xref: /linux/drivers/irqchip/irq-gic.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
4  *
5  * Interrupt architecture for the GIC:
6  *
7  * o There is one Interrupt Distributor, which receives interrupts
8  *   from system devices and sends them to the Interrupt Controllers.
9  *
10  * o There is one CPU Interface per CPU, which sends interrupts sent
11  *   by the Distributor, and interrupts generated locally, to the
12  *   associated CPU. The base address of the CPU interface is usually
13  *   aliased so that the same address points to different chips depending
14  *   on the CPU it is accessed from.
15  *
16  * Note that IRQs 0-31 are special - they are local to each CPU.
17  * As such, the enable set/clear, pending set/clear and active bit
18  * registers are banked per-cpu for these sources.
19  */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/kstrtox.h>
23 #include <linux/err.h>
24 #include <linux/module.h>
25 #include <linux/list.h>
26 #include <linux/smp.h>
27 #include <linux/cpu.h>
28 #include <linux/cpu_pm.h>
29 #include <linux/cpumask.h>
30 #include <linux/io.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/acpi.h>
35 #include <linux/irqdomain.h>
36 #include <linux/interrupt.h>
37 #include <linux/percpu.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/irqchip.h>
41 #include <linux/irqchip/chained_irq.h>
42 #include <linux/irqchip/arm-gic.h>
43 
44 #include <asm/cputype.h>
45 #include <asm/irq.h>
46 #include <asm/exception.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49 
50 #include "irq-gic-common.h"
51 
52 #ifdef CONFIG_ARM64
53 #include <asm/cpufeature.h>
54 
55 static void gic_check_cpu_features(void)
56 {
57 	WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_GIC_CPUIF_SYSREGS),
58 			TAINT_CPU_OUT_OF_SPEC,
59 			"GICv3 system registers enabled, broken firmware!\n");
60 }
61 #else
62 #define gic_check_cpu_features()	do { } while(0)
63 #endif
64 
65 union gic_base {
66 	void __iomem *common_base;
67 	void __percpu * __iomem *percpu_base;
68 };
69 
70 struct gic_chip_data {
71 	union gic_base dist_base;
72 	union gic_base cpu_base;
73 	void __iomem *raw_dist_base;
74 	void __iomem *raw_cpu_base;
75 	u32 percpu_offset;
76 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
77 	u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
78 	u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
79 	u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
80 	u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
81 	u32 __percpu *saved_ppi_enable;
82 	u32 __percpu *saved_ppi_active;
83 	u32 __percpu *saved_ppi_conf;
84 #endif
85 	struct irq_domain *domain;
86 	unsigned int gic_irqs;
87 };
88 
89 #ifdef CONFIG_BL_SWITCHER
90 
91 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
92 
93 #define gic_lock_irqsave(f)		\
94 	raw_spin_lock_irqsave(&cpu_map_lock, (f))
95 #define gic_unlock_irqrestore(f)	\
96 	raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
97 
98 #define gic_lock()			raw_spin_lock(&cpu_map_lock)
99 #define gic_unlock()			raw_spin_unlock(&cpu_map_lock)
100 
101 #else
102 
103 #define gic_lock_irqsave(f)		do { (void)(f); } while(0)
104 #define gic_unlock_irqrestore(f)	do { (void)(f); } while(0)
105 
106 #define gic_lock()			do { } while(0)
107 #define gic_unlock()			do { } while(0)
108 
109 #endif
110 
111 static DEFINE_STATIC_KEY_FALSE(needs_rmw_access);
112 
113 /*
114  * The GIC mapping of CPU interfaces does not necessarily match
115  * the logical CPU numbering.  Let's use a mapping as returned
116  * by the GIC itself.
117  */
118 #define NR_GIC_CPU_IF 8
119 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
120 
121 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
122 
123 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
124 
125 static struct gic_kvm_info gic_v2_kvm_info __initdata;
126 
127 static DEFINE_PER_CPU(u32, sgi_intid);
128 
129 #ifdef CONFIG_GIC_NON_BANKED
130 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
131 
132 static void enable_frankengic(void)
133 {
134 	static_branch_enable(&frankengic_key);
135 }
136 
137 static inline void __iomem *__get_base(union gic_base *base)
138 {
139 	if (static_branch_unlikely(&frankengic_key))
140 		return raw_cpu_read(*base->percpu_base);
141 
142 	return base->common_base;
143 }
144 
145 #define gic_data_dist_base(d)	__get_base(&(d)->dist_base)
146 #define gic_data_cpu_base(d)	__get_base(&(d)->cpu_base)
147 #else
148 #define gic_data_dist_base(d)	((d)->dist_base.common_base)
149 #define gic_data_cpu_base(d)	((d)->cpu_base.common_base)
150 #define enable_frankengic()	do { } while(0)
151 #endif
152 
153 static inline void __iomem *gic_dist_base(struct irq_data *d)
154 {
155 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
156 	return gic_data_dist_base(gic_data);
157 }
158 
159 static inline void __iomem *gic_cpu_base(struct irq_data *d)
160 {
161 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
162 	return gic_data_cpu_base(gic_data);
163 }
164 
165 static inline bool cascading_gic_irq(struct irq_data *d)
166 {
167 	void *data = irq_data_get_irq_handler_data(d);
168 
169 	/*
170 	 * If handler_data is set, this is a cascading interrupt, and
171 	 * it cannot possibly be forwarded.
172 	 */
173 	return data != NULL;
174 }
175 
176 /*
177  * Routines to acknowledge, disable and enable interrupts
178  */
179 static void gic_poke_irq(struct irq_data *d, u32 offset)
180 {
181 	u32 mask = 1 << (irqd_to_hwirq(d) % 32);
182 
183 	writel_relaxed(mask, gic_dist_base(d) + offset + (irqd_to_hwirq(d) / 32) * 4);
184 }
185 
186 static int gic_peek_irq(struct irq_data *d, u32 offset)
187 {
188 	u32 mask = 1 << (irqd_to_hwirq(d) % 32);
189 
190 	return !!(readl_relaxed(gic_dist_base(d) + offset + (irqd_to_hwirq(d) / 32) * 4) & mask);
191 }
192 
193 static void gic_mask_irq(struct irq_data *d)
194 {
195 	gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
196 }
197 
198 static void gic_eoimode1_mask_irq(struct irq_data *d)
199 {
200 	gic_mask_irq(d);
201 	/*
202 	 * When masking a forwarded interrupt, make sure it is
203 	 * deactivated as well.
204 	 *
205 	 * This ensures that an interrupt that is getting
206 	 * disabled/masked will not get "stuck", because there is
207 	 * noone to deactivate it (guest is being terminated).
