1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 4 * 5 * Interrupt architecture for the GIC: 6 * 7 * o There is one Interrupt Distributor, which receives interrupts 8 * from system devices and sends them to the Interrupt Controllers. 9 * 10 * o There is one CPU Interface per CPU, which sends interrupts sent 11 * by the Distributor, and interrupts generated locally, to the 12 * associated CPU. The base address of the CPU interface is usually 13 * aliased so that the same address points to different chips depending 14 * on the CPU it is accessed from. 15 * 16 * Note that IRQs 0-31 are special - they are local to each CPU. 17 * As such, the enable set/clear, pending set/clear and active bit 18 * registers are banked per-cpu for these sources. 19 */ 20 #include <linux/init.h> 21 #include <linux/kernel.h> 22 #include <linux/kstrtox.h> 23 #include <linux/err.h> 24 #include <linux/module.h> 25 #include <linux/list.h> 26 #include <linux/smp.h> 27 #include <linux/cpu.h> 28 #include <linux/cpu_pm.h> 29 #include <linux/cpumask.h> 30 #include <linux/io.h> 31 #include <linux/of.h> 32 #include <linux/of_address.h> 33 #include <linux/of_irq.h> 34 #include <linux/acpi.h> 35 #include <linux/irqdomain.h> 36 #include <linux/interrupt.h> 37 #include <linux/percpu.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/irqchip.h> 41 #include <linux/irqchip/chained_irq.h> 42 #include <linux/irqchip/arm-gic.h> 43 44 #include <asm/cputype.h> 45 #include <asm/irq.h> 46 #include <asm/exception.h> 47 #include <asm/smp_plat.h> 48 #include <asm/virt.h> 49 50 #include "irq-gic-common.h" 51 52 #ifdef CONFIG_ARM64 53 #include <asm/cpufeature.h> 54 55 static void gic_check_cpu_features(void) 56 { 57 WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_GIC_CPUIF_SYSREGS), 58 TAINT_CPU_OUT_OF_SPEC, 59 "GICv3 system registers enabled, broken firmware!\n"); 60 } 61 #else 62 #define gic_check_cpu_features() do { } while(0) 63 #endif 64 65 union gic_base { 66 void __iomem *common_base; 67 void __iomem * __percpu *percpu_base; 68 }; 69 70 struct gic_chip_data { 71 union gic_base dist_base; 72 union gic_base cpu_base; 73 void __iomem *raw_dist_base; 74 void __iomem *raw_cpu_base; 75 u32 percpu_offset; 76 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM) 77 u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)]; 78 u32 saved_spi_active[DIV_ROUND_UP(1020, 32)]; 79 u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)]; 80 u32 saved_spi_target[DIV_ROUND_UP(1020, 4)]; 81 u32 __percpu *saved_ppi_enable; 82 u32 __percpu *saved_ppi_active; 83 u32 __percpu *saved_ppi_conf; 84 #endif 85 struct irq_domain *domain; 86 unsigned int gic_irqs; 87 }; 88 89 #ifdef CONFIG_BL_SWITCHER 90 91 static DEFINE_RAW_SPINLOCK(cpu_map_lock); 92 93 #define gic_lock_irqsave(f) \ 94 raw_spin_lock_irqsave(&cpu_map_lock, (f)) 95 #define gic_unlock_irqrestore(f) \ 96 raw_spin_unlock_irqrestore(&cpu_map_lock, (f)) 97 98 #define gic_lock() raw_spin_lock(&cpu_map_lock) 99 #define gic_unlock() raw_spin_unlock(&cpu_map_lock) 100 101 #else 102 103 #define gic_lock_irqsave(f) do { (void)(f); } while(0) 104 #define gic_unlock_irqrestore(f) do { (void)(f); } while(0) 105 106 #define gic_lock() do { } while(0) 107 #define gic_unlock() do { } while(0) 108 109 #endif 110 111 static DEFINE_STATIC_KEY_FALSE(needs_rmw_access); 112 113 /* 114 * The GIC mapping of CPU interfaces does not necessarily match 115 * the logical CPU numbering. Let's use a mapping as returned 116 * by the GIC itself. 117 */ 118 #define NR_GIC_CPU_IF 8 119 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly; 120 121 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); 122 123 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly; 124 125 static struct gic_kvm_info gic_v2_kvm_info __initdata; 126 127 static DEFINE_PER_CPU(u32, sgi_intid); 128 129 #ifdef CONFIG_GIC_NON_BANKED 130 static DEFINE_STATIC_KEY_FALSE(frankengic_key); 131 132 static void enable_frankengic(void) 133 { 134 static_branch_enable(&frankengic_key); 135 } 136 137 static inline void __iomem *__get_base(union gic_base *base) 138 { 139 if (static_branch_unlikely(&frankengic_key)) 140 return raw_cpu_read(*base->percpu_base); 141 142 return base->common_base; 143 } 144 145 #define gic_data_dist_base(d) __get_base(&(d)->dist_base) 146 #define gic_data_cpu_base(d) __get_base(&(d)->cpu_base) 147 #else 148 #define gic_data_dist_base(d) ((d)->dist_base.common_base) 149 #define gic_data_cpu_base(d) ((d)->cpu_base.common_base) 150 #define enable_frankengic() do { } while(0) 151 #endif 152 153 static inline void __iomem *gic_dist_base(struct irq_data *d) 154 { 155 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d); 156 return gic_data_dist_base(gic_data); 157 } 158 159 static inline void __iomem *gic_cpu_base(struct irq_data *d) 160 { 161 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d); 162 return gic_data_cpu_base(gic_data); 163 } 164 165 static inline bool cascading_gic_irq(struct irq_data *d) 166 { 167 void *data = irq_data_get_irq_handler_data(d); 168 169 /* 170 * If handler_data is set, this is a cascading interrupt, and 171 * it cannot possibly be forwarded. 172 */ 173 return data != NULL; 174 } 175 176 /* 177 * Routines to acknowledge, disable and enable interrupts 178 */ 179 static void gic_poke_irq(struct irq_data *d, u32 offset) 180 { 181 u32 mask = 1 << (irqd_to_hwirq(d) % 32); 182 183 writel_relaxed(mask, gic_dist_base(d) + offset + (irqd_to_hwirq(d) / 32) * 4); 184 } 185 186 static int gic_peek_irq(struct irq_data *d, u32 offset) 187 { 188 u32 mask = 1 << (irqd_to_hwirq(d) % 32); 189 190 return !!(readl_relaxed(gic_dist_base(d) + offset + (irqd_to_hwirq(d) / 32) * 4) & mask); 191 } 192 193 static void gic_mask_irq(struct irq_data *d) 194 { 195 gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR); 196 } 197 198 static void gic_eoimode1_mask_irq(struct irq_data *d) 199 { 200 gic_mask_irq(d); 201 /* 202 * When masking a forwarded interrupt, make sure it is 203 * deactivated as well. 204 * 205 * This ensures that an interrupt that is getting 206 * disabled/masked will not get "stuck", because there is 207 * noone to deactivate it (guest is being terminated). 