xref: /linux/drivers/irqchip/irq-gic-v3.c (revision ff40b5769a50fab654a70575ff0f49853b799b0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kstrtox.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/percpu.h>
20 #include <linux/refcount.h>
21 #include <linux/slab.h>
22 
23 #include <linux/irqchip.h>
24 #include <linux/irqchip/arm-gic-common.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26 #include <linux/irqchip/irq-partition-percpu.h>
27 #include <linux/bitfield.h>
28 #include <linux/bits.h>
29 #include <linux/arm-smccc.h>
30 
31 #include <asm/cputype.h>
32 #include <asm/exception.h>
33 #include <asm/smp_plat.h>
34 #include <asm/virt.h>
35 
36 #include "irq-gic-common.h"
37 
38 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
39 
40 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
41 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
42 #define FLAGS_WORKAROUND_MTK_GICR_SAVE		(1ULL << 2)
43 
44 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
45 
46 struct redist_region {
47 	void __iomem		*redist_base;
48 	phys_addr_t		phys_base;
49 	bool			single_redist;
50 };
51 
52 struct gic_chip_data {
53 	struct fwnode_handle	*fwnode;
54 	phys_addr_t		dist_phys_base;
55 	void __iomem		*dist_base;
56 	struct redist_region	*redist_regions;
57 	struct rdists		rdists;
58 	struct irq_domain	*domain;
59 	u64			redist_stride;
60 	u32			nr_redist_regions;
61 	u64			flags;
62 	bool			has_rss;
63 	unsigned int		ppi_nr;
64 	struct partition_desc	**ppi_descs;
65 };
66 
67 #define T241_CHIPS_MAX		4
68 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
69 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
70 
71 static struct gic_chip_data gic_data __read_mostly;
72 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
73 
74 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
75 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
76 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
77 
78 /*
79  * The behaviours of RPR and PMR registers differ depending on the value of
80  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
81  * distributor and redistributors depends on whether security is enabled in the
82  * GIC.
83  *
84  * When security is enabled, non-secure priority values from the (re)distributor
85  * are presented to the GIC CPUIF as follow:
86  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
87  *
88  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
89  * EL1 are subject to a similar operation thus matching the priorities presented
90  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
91  * these values are unchanged by the GIC.
92  *
93  * see GICv3/GICv4 Architecture Specification (IHI0069D):
94  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
95  *   priorities.
96  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
97  *   interrupt.
98  */
99 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
100 
101 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
102 EXPORT_SYMBOL(gic_nonsecure_priorities);
103 
104 /*
105  * When the Non-secure world has access to group 0 interrupts (as a
106  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
107  * return the Distributor's view of the interrupt priority.
108  *
109  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
110  * written by software is moved to the Non-secure range by the Distributor.
111  *
112  * If both are true (which is when gic_nonsecure_priorities gets enabled),
113  * we need to shift down the priority programmed by software to match it
114  * against the value returned by ICC_RPR_EL1.
115  */
116 #define GICD_INT_RPR_PRI(priority)					\
117 	({								\
118 		u32 __priority = (priority);				\
119 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
120 			__priority = 0x80 | (__priority >> 1);		\
121 									\
122 		__priority;						\
123 	})
124 
125 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
126 static refcount_t *ppi_nmi_refs;
127 
128 static struct gic_kvm_info gic_v3_kvm_info __initdata;
129 static DEFINE_PER_CPU(bool, has_rss);
130 
131 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
132 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
133 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
134 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
135 
136 /* Our default, arbitrary priority value. Linux only uses one anyway. */
137 #define DEFAULT_PMR_VALUE	0xf0
138 
139 enum gic_intid_range {
140 	SGI_RANGE,
141 	PPI_RANGE,
142 	SPI_RANGE,
143 	EPPI_RANGE,
144 	ESPI_RANGE,
145 	LPI_RANGE,
146 	__INVALID_RANGE__
147 };
148 
149 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
150 {
151 	switch (hwirq) {
152 	case 0 ... 15:
153 		return SGI_RANGE;
154 	case 16 ... 31:
155 		return PPI_RANGE;
156 	case 32 ... 1019:
157 		return SPI_RANGE;
158 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
159 		return EPPI_RANGE;
160 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
161 		return ESPI_RANGE;
162 	case 8192 ... GENMASK(23, 0):
163 		return LPI_RANGE;
164 	default:
165 		return __INVALID_RANGE__;
166 	}
167 }
168 
169 static enum gic_intid_range get_intid_range(struct irq_data *d)
170 {
171 	return __get_intid_range(d->hwirq);
172 }
173 
174 static inline unsigned int gic_irq(struct irq_data *d)
175 {
176 	return d->hwirq;
177 }
178 
179 static inline bool gic_irq_in_rdist(struct irq_data *d)
180 {
181 	switch (get_intid_range(d)) {
182 	case SGI_RANGE:
183 	case PPI_RANGE:
184 	case EPPI_RANGE:
185 		return true;
186 	default:
187 		return false;
188 	}
189 }
190 
191 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
192 {
193 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
194 		irq_hw_number_t hwirq = irqd_to_hwirq(d);
195 		u32 chip;
196 
197 		/*
198 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
199 		 * registers are directed to the chip that owns the SPI. The
200 		 * the alias region can also be used for writes to the
201 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
202 		 * for 320 {E}SPIs. Mappings for all 4 chips:
203 		 *    Chip0 = 32-351
204 		 *    Chip1 = 352-671
205 		 *    Chip2 = 672-991
206 		 *    Chip3 = 4096-4415
207 		 */
208 		switch (__get_intid_range(hwirq)) {
209 		case SPI_RANGE:
210 			chip = (hwirq - 32) / 320;
211 			break;
212 		case ESPI_RANGE:
213 			chip = 3;
214 			break;
215 		default:
216 			unreachable();
217 		}
218 		return t241_dist_base_alias[chip];
219 	}
220 
221 	return gic_data.dist_base;
222 }
223 
224 static inline void __iomem *gic_dist_base(struct irq_data *d)
225 {
226 	switch (get_intid_range(d)) {
227 	case SGI_RANGE:
228 	case PPI_RANGE:
229 	case EPPI_RANGE:
230 		/* SGI+PPI -> SGI_base for this CPU */
231 		return gic_data_rdist_sgi_base();
232 
233 	case SPI_RANGE:
234 	case ESPI_RANGE:
235 		/* SPI -> dist_base */
236 		return gic_data.dist_base;
237 
238 	default:
239 		return NULL;
240 	}
241 }
242 
243 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
244 {
245 	u32 count = 1000000;	/* 1s! */
246 
247 	while (readl_relaxed(base + GICD_CTLR) & bit) {
248 		count--;
249 		if (!count) {
250 			pr_err_ratelimited("RWP timeout, gone fishing\n");
251 			return;
252 		}
253 		cpu_relax();
254 		udelay(1);
255 	}
256 }
257 
258 /* Wait for completion of a distributor change */
259 static void gic_dist_wait_for_rwp(void)
260 {
261 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
262 }
263 
264 /* Wait for completion of a redistributor change */
265 static void gic_redist_wait_for_rwp(void)
266 {
267 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
268 }
269 
270 #ifdef CONFIG_ARM64
271 
272 static u64 __maybe_unused gic_read_iar(void)
273 {
274 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
275 		return gic_read_iar_cavium_thunderx();
276 	else
277 		return gic_read_iar_common();
278 }
279 #endif
280 
281 static void gic_enable_redist(bool enable)
282 {
283 	void __iomem *rbase;
284 	u32 count = 1000000;	/* 1s! */
285 	u32 val;
286 
287 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
288 		return;
289 
290 	rbase = gic_data_rdist_rd_base();
291 
292 	val = readl_relaxed(rbase + GICR_WAKER);
293 	if (enable)
294 		/* Wake up this CPU redistributor */
295 		val &= ~GICR_WAKER_ProcessorSleep;
296 	else
297 		val |= GICR_WAKER_ProcessorSleep;
298 	writel_relaxed(val, rbase + GICR_WAKER);
299 
300 	if (!enable) {		/* Check that GICR_WAKER is writeable */
301 		val = readl_relaxed(rbase + GICR_WAKER);
302 		if (!(val & GICR_WAKER_ProcessorSleep))
303 			return;	/* No PM support in this redistributor */
304 	}
305 
306 	while (--count) {
307 		val = readl_relaxed(rbase + GICR_WAKER);
308 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
309 			break;
310 		cpu_relax();
311 		udelay(1);
312 	}
313 	if (!count)
314 		pr_err_ratelimited("redistributor failed to %s...\n",
315 				   enable ? "wakeup" : "sleep");
316 }
317 
318 /*
319  * Routines to disable, enable, EOI and route interrupts
320  */
321 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
322 {
323 	switch (get_intid_range(d)) {
324 	case SGI_RANGE:
325 	case PPI_RANGE:
326 	case SPI_RANGE:
327 		*index = d->hwirq;
328 		return offset;
329 	case EPPI_RANGE:
330 		/*
331 		 * Contrary to the ESPI range, the EPPI range is contiguous
332 		 * to the PPI range in the registers, so let's adjust the
333 		 * displacement accordingly. Consistency is overrated.