208 	 */
209 	if (irqd_is_forwarded_to_vcpu(d))
210 		gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
211 }
212 
213 static void gic_unmask_irq(struct irq_data *d)
214 {
215 	gic_poke_irq(d, GIC_DIST_ENABLE_SET);
216 }
217 
218 static void gic_eoi_irq(struct irq_data *d)
219 {
220 	irq_hw_number_t hwirq = irqd_to_hwirq(d);
221 
222 	if (hwirq < 16)
223 		hwirq = this_cpu_read(sgi_intid);
224 
225 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
226 }
227 
228 static void gic_eoimode1_eoi_irq(struct irq_data *d)
229 {
230 	irq_hw_number_t hwirq = irqd_to_hwirq(d);
231 
232 	/* Do not deactivate an IRQ forwarded to a vcpu. */
233 	if (irqd_is_forwarded_to_vcpu(d))
234 		return;
235 
236 	if (hwirq < 16)
237 		hwirq = this_cpu_read(sgi_intid);
238 
239 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
240 }
241 
242 static int gic_irq_set_irqchip_state(struct irq_data *d,
243 				     enum irqchip_irq_state which, bool val)
244 {
245 	u32 reg;
246 
247 	switch (which) {
248 	case IRQCHIP_STATE_PENDING:
249 		reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
250 		break;
251 
252 	case IRQCHIP_STATE_ACTIVE:
253 		reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
254 		break;
255 
256 	case IRQCHIP_STATE_MASKED:
257 		reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
258 		break;
259 
260 	default:
261 		return -EINVAL;
262 	}
263 
264 	gic_poke_irq(d, reg);
265 	return 0;
266 }
267 
268 static int gic_irq_get_irqchip_state(struct irq_data *d,
269 				      enum irqchip_irq_state which, bool *val)
270 {
271 	switch (which) {
272 	case IRQCHIP_STATE_PENDING:
273 		*val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
274 		break;
275 
276 	case IRQCHIP_STATE_ACTIVE:
277 		*val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
278 		break;
279 
280 	case IRQCHIP_STATE_MASKED:
281 		*val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
282 		break;
283 
284 	default:
285 		return -EINVAL;
286 	}
287 
288 	return 0;
289 }
290 
291 static int gic_set_type(struct irq_data *d, unsigned int type)
292 {
293 	irq_hw_number_t gicirq = irqd_to_hwirq(d);
294 	void __iomem *base = gic_dist_base(d);
295 	int ret;
296 
297 	/* Interrupt configuration for SGIs can't be changed */
298 	if (gicirq < 16)
299 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
300 
301 	/* SPIs have restrictions on the supported types */
302 	if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
303 			    type != IRQ_TYPE_EDGE_RISING)
304 		return -EINVAL;
305 
306 	ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG);
307 	if (ret && gicirq < 32) {
308 		/* Misconfigured PPIs are usually not fatal */
309 		pr_warn("GIC: PPI%ld is secure or misconfigured\n", gicirq - 16);
310 		ret = 0;
311 	}
312 
313 	return ret;
314 }
315 
316 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
317 {
318 	/* Only interrupts on the primary GIC can be forwarded to a vcpu. */
319 	if (cascading_gic_irq(d) || irqd_to_hwirq(d) < 16)
320 		return -EINVAL;
321 
322 	if (vcpu)
323 		irqd_set_forwarded_to_vcpu(d);
324 	else
325 		irqd_clr_forwarded_to_vcpu(d);
326 	return 0;
327 }
328 
329 static int gic_retrigger(struct irq_data *data)
330 {
331 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
332 }
333 
334 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
335 {
336 	u32 irqstat, irqnr;
337 	struct gic_chip_data *gic = &gic_data[0];
338 	void __iomem *cpu_base = gic_data_cpu_base(gic);
339 
340 	do {
341 		irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
342 		irqnr = irqstat & GICC_IAR_INT_ID_MASK;
343 
344 		if (unlikely(irqnr >= 1020))
345 			break;
346 
347 		if (static_branch_likely(&supports_deactivate_key))
348 			writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
349 		isb();
350 
351 		/*
352 		 * Ensure any shared data written by the CPU sending the IPI
353 		 * is read after we've read the ACK register on the GIC.
354 		 *
355 		 * Pairs with the write barrier in gic_ipi_send_mask
356 		 */
357 		if (irqnr <= 15) {
358 			smp_rmb();
359 
360 			/*
361 			 * The GIC encodes the source CPU in GICC_IAR,
362 			 * leading to the deactivation to fail if not
363 			 * written back as is to GICC_EOI.  Stash the INTID
364 			 * away for gic_eoi_irq() to write back.  This only
365 			 * works because we don't nest SGIs...
366 			 */
367 			this_cpu_write(sgi_intid, irqstat);
368 		}
369 
370 		generic_handle_domain_irq(gic->domain, irqnr);
371 	} while (1);
372 }
373 
374 static void gic_handle_cascade_irq(struct irq_desc *desc)
375 {
376 	struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
377 	struct irq_chip *chip = irq_desc_get_chip(desc);
378 	unsigned int gic_irq;
379 	unsigned long status;
380 	int ret;
381 
382 	chained_irq_enter(chip, desc);
383 
384 	status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
385 
386 	gic_irq = (status & GICC_IAR_INT_ID_MASK);
387 	if (gic_irq == GICC_INT_SPURIOUS)
388 		goto out;
389 
390 	isb();
391 	ret = generic_handle_domain_irq(chip_data->domain, gic_irq);
392 	if (unlikely(ret))
393 		handle_bad_irq(desc);
394  out:
395 	chained_irq_exit(chip, desc);
396 }
397 
398 static void gic_irq_print_chip(struct irq_data *d, struct seq_file *p)
399 {
400 	struct gic_chip_data *gic = irq_data_get_irq_chip_data(d);
401 
402 	if (gic->domain->pm_dev)
403 		seq_puts(p, gic->domain->pm_dev->of_node->name);
404 	else
405 		seq_printf(p, "GIC-%d", (int)(gic - &gic_data[0]));
406 }
407 
408 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
409 {
410 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
411 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
412 					 &gic_data[gic_nr]);
413 }
414 
415 static u8 gic_get_cpumask(struct gic_chip_data *gic)
416 {
417 	void __iomem *base = gic_data_dist_base(gic);
418 	u32 mask, i;
419 
420 	for (i = mask = 0; i < 32; i += 4) {
421 		mask = readl_relaxed(base + GIC_DIST_TARGET + i);
422 		mask |= mask >> 16;
423 		mask |= mask >> 8;
424 		if (mask)
425 			break;
426 	}
427 
428 	if (!mask && num_possible_cpus() > 1)
429 		pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
430 
431 	return mask;
432 }
433 
434 static bool gic_check_gicv2(void __iomem *base)
435 {
436 	u32 val = readl_relaxed(base + GIC_CPU_IDENT);
437 	return (val & 0xff0fff) == 0x02043B;
438 }
439 
440 static void gic_cpu_if_up(struct gic_chip_data *gic)
441 {
442 	void __iomem *cpu_base = gic_data_cpu_base(gic);
443 	u32 bypass = 0;
444 	u32 mode = 0;
445 	int i;
446 
447 	if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
448 		mode = GIC_CPU_CTRL_EOImodeNS;
449 
450 	if (gic_check_gicv2(cpu_base))
451 		for (i = 0; i < 4; i++)
452 			writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
453 
454 	/*
455 	* Preserve bypass disable bits to be written back later
456 	*/
457 	bypass = readl(cpu_base + GIC_CPU_CTRL);
458 	bypass &= GICC_DIS_BYPASS_MASK;
459 
460 	writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
461 }
462 
463 
464 static void gic_dist_init(struct gic_chip_data *gic)
465 {
466 	unsigned int i;
467 	u32 cpumask;
468 	unsigned int gic_irqs = gic->gic_irqs;
469 	void __iomem *base = gic_data_dist_base(gic);
470 
471 	writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
472 
473 	/*
474 	 * Set all global interrupts to this CPU only.