208 */ 209 if (irqd_is_forwarded_to_vcpu(d)) 210 gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR); 211 } 212 213 static void gic_unmask_irq(struct irq_data *d) 214 { 215 gic_poke_irq(d, GIC_DIST_ENABLE_SET); 216 } 217 218 static void gic_eoi_irq(struct irq_data *d) 219 { 220 irq_hw_number_t hwirq = irqd_to_hwirq(d); 221 222 if (hwirq < 16) 223 hwirq = this_cpu_read(sgi_intid); 224 225 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI); 226 } 227 228 static void gic_eoimode1_eoi_irq(struct irq_data *d) 229 { 230 irq_hw_number_t hwirq = irqd_to_hwirq(d); 231 232 /* Do not deactivate an IRQ forwarded to a vcpu. */ 233 if (irqd_is_forwarded_to_vcpu(d)) 234 return; 235 236 if (hwirq < 16) 237 hwirq = this_cpu_read(sgi_intid); 238 239 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE); 240 } 241 242 static int gic_irq_set_irqchip_state(struct irq_data *d, 243 enum irqchip_irq_state which, bool val) 244 { 245 u32 reg; 246 247 switch (which) { 248 case IRQCHIP_STATE_PENDING: 249 reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR; 250 break; 251 252 case IRQCHIP_STATE_ACTIVE: 253 reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR; 254 break; 255 256 case IRQCHIP_STATE_MASKED: 257 reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET; 258 break; 259 260 default: 261 return -EINVAL; 262 } 263 264 gic_poke_irq(d, reg); 265 return 0; 266 } 267 268 static int gic_irq_get_irqchip_state(struct irq_data *d, 269 enum irqchip_irq_state which, bool *val) 270 { 271 switch (which) { 272 case IRQCHIP_STATE_PENDING: 273 *val = gic_peek_irq(d, GIC_DIST_PENDING_SET); 274 break; 275 276 case IRQCHIP_STATE_ACTIVE: 277 *val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET); 278 break; 279 280 case IRQCHIP_STATE_MASKED: 281 *val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET); 282 break; 283 284 default: 285 return -EINVAL; 286 } 287 288 return 0; 289 } 290 291 static int gic_set_type(struct irq_data *d, unsigned int type) 292 { 293 irq_hw_number_t gicirq = irqd_to_hwirq(d); 294 void __iomem *base = gic_dist_base(d); 295 int ret; 296 297 /* Interrupt configuration for SGIs can't be changed */ 298 if (gicirq < 16) 299 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; 300 301 /* SPIs have restrictions on the supported types */ 302 if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH && 303 type != IRQ_TYPE_EDGE_RISING) 304 return -EINVAL; 305 306 ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG); 307 if (ret && gicirq < 32) { 308 /* Misconfigured PPIs are usually not fatal */ 309 pr_warn("GIC: PPI%ld is secure or misconfigured\n", gicirq - 16); 310 ret = 0; 311 } 312 313 return ret; 314 } 315 316 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) 317 { 318 /* Only interrupts on the primary GIC can be forwarded to a vcpu. */ 319 if (cascading_gic_irq(d) || irqd_to_hwirq(d) < 16) 320 return -EINVAL; 321 322 if (vcpu) 323 irqd_set_forwarded_to_vcpu(d); 324 else 325 irqd_clr_forwarded_to_vcpu(d); 326 return 0; 327 } 328 329 static int gic_retrigger(struct irq_data *data) 330 { 331 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); 332 } 333 334 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) 335 { 336 u32 irqstat, irqnr; 337 struct gic_chip_data *gic = &gic_data[0]; 338 void __iomem *cpu_base = gic_data_cpu_base(gic); 339 340 do { 341 irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK); 342 irqnr = irqstat & GICC_IAR_INT_ID_MASK; 343 344 if (unlikely(irqnr >= 1020)) 345 break; 346 347 if (static_branch_likely(&supports_deactivate_key)) 348 writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI); 349 isb(); 350 351 /* 352 * Ensure any shared data written by the CPU sending the IPI 353 * is read after we've read the ACK register on the GIC. 354 * 355 * Pairs with the write barrier in gic_ipi_send_mask 356 */ 357 if (irqnr <= 15) { 358 smp_rmb(); 359 360 /* 361 * The GIC encodes the source CPU in GICC_IAR, 362 * leading to the deactivation to fail if not 363 * written back as is to GICC_EOI. Stash the INTID 364 * away for gic_eoi_irq() to write back. This only 365 * works because we don't nest SGIs... 366 */ 367 this_cpu_write(sgi_intid, irqstat); 368 } 369 370 generic_handle_domain_irq(gic->domain, irqnr); 371 } while (1); 372 } 373 374 static void gic_handle_cascade_irq(struct irq_desc *desc) 375 { 376 struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc); 377 struct irq_chip *chip = irq_desc_get_chip(desc); 378 unsigned int gic_irq; 379 unsigned long status; 380 int ret; 381 382 chained_irq_enter(chip, desc); 383 384 status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK); 385 386 gic_irq = (status & GICC_IAR_INT_ID_MASK); 387 if (gic_irq == GICC_INT_SPURIOUS) 388 goto out; 389 390 isb(); 391 ret = generic_handle_domain_irq(chip_data->domain, gic_irq); 392 if (unlikely(ret)) 393 handle_bad_irq(desc); 394 out: 395 chained_irq_exit(chip, desc); 396 } 397 398 static void gic_irq_print_chip(struct irq_data *d, struct seq_file *p) 399 { 400 struct gic_chip_data *gic = irq_data_get_irq_chip_data(d); 401 402 if (gic->domain->pm_dev) 403 seq_puts(p, gic->domain->pm_dev->of_node->name); 404 else 405 seq_printf(p, "GIC-%d", (int)(gic - &gic_data[0])); 406 } 407 408 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq) 409 { 410 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR); 411 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, 412 &gic_data[gic_nr]); 413 } 414 415 static u8 gic_get_cpumask(struct gic_chip_data *gic) 416 { 417 void __iomem *base = gic_data_dist_base(gic); 418 u32 mask, i; 419 420 for (i = mask = 0; i < 32; i += 4) { 421 mask = readl_relaxed(base + GIC_DIST_TARGET + i); 422 mask |= mask >> 16; 423 mask |= mask >> 8; 424 if (mask) 425 break; 426 } 427 428 if (!mask && num_possible_cpus() > 1) 429 pr_crit("GIC CPU mask not found - kernel will fail to boot.