) 4488 { 4489 int pt, ci, i = 0; 4490 u_long flags; 4491 struct bchannel *pb; 4492 4493 ci = dch->slot; 4494 pt = hc->chan[ci].port; 4495 4496 if (debug & DEBUG_HFCMULTI_INIT) 4497 printk(KERN_DEBUG "%s: entered for port %d\n", 4498 __func__, pt + 1); 4499 4500 if (pt >= hc->ports) { 4501 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n", 4502 __func__, pt + 1); 4503 return; 4504 } 4505 4506 if (debug & DEBUG_HFCMULTI_INIT) 4507 printk(KERN_DEBUG "%s: releasing port=%d\n", 4508 __func__, pt + 1); 4509 4510 if (dch->dev.D.protocol == ISDN_P_TE_S0) 4511 l1_event(dch->l1, CLOSE_CHANNEL); 4512 4513 hc->chan[ci].dch = NULL; 4514 4515 if (hc->created[pt]) { 4516 hc->created[pt] = 0; 4517 mISDN_unregister_device(&dch->dev); 4518 } 4519 4520 spin_lock_irqsave(&hc->lock, flags); 4521 4522 if (dch->timer.function) { 4523 del_timer(&dch->timer); 4524 dch->timer.function = NULL; 4525 } 4526 4527 if (hc->ctype == HFC_TYPE_E1) { /* E1 */ 4528 /* remove sync */ 4529 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4530 hc->syncronized = 0; 4531 plxsd_checksync(hc, 1); 4532 } 4533 /* free channels */ 4534 for (i = 0; i <= 31; i++) { 4535 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */ 4536 continue; 4537 if (hc->chan[i].bch) { 4538 if (debug & DEBUG_HFCMULTI_INIT) 4539 printk(KERN_DEBUG 4540 "%s: free port %d channel %d\n", 4541 __func__, hc->chan[i].port + 1, i); 4542 pb = hc->chan[i].bch; 4543 hc->chan[i].bch = NULL; 4544 spin_unlock_irqrestore(&hc->lock, flags); 4545 mISDN_freebchannel(pb); 4546 kfree(pb); 4547 kfree(hc->chan[i].coeff); 4548 spin_lock_irqsave(&hc->lock, flags); 4549 } 4550 } 4551 } else { 4552 /* remove sync */ 4553 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { 4554 hc->syncronized &= 4555 ~(1 << hc->chan[ci].port); 4556 plxsd_checksync(hc, 1); 4557 } 4558 /* free channels */ 4559 if (hc->chan[ci - 2].bch) { 4560 if (debug & DEBUG_HFCMULTI_INIT) 4561 printk(KERN_DEBUG 4562 "%s: free port %d channel %d\n", 4563 __func__, hc->chan[ci - 2].port + 1, 4564 ci - 2); 4565 pb = hc->chan[ci - 2].bch; 4566 hc->chan[ci - 2].bch = NULL; 4567 spin_unlock_irqrestore(&hc->lock, flags); 4568 mISDN_freebchannel(pb); 4569 kfree(pb); 4570 kfree(hc->chan[ci - 2].coeff); 4571 spin_lock_irqsave(&hc->lock, flags); 4572 } 4573 if (hc->chan[ci - 1].bch) { 4574 if (debug & DEBUG_HFCMULTI_INIT) 4575 printk(KERN_DEBUG 4576 "%s: free port %d channel %d\n", 4577 __func__, hc->chan[ci - 1].port + 1, 4578 ci - 1); 4579 pb = hc->chan[ci - 1].bch; 4580 hc->chan[ci - 1].bch = NULL; 4581 spin_unlock_irqrestore(&hc->lock, flags); 4582 mISDN_freebchannel(pb); 4583 kfree(pb); 4584 kfree(hc->chan[ci - 1].coeff); 4585 spin_lock_irqsave(&hc->lock, flags); 4586 } 4587 } 4588 4589 spin_unlock_irqrestore(&hc->lock, flags); 4590 4591 if (debug & DEBUG_HFCMULTI_INIT) 4592 printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__, 4593 pt+1, ci); 4594 mISDN_freedchannel(dch); 4595 kfree(dch); 4596 4597 if (debug & DEBUG_HFCMULTI_INIT) 4598 printk(KERN_DEBUG "%s: done!\n", __func__); 4599 } 4600 4601 static void 4602 release_card(struct hfc_multi *hc) 4603 { 4604 u_long flags; 4605 int ch; 4606 4607 if (debug & DEBUG_HFCMULTI_INIT) 4608 printk(KERN_DEBUG "%s: release card (%d) entered\n", 4609 __func__, hc->id); 4610 4611 /* unregister clock source */ 4612 if (hc->iclock) 4613 mISDN_unregister_clock(hc->iclock); 4614 4615 /* disable and free irq */ 4616 spin_lock_irqsave(&hc->lock, flags); 4617 disable_hwirq(hc); 4618 spin_unlock_irqrestore(&hc->lock, flags); 4619 udelay(1000); 4620 if (hc->irq) { 4621 if (debug & DEBUG_HFCMULTI_INIT) 4622 printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n", 4623 __func__, hc->irq, hc); 4624 free_irq(hc->irq, hc); 4625 hc->irq = 0; 4626 4627 } 4628 4629 /* disable D-channels & B-channels */ 4630 if (debug & DEBUG_HFCMULTI_INIT) 4631 printk(KERN_DEBUG "%s: disable all channels (d and b)\n", 4632 __func__); 4633 for (ch = 0; ch <= 31; ch++) { 4634 if (hc->chan[ch].dch) 4635 release_port(hc, hc->chan[ch].dch); 4636 } 4637 4638 /* dimm leds */ 4639 if (hc->leds) 4640 hfcmulti_leds(hc); 4641 4642 /* release hardware */ 4643 release_io_hfcmulti(hc); 4644 