475 	 */
476 	cpumask = gic_get_cpumask(gic);
477 	cpumask |= cpumask << 8;
478 	cpumask |= cpumask << 16;
479 	for (i = 32; i < gic_irqs; i += 4)
480 		writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
481 
482 	gic_dist_config(base, gic_irqs, GICD_INT_DEF_PRI);
483 
484 	writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
485 }
486 
487 static int gic_cpu_init(struct gic_chip_data *gic)
488 {
489 	void __iomem *dist_base = gic_data_dist_base(gic);
490 	void __iomem *base = gic_data_cpu_base(gic);
491 	unsigned int cpu_mask, cpu = smp_processor_id();
492 	int i;
493 
494 	/*
495 	 * Setting up the CPU map is only relevant for the primary GIC
496 	 * because any nested/secondary GICs do not directly interface
497 	 * with the CPU(s).
498 	 */
499 	if (gic == &gic_data[0]) {
500 		/*
501 		 * Get what the GIC says our CPU mask is.
502 		 */
503 		if (WARN_ON(cpu >= NR_GIC_CPU_IF))
504 			return -EINVAL;
505 
506 		gic_check_cpu_features();
507 		cpu_mask = gic_get_cpumask(gic);
508 		gic_cpu_map[cpu] = cpu_mask;
509 
510 		/*
511 		 * Clear our mask from the other map entries in case they're
512 		 * still undefined.
513 		 */
514 		for (i = 0; i < NR_GIC_CPU_IF; i++)
515 			if (i != cpu)
516 				gic_cpu_map[i] &= ~cpu_mask;
517 	}
518 
519 	gic_cpu_config(dist_base, 32, GICD_INT_DEF_PRI);
520 
521 	writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
522 	gic_cpu_if_up(gic);
523 
524 	return 0;
525 }
526 
527 int gic_cpu_if_down(unsigned int gic_nr)
528 {
529 	void __iomem *cpu_base;
530 	u32 val = 0;
531 
532 	if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
533 		return -EINVAL;
534 
535 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
536 	val = readl(cpu_base + GIC_CPU_CTRL);
537 	val &= ~GICC_ENABLE;
538 	writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
539 
540 	return 0;
541 }
542 
543 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
544 /*
545  * Saves the GIC distributor registers during suspend or idle.  Must be called
546  * with interrupts disabled but before powering down the GIC.  After calling
547  * this function, no interrupts will be delivered by the GIC, and another
548  * platform-specific wakeup source must be enabled.
549  */
550 void gic_dist_save(struct gic_chip_data *gic)
551 {
552 	unsigned int gic_irqs;
553 	void __iomem *dist_base;
554 	int i;
555 
556 	if (WARN_ON(!gic))
557 		return;
558 
559 	gic_irqs = gic->gic_irqs;
560 	dist_base = gic_data_dist_base(gic);
561 
562 	if (!dist_base)
563 		return;
564 
565 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
566 		gic->saved_spi_conf[i] =
567 			readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
568 
569 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
570 		gic->saved_spi_target[i] =
571 			readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
572 
573 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
574 		gic->saved_spi_enable[i] =
575 			readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
576 
577 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
578 		gic->saved_spi_active[i] =
579 			readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
580 }
581 
582 /*
583  * Restores the GIC distributor registers during resume or when coming out of
584  * idle.  Must be called before enabling interrupts.  If a level interrupt
585  * that occurred while the GIC was suspended is still present, it will be
586  * handled normally, but any edge interrupts that occurred will not be seen by
587  * the GIC and need to be handled by the platform-specific wakeup source.