\n"); 430 431 return mask; 432 } 433 434 static bool gic_check_gicv2(void __iomem *base) 435 { 436 u32 val = readl_relaxed(base + GIC_CPU_IDENT); 437 return (val & 0xff0fff) == 0x02043B; 438 } 439 440 static void gic_cpu_if_up(struct gic_chip_data *gic) 441 { 442 void __iomem *cpu_base = gic_data_cpu_base(gic); 443 u32 bypass = 0; 444 u32 mode = 0; 445 int i; 446 447 if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key)) 448 mode = GIC_CPU_CTRL_EOImodeNS; 449 450 if (gic_check_gicv2(cpu_base)) 451 for (i = 0; i < 4; i++) 452 writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4); 453 454 /* 455 * Preserve bypass disable bits to be written back later 456 */ 457 bypass = readl(cpu_base + GIC_CPU_CTRL); 458 bypass &= GICC_DIS_BYPASS_MASK; 459 460 writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL); 461 } 462 463 464 static void gic_dist_init(struct gic_chip_data *gic) 465 { 466 unsigned int i; 467 u32 cpumask; 468 unsigned int gic_irqs = gic->gic_irqs; 469 void __iomem *base = gic_data_dist_base(gic); 470 471 writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL); 472 473 /* 474 * Set all global interrupts to this CPU only. 475 */ 476 cpumask = gic_get_cpumask(gic); 477 cpumask |= cpumask << 8; 478 cpumask |= cpumask << 16; 479 for (i = 32; i < gic_irqs; i += 4) 480 writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4); 481 482 gic_dist_config(base, gic_irqs, GICD_INT_DEF_PRI); 483 484 writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL); 485 } 486 487 static int gic_cpu_init(struct gic_chip_data *gic) 488 { 489 void __iomem *dist_base = gic_data_dist_base(gic); 490 void __iomem *base = gic_data_cpu_base(gic); 491 unsigned int cpu_mask, cpu = smp_processor_id(); 492 int i; 493 494 /* 495 * Setting up the CPU map is only relevant for the primary GIC 496 * because any nested/secondary GICs do not directly interface 497 * with the CPU(s). 498 */ 499 if (gic == &gic_data[0]) { 500 /* 501 * Get what the GIC says our CPU mask is. 502 */ 503 if (WARN_ON(cpu >= NR_GIC_CPU_IF)) 504 return -EINVAL; 505 506 gic_check_cpu_features(); 507 cpu_mask = gic_get_cpumask(gic); 508 gic_cpu_map[cpu] = cpu_mask; 509 510 /* 511 * Clear our mask from the other map entries in case they're 512 * still undefined. 513 */ 514 for (i = 0; i < NR_GIC_CPU_IF; i++) 515 if (i != cpu) 516 gic_cpu_map[i] &= ~cpu_mask; 517 } 518 519 gic_cpu_config(dist_base, 32, GICD_INT_DEF_PRI); 520 521 writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK); 522 gic_cpu_if_up(gic); 523 524 return 0; 525 } 526 527 int gic_cpu_if_down(unsigned int gic_nr) 528 { 529 void __iomem *cpu_base; 530 u32 val = 0; 531 532 if (gic_nr >= CONFIG_ARM_GIC_MAX_NR) 533 return -EINVAL; 534 535 cpu_base = gic_data_cpu_base(&gic_data[gic_nr]); 536 val = readl(cpu_base + GIC_CPU_CTRL); 537 val &= ~GICC_ENABLE; 538 writel_relaxed(val, cpu_base + GIC_CPU_CTRL); 539 540 return 0; 541 } 542 543 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM) 544 /* 545 * Saves the GIC distributor registers during suspend or idle. Must be called 546 * with interrupts disabled but before powering down the GIC. After calling 547 * this function, no interrupts will be delivered by the GIC, and another 548 * platform-specific wakeup source must be enabled. 549 */ 550 void gic_dist_save(struct gic_chip_data *gic) 551 { 552 unsigned int gic_irqs; 553 void __iomem *dist_base; 554 int i; 555 556 if (WARN_ON(!gic)) 557 return; 558 559 gic_irqs = gic->gic_irqs; 560 dist_base = gic_data_dist_base(gic); 561 562 if (!dist_base) 563 return; 564 565 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++) 566 gic->saved_spi_conf[i] = 567 readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4); 568 569 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++) 570 gic->saved_spi_target[i] = 571 readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4); 572 573 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) 574 gic->saved_spi_enable[i] = 575 readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); 576 577 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) 578 gic->saved_spi_active[i] = 579 readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4); 580 } 581 582 /* 583 * Restores the GIC distributor registers during resume or when coming out of 584 * idle. Must be called before enabling interrupts. If a level interrupt 585 * that occurred while the GIC was suspended is still present, it will be 586 * handled normally, but any edge interrupts that occurred will not be seen by 587 * the GIC and need to be handled by the platform-specific wakeup source. 588 */ 589 void gic_dist_restore(struct gic_chip_data *gic) 590 { 591 unsigned int gic_irqs; 592 unsigned int i; 593 void __iomem *dist_base; 594 595 if (WARN_ON(!gic)) 596 return; 597 598 gic_irqs = gic->gic_irqs; 599 dist_base = gic_data_dist_base(gic); 600 601 if (!dist_base) 602 return; 603 604 writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL); 605 606 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++) 607 writel_relaxed(gic->saved_spi_conf[i], 608 dist_base + GIC_DIST_CONFIG + i * 4); 609 610 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++) 611 writel_relaxed(REPEAT_BYTE_U32(GICD_INT_DEF_PRI), 612 dist_base + GIC_DIST_PRI + i * 4); 613 614 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++) 615 writel_relaxed(gic->saved_spi_target[i], 616 dist_base + GIC_DIST_TARGET + i * 4); 617 618 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) { 619 writel_relaxed(GICD_INT_EN_CLR_X32, 620 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4); 621 writel_relaxed(gic->saved_spi_enable[i], 622 dist_base + GIC_DIST_ENABLE_SET + i * 4); 623 } 624 625 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) { 626 writel_relaxed(GICD_INT_EN_CLR_X32, 627 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4); 628 writel_relaxed(gic->saved_spi_active[i], 629 dist_base + GIC_DIST_ACTIVE_SET + i * 4); 630 } 631 632 writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL); 633 } 634 635 void gic_cpu_save(struct gic_chip_data *gic) 636 { 637 int i; 638 u32 *ptr; 639 