xref: /linux/drivers/irqchip/irq-riscv-intc.c (revision a3f143c461444c0b56360bbf468615fa814a8372)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  * Copyright (C) 2017-2018 SiFive
5  * Copyright (C) 2020 Western Digital Corporation or its affiliates.
6  */
7 
8 #define pr_fmt(fmt) "riscv-intc: " fmt
9 #include <linux/acpi.h>
10 #include <linux/atomic.h>
11 #include <linux/bits.h>
12 #include <linux/cpu.h>
13 #include <linux/irq.h>
14 #include <linux/irqchip.h>
15 #include <linux/irqdomain.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/smp.h>
20 #include <linux/soc/andes/irq.h>
21 
22 #include <asm/hwcap.h>
23 
24 static struct irq_domain *intc_domain;
25 static unsigned int riscv_intc_nr_irqs __ro_after_init = BITS_PER_LONG;
26 static unsigned int riscv_intc_custom_base __ro_after_init = BITS_PER_LONG;
27 static unsigned int riscv_intc_custom_nr_irqs __ro_after_init;
28 
29 static void riscv_intc_irq(struct pt_regs *regs)
30 {
31 	unsigned long cause = regs->cause & ~CAUSE_IRQ_FLAG;
32 
33 	if (generic_handle_domain_irq(intc_domain, cause))
34 		pr_warn_ratelimited("Failed to handle interrupt (cause: %ld)\n", cause);
35 }
36 
37 static void riscv_intc_aia_irq(struct pt_regs *regs)
38 {
39 	unsigned long topi;
40 
41 	while ((topi = csr_read(CSR_TOPI)))
42 		generic_handle_domain_irq(intc_domain, topi >> TOPI_IID_SHIFT);
43 }
44 
45 /*
46  * On RISC-V systems local interrupts are masked or unmasked by writing
47  * the SIE (Supervisor Interrupt Enable) CSR.  As CSRs can only be written
48  * on the local hart, these functions can only be called on the hart that
49  * corresponds to the IRQ chip.
50  */
51 
52 static void riscv_intc_irq_mask(struct irq_data *d)
53 {
54 	if (IS_ENABLED(CONFIG_32BIT) && d->hwirq >= BITS_PER_LONG)
55 		csr_clear(CSR_IEH, BIT(d->hwirq - BITS_PER_LONG));
56 	else
57 		csr_clear(CSR_IE, BIT(d->hwirq));
58 }
59 
60 static void riscv_intc_irq_unmask(struct irq_data *d)
61 {
62 	if (IS_ENABLED(CONFIG_32BIT) && d->hwirq >= BITS_PER_LONG)
63 		csr_set(CSR_IEH, BIT(d->hwirq - BITS_PER_LONG));
64 	else
65 		csr_set(CSR_IE, BIT(d->hwirq));
66 }
67 
68 static void andes_intc_irq_mask(struct irq_data *d)
69 {
70 	/*
71 	 * Andes specific S-mode local interrupt causes (hwirq)
72 	 * are defined as (256 + n) and controlled by n-th bit
73 	 * of SLIE.
74 	 */
75 	unsigned int mask = BIT(d->hwirq % BITS_PER_LONG);
76 
77 	if (d->hwirq < ANDES_SLI_CAUSE_BASE)
78 		csr_clear(CSR_IE, mask);
79 	else
80 		csr_clear(ANDES_CSR_SLIE, mask);
81 }
82 
83 static void andes_intc_irq_unmask(struct irq_data *d)
84 {
85 	unsigned int mask = BIT(d->hwirq % BITS_PER_LONG);
86 
87 	if (d->hwirq < ANDES_SLI_CAUSE_BASE)
88 		csr_set(CSR_IE, mask);
89 	else
90 		csr_set(ANDES_CSR_SLIE, mask);
91 }
92 
93 static void riscv_intc_irq_eoi(struct irq_data *d)
94 {
95 	/*
96 	 * The RISC-V INTC driver uses handle_percpu_devid_irq() flow
97 	 * for the per-HART local interrupts and child irqchip drivers
98 	 * (such as PLIC, SBI IPI, CLINT, APLIC, IMSIC, etc) implement
99 	 * chained handlers for the per-HART local interrupts.