588  */
589 void gic_dist_restore(struct gic_chip_data *gic)
590 {
591 	unsigned int gic_irqs;
592 	unsigned int i;
593 	void __iomem *dist_base;
594 
595 	if (WARN_ON(!gic))
596 		return;
597 
598 	gic_irqs = gic->gic_irqs;
599 	dist_base = gic_data_dist_base(gic);
600 
601 	if (!dist_base)
602 		return;
603 
604 	writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
605 
606 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
607 		writel_relaxed(gic->saved_spi_conf[i],
608 			dist_base + GIC_DIST_CONFIG + i * 4);
609 
610 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
611 		writel_relaxed(REPEAT_BYTE_U32(GICD_INT_DEF_PRI),
612 			dist_base + GIC_DIST_PRI + i * 4);
613 
614 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
615 		writel_relaxed(gic->saved_spi_target[i],
616 			dist_base + GIC_DIST_TARGET + i * 4);
617 
618 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
619 		writel_relaxed(GICD_INT_EN_CLR_X32,
620 			dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
621 		writel_relaxed(gic->saved_spi_enable[i],
622 			dist_base + GIC_DIST_ENABLE_SET + i * 4);
623 	}
624 
625 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
626 		writel_relaxed(GICD_INT_EN_CLR_X32,
627 			dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
628 		writel_relaxed(gic->saved_spi_active[i],
629 			dist_base + GIC_DIST_ACTIVE_SET + i * 4);
630 	}
631 
632 	writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
633 }
634 
635 void gic_cpu_save(struct gic_chip_data *gic)
636 {
637 	int i;
638 	u32 *ptr;
639 	void __iomem *dist_base;
640 	void __iomem *cpu_base;
641 
642 	if (WARN_ON(!gic))
643 		return;
644 
645 	dist_base = gic_data_dist_base(gic);
646 	cpu_base = gic_data_cpu_base(gic);
647 
648 	if (!dist_base || !cpu_base)
649 		return;
650 
651 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
652 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
653 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
654 
655 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
656 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
657 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
658 
659 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
660 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
661 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
662 
663 }
664 
665 void gic_cpu_restore(struct gic_chip_data *gic)
666 {
667 	int i;
668 	u32 *ptr;
669 	void __iomem *dist_base;
670 	void __iomem *cpu_base;
671 
672 	if (WARN_ON(!gic))
673 		return;
674 
675 	dist_base = gic_data_dist_base(gic);
676 	cpu_base = gic_data_cpu_base(gic);
677 
678 	if (!dist_base || !cpu_base)
679 		return;
680 
681 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
682 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
683 		writel_relaxed(GICD_INT_EN_CLR_X32,
684 			       dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
685 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
686 	}
687 
688 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
689 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
690 		writel_relaxed(GICD_INT_EN_CLR_X32,
691 			       dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
692 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
693 	}
694 
695 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
696 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
697 		writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
698 
699 	for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
700 		writel_relaxed(REPEAT_BYTE_U32(GICD_INT_DEF_PRI),
701 					dist_base + GIC_DIST_PRI + i * 4);
702 
703 	writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
704 	gic_cpu_if_up(gic);
705 }
706 
707 static int gic_notifier(struct notifier_block *self, unsigned long cmd,	void *v)
708 {
709 	int i;
710 
711 	for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
712 		switch (cmd) {
713 		case CPU_PM_ENTER:
714 			gic_cpu_save(&gic_data[i]);
715 			break;
716 		case CPU_PM_ENTER_FAILED:
717 		case CPU_PM_EXIT:
718 			gic_cpu_restore(&gic_data[i]);
719 			break;
720 		case CPU_CLUSTER_PM_ENTER:
721 			gic_dist_save(&gic_data[i]);
722 			break;
723 		case CPU_CLUSTER_PM_ENTER_FAILED:
724 		case CPU_CLUSTER_PM_EXIT:
725 			gic_dist_restore(&gic_data[i]);
726 			break;
727 		}
728 	}
729 
730 	return NOTIFY_OK;
731 }
732 
733 static struct notifier_block gic_notifier_block = {
734 	.notifier_call = gic_notifier,
735 };
736 
737 static int gic_pm_init(struct gic_chip_data *gic)
738 {
739 	gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
740 		sizeof(u32));
741 	if (WARN_ON(!gic->saved_ppi_enable))
742 		return -ENOMEM;
743 
744 	gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
745 		sizeof(u32));
746 	if (WARN_ON(!gic->saved_ppi_active))
747 		goto free_ppi_enable;
748 
749 	gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
750 		sizeof(u32));
751 	if (WARN_ON(!gic->saved_ppi_conf))
752 		goto free_ppi_active;
753 
754 	if (gic == &gic_data[0])
755 		cpu_pm_register_notifier(&gic_notifier_block);
756 
757 	return 0;
758 
759 free_ppi_active:
760 	free_percpu(gic->saved_ppi_active);
761 free_ppi_enable:
762 	free_percpu(gic->saved_ppi_enable);
763 
764 	return -ENOMEM;
765 }
766 #else
767 static int gic_pm_init(struct gic_chip_data *gic)
768 {
769 	return 0;
770 }
771 #endif
772 
773 #ifdef CONFIG_SMP
774 static void rmw_writeb(u8 bval, void __iomem *addr)
775 {
776 	static DEFINE_RAW_SPINLOCK(rmw_lock);
777 	unsigned long offset = (unsigned long)addr & 3UL;
778 	unsigned long shift = offset * 8;
779 	unsigned long flags;
780 	u32 val;
781 
782 	raw_spin_lock_irqsave(&rmw_lock, flags);
783 
784 	addr -= offset;
785 	val = readl_relaxed(addr);
786 	val &= ~GENMASK(shift + 7, shift);
787 	val |= bval << shift;
788 	writel_relaxed(val, addr);
789 
790 	raw_spin_unlock_irqrestore(&rmw_lock, flags);
791 }
792 
793 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
794 			    bool force)
795 {
796 	void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + irqd_to_hwirq(d);
797 	struct gic_chip_data *gic = irq_data_get_irq_chip_data(d);
798 	unsigned int cpu;
799 
800 	if (unlikely(gic != &gic_data[0]))
801 		return -EINVAL;
802 
803 	if (!force)
804 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
805 	else
806 		cpu = cpumask_first(mask_val);
807 
808 	if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
809 		return -EINVAL;
810 
811 	if (static_branch_unlikely(&needs_rmw_access))
812 		rmw_writeb(gic_cpu_map[cpu], reg);
813 	else
814 		writeb_relaxed(gic_cpu_map[cpu], reg);
815 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
816 
817 	return IRQ_SET_MASK_OK_DONE;
818 }
819 
820 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
821 {
822 	int cpu;
823 	unsigned long flags, map = 0;
824 
825 	if (unlikely(nr_cpu_ids == 1)) {
826 		/* Only one CPU? let's do a self-IPI... */
827 		writel_relaxed(2 << 24 | d->hwirq,
828 			       gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
829 		return;
830 	}
831 
832 	gic_lock_irqsave(flags);
833 
834 	/* Convert our logical CPU mask into a physical one. */
835 	for_each_cpu(cpu, mask)
836 		map |= gic_cpu_map[cpu];
837 
838 	/*
839 	 * Ensure that stores to Normal memory are visible to the
840 	 * other CPUs before they observe us issuing the IPI.