4645 if (debug & DEBUG_HFCMULTI_INIT) 4646 printk(KERN_DEBUG "%s: remove instance from list\n", 4647 __func__); 4648 list_del(&hc->list); 4649 4650 if (debug & DEBUG_HFCMULTI_INIT) 4651 printk(KERN_DEBUG "%s: delete instance\n", __func__); 4652 if (hc == syncmaster) 4653 syncmaster = NULL; 4654 kfree(hc); 4655 if (debug & DEBUG_HFCMULTI_INIT) 4656 printk(KERN_DEBUG "%s: card successfully removed\n", 4657 __func__); 4658 } 4659 4660 static void 4661 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m) 4662 { 4663 /* set optical line type */ 4664 if (port[Port_cnt] & 0x001) { 4665 if (!m->opticalsupport) { 4666 printk(KERN_INFO 4667 "This board has no optical " 4668 "support\n"); 4669 } else { 4670 if (debug & DEBUG_HFCMULTI_INIT) 4671 printk(KERN_DEBUG 4672 "%s: PORT set optical " 4673 "interfacs: card(%d) " 4674 "port(%d)\n", 4675 __func__, 4676 HFC_cnt + 1, 1); 4677 test_and_set_bit(HFC_CFG_OPTICAL, 4678 &hc->chan[hc->dnum[0]].cfg); 4679 } 4680 } 4681 /* set LOS report */ 4682 if (port[Port_cnt] & 0x004) { 4683 if (debug & DEBUG_HFCMULTI_INIT) 4684 printk(KERN_DEBUG "%s: PORT set " 4685 "LOS report: card(%d) port(%d)\n", 4686 __func__, HFC_cnt + 1, 1); 4687 test_and_set_bit(HFC_CFG_REPORT_LOS, 4688 &hc->chan[hc->dnum[0]].cfg); 4689 } 4690 /* set AIS report */ 4691 if (port[Port_cnt] & 0x008) { 4692 if (debug & DEBUG_HFCMULTI_INIT) 4693 printk(KERN_DEBUG "%s: PORT set " 4694 "AIS report: card(%d) port(%d)\n", 4695 __func__, HFC_cnt + 1, 1); 4696 test_and_set_bit(HFC_CFG_REPORT_AIS, 4697 &hc->chan[hc->dnum[0]].cfg); 4698 } 4699 /* set SLIP report */ 4700 if (port[Port_cnt] & 0x010) { 4701 if (debug & DEBUG_HFCMULTI_INIT) 4702 printk(KERN_DEBUG 4703 "%s: PORT set SLIP report: " 4704 "card(%d) port(%d)\n", 4705 __func__, HFC_cnt + 1, 1); 4706 test_and_set_bit(HFC_CFG_REPORT_SLIP, 4707 &hc->chan[hc->dnum[0]].cfg); 4708 } 4709 /* set RDI report */ 4710 if (port[Port_cnt] & 0x020) { 4711 if (debug & DEBUG_HFCMULTI_INIT) 4712 printk(KERN_DEBUG 4713 "%s: PORT set RDI report: " 4714 "card(%d) port(%d)\n", 4715 __func__, HFC_cnt + 1, 1); 4716 test_and_set_bit(HFC_CFG_REPORT_RDI, 4717 &hc->chan[hc->dnum[0]].cfg); 4718 } 4719 /* set CRC-4 Mode */ 4720 if (!(port[Port_cnt] & 0x100)) { 4721 if (debug & DEBUG_HFCMULTI_INIT) 4722 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:" 4723 " card(%d) port(%d)\n", 4724 __func__, HFC_cnt + 1, 1); 4725 test_and_set_bit(HFC_CFG_CRC4, 4726 &hc->chan[hc->dnum[0]].cfg); 4727 } else { 4728 if (debug & DEBUG_HFCMULTI_INIT) 4729 printk(KERN_DEBUG "%s: PORT turn off CRC4" 4730 " report: card(%d) port(%d)\n", 4731 __func__, HFC_cnt + 1, 1); 4732 } 4733 /* set forced clock */ 4734 if (port[Port_cnt] & 0x0200) { 4735 if (debug & DEBUG_HFCMULTI_INIT) 4736 printk(KERN_DEBUG "%s: PORT force getting clock from " 4737 "E1: card(%d) port(%d)\n", 4738 __func__, HFC_cnt + 1, 1); 4739 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip); 4740 } else 4741 if (port[Port_cnt] & 0x0400) { 4742 if (debug & DEBUG_HFCMULTI_INIT) 4743 printk(KERN_DEBUG "%s: PORT force putting clock to " 4744 "E1: card(%d) port(%d)\n", 4745 __func__, HFC_cnt + 1, 1); 4746 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip); 4747 } 4748 /* set JATT PLL */ 4749 if (port[Port_cnt] & 0x0800) { 4750 if (debug & DEBUG_HFCMULTI_INIT) 4751 printk(KERN_DEBUG "%s: PORT disable JATT PLL on " 4752 "E1: card(%d) port(%d)\n", 4753 __func__, HFC_cnt + 1, 1); 4754 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip); 4755 } 4756 /* set elastic jitter buffer */ 4757 if (port[Port_cnt] & 0x3000) { 4758 hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3; 4759 if (debug & DEBUG_HFCMULTI_INIT) 4760 printk(KERN_DEBUG 4761 "%s: PORT set elastic " 4762 "buffer to %d: card(%d) port(%d)\n", 4763 __func__, hc->chan[hc->dnum[0]].jitter, 4764 HFC_cnt + 1, 1); 4765 } else 4766 hc->chan[hc->dnum[0]].jitter = 2; /* default */ 4767 } 4768 4769 static int 4770 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt) 4771 { 4772 struct dchannel *dch; 4773 struct bchannel *bch; 4774 int ch, ret = 0; 4775 char name[MISDN_MAX_IDLEN]; 4776 int bcount = 0; 4777 4778 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL); 