xref: /linux/drivers/irqchip/irq-gic-v3.c (revision 8faabc041a001140564f718dabe37753e88b37fa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kernel.h>
16 #include <linux/kstrtox.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/percpu.h>
21 #include <linux/refcount.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24 
25 #include <linux/irqchip.h>
26 #include <linux/irqchip/arm-gic-common.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/irqchip/arm-gic-v3-prio.h>
29 #include <linux/irqchip/irq-partition-percpu.h>
30 #include <linux/bitfield.h>
31 #include <linux/bits.h>
32 #include <linux/arm-smccc.h>
33 
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/smp_plat.h>
37 #include <asm/virt.h>
38 
39 #include "irq-gic-common.h"
40 
41 static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ;
42 static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI;
43 
44 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
45 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
46 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 2)
47 
48 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
49 
50 static struct cpumask broken_rdists __read_mostly __maybe_unused;
51 
52 struct redist_region {
53 	void __iomem		*redist_base;
54 	phys_addr_t		phys_base;
55 	bool			single_redist;
56 };
57 
58 struct gic_chip_data {
59 	struct fwnode_handle	*fwnode;
60 	phys_addr_t		dist_phys_base;
61 	void __iomem		*dist_base;
62 	struct redist_region	*redist_regions;
63 	struct rdists		rdists;
64 	struct irq_domain	*domain;
65 	u64			redist_stride;
66 	u32			nr_redist_regions;
67 	u64			flags;
68 	bool			has_rss;
69 	unsigned int		ppi_nr;
70 	struct partition_desc	**ppi_descs;
71 };
72 
73 #define T241_CHIPS_MAX		4
74 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
75 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
76 
77 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
78 
79 static struct gic_chip_data gic_data __read_mostly;
80 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
81 
82 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
83 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
84 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
85 
86 /*
87  * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
88  * are potentially stolen by the secure side. Some code, especially code dealing
89  * with hwirq IDs, is simplified by accounting for all 16.
90  */
91 #define SGI_NR		16
92 
93 /*
94  * The behaviours of RPR and PMR registers differ depending on the value of
95  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
96  * distributor and redistributors depends on whether security is enabled in the
97  * GIC.
98  *
99  * When security is enabled, non-secure priority values from the (re)distributor
100  * are presented to the GIC CPUIF as follow:
101  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
102  *
103  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
104  * EL1 are subject to a similar operation thus matching the priorities presented
105  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
106  * these values are unchanged by the GIC.
107  *
108  * see GICv3/GICv4 Architecture Specification (IHI0069D):
109  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
110  *   priorities.
111  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
112  *   interrupt.
113  */
114 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
115 
116 static u32 gic_get_pribits(void)
117 {
118 	u32 pribits;
119 
120 	pribits = gic_read_ctlr();
121 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
122 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
123 	pribits++;
124 
125 	return pribits;
126 }
127 
128 static bool gic_has_group0(void)
129 {
130 	u32 val;
131 	u32 old_pmr;
132 
133 	old_pmr = gic_read_pmr();
134 
135 	/*
136 	 * Let's find out if Group0 is under control of EL3 or not by
137 	 * setting the highest possible, non-zero priority in PMR.
138 	 *
139 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
140 	 * order for the CPU interface to set bit 7, and keep the
141 	 * actual priority in the non-secure range. In the process, it
142 	 * looses the least significant bit and the actual priority
143 	 * becomes 0x80. Reading it back returns 0, indicating that
144 	 * we're don't have access to Group0.