841 	 */
842 	dmb(ishst);
843 
844 	/* this always happens on GIC0 */
845 	writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
846 
847 	gic_unlock_irqrestore(flags);
848 }
849 
850 static int gic_starting_cpu(unsigned int cpu)
851 {
852 	gic_cpu_init(&gic_data[0]);
853 	return 0;
854 }
855 
856 static __init void gic_smp_init(void)
857 {
858 	struct irq_fwspec sgi_fwspec = {
859 		.fwnode		= gic_data[0].domain->fwnode,
860 		.param_count	= 1,
861 	};
862 	int base_sgi;
863 
864 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
865 				  "irqchip/arm/gic:starting",
866 				  gic_starting_cpu, NULL);
867 
868 	base_sgi = irq_domain_alloc_irqs(gic_data[0].domain, 8, NUMA_NO_NODE, &sgi_fwspec);
869 	if (WARN_ON(base_sgi <= 0))
870 		return;
871 
872 	set_smp_ipi_range(base_sgi, 8);
873 }
874 #else
875 #define gic_smp_init()		do { } while(0)
876 #define gic_set_affinity	NULL
877 #define gic_ipi_send_mask	NULL
878 #endif
879 
880 static const struct irq_chip gic_chip = {
881 	.irq_mask		= gic_mask_irq,
882 	.irq_unmask		= gic_unmask_irq,
883 	.irq_eoi		= gic_eoi_irq,
884 	.irq_set_type		= gic_set_type,
885 	.irq_retrigger          = gic_retrigger,
886 	.irq_set_affinity	= gic_set_affinity,
887 	.ipi_send_mask		= gic_ipi_send_mask,
888 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
889 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
890 	.irq_print_chip		= gic_irq_print_chip,
891 	.flags			= IRQCHIP_SET_TYPE_MASKED |
892 				  IRQCHIP_SKIP_SET_WAKE |
893 				  IRQCHIP_MASK_ON_SUSPEND,
894 };
895 
896 static const struct irq_chip gic_chip_mode1 = {
897 	.name			= "GICv2",
898 	.irq_mask		= gic_eoimode1_mask_irq,
899 	.irq_unmask		= gic_unmask_irq,
900 	.irq_eoi		= gic_eoimode1_eoi_irq,
901 	.irq_set_type		= gic_set_type,
902 	.irq_retrigger          = gic_retrigger,
903 	.irq_set_affinity	= gic_set_affinity,
904 	.ipi_send_mask		= gic_ipi_send_mask,
905 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
906 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
907 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
908 	.flags			= IRQCHIP_SET_TYPE_MASKED |
909 				  IRQCHIP_SKIP_SET_WAKE |
910 				  IRQCHIP_MASK_ON_SUSPEND,
911 };
912 
913 #ifdef CONFIG_BL_SWITCHER
914 /*
915  * gic_send_sgi - send a SGI directly to given CPU interface number
916  *
917  * cpu_id: the ID for the destination CPU interface
918  * irq: the IPI number to send a SGI for
919  */
920 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
921 {
922 	BUG_ON(cpu_id >= NR_GIC_CPU_IF);
923 	cpu_id = 1 << cpu_id;
924 	/* this always happens on GIC0 */
925 	writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
926 }
927 
928 /*
929  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
930  *
931  * @cpu: the logical CPU number to get the GIC ID for.
932  *
933  * Return the CPU interface ID for the given logical CPU number,
934  * or -1 if the CPU number is too large or the interface ID is
935  * unknown (more than one bit set).
936  */
937 int gic_get_cpu_id(unsigned int cpu)
938 {
939 	unsigned int cpu_bit;
940 
941 	if (cpu >= NR_GIC_CPU_IF)
942 		return -1;
943 	cpu_bit = gic_cpu_map[cpu];
944 	if (cpu_bit & (cpu_bit - 1))
945 		return -1;
946 	return __ffs(cpu_bit);
947 }
948 
949 /*
950  * gic_migrate_target - migrate IRQs to another CPU interface
951  *
952  * @new_cpu_id: the CPU target ID to migrate IRQs to
953  *
954  * Migrate all peripheral interrupts with a target matching the current CPU
955  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
956  * is also updated.  Targets to other CPU interfaces are unchanged.
957  * This must be called with IRQs locally disabled.
958  */
959 void gic_migrate_target(unsigned int new_cpu_id)
960 {
961 	unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
962 	void __iomem *dist_base;
963 	int i, ror_val, cpu = smp_processor_id();
964 	u32 val, cur_target_mask, active_mask;
965 
966 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
967 
968 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
969 	if (!dist_base)
970 		return;
971 	gic_irqs = gic_data[gic_nr].gic_irqs;
972 
973 	cur_cpu_id = __ffs(gic_cpu_map[cpu]);
974 	cur_target_mask = 0x01010101 << cur_cpu_id;
975 	ror_val = (cur_cpu_id - new_cpu_id) & 31;
976 
977 	gic_lock();
978 
979 	/* Update the target interface for this logical CPU */
980 	gic_cpu_map[cpu] = 1 << new_cpu_id;
981 
982 	/*
983 	 * Find all the peripheral interrupts targeting the current
984 	 * CPU interface and migrate them to the new CPU interface.
985 	 * We skip DIST_TARGET 0 to 7 as they are read-only.
986 	 */
987 	for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
988 		val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
989 		active_mask = val & cur_target_mask;
990 		if (active_mask) {
991 			val &= ~active_mask;
992 			val |= ror32(active_mask, ror_val);
993 			writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
994 		}
995 	}
996 
997 	gic_unlock();
998 
999 	/*
1000 	 * Now let's migrate and clear any potential SGIs that might be
1001 	 * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
1002 	 * is a banked register, we can only forward the SGI using
1003 	 * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
1004 	 * doesn't use that information anyway.
1005 	 *
1006 	 * For the same reason we do not adjust SGI source information
1007 	 * for previously sent SGIs by us to other CPUs either.
1008 	 */
1009 	for (i = 0; i < 16; i += 4) {
1010 		int j;
1011 		val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
1012 		if (!val)
1013 			continue;
1014 		writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
1015 		for (j = i; j < i + 4; j++) {
1016 			if (val & 0xff)
1017 				writel_relaxed((1 << (new_cpu_id + 16)) | j,
1018 						dist_base + GIC_DIST_SOFTINT);
1019 			val >>= 8;
1020 		}
1021 	}
1022 }
1023 
1024 /*
1025  * gic_get_sgir_physaddr - get the physical address for the SGI register
1026  *
1027  * Return the physical address of the SGI register to be used
1028  * by some early assembly code when the kernel is not yet available.