4779 if (!dch) 4780 return -ENOMEM; 4781 dch->debug = debug; 4782 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change); 4783 dch->hw = hc; 4784 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1); 4785 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | 4786 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); 4787 dch->dev.D.send = handle_dmsg; 4788 dch->dev.D.ctrl = hfcm_dctrl; 4789 dch->slot = hc->dnum[pt]; 4790 hc->chan[hc->dnum[pt]].dch = dch; 4791 hc->chan[hc->dnum[pt]].port = pt; 4792 hc->chan[hc->dnum[pt]].nt_timer = -1; 4793 for (ch = 1; ch <= 31; ch++) { 4794 if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */ 4795 continue; 4796 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL); 4797 if (!bch) { 4798 printk(KERN_ERR "%s: no memory for bchannel\n", 4799 __func__); 4800 ret = -ENOMEM; 4801 goto free_chan; 4802 } 4803 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL); 4804 if (!hc->chan[ch].coeff) { 4805 printk(KERN_ERR "%s: no memory for coeffs\n", 4806 __func__); 4807 ret = -ENOMEM; 4808 kfree(bch); 4809 goto free_chan; 4810 } 4811 bch->nr = ch; 4812 bch->slot = ch; 4813 bch->debug = debug; 4814 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1); 4815 bch->hw = hc; 4816 bch->ch.send = handle_bmsg; 4817 bch->ch.ctrl = hfcm_bctrl; 4818 bch->ch.nr = ch; 4819 list_add(&bch->ch.list, &dch->dev.bchannels); 4820 hc->chan[ch].bch = bch; 4821 hc->chan[ch].port = pt; 4822 set_channelmap(bch->nr, dch->dev.channelmap); 4823 bcount++; 4824 } 4825 dch->dev.nrbchan = bcount; 4826 if (pt == 0) 4827 init_e1_port_hw(hc, m); 4828 if (hc->ports > 1) 4829 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d", 4830 HFC_cnt + 1, pt+1); 4831 else 4832 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1); 4833 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name); 4834 if (ret) 4835 goto free_chan; 4836 hc->created[pt] = 1; 4837 return ret; 4838 free_chan: 4839 release_port(hc, dch); 4840 return ret; 4841 } 4842 4843 static int 4844 init_multi_port(struct hfc_multi *hc, int pt) 4845 { 4846 struct dchannel *dch; 4847 struct bchannel *bch; 4848 int ch, i, ret = 0; 4849 char name[MISDN_MAX_IDLEN]; 4850 4851 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL); 4852 if (!dch) 4853 return -ENOMEM; 4854 dch->debug = debug; 4855 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change); 4856 dch->hw = hc; 4857 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); 4858 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | 4859 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); 4860 dch->dev.D.send = handle_dmsg; 4861 dch->dev.D.ctrl = hfcm_dctrl; 4862 dch->dev.nrbchan = 2; 4863 i = pt << 2; 4864 dch->slot = i + 2; 4865 hc->chan[i + 2].dch = dch; 4866 hc->chan[i + 2].port = pt; 4867 hc->chan[i + 2].nt_timer = -1; 4868 for (ch = 0; ch < dch->dev.nrbchan; ch++) { 4869 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL); 4870 if (!bch) { 4871 printk(KERN_ERR "%s: no memory for bchannel\n", 4872 __func__); 4873 ret = -ENOMEM; 4874 goto free_chan; 4875 } 4876 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL); 4877 if (!hc->chan[i + ch].coeff) { 4878 printk(KERN_ERR "%s: no memory for coeffs\n", 4879 __func__); 4880 ret = -ENOMEM; 4881 kfree(bch); 4882 goto free_chan; 4883 } 4884 bch->nr = ch + 1; 4885 bch->slot = i + ch; 4886 bch->debug = debug; 4887 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1); 4888 bch->hw = hc; 4889 bch->ch.send = handle_bmsg; 4890 bch->ch.ctrl = hfcm_bctrl; 4891 bch->ch.nr = ch + 1; 4892 list_add(&bch->ch.list, &dch->dev.bchannels); 4893 hc->chan[i + ch].bch = bch; 4894 hc->chan[i + ch].port = pt; 4895 set_channelmap(bch->nr, dch->dev.channelmap); 4896 } 4897 /* set master clock */ 4898 if (port[Port_cnt] & 0x001) { 4899 if (debug & DEBUG_HFCMULTI_INIT) 4900 printk(KERN_DEBUG 4901 "%s: PROTOCOL set master clock: " 4902 "card(%d) port(%d)\n", 4903 __func__, HFC_cnt + 1, pt + 1); 4904 if (dch->dev.D.protocol != ISDN_P_TE_S0) { 4905 printk(KERN_ERR "Error: Master clock " 4906 "for port(%d) of card(%d) is only" 4907 " possible with TE-mode\n", 4908 pt + 1, HFC_cnt + 1); 4909 ret = -EINVAL; 