145 	 */
146 	gic_write_pmr(BIT(8 - gic_get_pribits()));
147 	val = gic_read_pmr();
148 
149 	gic_write_pmr(old_pmr);
150 
151 	return val != 0;
152 }
153 
154 static inline bool gic_dist_security_disabled(void)
155 {
156 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
157 }
158 
159 static bool cpus_have_security_disabled __ro_after_init;
160 static bool cpus_have_group0 __ro_after_init;
161 
162 static void __init gic_prio_init(void)
163 {
164 	bool ds;
165 
166 	ds = gic_dist_security_disabled();
167 	if (!ds) {
168 		u32 val;
169 
170 		val = readl_relaxed(gic_data.dist_base + GICD_CTLR);
171 		val |= GICD_CTLR_DS;
172 		writel_relaxed(val, gic_data.dist_base + GICD_CTLR);
173 
174 		ds = gic_dist_security_disabled();
175 		if (ds)
176 			pr_warn("Broken GIC integration, security disabled");
177 	}
178 
179 	cpus_have_security_disabled = ds;
180 	cpus_have_group0 = gic_has_group0();
181 
182 	/*
183 	 * How priority values are used by the GIC depends on two things:
184 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
185 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
186 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
187 	 * way priorities are presented in ICC_PMR_EL1 and in the distributor:
188 	 *
189 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor
190 	 * -------------------------------------------------------
191 	 *      1       |      -      |  unchanged  |  unchanged
192 	 * -------------------------------------------------------
193 	 *      0       |      1      |  non-secure |  non-secure
194 	 * -------------------------------------------------------
195 	 *      0       |      0      |  unchanged  |  non-secure
196 	 *
197 	 * In the non-secure view reads and writes are modified:
198 	 *
199 	 * - A value written is right-shifted by one and the MSB is set,
200 	 *   forcing the priority into the non-secure range.
201 	 *
202 	 * - A value read is left-shifted by one.
203 	 *
204 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
205 	 * are both either modified or unchanged, we can use the same set of
206 	 * priorities.
207 	 *
208 	 * In the last case, where only the interrupt priorities are modified to
209 	 * be in the non-secure range, we program the non-secure values into
210 	 * the distributor to match the PMR values we want.
211 	 */
212 	if (cpus_have_group0 & !cpus_have_security_disabled) {
213 		dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq);
214 		dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi);
215 	}
216 
217 	pr_info("GICD_CTRL.DS=%d, SCR_EL3.FIQ=%d\n",
218 		cpus_have_security_disabled,
219 		!cpus_have_group0);
220 }
221 
222 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
223 static refcount_t *rdist_nmi_refs;
224 
225 static struct gic_kvm_info gic_v3_kvm_info __initdata;
226 static DEFINE_PER_CPU(bool, has_rss);
227 
228 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
229 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
230 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
231 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
232 
233 /* Our default, arbitrary priority value. Linux only uses one anyway. */
234 #define DEFAULT_PMR_VALUE	0xf0
235 
236 enum gic_intid_range {
237 	SGI_RANGE,
238 	PPI_RANGE,
239 	SPI_RANGE,
240 	EPPI_RANGE,
241 	ESPI_RANGE,
242 	LPI_RANGE,
243 	__INVALID_RANGE__
244 };
245 
246 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
247 {
248 	switch (hwirq) {
249 	case 0 ... 15:
250 		return SGI_RANGE;
251 	case 16 ... 31:
252 		return PPI_RANGE;
253 	case 32 ... 1019:
254 		return SPI_RANGE;
255 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
256 		return EPPI_RANGE;
257 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
258 		return ESPI_RANGE;
259 	case 8192 ... GENMASK(23, 0):
260 		return LPI_RANGE;
261 	default:
262 		return __INVALID_RANGE__;
263 	}