void __iomem *dist_base; 640 void __iomem *cpu_base; 641 642 if (WARN_ON(!gic)) 643 return; 644 645 dist_base = gic_data_dist_base(gic); 646 cpu_base = gic_data_cpu_base(gic); 647 648 if (!dist_base || !cpu_base) 649 return; 650 651 ptr = raw_cpu_ptr(gic->saved_ppi_enable); 652 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) 653 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); 654 655 ptr = raw_cpu_ptr(gic->saved_ppi_active); 656 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) 657 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4); 658 659 ptr = raw_cpu_ptr(gic->saved_ppi_conf); 660 for (i = 0; i < DIV_ROUND_UP(32, 16); i++) 661 ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4); 662 663 } 664 665 void gic_cpu_restore(struct gic_chip_data *gic) 666 { 667 int i; 668 u32 *ptr; 669 void __iomem *dist_base; 670 void __iomem *cpu_base; 671 672 if (WARN_ON(!gic)) 673 return; 674 675 dist_base = gic_data_dist_base(gic); 676 cpu_base = gic_data_cpu_base(gic); 677 678 if (!dist_base || !cpu_base) 679 return; 680 681 ptr = raw_cpu_ptr(gic->saved_ppi_enable); 682 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) { 683 writel_relaxed(GICD_INT_EN_CLR_X32, 684 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4); 685 writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4); 686 } 687 688 ptr = raw_cpu_ptr(gic->saved_ppi_active); 689 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) { 690 writel_relaxed(GICD_INT_EN_CLR_X32, 691 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4); 692 writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4); 693 } 694 695 ptr = raw_cpu_ptr(gic->saved_ppi_conf); 696 for (i = 0; i < DIV_ROUND_UP(32, 16); i++) 697 writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4); 698 699 for (i = 0; i < DIV_ROUND_UP(32, 4); i++) 700 writel_relaxed(REPEAT_BYTE_U32(GICD_INT_DEF_PRI), 701 dist_base + GIC_DIST_PRI + i * 4); 702 703 writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK); 704 gic_cpu_if_up(gic); 705 } 706 707 static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v) 708 { 709 int i; 710 711 for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) { 712 switch (cmd) { 713 case CPU_PM_ENTER: 714 gic_cpu_save(&gic_data[i]); 715 break; 716 case CPU_PM_ENTER_FAILED: 717 case CPU_PM_EXIT: 718 gic_cpu_restore(&gic_data[i]); 719 break; 720 case CPU_CLUSTER_PM_ENTER: 721 gic_dist_save(&gic_data[i]); 722 break; 723 case CPU_CLUSTER_PM_ENTER_FAILED: 724 case CPU_CLUSTER_PM_EXIT: 725 gic_dist_restore(&gic_data[i]); 726 break; 727 } 728 } 729 730 return NOTIFY_OK; 731 } 732 733 static struct notifier_block gic_notifier_block = { 734 .notifier_call = gic_notifier, 735 }; 736 737 static int gic_pm_init(struct gic_chip_data *gic) 738 { 739 gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4, 740 sizeof(u32)); 741 if (WARN_ON(!gic->saved_ppi_enable)) 742 return -ENOMEM; 743 744 gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4, 745 sizeof(u32)); 746 if (WARN_ON(!gic->saved_ppi_active)) 747 goto free_ppi_enable; 748 749 gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4, 750 sizeof(u32)); 751 if (WARN_ON(!gic->saved_ppi_conf)) 752 goto free_ppi_active; 753 754 if (gic == &gic_data[0]) 755 cpu_pm_register_notifier(&gic_notifier_block); 756 757 return 0; 758 759 free_ppi_active: 760 free_percpu(gic->saved_ppi_active); 761 free_ppi_enable: 762 free_percpu(gic->saved_ppi_enable); 763 764 return -ENOMEM; 765 } 766 #else 767 static int gic_pm_init(struct gic_chip_data *gic) 768 { 769 return 0; 770 } 771 #endif 772 773 #ifdef CONFIG_SMP 774 static void rmw_writeb(u8 bval, void __iomem *addr) 775 { 776 static DEFINE_RAW_SPINLOCK(rmw_lock); 777 unsigned long offset = (unsigned long)addr & 3UL; 778 unsigned long shift = offset * 8; 779 unsigned long flags; 780 u32 val; 781 782 raw_spin_lock_irqsave(&rmw_lock, flags); 783 784 addr -= offset; 785 val = readl_relaxed(addr); 786 val &= ~GENMASK(shift + 7, shift); 787 val |= bval << shift; 788 writel_relaxed(val, addr); 789 790 raw_spin_unlock_irqrestore(&rmw_lock, flags); 791 } 792 793 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 794 bool force) 795 { 796 void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + irqd_to_hwirq(d); 797 struct gic_chip_data *gic = irq_data_get_irq_chip_data(d); 798 unsigned int cpu; 799 800 if (unlikely(gic != &gic_data[0])) 801 return -EINVAL; 802 803 if (!force) 804 cpu = cpumask_any_and(mask_val, cpu_online_mask); 805 else 806 cpu = cpumask_first(mask_val); 807 808 if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids) 809 return -EINVAL; 810 811 if (static_branch_unlikely(&needs_rmw_access)) 812 rmw_writeb(gic_cpu_map[cpu], reg); 813 else 814 writeb_relaxed(gic_cpu_map[cpu], reg); 815 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 816 817 return IRQ_SET_MASK_OK_DONE; 818 } 819 820 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) 821 { 822 int cpu; 823 unsigned long flags, map = 0; 824 825 if (unlikely(nr_cpu_ids == 1)) { 826 /* Only one CPU? let's do a self-IPI... */ 827 writel_relaxed(2 << 24 | d->hwirq, 828 gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT); 829 return; 830 } 831 832 gic_lock_irqsave(flags); 833 834 /* Convert our logical CPU mask into a physical one. */ 835 for_each_cpu(cpu, mask) 836 map |= gic_cpu_map[cpu]; 837 838 /* 839 * Ensure that stores to Normal memory are visible to the 840 * other CPUs before they observe us issuing the IPI. 841 */ 842 dmb(ishst); 843 844 /* this always happens on GIC0 */ 845 writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT); 846 847 gic_unlock_irqrestore(flags); 848 } 849 850 static int gic_starting_cpu(unsigned int cpu) 851 { 852 gic_cpu_init(&gic_data[0]); 853 return 0; 854 } 855 856 static __init void gic_smp_init(void) 857 { 858 struct irq_fwspec sgi_fwspec = { 859 .fwnode = gic_data[0].domain->fwnode, 860 .param_count = 1, 861 }; 862 int base_sgi; 863 864 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, 865 "irqchip/arm/gic:starting", 866 gic_starting_cpu, NULL); 867 868 