1029  */
1030 static unsigned long gic_dist_physaddr;
1031 
1032 unsigned long gic_get_sgir_physaddr(void)
1033 {
1034 	if (!gic_dist_physaddr)
1035 		return 0;
1036 	return gic_dist_physaddr + GIC_DIST_SOFTINT;
1037 }
1038 
1039 static void __init gic_init_physaddr(struct device_node *node)
1040 {
1041 	struct resource res;
1042 	if (of_address_to_resource(node, 0, &res) == 0) {
1043 		gic_dist_physaddr = res.start;
1044 		pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
1045 	}
1046 }
1047 
1048 #else
1049 #define gic_init_physaddr(node)  do { } while (0)
1050 #endif
1051 
1052 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1053 				irq_hw_number_t hw)
1054 {
1055 	struct gic_chip_data *gic = d->host_data;
1056 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1057 	const struct irq_chip *chip;
1058 
1059 	chip = (static_branch_likely(&supports_deactivate_key) &&
1060 		gic == &gic_data[0]) ? &gic_chip_mode1 : &gic_chip;
1061 
1062 	switch (hw) {
1063 	case 0 ... 31:
1064 		irq_set_percpu_devid(irq);
1065 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1066 				    handle_percpu_devid_irq, NULL, NULL);
1067 		break;
1068 	default:
1069 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1070 				    handle_fasteoi_irq, NULL, NULL);
1071 		irq_set_probe(irq);
1072 		irqd_set_single_target(irqd);
1073 		break;
1074 	}
1075 
1076 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1077 	irqd_set_handle_enforce_irqctx(irqd);
1078 	return 0;
1079 }
1080 
1081 static int gic_irq_domain_translate(struct irq_domain *d,
1082 				    struct irq_fwspec *fwspec,
1083 				    unsigned long *hwirq,
1084 				    unsigned int *type)
1085 {
1086 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1087 		*hwirq = fwspec->param[0];
1088 		*type = IRQ_TYPE_EDGE_RISING;
1089 		return 0;
1090 	}
1091 
1092 	if (is_of_node(fwspec->fwnode)) {
1093 		if (fwspec->param_count < 3)
1094 			return -EINVAL;
1095 
1096 		switch (fwspec->param[0]) {
1097 		case 0:			/* SPI */
1098 			*hwirq = fwspec->param[1] + 32;
1099 			break;
1100 		case 1:			/* PPI */
1101 			*hwirq = fwspec->param[1] + 16;
1102 			break;
1103 		default:
1104 			return -EINVAL;
1105 		}
1106 
1107 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1108 
1109 		/* Make it clear that broken DTs are... broken */
1110 		WARN(*type == IRQ_TYPE_NONE,
1111 		     "HW irq %ld has invalid type\n", *hwirq);
1112 		return 0;
1113 	}
1114 
1115 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1116 		if(fwspec->param_count != 2)
1117 			return -EINVAL;
1118 
1119 		if (fwspec->param[0] < 16) {
1120 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1121 			       fwspec->param[0]);
1122 			return -EINVAL;
1123 		}
1124 
1125 		*hwirq = fwspec->param[0];
1126 		*type = fwspec->param[1];
1127 
1128 		WARN(*type == IRQ_TYPE_NONE,
1129 		     "HW irq %ld has invalid type\n", *hwirq);
1130 		return 0;
1131 	}
1132 
1133 	return -EINVAL;
1134 }
1135 
1136 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1137 				unsigned int nr_irqs, void *arg)
1138 {
1139 	int i, ret;
1140 	irq_hw_number_t hwirq;
1141 	unsigned int type = IRQ_TYPE_NONE;
1142 	struct irq_fwspec *fwspec = arg;
1143 
1144 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1145 	if (ret)
1146 		return ret;
1147 
1148 	for (i = 0; i < nr_irqs; i++) {
1149 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1150 		if (ret)
1151 			return ret;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1158 	.translate = gic_irq_domain_translate,
1159 	.alloc = gic_irq_domain_alloc,
1160 	.free = irq_domain_free_irqs_top,
1161 };
1162 
1163 static int gic_init_bases(struct gic_chip_data *gic,
1164 			  struct fwnode_handle *handle)
1165 {
1166 	int gic_irqs, ret;
1167 
1168 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1169 		/* Frankein-GIC without banked registers... */
1170 		unsigned int cpu;
1171 
1172 		gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1173 		gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1174 		if (WARN_ON(!gic->dist_base.percpu_base ||
1175 			    !gic->cpu_base.percpu_base)) {
1176 			ret = -ENOMEM;
1177 			goto error;
1178 		}
1179 
1180 		for_each_possible_cpu(cpu) {
1181 			u32 mpidr = cpu_logical_map(cpu);
1182 			u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1183 			unsigned long offset = gic->percpu_offset * core_id;
1184 			*per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1185 				gic->raw_dist_base + offset;
1186 			*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1187 				gic->raw_cpu_base + offset;
1188 		}
1189 
1190 		enable_frankengic();
1191 	} else {
1192 		/* Normal, sane GIC... */
1193 		WARN(gic->percpu_offset,
1194 		     "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1195 		     gic->percpu_offset);
1196 		gic->dist_base.common_base = gic->raw_dist_base;
1197 		gic->cpu_base.common_base = gic->raw_cpu_base;
1198 	}
1199 
1200 	/*
1201 	 * Find out how many interrupts are supported.
1202 	 * The GIC only supports up to 1020 interrupt sources.
1203 	 */
1204 	gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1205 	gic_irqs = (gic_irqs + 1) * 32;
1206 	if (gic_irqs > 1020)
1207 		gic_irqs = 1020;
1208 	gic->gic_irqs = gic_irqs;
1209 
1210 	gic->domain = irq_domain_create_linear(handle, gic_irqs,
1211 					       &gic_irq_domain_hierarchy_ops,
1212 					       gic);
1213 	if (WARN_ON(!gic->domain)) {
1214 		ret = -ENODEV;
1215 		goto error;
1216 	}
1217 
1218 	gic_dist_init(gic);
1219 	ret = gic_cpu_init(gic);
1220 	if (ret)
1221 		goto error;
1222 
1223 	ret = gic_pm_init(gic);
1224 	if (ret)
1225 		goto error;
1226 
1227 	return 0;
1228 
1229 error:
1230 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1231 		free_percpu(gic->dist_base.percpu_base);
1232 		free_percpu(gic->cpu_base.percpu_base);
1233 	}
1234 
1235 	return ret;
1236 }
1237 
1238 static int __init __gic_init_bases(struct gic_chip_data *gic,
1239 				   struct fwnode_handle *handle)
1240 {
1241 	int i, ret;
1242 
1243 	if (WARN_ON(!gic || gic->domain))
1244 		return -EINVAL;
1245 
1246 	if (gic == &gic_data[0]) {
1247 		/*
1248 		 * Initialize the CPU interface map to all CPUs.
1249 		 * It will be refined as each CPU probes its ID.
1250 		 * This is only necessary for the primary GIC.
1251 		 */
1252 		for (i = 0; i < NR_GIC_CPU_IF; i++)
1253 			gic_cpu_map[i] = 0xff;
1254 
1255 		set_handle_irq(gic_handle_irq);
1256 		if (static_branch_likely(&supports_deactivate_key))
1257 			pr_info("GIC: Using split EOI/Deactivate mode\n");
1258 	}
1259 
1260 	ret = gic_init_bases(gic, handle);
1261 	if (gic == &gic_data[0])
1262 		gic_smp_init();
1263 
1264 	return ret;
1265 }
1266 
1267 static void gic_teardown(struct gic_chip_data *gic)
1268 {
1269 	if (WARN_ON(!gic))
1270 		return;
1271 
1272 	if (gic->raw_dist_base)
1273 		iounmap(gic->raw_dist_base);
1274 	if (gic->raw_cpu_base)
1275 		iounmap(gic->raw_cpu_base);
1276 }
1277 
1278 static int gic_cnt __initdata;
1279 static bool gicv2_force_probe;
1280 
1281 static int __init gicv2_force_probe_cfg(char *buf)
1282 {
1283 	return kstrtobool(buf, &gicv2_force_probe);
1284 }
1285 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1286 
1287 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1288 {
1289 	struct resource cpuif_res;
1290 
1291 	of_address_to_resource(node, 1, &cpuif_res);
1292 
1293 	if (!is_hyp_mode_available())
1294 		return false;
1295 	if (resource_size(&cpuif_res) < SZ_8K) {
1296 		void __iomem *alt;
1297 		/*
1298 		 * Check for a stupid firmware that only exposes the
1299 		 * first page of a GICv2.