264 }
265 
266 static enum gic_intid_range get_intid_range(struct irq_data *d)
267 {
268 	return __get_intid_range(d->hwirq);
269 }
270 
271 static inline bool gic_irq_in_rdist(struct irq_data *d)
272 {
273 	switch (get_intid_range(d)) {
274 	case SGI_RANGE:
275 	case PPI_RANGE:
276 	case EPPI_RANGE:
277 		return true;
278 	default:
279 		return false;
280 	}
281 }
282 
283 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
284 {
285 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
286 		irq_hw_number_t hwirq = irqd_to_hwirq(d);
287 		u32 chip;
288 
289 		/*
290 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
291 		 * registers are directed to the chip that owns the SPI. The
292 		 * the alias region can also be used for writes to the
293 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
294 		 * for 320 {E}SPIs. Mappings for all 4 chips:
295 		 *    Chip0 = 32-351
296 		 *    Chip1 = 352-671
297 		 *    Chip2 = 672-991
298 		 *    Chip3 = 4096-4415
299 		 */
300 		switch (__get_intid_range(hwirq)) {
301 		case SPI_RANGE:
302 			chip = (hwirq - 32) / 320;
303 			break;
304 		case ESPI_RANGE:
305 			chip = 3;
306 			break;
307 		default:
308 			unreachable();
309 		}
310 		return t241_dist_base_alias[chip];
311 	}
312 
313 	return gic_data.dist_base;
314 }
315 
316 static inline void __iomem *gic_dist_base(struct irq_data *d)
317 {
318 	switch (get_intid_range(d)) {
319 	case SGI_RANGE:
320 	case PPI_RANGE:
321 	case EPPI_RANGE:
322 		/* SGI+PPI -> SGI_base for this CPU */
323 		return gic_data_rdist_sgi_base();
324 
325 	case SPI_RANGE:
326 	case ESPI_RANGE:
327 		/* SPI -> dist_base */
328 		return gic_data.dist_base;
329 
330 	default:
331 		return NULL;
332 	}
333 }
334 
335 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
336 {
337 	u32 val;
338 	int ret;
339 
340 	ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit),
341 						1, USEC_PER_SEC);
342 	if (ret == -ETIMEDOUT)
343 		pr_err_ratelimited("RWP timeout, gone fishing\n");
344 }
345 
346 /* Wait for completion of a distributor change */
347 static void gic_dist_wait_for_rwp(void)
348 {
349 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
350 }
351 
352 /* Wait for completion of a redistributor change */
353 static void gic_redist_wait_for_rwp(void)
354 {
355 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
356 }
357 
358 static void gic_enable_redist(bool enable)
359 {
360 	void __iomem *rbase;
361 	u32 val;
362 	int ret;
363 
364 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
365 		return;
366 
367 	rbase = gic_data_rdist_rd_base();
368 
369 	val = readl_relaxed(rbase + GICR_WAKER);
370 	if (enable)
371 		/* Wake up this CPU redistributor */
372 		val &= ~GICR_WAKER_ProcessorSleep;
373 	else
374 		val |= GICR_WAKER_ProcessorSleep;
375 	writel_relaxed(val, rbase + GICR_WAKER);
376 
377 	if (!enable) {		/* Check that GICR_WAKER is writeable */
378 		val = readl_relaxed(rbase + GICR_WAKER);
379 		if (!(val & GICR_WAKER_ProcessorSleep))
380 			return;	/* No PM support in this redistributor */
381 	}
382 
383 	ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val,
384 						enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep),
385 						1, USEC_PER_SEC);
386 	if (ret == -ETIMEDOUT) {
387 		pr_err_ratelimited("redistributor failed to %s...\n",
388 				   enable ? "wakeup" : "sleep");
389 	}
390 }
391 
392 /*
393  * Routines to disable, enable, EOI and route interrupts
394  */
395 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
396 {
397 	switch (get_intid_range(d)) {
398 	case SGI_RANGE:
399 	case PPI_RANGE:
400 	case SPI_RANGE:
401 		*index = d->hwirq;
402 		return offset;
403 	case EPPI_RANGE:
404 		/*
405 		 * Contrary to the ESPI range, the EPPI range is contiguous
406 		 * to the PPI range in the registers, so let's adjust the
407 		 * displacement accordingly. Consistency is overrated.