334 		 */
335 		*index = d->hwirq - EPPI_BASE_INTID + 32;
336 		return offset;
337 	case ESPI_RANGE:
338 		*index = d->hwirq - ESPI_BASE_INTID;
339 		switch (offset) {
340 		case GICD_ISENABLER:
341 			return GICD_ISENABLERnE;
342 		case GICD_ICENABLER:
343 			return GICD_ICENABLERnE;
344 		case GICD_ISPENDR:
345 			return GICD_ISPENDRnE;
346 		case GICD_ICPENDR:
347 			return GICD_ICPENDRnE;
348 		case GICD_ISACTIVER:
349 			return GICD_ISACTIVERnE;
350 		case GICD_ICACTIVER:
351 			return GICD_ICACTIVERnE;
352 		case GICD_IPRIORITYR:
353 			return GICD_IPRIORITYRnE;
354 		case GICD_ICFGR:
355 			return GICD_ICFGRnE;
356 		case GICD_IROUTER:
357 			return GICD_IROUTERnE;
358 		default:
359 			break;
360 		}
361 		break;
362 	default:
363 		break;
364 	}
365 
366 	WARN_ON(1);
367 	*index = d->hwirq;
368 	return offset;
369 }
370 
371 static int gic_peek_irq(struct irq_data *d, u32 offset)
372 {
373 	void __iomem *base;
374 	u32 index, mask;
375 
376 	offset = convert_offset_index(d, offset, &index);
377 	mask = 1 << (index % 32);
378 
379 	if (gic_irq_in_rdist(d))
380 		base = gic_data_rdist_sgi_base();
381 	else
382 		base = gic_dist_base_alias(d);
383 
384 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
385 }
386 
387 static void gic_poke_irq(struct irq_data *d, u32 offset)
388 {
389 	void __iomem *base;
390 	u32 index, mask;
391 
392 	offset = convert_offset_index(d, offset, &index);
393 	mask = 1 << (index % 32);
394 
395 	if (gic_irq_in_rdist(d))
396 		base = gic_data_rdist_sgi_base();
397 	else
398 		base = gic_data.dist_base;
399 
400 	writel_relaxed(mask, base + offset + (index / 32) * 4);
401 }
402 
403 static void gic_mask_irq(struct irq_data *d)
404 {
405 	gic_poke_irq(d, GICD_ICENABLER);
406 	if (gic_irq_in_rdist(d))
407 		gic_redist_wait_for_rwp();
408 	else
409 		gic_dist_wait_for_rwp();
410 }
411 
412 static void gic_eoimode1_mask_irq(struct irq_data *d)
413 {
414 	gic_mask_irq(d);
415 	/*
416 	 * When masking a forwarded interrupt, make sure it is
417 	 * deactivated as well.
418 	 *
419 	 * This ensures that an interrupt that is getting
420 	 * disabled/masked will not get "stuck", because there is
421 	 * noone to deactivate it (guest is being terminated).
422 	 */
423 	if (irqd_is_forwarded_to_vcpu(d))
424 		gic_poke_irq(d, GICD_ICACTIVER);
425 }
426 
427 static void gic_unmask_irq(struct irq_data *d)
428 {
429 	gic_poke_irq(d, GICD_ISENABLER);
430 }
431 
432 static inline bool gic_supports_nmi(void)
433 {
434 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
435 	       static_branch_likely(&supports_pseudo_nmis);
436 }
437 
438 static int gic_irq_set_irqchip_state(struct irq_data *d,
439 				     enum irqchip_irq_state which, bool val)
440 {
441 	u32 reg;
442 
443 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
444 		return -EINVAL;
445 
446 	switch (which) {
447 	case IRQCHIP_STATE_PENDING:
448 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
449 		break;
450 
451 	case IRQCHIP_STATE_ACTIVE:
452 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
453 		break;
454 
455 	case IRQCHIP_STATE_MASKED:
456 		if (val) {
457 			gic_mask_irq(d);
458 			return 0;
459 		}
460 		reg = GICD_ISENABLER;
461 		break;
462 
463 	default:
464 		return -EINVAL;
465 	}
466 
467 	gic_poke_irq(d, reg);
468 	return 0;
469 }
470 
471 static int gic_irq_get_irqchip_state(struct irq_data *d,
472 				     enum irqchip_irq_state which, bool *val)
473 {
474 	if (d->hwirq >= 8192) /* PPI/SPI only */
475 		return -EINVAL;
476 
477 	switch (which) {
478 	case IRQCHIP_STATE_PENDING:
479 		*val = gic_peek_irq(d, GICD_ISPENDR);
480 		break;
481 
482 	case IRQCHIP_STATE_ACTIVE:
483 		*val = gic_peek_irq(d, GICD_ISACTIVER);
484 		break;
485 
486 	case IRQCHIP_STATE_MASKED:
487 		*val = !gic_peek_irq(d, GICD_ISENABLER);
488 		break;
489 
490 	default:
491 		return -EINVAL;
492 	}
493 
494 	return 0;
495 }
496 
497 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
498 {
499 	void __iomem *base = gic_dist_base(d);
500 	u32 offset, index;
501 
502 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
503 
504 	writeb_relaxed(prio, base + offset + index);
505 }
506 
507 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
508 {
509 	switch (__get_intid_range(hwirq)) {
510 	case PPI_RANGE:
511 		return hwirq - 16;
512 	case EPPI_RANGE:
513 		return hwirq - EPPI_BASE_INTID + 16;
514 	default:
515 		unreachable();
516 	}
517 }
518 
519 static u32 gic_get_ppi_index(struct irq_data *d)
520 {
521 	return __gic_get_ppi_index(d->hwirq);
522 }
523 
524 static int gic_irq_nmi_setup(struct irq_data *d)
525 {
526 	struct irq_desc *desc = irq_to_desc(d->irq);
527 
528 	if (!gic_supports_nmi())
529 		return -EINVAL;
530 
531 	if (gic_peek_irq(d, GICD_ISENABLER)) {
532 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
533 		return -EINVAL;
534 	}
535 
536 	/*
537 	 * A secondary irq_chip should be in charge of LPI request,
538 	 * it should not be possible to get there
539 	 */
540 	if (WARN_ON(gic_irq(d) >= 8192))
541 		return -EINVAL;
542 
543 	/* desc lock should already be held */
544 	if (gic_irq_in_rdist(d)) {
545 		u32 idx = gic_get_ppi_index(d);
546 
547 		/* Setting up PPI as NMI, only switch handler for first NMI */
548 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
549 			refcount_set(&ppi_nmi_refs[idx], 1);
550 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
551 		}
552 	} else {
553 		desc->handle_irq = handle_fasteoi_nmi;
554 	}
555 
556 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
557 
558 	return 0;
559 }
560 
561 static void gic_irq_nmi_teardown(struct irq_data *d)
562 {
563 	struct irq_desc *desc = irq_to_desc(d->irq);
564 
565 	if (WARN_ON(!gic_supports_nmi()))
566 		return;
567 
568 	if (gic_peek_irq(d, GICD_ISENABLER)) {
569 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
570 		return;
571 	}
572 
573 	/*
574 	 * A secondary irq_chip should be in charge of LPI request,
575 	 * it should not be possible to get there
576 	 */
577 	if (WARN_ON(gic_irq(d) >= 8192))
578 		return;
579 
580 	/* desc lock should already be held */
581 	if (gic_irq_in_rdist(d)) {
582 		u32 idx = gic_get_ppi_index(d);
583 
584 		/* Tearing down NMI, only switch handler for last NMI */
585 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
586 			desc->handle_irq = handle_percpu_devid_irq;
587 	} else {
588 		desc->handle_irq = handle_fasteoi_irq;
589 	}
590 
591 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
592 }
593 
594 static void gic_eoi_irq(struct irq_data *d)
595 {
596 	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
597 	isb();
598 }
599 
600 static void gic_eoimode1_eoi_irq(struct irq_data *d)
601 {
602 	/*
603 	 * No need to deactivate an LPI, or an interrupt that
604 	 * is is getting forwarded to a vcpu.
605 	 */
606 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
607 		return;
608 	gic_write_dir(gic_irq(d));
609 }
610 
611 static int gic_set_type(struct irq_data *d, unsigned int type)
612 {
613 	enum gic_intid_range range;
614 	unsigned int irq = gic_irq(d);
615 	void __iomem *base;
616 	u32 offset, index;
617 	int ret;
618 
619 	range = get_intid_range(d);
620 
621 	/* Interrupt configuration for SGIs can't be changed */
622 	if (range == SGI_RANGE)
623 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
624 
625 	/* SPIs have restrictions on the supported types */
626 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
627 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
628 		return -EINVAL;
629 
630 	if (gic_irq_in_rdist(d))
631 		base = gic_data_rdist_sgi_base();
632 	else
633 		base = gic_dist_base_alias(d);
634 
635 	offset = convert_offset_index(d, GICD_ICFGR, &index);
636 
637 	ret = gic_configure_irq(index, type, base + offset, NULL);
638 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
639 		/* Misconfigured PPIs are usually not fatal */
640 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
641 		ret = 0;
642 	}
643 
644 	return ret;
645 }
646 
647 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
648 {
649 	if (get_intid_range(d) == SGI_RANGE)
650 		return -EINVAL;
651 
652 	if (vcpu)
653 		irqd_set_forwarded_to_vcpu(d);
654 	else
655 		irqd_clr_forwarded_to_vcpu(d);
656 	return 0;
657 }
658 
659 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
660 {
661 	u64 aff;
662 
663 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
664 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
665 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
666 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
667 
668 	return aff;
669 }
670 
671 static void gic_deactivate_unhandled(u32 irqnr)
672 {
673 	if (static_branch_likely(&supports_deactivate_key)) {
674 		if (irqnr < 8192)
675 			gic_write_dir(irqnr);
676 	} else {
677 		write_gicreg(irqnr, ICC_EOIR1_EL1);
678 		isb();
679 	}
680 }
681 
682 /*
683  * Follow a read of the IAR with any HW maintenance that needs to happen prior
684  * to invoking the relevant IRQ handler. We must do two things:
685  *
686  * (1) Ensure instruction ordering between a read of IAR and subsequent
687  *     instructions in the IRQ handler using an ISB.