4910 goto free_chan; 4911 } 4912 if (hc->masterclk >= 0) { 4913 printk(KERN_ERR "Error: Master clock " 4914 "for port(%d) of card(%d) already " 4915 "defined for port(%d)\n", 4916 pt + 1, HFC_cnt + 1, hc->masterclk + 1); 4917 ret = -EINVAL; 4918 goto free_chan; 4919 } 4920 hc->masterclk = pt; 4921 } 4922 /* set transmitter line to non capacitive */ 4923 if (port[Port_cnt] & 0x002) { 4924 if (debug & DEBUG_HFCMULTI_INIT) 4925 printk(KERN_DEBUG 4926 "%s: PROTOCOL set non capacitive " 4927 "transmitter: card(%d) port(%d)\n", 4928 __func__, HFC_cnt + 1, pt + 1); 4929 test_and_set_bit(HFC_CFG_NONCAP_TX, 4930 &hc->chan[i + 2].cfg); 4931 } 4932 /* disable E-channel */ 4933 if (port[Port_cnt] & 0x004) { 4934 if (debug & DEBUG_HFCMULTI_INIT) 4935 printk(KERN_DEBUG 4936 "%s: PROTOCOL disable E-channel: " 4937 "card(%d) port(%d)\n", 4938 __func__, HFC_cnt + 1, pt + 1); 4939 test_and_set_bit(HFC_CFG_DIS_ECHANNEL, 4940 &hc->chan[i + 2].cfg); 4941 } 4942 if (hc->ctype == HFC_TYPE_XHFC) { 4943 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d", 4944 HFC_cnt + 1, pt + 1); 4945 ret = mISDN_register_device(&dch->dev, NULL, name); 4946 } else { 4947 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d", 4948 hc->ctype, HFC_cnt + 1, pt + 1); 4949 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name); 4950 } 4951 if (ret) 4952 goto free_chan; 4953 hc->created[pt] = 1; 4954 return ret; 4955 free_chan: 4956 release_port(hc, dch); 4957 return ret; 4958 } 4959 4960 static int 4961 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev, 4962 const struct pci_device_id *ent) 4963 { 4964 int ret_err = 0; 4965 int pt; 4966 struct hfc_multi *hc; 4967 u_long flags; 4968 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */ 4969 int i, ch; 4970 u_int maskcheck; 4971 4972 if (HFC_cnt >= MAX_CARDS) { 4973 printk(KERN_ERR "too many cards (max=%d).\n", 4974 MAX_CARDS); 4975 return -EINVAL; 4976 } 4977 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) { 4978 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but " 4979 "type[%d] %d was supplied as module parameter\n", 4980 m->vendor_name, m->card_name, m->type, HFC_cnt, 4981 type[HFC_cnt] & 0xff); 4982 printk(KERN_WARNING "HFC-MULTI: Load module without parameters " 4983 "first, to see cards and their types."); 4984 return -EINVAL; 4985 } 4986 if (debug & DEBUG_HFCMULTI_INIT) 4987 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n", 4988 __func__, m->vendor_name, m->card_name, m->type, 4989 type[HFC_cnt]); 4990 4991 /* allocate card+fifo structure */ 4992 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL); 4993 if (!hc) { 4994 printk(KERN_ERR "No kmem for HFC-Multi card\n"); 4995 return -ENOMEM; 4996 } 4997 spin_lock_init(&hc->lock); 4998 hc->mtyp = m; 4999 hc->ctype = m->type; 5000 hc->ports = m->ports; 5001 hc->id = HFC_cnt; 5002 hc->pcm = pcm[HFC_cnt]; 5003 hc->io_mode = iomode[HFC_cnt]; 5004 if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) { 5005 /* fragment card */ 5006 pt = 0; 5007 maskcheck = 0; 5008 for (ch = 0; ch <= 31; ch++) { 5009 if (!((1 << ch) & dmask[E1_cnt])) 5010 continue; 5011 hc->dnum[pt] = ch; 5012 hc->bmask[pt] = bmask[bmask_cnt++]; 5013 if ((maskcheck & hc->bmask[pt]) 5014 || (dmask[E1_cnt] & hc->bmask[pt])) { 5015 printk(KERN_INFO 5016 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n", 5017 E1_cnt + 1, pt); 5018 kfree(hc); 5019 return -EINVAL; 5020 } 5021 maskcheck |= hc->bmask[pt]; 5022 printk(KERN_INFO 5023 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n", 5024 E1_cnt + 1, ch, hc->bmask[pt]); 5025 pt++; 5026 } 5027 hc->ports = pt; 5028 } 5029 if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) { 5030 /* default card layout */ 5031 hc->dnum[0] = 16; 5032 hc->bmask[0] = 0xfffefffe; 5033 hc->ports = 1; 5034 } 5035 5036 /* set chip specific features */ 5037 hc->masterclk = -1; 5038 if (type[HFC_cnt] & 0x100) { 5039 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip); 5040 hc->silence = 0xff; /* ulaw silence */ 5041 } else 5042 hc->silence = 0x2a; /* alaw silence */ 5043 if ((poll >> 1) > sizeof(hc->silence_data)) { 5044 printk(KERN_ERR "HFCMULTI error: silence_data too small, " 5045 "please fix\n"); 5046 kfree(hc); 5047 return -EINVAL; 5048 } 5049 for (i = 0; i < (poll >> 1); i++) 5050 hc->silence_data[i] = hc->silence; 5051 5052 if (hc->ctype != HFC_TYPE_XHFC) { 5053 if (!