408 		 */
409 		*index = d->hwirq - EPPI_BASE_INTID + 32;
410 		return offset;
411 	case ESPI_RANGE:
412 		*index = d->hwirq - ESPI_BASE_INTID;
413 		switch (offset) {
414 		case GICD_ISENABLER:
415 			return GICD_ISENABLERnE;
416 		case GICD_ICENABLER:
417 			return GICD_ICENABLERnE;
418 		case GICD_ISPENDR:
419 			return GICD_ISPENDRnE;
420 		case GICD_ICPENDR:
421 			return GICD_ICPENDRnE;
422 		case GICD_ISACTIVER:
423 			return GICD_ISACTIVERnE;
424 		case GICD_ICACTIVER:
425 			return GICD_ICACTIVERnE;
426 		case GICD_IPRIORITYR:
427 			return GICD_IPRIORITYRnE;
428 		case GICD_ICFGR:
429 			return GICD_ICFGRnE;
430 		case GICD_IROUTER:
431 			return GICD_IROUTERnE;
432 		default:
433 			break;
434 		}
435 		break;
436 	default:
437 		break;
438 	}
439 
440 	WARN_ON(1);
441 	*index = d->hwirq;
442 	return offset;
443 }
444 
445 static int gic_peek_irq(struct irq_data *d, u32 offset)
446 {
447 	void __iomem *base;
448 	u32 index, mask;
449 
450 	offset = convert_offset_index(d, offset, &index);
451 	mask = 1 << (index % 32);
452 
453 	if (gic_irq_in_rdist(d))
454 		base = gic_data_rdist_sgi_base();
455 	else
456 		base = gic_dist_base_alias(d);
457 
458 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
459 }
460 
461 static void gic_poke_irq(struct irq_data *d, u32 offset)
462 {
463 	void __iomem *base;
464 	u32 index, mask;
465 
466 	offset = convert_offset_index(d, offset, &index);
467 	mask = 1 << (index % 32);
468 
469 	if (gic_irq_in_rdist(d))
470 		base = gic_data_rdist_sgi_base();
471 	else
472 		base = gic_data.dist_base;
473 
474 	writel_relaxed(mask, base + offset + (index / 32) * 4);
475 }
476 
477 static void gic_mask_irq(struct irq_data *d)
478 {
479 	gic_poke_irq(d, GICD_ICENABLER);
480 	if (gic_irq_in_rdist(d))
481 		gic_redist_wait_for_rwp();
482 	else
483 		gic_dist_wait_for_rwp();
484 }
485 
486 static void gic_eoimode1_mask_irq(struct irq_data *d)
487 {
488 	gic_mask_irq(d);
489 	/*
490 	 * When masking a forwarded interrupt, make sure it is
491 	 * deactivated as well.
492 	 *
493 	 * This ensures that an interrupt that is getting
494 	 * disabled/masked will not get "stuck", because there is
495 	 * noone to deactivate it (guest is being terminated).
496 	 */
497 	if (irqd_is_forwarded_to_vcpu(d))
498 		gic_poke_irq(d, GICD_ICACTIVER);
499 }
500 
501 static void gic_unmask_irq(struct irq_data *d)
502 {
503 	gic_poke_irq(d, GICD_ISENABLER);
504 }
505 
506 static inline bool gic_supports_nmi(void)
507 {
508 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
509 	       static_branch_likely(&supports_pseudo_nmis);
510 }
511 
512 static int gic_irq_set_irqchip_state(struct irq_data *d,
513 				     enum irqchip_irq_state which, bool val)
514 {
515 	u32 reg;
516 
517 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
518 		return -EINVAL;
519 
520 	switch (which) {
521 	case IRQCHIP_STATE_PENDING:
522 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
523 		break;
524 
525 	case IRQCHIP_STATE_ACTIVE:
526 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
527 		break;
528 
529 	case IRQCHIP_STATE_MASKED:
530 		if (val) {
531 			gic_mask_irq(d);
532 			return 0;
533 		}
534 		reg = GICD_ISENABLER;
535 		break;
536 
537 	default:
538 		return -EINVAL;
539 	}
540 
541 	gic_poke_irq(d, reg);
542 
543 	/*
544 	 * Force read-back to guarantee that the active state has taken
545 	 * effect, and won't race with a guest-driven deactivation.