688  *
689  *     It is possible for the IAR to report an IRQ which was signalled *after*
690  *     the CPU took an IRQ exception as multiple interrupts can race to be
691  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
692  *     later interrupts could be prioritized by the GIC.
693  *
694  *     For devices which are tightly coupled to the CPU, such as PMUs, a
695  *     context synchronization event is necessary to ensure that system
696  *     register state is not stale, as these may have been indirectly written
697  *     *after* exception entry.
698  *
699  * (2) Deactivate the interrupt when EOI mode 1 is in use.
700  */
701 static inline void gic_complete_ack(u32 irqnr)
702 {
703 	if (static_branch_likely(&supports_deactivate_key))
704 		write_gicreg(irqnr, ICC_EOIR1_EL1);
705 
706 	isb();
707 }
708 
709 static bool gic_rpr_is_nmi_prio(void)
710 {
711 	if (!gic_supports_nmi())
712 		return false;
713 
714 	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
715 }
716 
717 static bool gic_irqnr_is_special(u32 irqnr)
718 {
719 	return irqnr >= 1020 && irqnr <= 1023;
720 }
721 
722 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
723 {
724 	if (gic_irqnr_is_special(irqnr))
725 		return;
726 
727 	gic_complete_ack(irqnr);
728 
729 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
730 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
731 		gic_deactivate_unhandled(irqnr);
732 	}
733 }
734 
735 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
736 {
737 	if (gic_irqnr_is_special(irqnr))
738 		return;
739 
740 	gic_complete_ack(irqnr);
741 
742 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
743 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
744 		gic_deactivate_unhandled(irqnr);
745 	}
746 }
747 
748 /*
749  * An exception has been taken from a context with IRQs enabled, and this could
750  * be an IRQ or an NMI.
751  *
752  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
753  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
754  * after handling any NMI but before handling any IRQ.
755  *
756  * The entry code has performed IRQ entry, and if an NMI is detected we must
757  * perform NMI entry/exit around invoking the handler.
758  */
759 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
760 {
761 	bool is_nmi;
762 	u32 irqnr;
763 
764 	irqnr = gic_read_iar();
765 
766 	is_nmi = gic_rpr_is_nmi_prio();
767 
768 	if (is_nmi) {
769 		nmi_enter();
770 		__gic_handle_nmi(irqnr, regs);
771 		nmi_exit();
772 	}
773 
774 	if (gic_prio_masking_enabled()) {
775 		gic_pmr_mask_irqs();
776 		gic_arch_enable_irqs();
777 	}
778 
779 	if (!is_nmi)
780 		__gic_handle_irq(irqnr, regs);
781 }
782 
783 /*
784  * An exception has been taken from a context with IRQs disabled, which can only
785  * be an NMI.
786  *
787  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
788  * DAIF.IF (and ICC_PMR_EL1) unchanged.
789  *
790  * The entry code has performed NMI entry.
791  */
792 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
793 {
794 	u64 pmr;
795 	u32 irqnr;
796 
797 	/*
798 	 * We were in a context with IRQs disabled. However, the
799 	 * entry code has set PMR to a value that allows any
800 	 * interrupt to be acknowledged, and not just NMIs. This can
801 	 * lead to surprising effects if the NMI has been retired in
802 	 * the meantime, and that there is an IRQ pending. The IRQ
803 	 * would then be taken in NMI context, something that nobody
804 	 * wants to debug twice.
805 	 *
806 	 * Until we sort this, drop PMR again to a level that will
807 	 * actually only allow NMIs before reading IAR, and then
808 	 * restore it to what it was.
809 	 */
810 	pmr = gic_read_pmr();
811 	gic_pmr_mask_irqs();
812 	isb();
813 	irqnr = gic_read_iar();
814 	gic_write_pmr(pmr);
815 
816 	__gic_handle_nmi(irqnr, regs);
817 }
818 
819 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
820 {
821 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
822 		__gic_handle_irq_from_irqsoff(regs);
823 	else
824 		__gic_handle_irq_from_irqson(regs);
825 }
826 
827 static u32 gic_get_pribits(void)
828 {
829 	u32 pribits;
830 
831 	pribits = gic_read_ctlr();
832 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
833 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
834 	pribits++;
835 
836 	return pribits;
837 }
838 
839 static bool gic_has_group0(void)
840 {
841 	u32 val;
842 	u32 old_pmr;
843 
844 	old_pmr = gic_read_pmr();
845 
846 	/*
847 	 * Let's find out if Group0 is under control of EL3 or not by
848 	 * setting the highest possible, non-zero priority in PMR.
849 	 *
850 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
851 	 * order for the CPU interface to set bit 7, and keep the
852 	 * actual priority in the non-secure range. In the process, it
853 	 * looses the least significant bit and the actual priority
854 	 * becomes 0x80. Reading it back returns 0, indicating that
855 	 * we're don't have access to Group0.
856 	 */
857 	gic_write_pmr(BIT(8 - gic_get_pribits()));
858 	val = gic_read_pmr();
859 
860 	gic_write_pmr(old_pmr);
861 
862 	return val != 0;
863 }
864 
865 static void __init gic_dist_init(void)
866 {
867 	unsigned int i;
868 	u64 affinity;
869 	void __iomem *base = gic_data.dist_base;
870 	u32 val;
871 
872 	/* Disable the distributor */
873 	writel_relaxed(0, base + GICD_CTLR);
874 	gic_dist_wait_for_rwp();
875 
876 	/*
877 	 * Configure SPIs as non-secure Group-1. This will only matter
878 	 * if the GIC only has a single security state. This will not
879 	 * do the right thing if the kernel is running in secure mode,
880 	 * but that's not the intended use case anyway.
881 	 */
882 	for (i = 32; i < GIC_LINE_NR; i += 32)
883 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
884 
885 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
886 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
887 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
888 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
889 	}
890 
891 	for (i = 0; i < GIC_ESPI_NR; i += 32)
892 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
893 
894 	for (i = 0; i < GIC_ESPI_NR; i += 16)
895 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
896 
897 	for (i = 0; i < GIC_ESPI_NR; i += 4)
898 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
899 
900 	/* Now do the common stuff */
901 	gic_dist_config(base, GIC_LINE_NR, NULL);
902 
903 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
904 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
905 		pr_info("Enabling SGIs without active state\n");
906 		val |= GICD_CTLR_nASSGIreq;
907 	}
908 
909 	/* Enable distributor with ARE, Group1, and wait for it to drain */
910 	writel_relaxed(val, base + GICD_CTLR);
911 	gic_dist_wait_for_rwp();
912 
913 	/*
914 	 * Set all global interrupts to the boot CPU only. ARE must be
915 	 * enabled.
916 	 */
917 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
918 	for (i = 32; i < GIC_LINE_NR; i++)
919 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
920 
921 	for (i = 0; i < GIC_ESPI_NR; i++)
922 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
923 }
924 
925 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
926 {
927 	int ret = -ENODEV;
928 	int i;
929 
930 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
931 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
932 		u64 typer;
933 		u32 reg;
934 
935 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
936 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
937 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
938 			pr_warn("No redistributor present @%p\n", ptr);
939 			break;
940 		}
941 
942 		do {
943 			typer = gic_read_typer(ptr + GICR_TYPER);
944 			ret = fn(gic_data.redist_regions + i, ptr);
945 			if (!ret)
946 				return 0;
947 
948 			if (gic_data.redist_regions[i].single_redist)
949 				break;
950 
951 			if (gic_data.redist_stride) {
952 				ptr += gic_data.redist_stride;
953 			} else {
954 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
955 				if (typer & GICR_TYPER_VLPIS)
956 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
957 			}
958 		} while (!(typer & GICR_TYPER_LAST));
959 	}
960 
961 	return ret ? -ENODEV : 0;
962 }
963 
964 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
965 {
966 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
967 	u64 typer;
968 	u32 aff;
969 
970 	/*
971 	 * Convert affinity to a 32bit value that can be matched to
972 	 * GICR_TYPER bits [63:32].