1300 		 */
1301 		if (!gic_check_gicv2(*base))
1302 			return false;
1303 
1304 		if (!gicv2_force_probe) {
1305 			pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1306 			return false;
1307 		}
1308 
1309 		alt = ioremap(cpuif_res.start, SZ_8K);
1310 		if (!alt)
1311 			return false;
1312 		if (!gic_check_gicv2(alt + SZ_4K)) {
1313 			/*
1314 			 * The first page was that of a GICv2, and
1315 			 * the second was *something*. Let's trust it
1316 			 * to be a GICv2, and update the mapping.
1317 			 */
1318 			pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1319 				&cpuif_res.start);
1320 			iounmap(*base);
1321 			*base = alt;
1322 			return true;
1323 		}
1324 
1325 		/*
1326 		 * We detected *two* initial GICv2 pages in a
1327 		 * row. Could be a GICv2 aliased over two 64kB
1328 		 * pages. Update the resource, map the iospace, and
1329 		 * pray.
1330 		 */
1331 		iounmap(alt);
1332 		alt = ioremap(cpuif_res.start, SZ_128K);
1333 		if (!alt)
1334 			return false;
1335 		pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1336 			&cpuif_res.start);
1337 		cpuif_res.end = cpuif_res.start + SZ_128K -1;
1338 		iounmap(*base);
1339 		*base = alt;
1340 	}
1341 	if (resource_size(&cpuif_res) == SZ_128K) {
1342 		/*
1343 		 * Verify that we have the first 4kB of a GICv2
1344 		 * aliased over the first 64kB by checking the
1345 		 * GICC_IIDR register on both ends.
1346 		 */
1347 		if (!gic_check_gicv2(*base) ||
1348 		    !gic_check_gicv2(*base + 0xf000))
1349 			return false;
1350 
1351 		/*
1352 		 * Move the base up by 60kB, so that we have a 8kB
1353 		 * contiguous region, which allows us to use GICC_DIR
1354 		 * at its normal offset. Please pass me that bucket.
1355 		 */
1356 		*base += 0xf000;
1357 		cpuif_res.start += 0xf000;
1358 		pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1359 			&cpuif_res.start);
1360 	}
1361 
1362 	return true;
1363 }
1364 
1365 static bool gic_enable_rmw_access(void *data)
1366 {
1367 	/*
1368 	 * The EMEV2 class of machines has a broken interconnect, and
1369 	 * locks up on accesses that are less than 32bit. So far, only
1370 	 * the affinity setting requires it.
1371 	 */
1372 	if (of_machine_is_compatible("renesas,emev2")) {
1373 		static_branch_enable(&needs_rmw_access);
1374 		return true;
1375 	}
1376 
1377 	return false;
1378 }
1379 
1380 static const struct gic_quirk gic_quirks[] = {
1381 	{
1382 		.desc		= "broken byte access",
1383 		.compatible	= "arm,pl390",
1384 		.init		= gic_enable_rmw_access,
1385 	},
1386 	{ },
1387 };
1388 
1389 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1390 {
1391 	if (!gic || !node)
1392 		return -EINVAL;
1393 
1394 	gic->raw_dist_base = of_iomap(node, 0);
1395 	if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1396 		goto error;
1397 
1398 	gic->raw_cpu_base = of_iomap(node, 1);
1399 	if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1400 		goto error;
1401 
1402 	if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1403 		gic->percpu_offset = 0;
1404 
1405 	gic_enable_of_quirks(node, gic_quirks, gic);
1406 
1407 	return 0;
1408 
1409 error:
1410 	gic_teardown(gic);
1411 
1412 	return -ENOMEM;
1413 }
1414 
1415 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1416 {
1417 	int ret;
1418 
1419 	if (!dev || !dev->of_node || !gic || !irq)
1420 		return -EINVAL;
1421 
1422 	*gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1423 	if (!*gic)
1424 		return -ENOMEM;
1425 
1426 	ret = gic_of_setup(*gic, dev->of_node);
1427 	if (ret)
1428 		return ret;
1429 
1430 	ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1431 	if (ret) {
1432 		gic_teardown(*gic);
1433 		return ret;
1434 	}
1435 
1436 	irq_domain_set_pm_device((*gic)->domain, dev);
1437 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1438 
1439 	return 0;
1440 }
1441 
1442 static void __init gic_of_setup_kvm_info(struct device_node *node)
1443 {
1444 	int ret;
1445 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1446 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1447 
1448 	gic_v2_kvm_info.type = GIC_V2;
1449 
1450 	gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1451 	if (!gic_v2_kvm_info.maint_irq)
1452 		return;
1453 
1454 	ret = of_address_to_resource(node, 2, vctrl_res);
1455 	if (ret)
1456 		return;
1457 
1458 	ret = of_address_to_resource(node, 3, vcpu_res);
1459 	if (ret)
1460 		return;
1461 
1462 	if (static_branch_likely(&supports_deactivate_key))
1463 		vgic_set_kvm_info(&gic_v2_kvm_info);
1464 }
1465 
1466 int __init
1467 gic_of_init(struct device_node *node, struct device_node *parent)
1468 {
1469 	struct gic_chip_data *gic;
1470 	int irq, ret;
1471 
1472 	if (WARN_ON(!node))
1473 		return -ENODEV;
1474 
1475 	if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1476 		return -EINVAL;
1477 
1478 	gic = &gic_data[gic_cnt];
1479 
1480 	ret = gic_of_setup(gic, node);
1481 	if (ret)
1482 		return ret;
1483 
1484 	/*
1485 	 * Disable split EOI/Deactivate if either HYP is not available
1486 	 * or the CPU interface is too small.