(type[HFC_cnt] & 0x200)) 5054 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip); 5055 test_and_set_bit(HFC_CHIP_CONF, &hc->chip); 5056 } 5057 5058 if (type[HFC_cnt] & 0x800) 5059 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); 5060 if (type[HFC_cnt] & 0x1000) { 5061 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip); 5062 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); 5063 } 5064 if (type[HFC_cnt] & 0x4000) 5065 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip); 5066 if (type[HFC_cnt] & 0x8000) 5067 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip); 5068 hc->slots = 32; 5069 if (type[HFC_cnt] & 0x10000) 5070 hc->slots = 64; 5071 if (type[HFC_cnt] & 0x20000) 5072 hc->slots = 128; 5073 if (type[HFC_cnt] & 0x80000) { 5074 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip); 5075 hc->wdcount = 0; 5076 hc->wdbyte = V_GPIO_OUT2; 5077 printk(KERN_NOTICE "Watchdog enabled\n"); 5078 } 5079 5080 if (pdev && ent) 5081 /* setup pci, hc->slots may change due to PLXSD */ 5082 ret_err = setup_pci(hc, pdev, ent); 5083 else 5084 #ifdef CONFIG_MISDN_HFCMULTI_8xx 5085 ret_err = setup_embedded(hc, m); 5086 #else 5087 { 5088 printk(KERN_WARNING "Embedded IO Mode not selected\n"); 5089 ret_err = -EIO; 5090 } 5091 #endif 5092 if (ret_err) { 5093 if (hc == syncmaster) 5094 syncmaster = NULL; 5095 kfree(hc); 5096 return ret_err; 5097 } 5098 5099 hc->HFC_outb_nodebug = hc->HFC_outb; 5100 hc->HFC_inb_nodebug = hc->HFC_inb; 5101 hc->HFC_inw_nodebug = hc->HFC_inw; 5102 hc->HFC_wait_nodebug = hc->HFC_wait; 5103 #ifdef HFC_REGISTER_DEBUG 5104 hc->HFC_outb = HFC_outb_debug; 5105 hc->HFC_inb = HFC_inb_debug; 5106 hc->HFC_inw = HFC_inw_debug; 5107 hc->HFC_wait = HFC_wait_debug; 5108 #endif 5109 /* create channels */ 5110 for (pt = 0; pt < hc->ports; pt++) { 5111 if (Port_cnt >= MAX_PORTS) { 5112 printk(KERN_ERR "too many ports (max=%d).\n", 5113 MAX_PORTS); 5114 ret_err = -EINVAL; 5115 goto free_card; 5116 } 5117 if (hc->ctype == HFC_TYPE_E1) 5118 ret_err = init_e1_port(hc, m, pt); 5119 else 5120 ret_err = init_multi_port(hc, pt); 5121 if (debug & DEBUG_HFCMULTI_INIT) 5122 printk(KERN_DEBUG 5123 "%s: Registering D-channel, card(%d) port(%d) " 5124 "result %d\n", 5125 __func__, HFC_cnt + 1, pt + 1, ret_err); 5126 5127 if (ret_err) { 5128 while (pt) { /* release already registered ports */ 5129 pt--; 5130 if (hc->ctype == HFC_TYPE_E1) 5131 release_port(hc, 5132 hc->chan[hc->dnum[pt]].dch); 5133 else 5134 release_port(hc, 5135 hc->chan[(pt << 2) + 2].dch); 5136 } 5137 goto free_card; 5138 } 5139 if (hc->ctype != HFC_TYPE_E1) 5140 Port_cnt++; /* for each S0 port */ 5141 } 5142 if (hc->ctype == HFC_TYPE_E1) { 5143 Port_cnt++; /* for each E1 port */ 5144 E1_cnt++; 5145 } 5146 5147 /* disp switches */ 5148 switch (m->dip_type) { 5149 case DIP_4S: 5150 /* 5151 * Get DIP setting for beroNet 1S/2S/4S cards 5152 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) + 5153 * GPI 19/23 (R_GPI_IN2)) 5154 */ 5155 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) | 5156 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) | 5157 (~HFC_inb(hc, R_GPI_IN2) & 0x08); 5158 5159 /* Port mode (TE/NT) jumpers */ 5160 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf); 5161 5162 if (test_bit(HFC_CHIP_B410P, &hc->chip)) 5163 pmj = ~pmj & 0xf; 5164 5165 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n", 5166 m->vendor_name, m->card_name, dips, pmj); 5167 break; 5168 case DIP_8S: 5169 /* 5170 * Get DIP Setting for beroNet 8S0+ cards 5171 * Enable PCI auxbridge function 5172 */ 5173 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK); 5174 /* prepare access to auxport */ 5175 outw(0x4000, hc->pci_iobase + 4); 5176 /* 5177 * some dummy reads are required to 5178 * read valid DIP switch data 5179 */ 5180 dips = inb(hc->pci_iobase); 5181 dips = inb(hc->pci_iobase); 5182 dips = inb(hc->pci_iobase); 5183 dips = ~inb(hc->pci_iobase) & 0x3F; 5184 outw(0x0, hc->pci_iobase + 4); 