973 	 */
974 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
975 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
976 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
977 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
978 
979 	typer = gic_read_typer(ptr + GICR_TYPER);
980 	if ((typer >> 32) == aff) {
981 		u64 offset = ptr - region->redist_base;
982 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
983 		gic_data_rdist_rd_base() = ptr;
984 		gic_data_rdist()->phys_base = region->phys_base + offset;
985 
986 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
987 			smp_processor_id(), mpidr,
988 			(int)(region - gic_data.redist_regions),
989 			&gic_data_rdist()->phys_base);
990 		return 0;
991 	}
992 
993 	/* Try next one */
994 	return 1;
995 }
996 
997 static int gic_populate_rdist(void)
998 {
999 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1000 		return 0;
1001 
1002 	/* We couldn't even deal with ourselves... */
1003 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1004 	     smp_processor_id(),
1005 	     (unsigned long)cpu_logical_map(smp_processor_id()));
1006 	return -ENODEV;
1007 }
1008 
1009 static int __gic_update_rdist_properties(struct redist_region *region,
1010 					 void __iomem *ptr)
1011 {
1012 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1013 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1014 
1015 	/* Boot-time cleanup */
1016 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1017 		u64 val;
1018 
1019 		/* Deactivate any present vPE */
1020 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1021 		if (val & GICR_VPENDBASER_Valid)
1022 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1023 					      ptr + SZ_128K + GICR_VPENDBASER);
1024 
1025 		/* Mark the VPE table as invalid */
1026 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1027 		val &= ~GICR_VPROPBASER_4_1_VALID;
1028 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1029 	}
1030 
1031 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1032 
1033 	/*
1034 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1035 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1036 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1037 	 *
1038 	 * These are 3 different ways to express the same thing, depending
1039 	 * on the revision of the architecture and its relaxations over
1040 	 * time. Just group them under the 'direct_lpi' banner.
1041 	 */
1042 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1043 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1044 					   !!(ctlr & GICR_CTLR_IR) |
1045 					   gic_data.rdists.has_rvpeid);
1046 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1047 
1048 	/* Detect non-sensical configurations */
1049 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1050 		gic_data.rdists.has_direct_lpi = false;
1051 		gic_data.rdists.has_vlpis = false;
1052 		gic_data.rdists.has_rvpeid = false;
1053 	}
1054 
1055 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1056 
1057 	return 1;
1058 }
1059 
1060 static void gic_update_rdist_properties(void)
1061 {
1062 	gic_data.ppi_nr = UINT_MAX;
1063 	gic_iterate_rdists(__gic_update_rdist_properties);
1064 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1065 		gic_data.ppi_nr = 0;
1066 	pr_info("GICv3 features: %d PPIs%s%s\n",
1067 		gic_data.ppi_nr,
1068 		gic_data.has_rss ? ", RSS" : "",
1069 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1070 
1071 	if (gic_data.rdists.has_vlpis)
1072 		pr_info("GICv4 features: %s%s%s\n",
1073 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1074 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1075 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1076 }
1077 
1078 /* Check whether it's single security state view */
1079 static inline bool gic_dist_security_disabled(void)
1080 {
1081 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1082 }
1083 
1084 static void gic_cpu_sys_reg_init(void)
1085 {
1086 	int i, cpu = smp_processor_id();
1087 	u64 mpidr = cpu_logical_map(cpu);
1088 	u64 need_rss = MPIDR_RS(mpidr);
1089 	bool group0;
1090 	u32 pribits;
1091 
1092 	/*
1093 	 * Need to check that the SRE bit has actually been set. If
1094 	 * not, it means that SRE is disabled at EL2. We're going to
1095 	 * die painfully, and there is nothing we can do about it.
1096 	 *
1097 	 * Kindly inform the luser.
1098 	 */
1099 	if (!gic_enable_sre())
1100 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1101 
1102 	pribits = gic_get_pribits();
1103 
1104 	group0 = gic_has_group0();
1105 
1106 	/* Set priority mask register */
1107 	if (!gic_prio_masking_enabled()) {
1108 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1109 	} else if (gic_supports_nmi()) {
1110 		/*
1111 		 * Mismatch configuration with boot CPU, the system is likely
1112 		 * to die as interrupt masking will not work properly on all
1113 		 * CPUs
1114 		 *
1115 		 * The boot CPU calls this function before enabling NMI support,
1116 		 * and as a result we'll never see this warning in the boot path
1117 		 * for that CPU.
1118 		 */
1119 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1120 			WARN_ON(!group0 || gic_dist_security_disabled());
1121 		else
1122 			WARN_ON(group0 && !gic_dist_security_disabled());
1123 	}
1124 
1125 	/*
1126 	 * Some firmwares hand over to the kernel with the BPR changed from
1127 	 * its reset value (and with a value large enough to prevent
1128 	 * any pre-emptive interrupts from working at all). Writing a zero
1129 	 * to BPR restores is reset value.
1130 	 */
1131 	gic_write_bpr1(0);
1132 
1133 	if (static_branch_likely(&supports_deactivate_key)) {
1134 		/* EOI drops priority only (mode 1) */
1135 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1136 	} else {
1137 		/* EOI deactivates interrupt too (mode 0) */
1138 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1139 	}
1140 
1141 	/* Always whack Group0 before Group1 */
1142 	if (group0) {
1143 		switch(pribits) {
1144 		case 8:
1145 		case 7:
1146 			write_gicreg(0, ICC_AP0R3_EL1);
1147 			write_gicreg(0, ICC_AP0R2_EL1);
1148 			fallthrough;
1149 		case 6:
1150 			write_gicreg(0, ICC_AP0R1_EL1);
1151 			fallthrough;
1152 		case 5:
1153 		case 4:
1154 			write_gicreg(0, ICC_AP0R0_EL1);
1155 		}
1156 
1157 		isb();
1158 	}
1159 
1160 	switch(pribits) {
1161 	case 8:
1162 	case 7:
1163 		write_gicreg(0, ICC_AP1R3_EL1);
1164 		write_gicreg(0, ICC_AP1R2_EL1);
1165 		fallthrough;
1166 	case 6:
1167 		write_gicreg(0, ICC_AP1R1_EL1);
1168 		fallthrough;
1169 	case 5:
1170 	case 4:
1171 		write_gicreg(0, ICC_AP1R0_EL1);
1172 	}
1173 
1174 	isb();
1175 
1176 	/* ... and let's hit the road... */
1177 	gic_write_grpen1(1);
1178 
1179 	/* Keep the RSS capability status in per_cpu variable */
1180 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1181 
1182 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1183 	for_each_online_cpu(i) {
1184 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1185 
1186 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1187 		if (need_rss && (!have_rss))
1188 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1189 				cpu, (unsigned long)mpidr,
1190 				i, (unsigned long)cpu_logical_map(i));
1191 	}
1192 
1193 	/**
1194 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1195 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1196 	 * UNPREDICTABLE choice of :
1197 	 *   - The write is ignored.
1198 	 *   - The RS field is treated as 0.
1199 	 */
1200 	if (need_rss && (!gic_data.has_rss))
1201 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1202 }
1203 
1204 static bool gicv3_nolpi;
1205 
1206 static int __init gicv3_nolpi_cfg(char *buf)
1207 {
1208 	return kstrtobool(buf, &gicv3_nolpi);
1209 }
1210 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1211 
1212 static int gic_dist_supports_lpis(void)
1213 {
1214 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1215 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1216 		!gicv3_nolpi);
1217 }
1218 
1219 static void gic_cpu_init(void)
1220 {
1221 	void __iomem *rbase;
1222 	int i;
1223 
1224 	/* Register ourselves with the rest of the world */
1225 	if (gic_populate_rdist())
1226 		return;
1227 
1228 	gic_enable_redist(true);
1229 
1230 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1231 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1232 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1233 	     smp_processor_id());
1234 
1235 	rbase = gic_data_rdist_sgi_base();
1236 
1237 	/* Configure SGIs/PPIs as non-secure Group-1 */
1238 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1239 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1240 
1241 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1242 
1243 	/* initialise system registers */
1244 	gic_cpu_sys_reg_init();
1245 }
1246 
1247 #ifdef CONFIG_SMP
1248 
1249 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1250 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1251 
1252 static int gic_starting_cpu(unsigned int cpu)
1253 {
1254 	gic_cpu_init();
1255 
1256 	if (gic_dist_supports_lpis())
1257 		its_cpu_init();
1258 
1259 	return 0;
1260 }
1261 
1262 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1263 				   unsigned long cluster_id)
1264 {
1265 	int next_cpu, cpu = *base_cpu;
1266 	unsigned long mpidr = cpu_logical_map(cpu);
1267 	u16 tlist = 0;
1268 
1269 	while (cpu < nr_cpu_ids) {
1270 		tlist |= 1 << (mpidr & 0xf);
1271 
1272 		next_cpu = cpumask_next(cpu, mask);
1273 		if (next_cpu >= nr_cpu_ids)
1274 			goto out;
1275 		cpu = next_cpu;
1276 
1277 		mpidr = cpu_logical_map(cpu);
1278 
1279 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1280 			cpu--;
1281 			goto out;
1282 		}
1283 	}
1284 out:
1285 	*base_cpu = cpu;
1286 	return tlist;
1287 }
1288 
1289 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1290 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1291 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1292 
1293 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1294 {
1295 	u64 val;
1296 
1297 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1298 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1299 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1300 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1301 	       MPIDR_TO_SGI_RS(cluster_id)		|
1302 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1303 
1304 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1305 	gic_write_sgi1r(val);
1306 }
1307 
1308 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1309 {
1310 	int cpu;
1311 
1312 	if (WARN_ON(d->hwirq >= 16))
1313 		return;
1314 
1315 	/*
1316 	 * Ensure that stores to Normal memory are visible to the
1317 	 * other CPUs before issuing the IPI.