546 	 */
547 	if (reg == GICD_ISACTIVER)
548 		gic_peek_irq(d, reg);
549 	return 0;
550 }
551 
552 static int gic_irq_get_irqchip_state(struct irq_data *d,
553 				     enum irqchip_irq_state which, bool *val)
554 {
555 	if (d->hwirq >= 8192) /* PPI/SPI only */
556 		return -EINVAL;
557 
558 	switch (which) {
559 	case IRQCHIP_STATE_PENDING:
560 		*val = gic_peek_irq(d, GICD_ISPENDR);
561 		break;
562 
563 	case IRQCHIP_STATE_ACTIVE:
564 		*val = gic_peek_irq(d, GICD_ISACTIVER);
565 		break;
566 
567 	case IRQCHIP_STATE_MASKED:
568 		*val = !gic_peek_irq(d, GICD_ISENABLER);
569 		break;
570 
571 	default:
572 		return -EINVAL;
573 	}
574 
575 	return 0;
576 }
577 
578 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
579 {
580 	void __iomem *base = gic_dist_base(d);
581 	u32 offset, index;
582 
583 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
584 
585 	writeb_relaxed(prio, base + offset + index);
586 }
587 
588 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
589 {
590 	switch (__get_intid_range(hwirq)) {
591 	case PPI_RANGE:
592 		return hwirq - 16;
593 	case EPPI_RANGE:
594 		return hwirq - EPPI_BASE_INTID + 16;
595 	default:
596 		unreachable();
597 	}
598 }
599 
600 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
601 {
602 	switch (__get_intid_range(hwirq)) {
603 	case SGI_RANGE:
604 	case PPI_RANGE:
605 		return hwirq;
606 	case EPPI_RANGE:
607 		return hwirq - EPPI_BASE_INTID + 32;
608 	default:
609 		unreachable();
610 	}
611 }
612 
613 static u32 gic_get_rdist_index(struct irq_data *d)
614 {
615 	return __gic_get_rdist_index(d->hwirq);
616 }
617 
618 static int gic_irq_nmi_setup(struct irq_data *d)
619 {
620 	struct irq_desc *desc = irq_to_desc(d->irq);
621 
622 	if (!gic_supports_nmi())
623 		return -EINVAL;
624 
625 	if (gic_peek_irq(d, GICD_ISENABLER)) {
626 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
627 		return -EINVAL;
628 	}
629 
630 	/*
631 	 * A secondary irq_chip should be in charge of LPI request,
632 	 * it should not be possible to get there
633 	 */
634 	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
635 		return -EINVAL;
636 
637 	/* desc lock should already be held */
638 	if (gic_irq_in_rdist(d)) {
639 		u32 idx = gic_get_rdist_index(d);
640 
641 		/*
642 		 * Setting up a percpu interrupt as NMI, only switch handler
643 		 * for first NMI
644 		 */
645 		if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
646 			refcount_set(&rdist_nmi_refs[idx], 1);
647 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
648 		}
649 	} else {
650 		desc->handle_irq = handle_fasteoi_nmi;
651 	}
652 
653 	gic_irq_set_prio(d, dist_prio_nmi);
654 
655 	return 0;
656 }
657 
658 static void gic_irq_nmi_teardown(struct irq_data *d)
659 {
660 	struct irq_desc *desc = irq_to_desc(d->irq);
661 
662 	if (WARN_ON(!gic_supports_nmi()))
663 		return;
664 
665 	if (gic_peek_irq(d, GICD_ISENABLER)) {
666 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
667 		return;
668 	}
669 
670 	/*
671 	 * A secondary irq_chip should be in charge of LPI request,
672 	 * it should not be possible to get there
673 	 */
674 	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
675 		return;
676 
677 	/* desc lock should already be held */
678 	if (gic_irq_in_rdist(d)) {
679 		u32 idx = gic_get_rdist_index(d);
680 
681 		/* Tearing down NMI, only switch handler for last NMI */
682 		if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
683 			desc->handle_irq = handle_percpu_devid_irq;
684 	} else {
685 		desc->handle_irq = handle_fasteoi_irq;
686 	}
687 
688 	gic_irq_set_prio(d, dist_prio_irq);
689 }
690 
691 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
692 {
693 	enum gic_intid_range range;
694 
695 	if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
696 		return false;
697 
698 	range = get_intid_range(d);
699 
700 	/*
701 	 * The workaround is needed if the IRQ is an SPI and
702 	 * the target cpu is different from the one we are
703 	 * executing on.