100 	 *
101 	 * In the absence of irq_eoi(), the chained_irq_enter() and
102 	 * chained_irq_exit() functions (used by child irqchip drivers)
103 	 * will do unnecessary mask/unmask of per-HART local interrupts
104 	 * at the time of handling interrupts. To avoid this, we provide
105 	 * an empty irq_eoi() callback for RISC-V INTC irqchip.
106 	 */
107 }
108 
109 static struct irq_chip riscv_intc_chip = {
110 	.name = "RISC-V INTC",
111 	.irq_mask = riscv_intc_irq_mask,
112 	.irq_unmask = riscv_intc_irq_unmask,
113 	.irq_eoi = riscv_intc_irq_eoi,
114 };
115 
116 static struct irq_chip andes_intc_chip = {
117 	.name		= "RISC-V INTC",
118 	.irq_mask	= andes_intc_irq_mask,
119 	.irq_unmask	= andes_intc_irq_unmask,
120 	.irq_eoi	= riscv_intc_irq_eoi,
121 };
122 
123 static int riscv_intc_domain_map(struct irq_domain *d, unsigned int irq,
124 				 irq_hw_number_t hwirq)
125 {
126 	struct irq_chip *chip = d->host_data;
127 
128 	irq_set_percpu_devid(irq);
129 	irq_domain_set_info(d, irq, hwirq, chip, NULL, handle_percpu_devid_irq,
130 			    NULL, NULL);
131 
132 	return 0;
133 }
134 
135 static int riscv_intc_domain_alloc(struct irq_domain *domain,
136 				   unsigned int virq, unsigned int nr_irqs,
137 				   void *arg)
138 {
139 	int i, ret;
140 	irq_hw_number_t hwirq;
141 	unsigned int type = IRQ_TYPE_NONE;
142 	struct irq_fwspec *fwspec = arg;
143 
144 	ret = irq_domain_translate_onecell(domain, fwspec, &hwirq, &type);
145 	if (ret)
146 		return ret;
147 
148 	/*
149 	 * Only allow hwirq for which we have corresponding standard or
150 	 * custom interrupt enable register.
151 	 */
152 	if (hwirq >= riscv_intc_nr_irqs &&
153 	    (hwirq < riscv_intc_custom_base ||
154 	     hwirq >= riscv_intc_custom_base + riscv_intc_custom_nr_irqs))
155 		return -EINVAL;
156 
157 	for (i = 0; i < nr_irqs; i++) {
158 		ret = riscv_intc_domain_map(domain, virq + i, hwirq + i);
159 		if (ret)
160 			return ret;
161 	}
162 
163 	return 0;
164 }
165 
166 static const struct irq_domain_ops riscv_intc_domain_ops = {
167 	.map	= riscv_intc_domain_map,
168 	.xlate	= irq_domain_xlate_onecell,
169 	.alloc	= riscv_intc_domain_alloc
170 };
171 
172 static struct fwnode_handle *riscv_intc_hwnode(void)
173 {
174 	return intc_domain->fwnode;
175 }
176 
177 static int __init riscv_intc_init_common(struct fwnode_handle *fn, struct irq_chip *chip)
178 {
179 	int rc;
180 
181 	intc_domain = irq_domain_create_tree(fn, &riscv_intc_domain_ops, chip);
182 	if (!intc_domain) {
183 		pr_err("unable to add IRQ domain\n");
184 		return -ENXIO;
185 	}
186 
187 	if (riscv_isa_extension_available(NULL, SxAIA)) {
188 		riscv_intc_nr_irqs = 64;
189 		rc = set_handle_irq(&riscv_intc_aia_irq);
190 	} else {
191 		rc = set_handle_irq(&riscv_intc_irq);
192 	}
193 	if (rc) {
194 		pr_err("failed to set irq handler\n");
195 		return rc;
196 	}
197 
198 	riscv_set_intc_hwnode_fn(riscv_intc_hwnode);
199 