1318 	 */
1319 	dsb(ishst);
1320 
1321 	for_each_cpu(cpu, mask) {
1322 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1323 		u16 tlist;
1324 
1325 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1326 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1327 	}
1328 
1329 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1330 	isb();
1331 }
1332 
1333 static void __init gic_smp_init(void)
1334 {
1335 	struct irq_fwspec sgi_fwspec = {
1336 		.fwnode		= gic_data.fwnode,
1337 		.param_count	= 1,
1338 	};
1339 	int base_sgi;
1340 
1341 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1342 				  "irqchip/arm/gicv3:starting",
1343 				  gic_starting_cpu, NULL);
1344 
1345 	/* Register all 8 non-secure SGIs */
1346 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1347 	if (WARN_ON(base_sgi <= 0))
1348 		return;
1349 
1350 	set_smp_ipi_range(base_sgi, 8);
1351 }
1352 
1353 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1354 			    bool force)
1355 {
1356 	unsigned int cpu;
1357 	u32 offset, index;
1358 	void __iomem *reg;
1359 	int enabled;
1360 	u64 val;
1361 
1362 	if (force)
1363 		cpu = cpumask_first(mask_val);
1364 	else
1365 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1366 
1367 	if (cpu >= nr_cpu_ids)
1368 		return -EINVAL;
1369 
1370 	if (gic_irq_in_rdist(d))
1371 		return -EINVAL;
1372 
1373 	/* If interrupt was enabled, disable it first */
1374 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1375 	if (enabled)
1376 		gic_mask_irq(d);
1377 
1378 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1379 	reg = gic_dist_base(d) + offset + (index * 8);
1380 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1381 
1382 	gic_write_irouter(val, reg);
1383 
1384 	/*
1385 	 * If the interrupt was enabled, enabled it again. Otherwise,
1386 	 * just wait for the distributor to have digested our changes.
1387 	 */
1388 	if (enabled)
1389 		gic_unmask_irq(d);
1390 
1391 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1392 
1393 	return IRQ_SET_MASK_OK_DONE;
1394 }
1395 #else
1396 #define gic_set_affinity	NULL
1397 #define gic_ipi_send_mask	NULL
1398 #define gic_smp_init()		do { } while(0)
1399 #endif
1400 
1401 static int gic_retrigger(struct irq_data *data)
1402 {
1403 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1404 }
1405 
1406 #ifdef CONFIG_CPU_PM
1407 static int gic_cpu_pm_notifier(struct notifier_block *self,
1408 			       unsigned long cmd, void *v)
1409 {
1410 	if (cmd == CPU_PM_EXIT) {
1411 		if (gic_dist_security_disabled())
1412 			gic_enable_redist(true);
1413 		gic_cpu_sys_reg_init();
1414 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1415 		gic_write_grpen1(0);
1416 		gic_enable_redist(false);
1417 	}
1418 	return NOTIFY_OK;
1419 }
1420 
1421 static struct notifier_block gic_cpu_pm_notifier_block = {
1422 	.notifier_call = gic_cpu_pm_notifier,
1423 };
1424 
1425 static void gic_cpu_pm_init(void)
1426 {
1427 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1428 }
1429 
1430 #else
1431 static inline void gic_cpu_pm_init(void) { }
1432 #endif /* CONFIG_CPU_PM */
1433 
1434 static struct irq_chip gic_chip = {
1435 	.name			= "GICv3",
1436 	.irq_mask		= gic_mask_irq,
1437 	.irq_unmask		= gic_unmask_irq,
1438 	.irq_eoi		= gic_eoi_irq,
1439 	.irq_set_type		= gic_set_type,
1440 	.irq_set_affinity	= gic_set_affinity,
1441 	.irq_retrigger          = gic_retrigger,
1442 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1443 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1444 	.irq_nmi_setup		= gic_irq_nmi_setup,
1445 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1446 	.ipi_send_mask		= gic_ipi_send_mask,
1447 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1448 				  IRQCHIP_SKIP_SET_WAKE |
1449 				  IRQCHIP_MASK_ON_SUSPEND,
1450 };
1451 
1452 static struct irq_chip gic_eoimode1_chip = {
1453 	.name			= "GICv3",
1454 	.irq_mask		= gic_eoimode1_mask_irq,
1455 	.irq_unmask		= gic_unmask_irq,
1456 	.irq_eoi		= gic_eoimode1_eoi_irq,
1457 	.irq_set_type		= gic_set_type,
1458 	.irq_set_affinity	= gic_set_affinity,
1459 	.irq_retrigger          = gic_retrigger,
1460 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1461 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1462 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1463 	.irq_nmi_setup		= gic_irq_nmi_setup,
1464 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1465 	.ipi_send_mask		= gic_ipi_send_mask,
1466 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1467 				  IRQCHIP_SKIP_SET_WAKE |
1468 				  IRQCHIP_MASK_ON_SUSPEND,
1469 };
1470 
1471 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1472 			      irq_hw_number_t hw)
1473 {
1474 	struct irq_chip *chip = &gic_chip;
1475 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1476 
1477 	if (static_branch_likely(&supports_deactivate_key))
1478 		chip = &gic_eoimode1_chip;
1479 
1480 	switch (__get_intid_range(hw)) {
1481 	case SGI_RANGE:
1482 	case PPI_RANGE:
1483 	case EPPI_RANGE:
1484 		irq_set_percpu_devid(irq);
1485 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1486 				    handle_percpu_devid_irq, NULL, NULL);
1487 		break;
1488 
1489 	case SPI_RANGE:
1490 	case ESPI_RANGE:
1491 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1492 				    handle_fasteoi_irq, NULL, NULL);
1493 		irq_set_probe(irq);
1494 		irqd_set_single_target(irqd);
1495 		break;
1496 
1497 	case LPI_RANGE:
1498 		if (!gic_dist_supports_lpis())
1499 			return -EPERM;
1500 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1501 				    handle_fasteoi_irq, NULL, NULL);
1502 		break;
1503 
1504 	default:
1505 		return -EPERM;
1506 	}
1507 
1508 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1509 	irqd_set_handle_enforce_irqctx(irqd);
1510 	return 0;
1511 }
1512 
1513 static int gic_irq_domain_translate(struct irq_domain *d,
1514 				    struct irq_fwspec *fwspec,
1515 				    unsigned long *hwirq,
1516 				    unsigned int *type)
1517 {
1518 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1519 		*hwirq = fwspec->param[0];
1520 		*type = IRQ_TYPE_EDGE_RISING;
1521 		return 0;
1522 	}
1523 
1524 	if (is_of_node(fwspec->fwnode)) {
1525 		if (fwspec->param_count < 3)
1526 			return -EINVAL;
1527 
1528 		switch (fwspec->param[0]) {
1529 		case 0:			/* SPI */
1530 			*hwirq = fwspec->param[1] + 32;
1531 			break;
1532 		case 1:			/* PPI */
1533 			*hwirq = fwspec->param[1] + 16;
1534 			break;
1535 		case 2:			/* ESPI */
1536 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1537 			break;
1538 		case 3:			/* EPPI */
1539 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1540 			break;
1541 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1542 			*hwirq = fwspec->param[1];
1543 			break;
1544 		case GIC_IRQ_TYPE_PARTITION:
1545 			*hwirq = fwspec->param[1];
1546 			if (fwspec->param[1] >= 16)
1547 				*hwirq += EPPI_BASE_INTID - 16;
1548 			else
1549 				*hwirq += 16;
1550 			break;
1551 		default:
1552 			return -EINVAL;
1553 		}
1554 
1555 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1556 
1557 		/*
1558 		 * Make it clear that broken DTs are... broken.
1559 		 * Partitioned PPIs are an unfortunate exception.
1560 		 */
1561 		WARN_ON(*type == IRQ_TYPE_NONE &&
1562 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1563 		return 0;
1564 	}
1565 
1566 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1567 		if(fwspec->param_count != 2)
1568 			return -EINVAL;
1569 
1570 		if (fwspec->param[0] < 16) {
1571 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1572 			       fwspec->param[0]);
1573 			return -EINVAL;
1574 		}
1575 
1576 		*hwirq = fwspec->param[0];
1577 		*type = fwspec->param[1];
1578 
1579 		WARN_ON(*type == IRQ_TYPE_NONE);
1580 		return 0;
1581 	}
1582 
1583 	return -EINVAL;
1584 }
1585 
1586 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1587 				unsigned int nr_irqs, void *arg)
1588 {
1589 	int i, ret;
1590 	irq_hw_number_t hwirq;
1591 	unsigned int type = IRQ_TYPE_NONE;
1592 	struct irq_fwspec *fwspec = arg;
1593 
1594 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1595 	if (ret)
1596 		return ret;
1597 
1598 	for (i = 0; i < nr_irqs; i++) {
1599 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1600 		if (ret)
1601 			return ret;
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1608 				unsigned int nr_irqs)
1609 {
1610 	int i;
1611 
1612 	for (i = 0; i < nr_irqs; i++) {
1613 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1614 		irq_set_handler(virq + i, NULL);
1615 		irq_domain_reset_irq_data(d);
1616 	}
1617 }
1618 
1619 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1620 				      irq_hw_number_t hwirq)
1621 {
1622 	enum gic_intid_range range;
1623 
1624 	if (!gic_data.ppi_descs)
1625 		return false;
1626 
1627 	if (!is_of_node(fwspec->fwnode))
1628 		return false;
1629 
1630 	if (fwspec->param_count < 4 || !fwspec->param[3])
1631 		return false;
1632 
1633 	range = __get_intid_range(hwirq);
1634 	if (range != PPI_RANGE && range != EPPI_RANGE)
1635 		return false;
1636 
1637 	return true;
1638 }
1639 
1640 static int gic_irq_domain_select(struct irq_domain *d,
1641 				 struct irq_fwspec *fwspec,
1642 				 enum irq_domain_bus_token bus_token)
1643 {
1644 	unsigned int type, ret, ppi_idx;
1645 	irq_hw_number_t hwirq;
1646 
1647 	/* Not for us */
1648         if (fwspec->fwnode != d->fwnode)
1649 		return 0;
1650 
1651 	/* If this is not DT, then we have a single domain */
1652 	if (!is_of_node(fwspec->fwnode))
1653 		return 1;
1654 
1655 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1656 	if (WARN_ON_ONCE(ret))
1657 		return 0;
1658 
1659 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1660 		return d == gic_data.domain;
1661 
1662 	/*
1663 	 * If this is a PPI and we have a 4th (non-null) parameter,
1664 	 * then we need to match the partition domain.