5185 /* disable PCI auxbridge function */ 5186 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK); 5187 printk(KERN_INFO "%s: %s DIPs(0x%x)\n", 5188 m->vendor_name, m->card_name, dips); 5189 break; 5190 case DIP_E1: 5191 /* 5192 * get DIP Setting for beroNet E1 cards 5193 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0) 5194 */ 5195 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4; 5196 printk(KERN_INFO "%s: %s DIPs(0x%x)\n", 5197 m->vendor_name, m->card_name, dips); 5198 break; 5199 } 5200 5201 /* add to list */ 5202 spin_lock_irqsave(&HFClock, flags); 5203 list_add_tail(&hc->list, &HFClist); 5204 spin_unlock_irqrestore(&HFClock, flags); 5205 5206 /* use as clock source */ 5207 if (clock == HFC_cnt + 1) 5208 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc); 5209 5210 /* initialize hardware */ 5211 hc->irq = (m->irq) ? : hc->pci_dev->irq; 5212 ret_err = init_card(hc); 5213 if (ret_err) { 5214 printk(KERN_ERR "init card returns %d\n", ret_err); 5215 release_card(hc); 5216 return ret_err; 5217 } 5218 5219 /* start IRQ and return */ 5220 spin_lock_irqsave(&hc->lock, flags); 5221 enable_hwirq(hc); 5222 spin_unlock_irqrestore(&hc->lock, flags); 5223 return 0; 5224 5225 free_card: 5226 release_io_hfcmulti(hc); 5227 if (hc == syncmaster) 5228 syncmaster = NULL; 5229 kfree(hc); 5230 return ret_err; 5231 } 5232 5233 static void hfc_remove_pci(struct pci_dev *pdev) 5234 { 5235 struct hfc_multi *card = pci_get_drvdata(pdev); 5236 u_long flags; 5237 5238 if (debug) 5239 printk(KERN_INFO "removing hfc_multi card vendor:%x " 5240 "device:%x subvendor:%x subdevice:%x\n", 5241 pdev->vendor, pdev->device, 5242 pdev->subsystem_vendor, pdev->subsystem_device); 5243 5244 if (card) { 5245 spin_lock_irqsave(&HFClock, flags); 5246 release_card(card); 5247 spin_unlock_irqrestore(&HFClock, flags); 5248 } else { 5249 if (debug) 5250 printk(KERN_DEBUG "%s: drvdata already removed\n", 5251 __func__); 5252 } 5253 } 5254 5255 #define VENDOR_CCD "Cologne Chip AG" 5256 #define VENDOR_BN "beroNet GmbH" 5257 #define VENDOR_DIG "Digium Inc." 5258 #define VENDOR_JH "Junghanns.NET GmbH" 5259 #define VENDOR_PRIM "PrimuX" 5260 5261 static const struct hm_map hfcm_map[] = { 5262 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0}, 5263 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, 5264 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, 5265 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, 5266 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0}, 5267 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0}, 5268 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, 5269 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0}, 5270 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0}, 5271 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0}, 5272 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0}, 5273 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0}, 5274 5275 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0}, 5276 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S, 5277 HFC_IO_MODE_REGIO, 0}, 5278 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0}, 5279 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0}, 5280 5281 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0}, 5282 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0}, 5283 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0}, 5284 5285 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, 5286 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0}, 5287 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, 5288 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, 5289 5290 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0}, 5291 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0}, 5292 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0}, 5293 5294 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0, 5295 HFC_IO_MODE_PLXSD, 0}, 5296 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0, 5297 HFC_IO_MODE_PLXSD, 0}, 5298 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0}, 5299 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0}, 