704 	 */
705 	return (range == SPI_RANGE || range == ESPI_RANGE) &&
706 		!cpumask_test_cpu(raw_smp_processor_id(),
707 				  irq_data_get_effective_affinity_mask(d));
708 }
709 
710 static void gic_eoi_irq(struct irq_data *d)
711 {
712 	write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1);
713 	isb();
714 
715 	if (gic_arm64_erratum_2941627_needed(d)) {
716 		/*
717 		 * Make sure the GIC stream deactivate packet
718 		 * issued by ICC_EOIR1_EL1 has completed before
719 		 * deactivating through GICD_IACTIVER.
720 		 */
721 		dsb(sy);
722 		gic_poke_irq(d, GICD_ICACTIVER);
723 	}
724 }
725 
726 static void gic_eoimode1_eoi_irq(struct irq_data *d)
727 {
728 	/*
729 	 * No need to deactivate an LPI, or an interrupt that
730 	 * is is getting forwarded to a vcpu.
731 	 */
732 	if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
733 		return;
734 
735 	if (!gic_arm64_erratum_2941627_needed(d))
736 		gic_write_dir(irqd_to_hwirq(d));
737 	else
738 		gic_poke_irq(d, GICD_ICACTIVER);
739 }
740 
741 static int gic_set_type(struct irq_data *d, unsigned int type)
742 {
743 	irq_hw_number_t irq = irqd_to_hwirq(d);
744 	enum gic_intid_range range;
745 	void __iomem *base;
746 	u32 offset, index;
747 	int ret;
748 
749 	range = get_intid_range(d);
750 
751 	/* Interrupt configuration for SGIs can't be changed */
752 	if (range == SGI_RANGE)
753 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
754 
755 	/* SPIs have restrictions on the supported types */
756 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
757 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
758 		return -EINVAL;
759 
760 	if (gic_irq_in_rdist(d))
761 		base = gic_data_rdist_sgi_base();
762 	else
763 		base = gic_dist_base_alias(d);
764 
765 	offset = convert_offset_index(d, GICD_ICFGR, &index);
766 
767 	ret = gic_configure_irq(index, type, base + offset);
768 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
769 		/* Misconfigured PPIs are usually not fatal */
770 		pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq);
771 		ret = 0;
772 	}
773 
774 	return ret;
775 }
776 
777 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
778 {
779 	if (get_intid_range(d) == SGI_RANGE)
780 		return -EINVAL;
781 
782 	if (vcpu)
783 		irqd_set_forwarded_to_vcpu(d);
784 	else
785 		irqd_clr_forwarded_to_vcpu(d);
786 	return 0;
787 }
788 
789 static u64 gic_cpu_to_affinity(int cpu)
790 {
791 	u64 mpidr = cpu_logical_map(cpu);
792 	u64 aff;
793 
794 	/* ASR8601 needs to have its affinities shifted down... */
795 	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
796 		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	|
797 			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
798 
799 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
800 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
801 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
802 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
803 
804 	return aff;
805 }
806 
807 static void gic_deactivate_unhandled(u32 irqnr)
808 {
809 	if (static_branch_likely(&supports_deactivate_key)) {
810 		if (irqnr < 8192)
811 			gic_write_dir(irqnr);
812 	} else {
813 		write_gicreg(irqnr, ICC_EOIR1_EL1);
814 		isb();
815 	}
816 }
817 
818 /*
819  * Follow a read of the IAR with any HW maintenance that needs to happen prior
820  * to invoking the relevant IRQ handler. We must do two things:
821  *
822  * (1) Ensure instruction ordering between a read of IAR and subsequent
823  *     instructions in the IRQ handler using an ISB.