base_sgi = irq_domain_alloc_irqs(gic_data[0].domain, 8, NUMA_NO_NODE, &sgi_fwspec); 869 if (WARN_ON(base_sgi <= 0)) 870 return; 871 872 set_smp_ipi_range(base_sgi, 8); 873 } 874 #else 875 #define gic_smp_init() do { } while(0) 876 #define gic_set_affinity NULL 877 #define gic_ipi_send_mask NULL 878 #endif 879 880 static const struct irq_chip gic_chip = { 881 .irq_mask = gic_mask_irq, 882 .irq_unmask = gic_unmask_irq, 883 .irq_eoi = gic_eoi_irq, 884 .irq_set_type = gic_set_type, 885 .irq_retrigger = gic_retrigger, 886 .irq_set_affinity = gic_set_affinity, 887 .ipi_send_mask = gic_ipi_send_mask, 888 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 889 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 890 .irq_print_chip = gic_irq_print_chip, 891 .flags = IRQCHIP_SET_TYPE_MASKED | 892 IRQCHIP_SKIP_SET_WAKE | 893 IRQCHIP_MASK_ON_SUSPEND, 894 }; 895 896 static const struct irq_chip gic_chip_mode1 = { 897 .name = "GICv2", 898 .irq_mask = gic_eoimode1_mask_irq, 899 .irq_unmask = gic_unmask_irq, 900 .irq_eoi = gic_eoimode1_eoi_irq, 901 .irq_set_type = gic_set_type, 902 .irq_retrigger = gic_retrigger, 903 .irq_set_affinity = gic_set_affinity, 904 .ipi_send_mask = gic_ipi_send_mask, 905 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 906 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 907 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, 908 .flags = IRQCHIP_SET_TYPE_MASKED | 909 IRQCHIP_SKIP_SET_WAKE | 910 IRQCHIP_MASK_ON_SUSPEND, 911 }; 912 913 #ifdef CONFIG_BL_SWITCHER 914 /* 915 * gic_send_sgi - send a SGI directly to given CPU interface number 916 * 917 * cpu_id: the ID for the destination CPU interface 918 * irq: the IPI number to send a SGI for 919 */ 920 void gic_send_sgi(unsigned int cpu_id, unsigned int irq) 921 { 922 BUG_ON(cpu_id >= NR_GIC_CPU_IF); 923 cpu_id = 1 << cpu_id; 924 /* this always happens on GIC0 */ 925 writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT); 926 } 927 928 /* 929 * gic_get_cpu_id - get the CPU interface ID for the specified CPU 930 * 931 * @cpu: the logical CPU number to get the GIC ID for. 932 * 933 * Return the CPU interface ID for the given logical CPU number, 934 * or -1 if the CPU number is too large or the interface ID is 935 * unknown (more than one bit set). 936 */ 937 int gic_get_cpu_id(unsigned int cpu) 938 { 939 unsigned int cpu_bit; 940 941 if (cpu >= NR_GIC_CPU_IF) 942 return -1; 943 cpu_bit = gic_cpu_map[cpu]; 944 if (cpu_bit & (cpu_bit - 1)) 945 return -1; 946 return __ffs(cpu_bit); 947 } 948 949 /* 950 * gic_migrate_target - migrate IRQs to another CPU interface 951 * 952 * @new_cpu_id: the CPU target ID to migrate IRQs to 953 * 954 * Migrate all peripheral interrupts with a target matching the current CPU 955 * to the interface corresponding to @new_cpu_id. The CPU interface mapping 956 * is also updated. Targets to other CPU interfaces are unchanged. 957 * This must be called with IRQs locally disabled. 958 */ 959 void gic_migrate_target(unsigned int new_cpu_id) 960 { 961 unsigned int cur_cpu_id, gic_irqs, gic_nr = 0; 962 void __iomem *dist_base; 963 int i, ror_val, cpu = smp_processor_id(); 964 u32 val, cur_target_mask, active_mask; 965 966 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR); 967 968 dist_base = gic_data_dist_base(&gic_data[gic_nr]); 969 if (!dist_base) 970 return; 971 gic_irqs = gic_data[gic_nr].gic_irqs; 972 973 cur_cpu_id = __ffs(gic_cpu_map[cpu]); 974 cur_target_mask = 0x01010101 << cur_cpu_id; 975 ror_val = (cur_cpu_id - new_cpu_id) & 31; 976 977 gic_lock(); 978 979 /* Update the target interface for this logical CPU */ 980 gic_cpu_map[cpu] = 1 << new_cpu_id; 981 982 /* 983 * Find all the peripheral interrupts targeting the current 984 * CPU interface and migrate them to the new CPU interface. 985 * We skip DIST_TARGET 0 to 7 as they are read-only. 986 */ 987 for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) { 988 val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4); 989 active_mask = val & cur_target_mask; 990 if (active_mask) { 991 val &= ~active_mask; 992 val |= ror32(active_mask, ror_val); 993 writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4); 994 } 995 } 996 997 gic_unlock(); 998 999 /* 1000 * Now let's migrate and clear any potential SGIs that might be 1001 * pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET 1002 * is a banked register, we can only forward the SGI using 1003 * GIC_DIST_SOFTINT. The original SGI source is lost but Linux 1004 * doesn't use that information anyway. 1005 * 1006 * For the same reason we do not adjust SGI source information 1007 * for previously sent SGIs by us to other CPUs either. 1008 */ 1009 for (i = 0; i < 16; i += 4) { 1010 int j; 1011 val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i); 1012 if (!val) 1013 continue; 1014 writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i); 1015 for (j = i; j < i + 4; j++) { 1016 if (val & 0xff) 1017 writel_relaxed((1 << (new_cpu_id + 16)) | j, 1018 dist_base + GIC_DIST_SOFTINT); 1019 val >>= 8; 1020 } 1021 } 1022 } 1023 1024 /* 1025 * gic_get_sgir_physaddr - get the physical address for the SGI register 1026 * 1027 * Return the physical address of the SGI register to be used 1028 * by some early assembly code when the kernel is not yet available. 1029 */ 1030 static unsigned long gic_dist_physaddr; 1031 1032 unsigned long gic_get_sgir_physaddr(void) 1033 { 1034 if (!gic_dist_physaddr) 1035 return 0; 1036 return gic_dist_physaddr + GIC_DIST_SOFTINT; 1037 } 1038 1039 static void __init gic_init_physaddr(struct device_node *node) 1040 { 1041 struct resource res; 1042 if (of_address_to_resource(node, 0, &res) == 0) { 1043 gic_dist_physaddr = res.start; 1044 pr_info("GIC physical location is %#lx\n", gic_dist_physaddr); 1045 } 1046 } 1047 1048 #else 1049 #define gic_init_physaddr(node) do { } while (0) 1050 #endif 1051 1052 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, 1053 irq_hw_number_t hw) 1054 { 1055 struct gic_chip_data *gic = d->host_data; 1056 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); 1057 const struct irq_chip *chip; 1058 1059 chip = (static_branch_likely(&supports_deactivate_key) && 1060 gic == &gic_data[0]) ? &gic_chip_mode1 : &gic_chip; 1061 1062 switch (hw) { 1063 case 0 ... 