5300 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0}, 5301 /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0, 5302 HFC_IO_MODE_EMBSD, XHFC_IRQ}, 5303 /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0}, 5304 /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, 5305 /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, 5306 }; 5307 5308 #undef H 5309 #define H(x) ((unsigned long)&hfcm_map[x]) 5310 static const struct pci_device_id hfmultipci_ids[] = { 5311 5312 /* Cards with HFC-4S Chip */ 5313 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5314 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */ 5315 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5316 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */ 5317 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5318 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */ 5319 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5320 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */ 5321 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5322 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */ 5323 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5324 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */ 5325 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5326 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */ 5327 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5328 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */ 5329 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 5330 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)}, 5331 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5332 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */ 5333 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5334 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)}, 5335 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5336 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */ 5337 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5338 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */ 5339 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5340 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */ 5341 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5342 0xb761, 0, 0, H(33)}, /* BN2S PCIe */ 5343 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, 5344 0xb762, 0, 0, H(34)}, /* BN4S PCIe */ 5345 5346 /* Cards with HFC-8S Chip */ 5347 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5348 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */ 5349 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5350 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */ 5351 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5352 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */ 5353 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5354 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */ 5355 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5356 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */ 5357 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5358 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */ 5359 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5360 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */ 5361 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5362 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */ 5363 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, 5364 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */ 5365 5366 5367 /* Cards with HFC-E1 Chip */ 5368 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5369 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */ 5370 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5371 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */ 5372 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5373 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */ 5374 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5375 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */ 5376 5377 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5378 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */ 5379 