200 	pr_info("%d local interrupts mapped%s\n",
201 		riscv_intc_nr_irqs,
202 		riscv_isa_extension_available(NULL, SxAIA) ? " using AIA" : "");
203 	if (riscv_intc_custom_nr_irqs)
204 		pr_info("%d custom local interrupts mapped\n", riscv_intc_custom_nr_irqs);
205 
206 	return 0;
207 }
208 
209 static int __init riscv_intc_init(struct device_node *node,
210 				  struct device_node *parent)
211 {
212 	struct irq_chip *chip = &riscv_intc_chip;
213 	unsigned long hartid;
214 	int rc;
215 
216 	rc = riscv_of_parent_hartid(node, &hartid);
217 	if (rc < 0) {
218 		pr_warn("unable to find hart id for %pOF\n", node);
219 		return 0;
220 	}
221 
222 	/*
223 	 * The DT will have one INTC DT node under each CPU (or HART)
224 	 * DT node so riscv_intc_init() function will be called once
225 	 * for each INTC DT node. We only need to do INTC initialization
226 	 * for the INTC DT node belonging to boot CPU (or boot HART).
227 	 */
228 	if (riscv_hartid_to_cpuid(hartid) != smp_processor_id()) {
229 		/*
230 		 * The INTC nodes of each CPU are suppliers for downstream
231 		 * interrupt controllers (such as PLIC, IMSIC and APLIC
232 		 * direct-mode) so we should mark an INTC node as initialized
233 		 * if we are not creating IRQ domain for it.
234 		 */
235 		fwnode_dev_initialized(of_fwnode_handle(node), true);
236 		return 0;
237 	}
238 
239 	if (of_device_is_compatible(node, "andestech,cpu-intc")) {
240 		riscv_intc_custom_base = ANDES_SLI_CAUSE_BASE;
241 		riscv_intc_custom_nr_irqs = ANDES_RV_IRQ_LAST;
242 		chip = &andes_intc_chip;
243 	}
244 
245 	return riscv_intc_init_common(of_node_to_fwnode(node), chip);
246 }
247 
248 IRQCHIP_DECLARE(riscv, "riscv,cpu-intc", riscv_intc_init);
249 IRQCHIP_DECLARE(andes, "andestech,cpu-intc", riscv_intc_init);
250 
251 #ifdef CONFIG_ACPI
252 
253 struct rintc_data {
254 	union {
255 		u32		ext_intc_id;
256 		struct {
257 			u32	context_id	: 16,
258 				reserved	:  8,
259 				aplic_plic_id	:  8;
260 		};
261 	};
262 	unsigned long		hart_id;
263 	u64			imsic_addr;
264 	u32			imsic_size;
265 };
266 
267 static u32 nr_rintc;
268 static struct rintc_data **rintc_acpi_data;
269 
270 #define for_each_matching_plic(_plic_id)				\
271 	unsigned int _plic;						\
272 									\
273 	for (_plic = 0; _plic < nr_rintc; _plic++)			\
274 		if (rintc_acpi_data[_plic]->aplic_plic_id != _plic_id)	\
275 			continue;					\
276 		else
277 
278 unsigned int acpi_rintc_get_plic_nr_contexts(unsigned int plic_id)
279 {
280 	unsigned int nctx = 0;
281 
282 	for_each_matching_plic(plic_id)
283 		nctx++;
284 
285 	return nctx;
286 }
287 
288 static struct rintc_data *get_plic_context(unsigned int plic_id, unsigned int ctxt_idx)
289 {
290 	unsigned int ctxt = 0;
291 
292 	for_each_matching_plic(plic_id) {
293 		if (ctxt == ctxt_idx)
294 			return rintc_acpi_data[_plic];
295 
296 		ctxt++;
297 	}
298 
299 	return NULL;
300 }
301 