31: 1064 irq_set_percpu_devid(irq); 1065 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1066 handle_percpu_devid_irq, NULL, NULL); 1067 break; 1068 default: 1069 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1070 handle_fasteoi_irq, NULL, NULL); 1071 irq_set_probe(irq); 1072 irqd_set_single_target(irqd); 1073 break; 1074 } 1075 1076 /* Prevents SW retriggers which mess up the ACK/EOI ordering */ 1077 irqd_set_handle_enforce_irqctx(irqd); 1078 return 0; 1079 } 1080 1081 static int gic_irq_domain_translate(struct irq_domain *d, 1082 struct irq_fwspec *fwspec, 1083 unsigned long *hwirq, 1084 unsigned int *type) 1085 { 1086 if (fwspec->param_count == 1 && fwspec->param[0] < 16) { 1087 *hwirq = fwspec->param[0]; 1088 *type = IRQ_TYPE_EDGE_RISING; 1089 return 0; 1090 } 1091 1092 if (is_of_node(fwspec->fwnode)) { 1093 if (fwspec->param_count < 3) 1094 return -EINVAL; 1095 1096 switch (fwspec->param[0]) { 1097 case 0: /* SPI */ 1098 *hwirq = fwspec->param[1] + 32; 1099 break; 1100 case 1: /* PPI */ 1101 *hwirq = fwspec->param[1] + 16; 1102 break; 1103 default: 1104 return -EINVAL; 1105 } 1106 1107 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1108 1109 /* Make it clear that broken DTs are... broken */ 1110 WARN(*type == IRQ_TYPE_NONE, 1111 "HW irq %ld has invalid type\n", *hwirq); 1112 return 0; 1113 } 1114 1115 if (is_fwnode_irqchip(fwspec->fwnode)) { 1116 if(fwspec->param_count != 2) 1117 return -EINVAL; 1118 1119 if (fwspec->param[0] < 16) { 1120 pr_err(FW_BUG "Illegal GSI%d translation request\n", 1121 fwspec->param[0]); 1122 return -EINVAL; 1123 } 1124 1125 *hwirq = fwspec->param[0]; 1126 *type = fwspec->param[1]; 1127 1128 WARN(*type == IRQ_TYPE_NONE, 1129 "HW irq %ld has invalid type\n", *hwirq); 1130 return 0; 1131 } 1132 1133 return -EINVAL; 1134 } 1135 1136 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1137 unsigned int nr_irqs, void *arg) 1138 { 1139 int i, ret; 1140 irq_hw_number_t hwirq; 1141 unsigned int type = IRQ_TYPE_NONE; 1142 struct irq_fwspec *fwspec = arg; 1143 1144 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); 1145 if (ret) 1146 return ret; 1147 1148 for (i = 0; i < nr_irqs; i++) { 1149 ret = gic_irq_domain_map(domain, virq + i, hwirq + i); 1150 if (ret) 1151 return ret; 1152 } 1153 1154 return 0; 1155 } 1156 1157 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = { 1158 .translate = gic_irq_domain_translate, 1159 .alloc = gic_irq_domain_alloc, 1160 .free = irq_domain_free_irqs_top, 1161 }; 1162 1163 static int gic_init_bases(struct gic_chip_data *gic, 1164 struct fwnode_handle *handle) 1165 { 1166 int gic_irqs, ret; 1167 1168 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) { 1169 /* Frankein-GIC without banked registers... */ 1170 unsigned int cpu; 1171 1172 gic->dist_base.percpu_base = alloc_percpu(void __iomem *); 1173 gic->cpu_base.percpu_base = alloc_percpu(void __iomem *); 1174 if (WARN_ON(!gic->dist_base.percpu_base || 1175 !gic->cpu_base.percpu_base)) { 1176 ret = -ENOMEM; 1177 goto error; 1178 } 1179 1180 for_each_possible_cpu(cpu) { 1181 u32 mpidr = cpu_logical_map(cpu); 1182 u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); 1183 unsigned long offset = gic->percpu_offset * core_id; 1184 *per_cpu_ptr(gic->dist_base.percpu_base, cpu) = 1185 gic->raw_dist_base + offset; 1186 *per_cpu_ptr(gic->cpu_base.percpu_base, cpu) = 1187 gic->raw_cpu_base + offset; 1188 } 1189 1190 enable_frankengic(); 1191 } else { 1192 /* Normal, sane GIC... */ 1193 WARN(gic->percpu_offset, 1194 "GIC_NON_BANKED not enabled, ignoring %08x offset!", 1195 gic->percpu_offset); 1196 gic->dist_base.common_base = gic->raw_dist_base; 1197 gic->cpu_base.common_base = gic->raw_cpu_base; 1198 } 1199 1200 /* 1201 * Find out how many interrupts are supported. 1202 * The GIC only supports up to 1020 interrupt sources. 1203 */ 1204 gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f; 1205 gic_irqs = (gic_irqs + 1) * 32; 1206 if (gic_irqs > 1020) 1207 gic_irqs = 1020; 1208 gic->gic_irqs = gic_irqs; 1209 1210 gic->domain = irq_domain_create_linear(handle, gic_irqs, 1211 &gic_irq_domain_hierarchy_ops, 1212 gic); 1213 if (WARN_ON(!gic->domain)) { 1214 ret = -ENODEV; 1215 goto error; 1216 } 1217 1218 gic_dist_init(gic); 1219 ret = gic_cpu_init(gic); 1220 if (ret) 1221 goto error; 1222 1223 ret = gic_pm_init(gic); 1224 if (ret) 1225 goto error; 1226 1227 return 0; 1228 1229 error: 1230 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) { 1231 free_percpu(gic->dist_base.percpu_base); 1232 free_percpu(gic->cpu_base.percpu_base); 1233 } 1234 1235 return ret; 1236 } 1237 1238 static int __init __gic_init_bases(struct gic_chip_data *gic, 1239 struct fwnode_handle *handle) 1240 { 1241 int i, ret; 1242 1243 if (WARN_ON(!gic || gic->domain)) 1244 return -EINVAL; 1245 1246 if (gic == &gic_data[0]) { 1247 /* 1248 * Initialize the CPU interface map to all CPUs. 1249 * It will be refined as each CPU probes its ID. 1250 * This is only necessary for the primary GIC. 1251 */ 1252 for (i = 0; i < NR_GIC_CPU_IF; i++) 1253 gic_cpu_map[i] = 0xff; 1254 1255 set_handle_irq(gic_handle_irq); 1256 if (static_branch_likely(&supports_deactivate_key)) 1257 pr_info("GIC: Using split EOI/Deactivate mode\n"); 1258 } 1259 1260 ret = gic_init_bases(gic, handle); 1261 if (gic == &gic_data[0]) 1262 gic_smp_init(); 1263 1264 return ret; 1265 } 1266 1267 static void gic_teardown(struct gic_chip_data *gic) 1268 { 1269 if (WARN_ON(!gic)) 1270 return; 1271 1272 if (gic->raw_dist_base) 1273 iounmap(gic->raw_dist_base); 1274 if (gic->raw_cpu_base) 1275 iounmap(gic->raw_cpu_base); 1276 } 1277 1278 static int gic_cnt __initdata; 1279 static bool gicv2_force_probe; 1280 1281 static int __init gicv2_force_probe_cfg(char *buf) 1282 { 1283 return kstrtobool(buf, &gicv2_force_probe); 1284 } 1285 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg); 1286 1287 static bool gic_check_eoimode(struct device_node *node, void __iomem **base) 1288 { 1289 struct resource cpuif_res; 1290 1291 of_address_to_resource(node, 1, &cpuif_res); 1292 1293 if (!is_hyp_mode_available()) 1294 return false; 1295 if (resource_size(&cpuif_res) < SZ_8K) { 1296 void __iomem *alt; 1297 /* 1298 * Check for a stupid firmware that only exposes the 1299 * first page of a GICv2. 