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5380 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */ 5381 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5382 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */ 5383 5384 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD, 5385 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */ 5386 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD, 5387 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */ 5388 5389 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, 5390 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */ 5391 5392 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 }, 5393 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 }, 5394 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 }, 5395 {0, } 5396 }; 5397 #undef H 5398 5399 MODULE_DEVICE_TABLE(pci, hfmultipci_ids); 5400 5401 static int 5402 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 5403 { 5404 struct hm_map *m = (struct hm_map *)ent->driver_data; 5405 int ret; 5406 5407 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && ( 5408 ent->device == PCI_DEVICE_ID_CCD_HFC4S || 5409 ent->device == PCI_DEVICE_ID_CCD_HFC8S || 5410 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) { 5411 printk(KERN_ERR 5412 "Unknown HFC multiport controller (vendor:%04x device:%04x " 5413 "subvendor:%04x subdevice:%04x)\n", pdev->vendor, 5414 pdev->device, pdev->subsystem_vendor, 5415 pdev->subsystem_device); 5416 printk(KERN_ERR 5417 "Please contact the driver maintainer for support.\n"); 5418 return -ENODEV; 5419 } 5420 ret = hfcmulti_init(m, pdev, ent); 5421 if (ret) 5422 return ret; 5423 HFC_cnt++; 5424 printk(KERN_INFO "%d devices registered\n", HFC_cnt); 5425 return 0; 5426 } 5427 5428 static struct pci_driver hfcmultipci_driver = { 5429 .name = "hfc_multi", 5430 .probe = hfcmulti_probe, 5431 .remove = hfc_remove_pci, 5432 .id_table = hfmultipci_ids, 5433 }; 5434 5435 static void __exit 5436 HFCmulti_cleanup(void) 5437 { 5438 struct hfc_multi *card, *next; 5439 5440 /* get rid of all devices of this driver */ 5441 list_for_each_entry_safe(card, next, &HFClist, list) 5442 release_card(card); 5443 pci_unregister_driver(&hfcmultipci_driver); 5444 } 5445 5446 static int __init 5447 HFCmulti_init(void) 5448 { 5449 int err; 5450 int i, xhfc = 0; 5451 struct hm_map m; 5452 5453 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION); 5454 5455 #ifdef IRQ_DEBUG 5456 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__); 5457 #endif 5458 5459 if (debug & DEBUG_HFCMULTI_INIT) 5460 printk(KERN_DEBUG "%s: init entered\n", __func__); 5461 5462 switch (poll) { 5463 case 0: 5464 poll_timer = 6; 5465 poll = 128; 5466 break; 5467 case 8: 5468 poll_timer = 2; 5469 break; 5470 case 16: 5471 poll_timer = 3; 5472 break; 5473 case 32: 5474 poll_timer = 4; 5475 break; 5476 case 64: 5477 poll_timer = 5; 5478 break; 5479 case 128: 5480 poll_timer = 6; 5481 break; 5482 case 256: 5483 poll_timer = 7; 5484 break; 5485 default: 5486 printk(KERN_ERR 5487 "%s: Wrong poll value (%d).\n", __func__, poll); 5488 err = -EINVAL; 5489 return err; 5490 5491 } 5492 5493 if (!clock) 5494 clock = 1; 5495 5496 /* Register the embedded devices. 5497 * This should be done before the PCI cards registration */ 5498 switch (hwid) { 5499 case HWID_MINIP4: 5500 xhfc = 1; 5501 m = hfcm_map[31]; 5502 break; 5503 case HWID_MINIP8: 5504 xhfc = 2; 5505 m = hfcm_map[31]; 5506 break; 5507 case HWID_MINIP16: 5508 xhfc = 4; 5509 m = hfcm_map[31]; 5510 break; 5511 default: 5512 xhfc = 0; 5513 } 5514 5515 for (i = 0; i < xhfc; ++i) { 5516 err = hfcmulti_init(&m, NULL, NULL); 5517 if (err) { 5518 printk(KERN_ERR "error registering embedded driver: " 5519 "%x\n", err); 5520 return err; 5521 } 5522 HFC_cnt++; 5523 printk(KERN_INFO "%d devices registered\n", HFC_cnt); 5524 } 5525 5526 /* Register the PCI cards */ 5527 err = pci_register_driver(&hfcmultipci_driver); 5528 if (err < 0) { 5529 printk(KERN_ERR "error registering pci driver: %x\n", err); 5530 return err; 5531 } 5532 5533 return 0; 5534 } 5535 5536 5537 module_init(HFCmulti_init); 5538 module_exit(HFCmulti_cleanup); 5539