1665 	 */
1666 	ppi_idx = __gic_get_ppi_index(hwirq);
1667 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1668 }
1669 
1670 static const struct irq_domain_ops gic_irq_domain_ops = {
1671 	.translate = gic_irq_domain_translate,
1672 	.alloc = gic_irq_domain_alloc,
1673 	.free = gic_irq_domain_free,
1674 	.select = gic_irq_domain_select,
1675 };
1676 
1677 static int partition_domain_translate(struct irq_domain *d,
1678 				      struct irq_fwspec *fwspec,
1679 				      unsigned long *hwirq,
1680 				      unsigned int *type)
1681 {
1682 	unsigned long ppi_intid;
1683 	struct device_node *np;
1684 	unsigned int ppi_idx;
1685 	int ret;
1686 
1687 	if (!gic_data.ppi_descs)
1688 		return -ENOMEM;
1689 
1690 	np = of_find_node_by_phandle(fwspec->param[3]);
1691 	if (WARN_ON(!np))
1692 		return -EINVAL;
1693 
1694 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1695 	if (WARN_ON_ONCE(ret))
1696 		return 0;
1697 
1698 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1699 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1700 				     of_node_to_fwnode(np));
1701 	if (ret < 0)
1702 		return ret;
1703 
1704 	*hwirq = ret;
1705 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1706 
1707 	return 0;
1708 }
1709 
1710 static const struct irq_domain_ops partition_domain_ops = {
1711 	.translate = partition_domain_translate,
1712 	.select = gic_irq_domain_select,
1713 };
1714 
1715 static bool gic_enable_quirk_msm8996(void *data)
1716 {
1717 	struct gic_chip_data *d = data;
1718 
1719 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1720 
1721 	return true;
1722 }
1723 
1724 static bool gic_enable_quirk_mtk_gicr(void *data)
1725 {
1726 	struct gic_chip_data *d = data;
1727 
1728 	d->flags |= FLAGS_WORKAROUND_MTK_GICR_SAVE;
1729 
1730 	return true;
1731 }
1732 
1733 static bool gic_enable_quirk_cavium_38539(void *data)
1734 {
1735 	struct gic_chip_data *d = data;
1736 
1737 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1738 
1739 	return true;
1740 }
1741 
1742 static bool gic_enable_quirk_hip06_07(void *data)
1743 {
1744 	struct gic_chip_data *d = data;
1745 
1746 	/*
1747 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1748 	 * not being an actual ARM implementation). The saving grace is
1749 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1750 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1751 	 * have ESPI. In both cases, put them right.
1752 	 */
1753 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1754 		/* Zero both ESPI and the RES0 field next to it... */
1755 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1756 		return true;
1757 	}
1758 
1759 	return false;
1760 }
1761 
1762 #define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1763 #define T241_CHIP_GICDA_OFFSET	0x1580000
1764 #define SMCCC_SOC_ID_T241	0x036b0241
1765 
1766 static bool gic_enable_quirk_nvidia_t241(void *data)
1767 {
1768 	s32 soc_id = arm_smccc_get_soc_id_version();
1769 	unsigned long chip_bmask = 0;
1770 	phys_addr_t phys;
1771 	u32 i;
1772 
1773 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1774 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1775 		return false;
1776 
1777 	/* Find the chips based on GICR regions PHYS addr */
1778 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1779 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1780 				  (u64)gic_data.redist_regions[i].phys_base));
1781 	}
1782 
1783 	if (hweight32(chip_bmask) < 3)
1784 		return false;
1785 
1786 	/* Setup GICD alias regions */
1787 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1788 		if (chip_bmask & BIT(i)) {
1789 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1790 			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1791 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1792 			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1793 		}
1794 	}
1795 	static_branch_enable(&gic_nvidia_t241_erratum);
1796 	return true;
1797 }
1798 
1799 static const struct gic_quirk gic_quirks[] = {
1800 	{
1801 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1802 		.compatible = "qcom,msm8996-gic-v3",
1803 		.init	= gic_enable_quirk_msm8996,
1804 	},
1805 	{
1806 		.desc	= "GICv3: Mediatek Chromebook GICR save problem",
1807 		.property = "mediatek,broken-save-restore-fw",
1808 		.init	= gic_enable_quirk_mtk_gicr,
1809 	},
1810 	{
1811 		.desc	= "GICv3: HIP06 erratum 161010803",
1812 		.iidr	= 0x0204043b,
1813 		.mask	= 0xffffffff,
1814 		.init	= gic_enable_quirk_hip06_07,
1815 	},
1816 	{
1817 		.desc	= "GICv3: HIP07 erratum 161010803",
1818 		.iidr	= 0x00000000,
1819 		.mask	= 0xffffffff,
1820 		.init	= gic_enable_quirk_hip06_07,
1821 	},
1822 	{
1823 		/*
1824 		 * Reserved register accesses generate a Synchronous
1825 		 * External Abort. This erratum applies to:
1826 		 * - ThunderX: CN88xx
1827 		 * - OCTEON TX: CN83xx, CN81xx
1828 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1829 		 */
1830 		.desc	= "GICv3: Cavium erratum 38539",
1831 		.iidr	= 0xa000034c,
1832 		.mask	= 0xe8f00fff,
1833 		.init	= gic_enable_quirk_cavium_38539,
1834 	},
1835 	{
1836 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1837 		.iidr	= 0x0402043b,
1838 		.mask	= 0xffffffff,
1839 		.init	= gic_enable_quirk_nvidia_t241,
1840 	},
1841 	{
1842 	}
1843 };
1844 
1845 static void gic_enable_nmi_support(void)
1846 {
1847 	int i;
1848 
1849 	if (!gic_prio_masking_enabled())
1850 		return;
1851 
1852 	if (gic_data.flags & FLAGS_WORKAROUND_MTK_GICR_SAVE) {
1853 		pr_warn("Skipping NMI enable due to firmware issues\n");
1854 		return;
1855 	}
1856 
1857 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1858 	if (!ppi_nmi_refs)
1859 		return;
1860 
1861 	for (i = 0; i < gic_data.ppi_nr; i++)
1862 		refcount_set(&ppi_nmi_refs[i], 0);
1863 
1864 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1865 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1866 
1867 	/*
1868 	 * How priority values are used by the GIC depends on two things:
1869 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1870 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1871 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1872 	 * ICC_PMR_EL1 register and the priority that software assigns to
1873 	 * interrupts:
1874 	 *
1875 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1876 	 * -----------------------------------------------------------
1877 	 *      1       |      -      |  unchanged  |    unchanged
1878 	 * -----------------------------------------------------------
1879 	 *      0       |      1      |  non-secure |    non-secure
1880 	 * -----------------------------------------------------------
1881 	 *      0       |      0      |  unchanged  |    non-secure
1882 	 *
1883 	 * where non-secure means that the value is right-shifted by one and the
1884 	 * MSB bit set, to make it fit in the non-secure priority range.
1885 	 *
1886 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1887 	 * are both either modified or unchanged, we can use the same set of
1888 	 * priorities.
1889 	 *
1890 	 * In the last case, where only the interrupt priorities are modified to
1891 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1892 	 * and the rest of the values that we use remain unchanged.
1893 	 */
1894 	if (gic_has_group0() && !gic_dist_security_disabled())
1895 		static_branch_enable(&gic_nonsecure_priorities);
1896 
1897 	static_branch_enable(&supports_pseudo_nmis);
1898 
1899 	if (static_branch_likely(&supports_deactivate_key))
1900 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1901 	else
1902 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1903 }
1904 
1905 static int __init gic_init_bases(phys_addr_t dist_phys_base,
1906 				 void __iomem *dist_base,
1907 				 struct redist_region *rdist_regs,
1908 				 u32 nr_redist_regions,
1909 				 u64 redist_stride,
1910 				 struct fwnode_handle *handle)
1911 {
1912 	u32 typer;
1913 	int err;
1914 
1915 	if (!is_hyp_mode_available())
1916 		static_branch_disable(&supports_deactivate_key);
1917 
1918 	if (static_branch_likely(&supports_deactivate_key))
1919 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1920 
1921 	gic_data.fwnode = handle;
1922 	gic_data.dist_phys_base = dist_phys_base;
1923 	gic_data.dist_base = dist_base;
1924 	gic_data.redist_regions = rdist_regs;
1925 	gic_data.nr_redist_regions = nr_redist_regions;
1926 	gic_data.redist_stride = redist_stride;
1927 
1928 	/*
1929 	 * Find out how many interrupts are supported.