302 unsigned long acpi_rintc_ext_parent_to_hartid(unsigned int plic_id, unsigned int ctxt_idx)
303 {
304 	struct rintc_data *data = get_plic_context(plic_id, ctxt_idx);
305 
306 	return data ? data->hart_id : INVALID_HARTID;
307 }
308 
309 unsigned int acpi_rintc_get_plic_context(unsigned int plic_id, unsigned int ctxt_idx)
310 {
311 	struct rintc_data *data = get_plic_context(plic_id, ctxt_idx);
312 
313 	return data ? data->context_id : INVALID_CONTEXT;
314 }
315 
316 unsigned long acpi_rintc_index_to_hartid(u32 index)
317 {
318 	return index >= nr_rintc ? INVALID_HARTID : rintc_acpi_data[index]->hart_id;
319 }
320 
321 int acpi_rintc_get_imsic_mmio_info(u32 index, struct resource *res)
322 {
323 	if (index >= nr_rintc)
324 		return -1;
325 
326 	res->start = rintc_acpi_data[index]->imsic_addr;
327 	res->end = res->start + rintc_acpi_data[index]->imsic_size - 1;
328 	res->flags = IORESOURCE_MEM;
329 	return 0;
330 }
331 
332 static int __init riscv_intc_acpi_match(union acpi_subtable_headers *header,
333 					const unsigned long end)
334 {
335 	return 0;
336 }
337 
338 static int __init riscv_intc_acpi_init(union acpi_subtable_headers *header,
339 				       const unsigned long end)
340 {
341 	struct acpi_madt_rintc *rintc;
342 	struct fwnode_handle *fn;
343 	int count;
344 	int rc;
345 
346 	if (!rintc_acpi_data) {
347 		count = acpi_table_parse_madt(ACPI_MADT_TYPE_RINTC, riscv_intc_acpi_match, 0);
348 		if (count <= 0)
349 			return -EINVAL;
350 
351 		rintc_acpi_data = kcalloc(count, sizeof(*rintc_acpi_data), GFP_KERNEL);
352 		if (!rintc_acpi_data)
353 			return -ENOMEM;
354 	}
355 
356 	rintc = (struct acpi_madt_rintc *)header;
357 	rintc_acpi_data[nr_rintc] = kzalloc(sizeof(*rintc_acpi_data[0]), GFP_KERNEL);
358 	if (!rintc_acpi_data[nr_rintc])
359 		return -ENOMEM;
360 
361 	rintc_acpi_data[nr_rintc]->ext_intc_id = rintc->ext_intc_id;
362 	rintc_acpi_data[nr_rintc]->hart_id = rintc->hart_id;
363 	rintc_acpi_data[nr_rintc]->imsic_addr = rintc->imsic_addr;
364 	rintc_acpi_data[nr_rintc]->imsic_size = rintc->imsic_size;
365 	nr_rintc++;
366 
367 	/*
368 	 * The ACPI MADT will have one INTC for each CPU (or HART)
369 	 * so riscv_intc_acpi_init() function will be called once
370 	 * for each INTC. We only do INTC initialization
371 	 * for the INTC belonging to the boot CPU (or boot HART).
372 	 */
373 	if (riscv_hartid_to_cpuid(rintc->hart_id) != smp_processor_id())
374 		return 0;
375 
376 	fn = irq_domain_alloc_named_fwnode("RISCV-INTC");
377 	if (!fn) {
378 		pr_err("unable to allocate INTC FW node\n");
379 		return -ENOMEM;
380 	}
381 
382 	rc = riscv_intc_init_common(fn, &riscv_intc_chip);
383 	if (rc)
384 		irq_domain_free_fwnode(fn);
385 	else
386 		acpi_set_irq_model(ACPI_IRQ_MODEL_RINTC, riscv_acpi_get_gsi_domain_id);
387 
388 	return rc;
389 }
390 
391 IRQCHIP_ACPI_DECLARE(riscv_intc, ACPI_MADT_TYPE_RINTC, NULL,
392 		     ACPI_MADT_RINTC_VERSION_V1, riscv_intc_acpi_init);
393 #endif
394