1300 */ 1301 if (!gic_check_gicv2(*base)) 1302 return false; 1303 1304 if (!gicv2_force_probe) { 1305 pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n"); 1306 return false; 1307 } 1308 1309 alt = ioremap(cpuif_res.start, SZ_8K); 1310 if (!alt) 1311 return false; 1312 if (!gic_check_gicv2(alt + SZ_4K)) { 1313 /* 1314 * The first page was that of a GICv2, and 1315 * the second was *something*. Let's trust it 1316 * to be a GICv2, and update the mapping. 1317 */ 1318 pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n", 1319 &cpuif_res.start); 1320 iounmap(*base); 1321 *base = alt; 1322 return true; 1323 } 1324 1325 /* 1326 * We detected *two* initial GICv2 pages in a 1327 * row. Could be a GICv2 aliased over two 64kB 1328 * pages. Update the resource, map the iospace, and 1329 * pray. 1330 */ 1331 iounmap(alt); 1332 alt = ioremap(cpuif_res.start, SZ_128K); 1333 if (!alt) 1334 return false; 1335 pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n", 1336 &cpuif_res.start); 1337 cpuif_res.end = cpuif_res.start + SZ_128K -1; 1338 iounmap(*base); 1339 *base = alt; 1340 } 1341 if (resource_size(&cpuif_res) == SZ_128K) { 1342 /* 1343 * Verify that we have the first 4kB of a GICv2 1344 * aliased over the first 64kB by checking the 1345 * GICC_IIDR register on both ends. 1346 */ 1347 if (!gic_check_gicv2(*base) || 1348 !gic_check_gicv2(*base + 0xf000)) 1349 return false; 1350 1351 /* 1352 * Move the base up by 60kB, so that we have a 8kB 1353 * contiguous region, which allows us to use GICC_DIR 1354 * at its normal offset. Please pass me that bucket. 1355 */ 1356 *base += 0xf000; 1357 cpuif_res.start += 0xf000; 1358 pr_warn("GIC: Adjusting CPU interface base to %pa\n", 1359 &cpuif_res.start); 1360 } 1361 1362 return true; 1363 } 1364 1365 static bool gic_enable_rmw_access(void *data) 1366 { 1367 /* 1368 * The EMEV2 class of machines has a broken interconnect, and 1369 * locks up on accesses that are less than 32bit. So far, only 1370 * the affinity setting requires it. 1371 */ 1372 if (of_machine_is_compatible("renesas,emev2")) { 1373 static_branch_enable(&needs_rmw_access); 1374 return true; 1375 } 1376 1377 return false; 1378 } 1379 1380 static const struct gic_quirk gic_quirks[] = { 1381 { 1382 .desc = "broken byte access", 1383 .compatible = "arm,pl390", 1384 .init = gic_enable_rmw_access, 1385 }, 1386 { }, 1387 }; 1388 1389 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node) 1390 { 1391 if (!gic || !node) 1392 return -EINVAL; 1393 1394 gic->raw_dist_base = of_iomap(node, 0); 1395 if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n")) 1396 goto error; 1397 1398 gic->raw_cpu_base = of_iomap(node, 1); 1399 if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n")) 1400 goto error; 1401 1402 if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset)) 1403 gic->percpu_offset = 0; 1404 1405 gic_enable_of_quirks(node, gic_quirks, gic); 1406 1407 return 0; 1408 1409 error: 1410 gic_teardown(gic); 1411 1412 return -ENOMEM; 1413 } 1414 1415 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq) 1416 { 1417 int ret; 1418 1419 if (!dev || !dev->of_node || !gic || !irq) 1420 return -EINVAL; 1421 1422 *gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL); 1423 if (!*gic) 1424 return -ENOMEM; 1425 1426 ret = gic_of_setup(*gic, dev->of_node); 1427 if (ret) 1428 return ret; 1429 1430 ret = gic_init_bases(*gic, &dev->of_node->fwnode); 1431 if (ret) { 1432 gic_teardown(*gic); 1433 return ret; 1434 } 1435 1436 irq_domain_set_pm_device((*gic)->domain, dev); 1437 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic); 1438 1439 return 0; 1440 } 1441 1442 static void __init gic_of_setup_kvm_info(struct device_node *node) 1443 { 1444 int ret; 1445 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl; 1446 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu; 1447 1448 gic_v2_kvm_info.type = GIC_V2; 1449 1450 gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); 1451 if (!gic_v2_kvm_info.maint_irq) 1452 return; 1453 1454 ret = of_address_to_resource(node, 2, vctrl_res); 1455 if (ret) 1456 return; 1457 1458 ret = of_address_to_resource(node, 3, vcpu_res); 1459 if (ret) 1460 return; 1461 1462 if (static_branch_likely(&supports_deactivate_key)) 1463 vgic_set_kvm_info(&gic_v2_kvm_info); 1464 } 1465 1466 int __init 1467 gic_of_init(struct device_node *node, struct device_node *parent) 1468 { 1469 struct gic_chip_data *gic; 1470 int irq, ret; 1471 1472 if (WARN_ON(!node)) 1473 return -ENODEV; 1474 1475 if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR)) 1476 return -EINVAL; 1477 1478 gic = &gic_data[gic_cnt]; 1479 1480 ret = gic_of_setup(gic, node); 1481 if (ret) 1482 return ret; 1483 1484 /* 1485 * Disable split EOI/Deactivate if either HYP is not available 1486 * or the CPU interface is too small. 