1930 	 */
1931 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1932 	gic_data.rdists.gicd_typer = typer;
1933 
1934 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1935 			  gic_quirks, &gic_data);
1936 
1937 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1938 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1939 
1940 	/*
1941 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1942 	 * architecture spec (which says that reserved registers are RES0).
1943 	 */
1944 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1945 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1946 
1947 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1948 						 &gic_data);
1949 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1950 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
1951 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
1952 		gic_data.rdists.has_rvpeid = true;
1953 		gic_data.rdists.has_vlpis = true;
1954 		gic_data.rdists.has_direct_lpi = true;
1955 		gic_data.rdists.has_vpend_valid_dirty = true;
1956 	}
1957 
1958 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1959 		err = -ENOMEM;
1960 		goto out_free;
1961 	}
1962 
1963 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1964 
1965 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1966 
1967 	if (typer & GICD_TYPER_MBIS) {
1968 		err = mbi_init(handle, gic_data.domain);
1969 		if (err)
1970 			pr_err("Failed to initialize MBIs\n");
1971 	}
1972 
1973 	set_handle_irq(gic_handle_irq);
1974 
1975 	gic_update_rdist_properties();
1976 
1977 	gic_dist_init();
1978 	gic_cpu_init();
1979 	gic_smp_init();
1980 	gic_cpu_pm_init();
1981 
1982 	if (gic_dist_supports_lpis()) {
1983 		its_init(handle, &gic_data.rdists, gic_data.domain);
1984 		its_cpu_init();
1985 		its_lpi_memreserve_init();
1986 	} else {
1987 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1988 			gicv2m_init(handle, gic_data.domain);
1989 	}
1990 
1991 	gic_enable_nmi_support();
1992 
1993 	return 0;
1994 
1995 out_free:
1996 	if (gic_data.domain)
1997 		irq_domain_remove(gic_data.domain);
1998 	free_percpu(gic_data.rdists.rdist);
1999 	return err;
2000 }
2001 
2002 static int __init gic_validate_dist_version(void __iomem *dist_base)
2003 {
2004 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2005 
2006 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2007 		return -ENODEV;
2008 
2009 	return 0;
2010 }
2011 
2012 /* Create all possible partitions at boot time */
2013 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2014 {
2015 	struct device_node *parts_node, *child_part;
2016 	int part_idx = 0, i;
2017 	int nr_parts;
2018 	struct partition_affinity *parts;
2019 
2020 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2021 	if (!parts_node)
2022 		return;
2023 
2024 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2025 	if (!gic_data.ppi_descs)
2026 		goto out_put_node;
2027 
2028 	nr_parts = of_get_child_count(parts_node);
2029 
2030 	if (!nr_parts)
2031 		goto out_put_node;
2032 
2033 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2034 	if (WARN_ON(!parts))
2035 		goto out_put_node;
2036 
2037 	for_each_child_of_node(parts_node, child_part) {
2038 		struct partition_affinity *part;
2039 		int n;
2040 
2041 		part = &parts[part_idx];
2042 
2043 		part->partition_id = of_node_to_fwnode(child_part);
2044 
2045 		pr_info("GIC: PPI partition %pOFn[%d] { ",
2046 			child_part, part_idx);
2047 
2048 		n = of_property_count_elems_of_size(child_part, "affinity",
2049 						    sizeof(u32));
2050 		WARN_ON(n <= 0);
2051 
2052 		for (i = 0; i < n; i++) {
2053 			int err, cpu;
2054 			u32 cpu_phandle;
2055 			struct device_node *cpu_node;
2056 
2057 			err = of_property_read_u32_index(child_part, "affinity",
2058 							 i, &cpu_phandle);
2059 			if (WARN_ON(err))
2060 				continue;
2061 
2062 			cpu_node = of_find_node_by_phandle(cpu_phandle);
2063 			if (WARN_ON(!cpu_node))
2064 				continue;
2065 
2066 			cpu = of_cpu_node_to_id(cpu_node);
2067 			if (WARN_ON(cpu < 0)) {
2068 				of_node_put(cpu_node);
2069 				continue;
2070 			}
2071 
2072 			pr_cont("%pOF[%d] ", cpu_node, cpu);
2073 
2074 			cpumask_set_cpu(cpu, &part->mask);
2075 			of_node_put(cpu_node);
2076 		}
2077 
2078 		pr_cont("}\n");
2079 		part_idx++;
2080 	}
2081 
2082 	for (i = 0; i < gic_data.ppi_nr; i++) {
2083 		unsigned int irq;
2084 		struct partition_desc *desc;
2085 		struct irq_fwspec ppi_fwspec = {
2086 			.fwnode		= gic_data.fwnode,
2087 			.param_count	= 3,
2088 			.param		= {
2089 				[0]	= GIC_IRQ_TYPE_PARTITION,
2090 				[1]	= i,
2091 				[2]	= IRQ_TYPE_NONE,
2092 			},
2093 		};
2094 
2095 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2096 		if (WARN_ON(!irq))
2097 			continue;
2098 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2099 					     irq, &partition_domain_ops);
2100 		if (WARN_ON(!desc))
2101 			continue;
2102 
2103 		gic_data.ppi_descs[i] = desc;
2104 	}
2105 
2106 out_put_node:
2107 	of_node_put(parts_node);
2108 }
2109 
2110 static void __init gic_of_setup_kvm_info(struct device_node *node)
2111 {
2112 	int ret;
2113 	struct resource r;
2114 	u32 gicv_idx;
2115 
2116 	gic_v3_kvm_info.type = GIC_V3;
2117 
2118 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2119 	if (!gic_v3_kvm_info.maint_irq)
2120 		return;
2121 
2122 	if (of_property_read_u32(node, "#redistributor-regions",
2123 				 &gicv_idx))
2124 		gicv_idx = 1;
2125 
2126 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2127 	ret = of_address_to_resource(node, gicv_idx, &r);
2128 	if (!ret)
2129 		gic_v3_kvm_info.vcpu = r;
2130 
2131 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2132 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2133 	vgic_set_kvm_info(&gic_v3_kvm_info);
2134 }
2135 
2136 static void gic_request_region(resource_size_t base, resource_size_t size,
2137 			       const char *name)
2138 {
2139 	if (!request_mem_region(base, size, name))
2140 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2141 			     name, &base);
2142 }
2143 
2144 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2145 				  const char *name, struct resource *res)
2146 {
2147 	void __iomem *base;
2148 	int ret;
2149 
2150 	ret = of_address_to_resource(node, idx, res);
2151 	if (ret)
2152 		return IOMEM_ERR_PTR(ret);
2153 
2154 	gic_request_region(res->start, resource_size(res), name);
2155 	base = of_iomap(node, idx);
2156 
2157 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2158 }
2159 
2160 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2161 {
2162 	phys_addr_t dist_phys_base;
2163 	void __iomem *dist_base;
2164 	struct redist_region *rdist_regs;
2165 	struct resource res;
2166 	u64 redist_stride;
2167 	u32 nr_redist_regions;
2168 	int err, i;
2169 
2170 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2171 	if (IS_ERR(dist_base)) {
2172 		pr_err("%pOF: unable to map gic dist registers\n", node);
2173 		return PTR_ERR(dist_base);
2174 	}
2175 
2176 	dist_phys_base = res.start;
2177 
2178 	err = gic_validate_dist_version(dist_base);
2179 	if (err) {
2180 		pr_err("%pOF: no distributor detected, giving up\n", node);
2181 		goto out_unmap_dist;
2182 	}
2183 
2184 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2185 		nr_redist_regions = 1;
2186 
2187 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2188 			     GFP_KERNEL);
2189 	if (!rdist_regs) {
2190 		err = -ENOMEM;
2191 		goto out_unmap_dist;
2192 	}
2193 
2194 	for (i = 0; i < nr_redist_regions; i++) {
2195 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2196 		if (IS_ERR(rdist_regs[i].redist_base)) {
2197 			pr_err("%pOF: couldn't map region %d\n", node, i);
2198 			err = -ENODEV;
2199 			goto out_unmap_rdist;
2200 		}
2201 		rdist_regs[i].phys_base = res.start;
2202 	}
2203 
2204 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2205 		redist_stride = 0;
2206 
2207 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2208 
2209 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2210 			     nr_redist_regions, redist_stride, &node->fwnode);
2211 	if (err)
2212 		goto out_unmap_rdist;
2213 
2214 	gic_populate_ppi_partitions(node);
2215 
2216 	if (static_branch_likely(&supports_deactivate_key))
2217 		gic_of_setup_kvm_info(node);
2218 	return 0;
2219 
2220 out_unmap_rdist:
2221 	for (i = 0; i < nr_redist_regions; i++)
2222 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2223 			iounmap(rdist_regs[i].redist_base);
2224 	kfree(rdist_regs);
2225 out_unmap_dist:
2226 	iounmap(dist_base);
2227 	return err;
2228 }
2229 
2230 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2231 
2232 #ifdef CONFIG_ACPI
2233 static struct
2234 {
2235 	void __iomem *dist_base;
2236 	struct redist_region *redist_regs;
2237 	u32 nr_redist_regions;
2238 	bool single_redist;
2239 	int enabled_rdists;
2240 	u32 maint_irq;
2241 	int maint_irq_mode;
2242 	phys_addr_t vcpu_base;
2243 } acpi_data __initdata;
2244 
2245 static void __init
2246 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2247 {
2248 	static int count = 0;
2249 
2250 	acpi_data.redist_regs[count].phys_base = phys_base;
2251 	acpi_data.redist_regs[count].redist_base = redist_base;
2252 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2253 	count++;
2254 }
2255 
2256 static int __init