1487 	 */
1488 	if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1489 		static_branch_disable(&supports_deactivate_key);
1490 
1491 	ret = __gic_init_bases(gic, &node->fwnode);
1492 	if (ret) {
1493 		gic_teardown(gic);
1494 		return ret;
1495 	}
1496 
1497 	if (!gic_cnt) {
1498 		gic_init_physaddr(node);
1499 		gic_of_setup_kvm_info(node);
1500 	}
1501 
1502 	if (parent) {
1503 		irq = irq_of_parse_and_map(node, 0);
1504 		gic_cascade_irq(gic_cnt, irq);
1505 	}
1506 
1507 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1508 		gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1509 
1510 	gic_cnt++;
1511 	return 0;
1512 }
1513 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1514 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1515 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1516 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1517 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1518 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1519 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1520 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1521 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1522 
1523 #ifdef CONFIG_ACPI
1524 static struct
1525 {
1526 	phys_addr_t cpu_phys_base;
1527 	u32 maint_irq;
1528 	int maint_irq_mode;
1529 	phys_addr_t vctrl_base;
1530 	phys_addr_t vcpu_base;
1531 } acpi_data __initdata;
1532 
1533 static int __init
1534 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1535 			const unsigned long end)
1536 {
1537 	struct acpi_madt_generic_interrupt *processor;
1538 	phys_addr_t gic_cpu_base;
1539 	static int cpu_base_assigned;
1540 
1541 	processor = (struct acpi_madt_generic_interrupt *)header;
1542 
1543 	if (BAD_MADT_GICC_ENTRY(processor, end))
1544 		return -EINVAL;
1545 
1546 	/*
1547 	 * There is no support for non-banked GICv1/2 register in ACPI spec.
1548 	 * All CPU interface addresses have to be the same.
1549 	 */
1550 	gic_cpu_base = processor->base_address;
1551 	if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1552 		return -EINVAL;
1553 
1554 	acpi_data.cpu_phys_base = gic_cpu_base;
1555 	acpi_data.maint_irq = processor->vgic_interrupt;
1556 	acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1557 				    ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1558 	acpi_data.vctrl_base = processor->gich_base_address;
1559 	acpi_data.vcpu_base = processor->gicv_base_address;
1560 
1561 	cpu_base_assigned = 1;
1562 	return 0;
1563 }
1564 
1565 /* The things you have to do to just *count* something... */
1566 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1567 				  const unsigned long end)
1568 {
1569 	return 0;
1570 }
1571 
1572 static bool __init acpi_gic_redist_is_present(void)
1573 {
1574 	return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1575 				     acpi_dummy_func, 0) > 0;
1576 }
1577 
1578 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1579 				     struct acpi_probe_entry *ape)
1580 {
1581 	struct acpi_madt_generic_distributor *dist;
1582 	dist = (struct acpi_madt_generic_distributor *)header;
1583 
1584 	return (dist->version == ape->driver_data &&
1585 		(dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1586 		 !acpi_gic_redist_is_present()));
1587 }
1588 
1589 #define ACPI_GICV2_DIST_MEM_SIZE	(SZ_4K)
1590 #define ACPI_GIC_CPU_IF_MEM_SIZE	(SZ_8K)
1591 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
1592 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
1593 
1594 static void __init gic_acpi_setup_kvm_info(void)
1595 {
1596 	int irq;
1597 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1598 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1599 
1600 	gic_v2_kvm_info.type = GIC_V2;
1601 
1602 	if (!acpi_data.vctrl_base)
1603 		return;
1604 
1605 	vctrl_res->flags = IORESOURCE_MEM;
1606 	vctrl_res->start = acpi_data.vctrl_base;
1607 	vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1608 
1609 	if (!acpi_data.vcpu_base)
1610 		return;
1611 
1612 	vcpu_res->flags = IORESOURCE_MEM;
1613 	vcpu_res->start = acpi_data.vcpu_base;
1614 	vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1615 
1616 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1617 				acpi_data.maint_irq_mode,
1618 				ACPI_ACTIVE_HIGH);
1619 	if (irq <= 0)
1620 		return;
1621 
1622 	gic_v2_kvm_info.maint_irq = irq;
1623 
1624 	vgic_set_kvm_info(&gic_v2_kvm_info);
1625 }
1626 
1627 static struct fwnode_handle *gsi_domain_handle;
1628 
1629 static struct fwnode_handle *gic_v2_get_gsi_domain_id(u32 gsi)
1630 {
1631 	return gsi_domain_handle;
1632 }
1633 
1634 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1635 				   const unsigned long end)
1636 {
1637 	struct acpi_madt_generic_distributor *dist;
1638 	struct gic_chip_data *gic = &gic_data[0];
1639 	int count, ret;
1640 
1641 	/* Collect CPU base addresses */
1642 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1643 				      gic_acpi_parse_madt_cpu, 0);
1644 	if (count <= 0) {
1645 		pr_err("No valid GICC entries exist\n");
1646 		return -EINVAL;
1647 	}
1648 
1649 	gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1650 	if (!gic->raw_cpu_base) {
1651 		pr_err("Unable to map GICC registers\n");
1652 		return -ENOMEM;
1653 	}
1654 
1655 	dist = (struct acpi_madt_generic_distributor *)header;
1656 	gic->raw_dist_base = ioremap(dist->base_address,
1657 				     ACPI_GICV2_DIST_MEM_SIZE);
1658 	if (!gic->raw_dist_base) {
1659 		pr_err("Unable to map GICD registers\n");
1660 		gic_teardown(gic);
1661 		return -ENOMEM;
1662 	}
1663 
1664 	/*
1665 	 * Disable split EOI/Deactivate if HYP is not available. ACPI
1666 	 * guarantees that we'll always have a GICv2, so the CPU
1667 	 * interface will always be the right size.
1668 	 */
1669 	if (!is_hyp_mode_available())
1670 		static_branch_disable(&supports_deactivate_key);
1671 
1672 	/*
1673 	 * Initialize GIC instance zero (no multi-GIC support).
1674 	 */
1675 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1676 	if (!gsi_domain_handle) {
1677 		pr_err("Unable to allocate domain handle\n");
1678 		gic_teardown(gic);
1679 		return -ENOMEM;
1680 	}
1681 
1682 	ret = __gic_init_bases(gic, gsi_domain_handle);
1683 	if (ret) {
1684 		pr_err("Failed to initialise GIC\n");
1685 		irq_domain_free_fwnode(gsi_domain_handle);
1686 		gic_teardown(gic);
1687 		return ret;
1688 	}
1689 
1690 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v2_get_gsi_domain_id);
1691 
1692 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1693 		gicv2m_init(NULL, gic_data[0].domain);
1694 
1695 	if (static_branch_likely(&supports_deactivate_key))
1696 		gic_acpi_setup_kvm_info();
1697 
1698 	return 0;
1699 }
1700 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1701 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1702 		     gic_v2_acpi_init);
1703 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1704 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1705 		     gic_v2_acpi_init);
1706 #endif
1707