1487 */ 1488 if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base)) 1489 static_branch_disable(&supports_deactivate_key); 1490 1491 ret = __gic_init_bases(gic, &node->fwnode); 1492 if (ret) { 1493 gic_teardown(gic); 1494 return ret; 1495 } 1496 1497 if (!gic_cnt) { 1498 gic_init_physaddr(node); 1499 gic_of_setup_kvm_info(node); 1500 } 1501 1502 if (parent) { 1503 irq = irq_of_parse_and_map(node, 0); 1504 gic_cascade_irq(gic_cnt, irq); 1505 } 1506 1507 if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) 1508 gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain); 1509 1510 gic_cnt++; 1511 return 0; 1512 } 1513 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init); 1514 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init); 1515 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init); 1516 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init); 1517 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init); 1518 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init); 1519 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init); 1520 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init); 1521 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init); 1522 1523 #ifdef CONFIG_ACPI 1524 static struct 1525 { 1526 phys_addr_t cpu_phys_base; 1527 u32 maint_irq; 1528 int maint_irq_mode; 1529 phys_addr_t vctrl_base; 1530 phys_addr_t vcpu_base; 1531 } acpi_data __initdata; 1532 1533 static int __init 1534 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header, 1535 const unsigned long end) 1536 { 1537 struct acpi_madt_generic_interrupt *processor; 1538 phys_addr_t gic_cpu_base; 1539 static int cpu_base_assigned; 1540 1541 processor = (struct acpi_madt_generic_interrupt *)header; 1542 1543 if (BAD_MADT_GICC_ENTRY(processor, end)) 1544 return -EINVAL; 1545 1546 /* 1547 * There is no support for non-banked GICv1/2 register in ACPI spec. 1548 * All CPU interface addresses have to be the same. 1549 */ 1550 gic_cpu_base = processor->base_address; 1551 if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base) 1552 return -EINVAL; 1553 1554 acpi_data.cpu_phys_base = gic_cpu_base; 1555 acpi_data.maint_irq = processor->vgic_interrupt; 1556 acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ? 1557 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; 1558 acpi_data.vctrl_base = processor->gich_base_address; 1559 acpi_data.vcpu_base = processor->gicv_base_address; 1560 1561 cpu_base_assigned = 1; 1562 return 0; 1563 } 1564 1565 /* The things you have to do to just *count* something... */ 1566 static int __init acpi_dummy_func(union acpi_subtable_headers *header, 1567 const unsigned long end) 1568 { 1569 return 0; 1570 } 1571 1572 static bool __init acpi_gic_redist_is_present(void) 1573 { 1574 return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, 1575 acpi_dummy_func, 0) > 0; 1576 } 1577 1578 static bool __init gic_validate_dist(struct acpi_subtable_header *header, 1579 struct acpi_probe_entry *ape) 1580 { 1581 struct acpi_madt_generic_distributor *dist; 1582 dist = (struct acpi_madt_generic_distributor *)header; 1583 1584 return (dist->version == ape->driver_data && 1585 (dist->version != ACPI_MADT_GIC_VERSION_NONE || 1586 !acpi_gic_redist_is_present())); 1587 } 1588 1589 #define ACPI_GICV2_DIST_MEM_SIZE (SZ_4K) 1590 #define ACPI_GIC_CPU_IF_MEM_SIZE (SZ_8K) 1591 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) 1592 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) 1593 1594 static void __init gic_acpi_setup_kvm_info(void) 1595 { 1596 int irq; 1597 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl; 1598 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu; 1599 1600 gic_v2_kvm_info.type = GIC_V2; 1601 1602 if (!acpi_data.vctrl_base) 1603 return; 1604 1605 vctrl_res->flags = IORESOURCE_MEM; 1606 vctrl_res->start = acpi_data.vctrl_base; 1607 vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1; 1608 1609 if (!acpi_data.vcpu_base) 1610 return; 1611 1612 vcpu_res->flags = IORESOURCE_MEM; 1613 vcpu_res->start = acpi_data.vcpu_base; 1614 vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; 1615 1616 irq = acpi_register_gsi(NULL, acpi_data.maint_irq, 1617 acpi_data.maint_irq_mode, 1618 ACPI_ACTIVE_HIGH); 1619 if (irq <= 0) 1620 return; 1621 1622 gic_v2_kvm_info.maint_irq = irq; 1623 1624 vgic_set_kvm_info(&gic_v2_kvm_info); 1625 } 1626 1627 static struct fwnode_handle *gsi_domain_handle; 1628 1629 static struct fwnode_handle *gic_v2_get_gsi_domain_id(u32 gsi) 1630 { 1631 return gsi_domain_handle; 1632 } 1633 1634 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header, 1635 const unsigned long end) 1636 { 1637 struct acpi_madt_generic_distributor *dist; 1638 struct gic_chip_data *gic = &gic_data[0]; 1639 int count, ret; 1640 1641 /* Collect CPU base addresses */ 1642 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 1643 gic_acpi_parse_madt_cpu, 0); 1644 if (count <= 0) { 1645 pr_err("No valid GICC entries exist\n"); 1646 return -EINVAL; 1647 } 1648 1649 gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE); 1650 if (!gic->raw_cpu_base) { 1651 pr_err("Unable to map GICC registers\n"); 1652 return -ENOMEM; 1653 } 1654 1655 dist = (struct acpi_madt_generic_distributor *)header; 1656 gic->raw_dist_base = ioremap(dist->base_address, 1657 ACPI_GICV2_DIST_MEM_SIZE); 1658 if (!gic->raw_dist_base) { 1659 pr_err("Unable to map GICD registers\n"); 1660 gic_teardown(gic); 1661 return -ENOMEM; 1662 } 1663 1664 /* 1665 * Disable split EOI/Deactivate if HYP is not available. ACPI 1666 * guarantees that we'll always have a GICv2, so the CPU 1667 * interface will always be the right size. 1668 */ 1669 if (!is_hyp_mode_available()) 1670 static_branch_disable(&supports_deactivate_key); 1671 1672 /* 1673 * Initialize GIC instance zero (no multi-GIC support). 1674 */ 1675 gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address); 1676 if (!gsi_domain_handle) { 1677 pr_err("Unable to allocate domain handle\n"); 1678 gic_teardown(gic); 1679 return -ENOMEM; 1680 } 1681 1682 ret = __gic_init_bases(gic, gsi_domain_handle); 1683 if (ret) { 1684 pr_err("Failed to initialise GIC\n"); 1685 irq_domain_free_fwnode(gsi_domain_handle); 1686 gic_teardown(gic); 1687 return ret; 1688 } 1689 1690 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v2_get_gsi_domain_id); 1691 1692 if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) 1693 gicv2m_init(NULL, gic_data[0].domain); 1694 1695 if (static_branch_likely(&supports_deactivate_key)) 1696 gic_acpi_setup_kvm_info(); 1697 1698 return 0; 1699 } 1700 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 1701 gic_validate_dist, ACPI_MADT_GIC_VERSION_V2, 1702 gic_v2_acpi_init); 1703 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 1704 gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE, 1705 gic_v2_acpi_init); 1706 #endif 1707