2257 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2258 			   const unsigned long end)
2259 {
2260 	struct acpi_madt_generic_redistributor *redist =
2261 			(struct acpi_madt_generic_redistributor *)header;
2262 	void __iomem *redist_base;
2263 
2264 	redist_base = ioremap(redist->base_address, redist->length);
2265 	if (!redist_base) {
2266 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2267 		return -ENOMEM;
2268 	}
2269 	gic_request_region(redist->base_address, redist->length, "GICR");
2270 
2271 	gic_acpi_register_redist(redist->base_address, redist_base);
2272 	return 0;
2273 }
2274 
2275 static int __init
2276 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2277 			 const unsigned long end)
2278 {
2279 	struct acpi_madt_generic_interrupt *gicc =
2280 				(struct acpi_madt_generic_interrupt *)header;
2281 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2282 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2283 	void __iomem *redist_base;
2284 
2285 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2286 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2287 		return 0;
2288 
2289 	redist_base = ioremap(gicc->gicr_base_address, size);
2290 	if (!redist_base)
2291 		return -ENOMEM;
2292 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2293 
2294 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2295 	return 0;
2296 }
2297 
2298 static int __init gic_acpi_collect_gicr_base(void)
2299 {
2300 	acpi_tbl_entry_handler redist_parser;
2301 	enum acpi_madt_type type;
2302 
2303 	if (acpi_data.single_redist) {
2304 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2305 		redist_parser = gic_acpi_parse_madt_gicc;
2306 	} else {
2307 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2308 		redist_parser = gic_acpi_parse_madt_redist;
2309 	}
2310 
2311 	/* Collect redistributor base addresses in GICR entries */
2312 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2313 		return 0;
2314 
2315 	pr_info("No valid GICR entries exist\n");
2316 	return -ENODEV;
2317 }
2318 
2319 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2320 				  const unsigned long end)
2321 {
2322 	/* Subtable presence means that redist exists, that's it */
2323 	return 0;
2324 }
2325 
2326 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2327 				      const unsigned long end)
2328 {
2329 	struct acpi_madt_generic_interrupt *gicc =
2330 				(struct acpi_madt_generic_interrupt *)header;
2331 
2332 	/*
2333 	 * If GICC is enabled and has valid gicr base address, then it means
2334 	 * GICR base is presented via GICC
2335 	 */
2336 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2337 		acpi_data.enabled_rdists++;
2338 		return 0;
2339 	}
2340 
2341 	/*
2342 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2343 	 * should not treat as errors, skip the entry instead of probe fail.
2344 	 */
2345 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2346 		return 0;
2347 
2348 	return -ENODEV;
2349 }
2350 
2351 static int __init gic_acpi_count_gicr_regions(void)
2352 {
2353 	int count;
2354 
2355 	/*
2356 	 * Count how many redistributor regions we have. It is not allowed
2357 	 * to mix redistributor description, GICR and GICC subtables have to be
2358 	 * mutually exclusive.
2359 	 */
2360 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2361 				      gic_acpi_match_gicr, 0);
2362 	if (count > 0) {
2363 		acpi_data.single_redist = false;
2364 		return count;
2365 	}
2366 
2367 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2368 				      gic_acpi_match_gicc, 0);
2369 	if (count > 0) {
2370 		acpi_data.single_redist = true;
2371 		count = acpi_data.enabled_rdists;
2372 	}
2373 
2374 	return count;
2375 }
2376 
2377 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2378 					   struct acpi_probe_entry *ape)
2379 {
2380 	struct acpi_madt_generic_distributor *dist;
2381 	int count;
2382 
2383 	dist = (struct acpi_madt_generic_distributor *)header;
2384 	if (dist->version != ape->driver_data)
2385 		return false;
2386 
2387 	/* We need to do that exercise anyway, the sooner the better */
2388 	count = gic_acpi_count_gicr_regions();
2389 	if (count <= 0)
2390 		return false;
2391 
2392 	acpi_data.nr_redist_regions = count;
2393 	return true;
2394 }
2395 
2396 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2397 						const unsigned long end)
2398 {
2399 	struct acpi_madt_generic_interrupt *gicc =
2400 		(struct acpi_madt_generic_interrupt *)header;
2401 	int maint_irq_mode;
2402 	static int first_madt = true;
2403 
2404 	/* Skip unusable CPUs */
2405 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2406 		return 0;
2407 
2408 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2409 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2410 
2411 	if (first_madt) {
2412 		first_madt = false;
2413 
2414 		acpi_data.maint_irq = gicc->vgic_interrupt;
2415 		acpi_data.maint_irq_mode = maint_irq_mode;
2416 		acpi_data.vcpu_base = gicc->gicv_base_address;
2417 
2418 		return 0;
2419 	}
2420 
2421 	/*
2422 	 * The maintenance interrupt and GICV should be the same for every CPU
2423 	 */
2424 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2425 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2426 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2427 		return -EINVAL;
2428 
2429 	return 0;
2430 }
2431 
2432 static bool __init gic_acpi_collect_virt_info(void)
2433 {
2434 	int count;
2435 
2436 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2437 				      gic_acpi_parse_virt_madt_gicc, 0);
2438 
2439 	return (count > 0);
2440 }
2441 
2442 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2443 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2444 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2445 
2446 static void __init gic_acpi_setup_kvm_info(void)
2447 {
2448 	int irq;
2449 
2450 	if (!gic_acpi_collect_virt_info()) {
2451 		pr_warn("Unable to get hardware information used for virtualization\n");
2452 		return;
2453 	}
2454 
2455 	gic_v3_kvm_info.type = GIC_V3;
2456 
2457 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2458 				acpi_data.maint_irq_mode,
2459 				ACPI_ACTIVE_HIGH);
2460 	if (irq <= 0)
2461 		return;
2462 
2463 	gic_v3_kvm_info.maint_irq = irq;
2464 
2465 	if (acpi_data.vcpu_base) {
2466 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2467 
2468 		vcpu->flags = IORESOURCE_MEM;
2469 		vcpu->start = acpi_data.vcpu_base;
2470 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2471 	}
2472 
2473 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2474 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2475 	vgic_set_kvm_info(&gic_v3_kvm_info);
2476 }
2477 
2478 static struct fwnode_handle *gsi_domain_handle;
2479 
2480 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2481 {
2482 	return gsi_domain_handle;
2483 }
2484 
2485 static int __init
2486 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2487 {
2488 	struct acpi_madt_generic_distributor *dist;
2489 	size_t size;
2490 	int i, err;
2491 
2492 	/* Get distributor base address */
2493 	dist = (struct acpi_madt_generic_distributor *)header;
2494 	acpi_data.dist_base = ioremap(dist->base_address,
2495 				      ACPI_GICV3_DIST_MEM_SIZE);
2496 	if (!acpi_data.dist_base) {
2497 		pr_err("Unable to map GICD registers\n");
2498 		return -ENOMEM;
2499 	}
2500 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2501 
2502 	err = gic_validate_dist_version(acpi_data.dist_base);
2503 	if (err) {
2504 		pr_err("No distributor detected at @%p, giving up\n",
2505 		       acpi_data.dist_base);
2506 		goto out_dist_unmap;
2507 	}
2508 
2509 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2510 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2511 	if (!acpi_data.redist_regs) {
2512 		err = -ENOMEM;
2513 		goto out_dist_unmap;
2514 	}
2515 
2516 	err = gic_acpi_collect_gicr_base();
2517 	if (err)
2518 		goto out_redist_unmap;
2519 
2520 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2521 	if (!gsi_domain_handle) {
2522 		err = -ENOMEM;
2523 		goto out_redist_unmap;
2524 	}
2525 
2526 	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2527 			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2528 			     0, gsi_domain_handle);
2529 	if (err)
2530 		goto out_fwhandle_free;
2531 
2532 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2533 
2534 	if (static_branch_likely(&supports_deactivate_key))
2535 		gic_acpi_setup_kvm_info();
2536 
2537 	return 0;
2538 
2539 out_fwhandle_free:
2540 	irq_domain_free_fwnode(gsi_domain_handle);
2541 out_redist_unmap:
2542 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2543 		if (acpi_data.redist_regs[i].redist_base)
2544 			iounmap(acpi_data.redist_regs[i].redist_base);
2545 	kfree(acpi_data.redist_regs);
2546 out_dist_unmap:
2547 	iounmap(acpi_data.dist_base);
2548 	return err;
2549 }
2550 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2551 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2552 		     gic_acpi_init);
2553 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2554 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2555 		     gic_acpi_init);
2556 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2557 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2558 		     gic_acpi_init);
2559 #endif
2560