824  *
825  *     It is possible for the IAR to report an IRQ which was signalled *after*
826  *     the CPU took an IRQ exception as multiple interrupts can race to be
827  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
828  *     later interrupts could be prioritized by the GIC.
829  *
830  *     For devices which are tightly coupled to the CPU, such as PMUs, a
831  *     context synchronization event is necessary to ensure that system
832  *     register state is not stale, as these may have been indirectly written
833  *     *after* exception entry.
834  *
835  * (2) Execute an interrupt priority drop when EOI mode 1 is in use.
836  */
837 static inline void gic_complete_ack(u32 irqnr)
838 {
839 	if (static_branch_likely(&supports_deactivate_key))
840 		write_gicreg(irqnr, ICC_EOIR1_EL1);
841 
842 	isb();
843 }
844 
845 static bool gic_rpr_is_nmi_prio(void)
846 {
847 	if (!gic_supports_nmi())
848 		return false;
849 
850 	return unlikely(gic_read_rpr() == GICV3_PRIO_NMI);
851 }
852 
853 static bool gic_irqnr_is_special(u32 irqnr)
854 {
855 	return irqnr >= 1020 && irqnr <= 1023;
856 }
857 
858 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
859 {
860 	if (gic_irqnr_is_special(irqnr))
861 		return;
862 
863 	gic_complete_ack(irqnr);
864 
865 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
866 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
867 		gic_deactivate_unhandled(irqnr);
868 	}
869 }
870 
871 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
872 {
873 	if (gic_irqnr_is_special(irqnr))
874 		return;
875 
876 	gic_complete_ack(irqnr);
877 
878 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
879 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
880 		gic_deactivate_unhandled(irqnr);
881 	}
882 }
883 
884 /*
885  * An exception has been taken from a context with IRQs enabled, and this could
886  * be an IRQ or an NMI.
887  *
888  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
889  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
890  * after handling any NMI but before handling any IRQ.
891  *
892  * The entry code has performed IRQ entry, and if an NMI is detected we must
893  * perform NMI entry/exit around invoking the handler.
894  */
895 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
896 {
897 	bool is_nmi;
898 	u32 irqnr;
899 
900 	irqnr = gic_read_iar();
901 
902 	is_nmi = gic_rpr_is_nmi_prio();
903 
904 	if (is_nmi) {
905 		nmi_enter();
906 		__gic_handle_nmi(irqnr, regs);
907 		nmi_exit();
908 	}
909 
910 	if (gic_prio_masking_enabled()) {
911 		gic_pmr_mask_irqs();
912 		gic_arch_enable_irqs();
913 	}
914 
915 	if (!is_nmi)
916 		__gic_handle_irq(irqnr, regs);
917 }
918 
919 /*
920  * An exception has been taken from a context with IRQs disabled, which can only
921  * be an NMI.
922  *
923  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
924  * DAIF.IF (and ICC_PMR_EL1) unchanged.
925  *
926  * The entry code has performed NMI entry.
927  */
928 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
929 {
930 	u64 pmr;
931 	u32 irqnr;
932 
933 	/*
934 	 * We were in a context with IRQs disabled. However, the
935 	 * entry code has set PMR to a value that allows any
936 	 * interrupt to be acknowledged, and not just NMIs. This can
937 	 * lead to surprising effects if the NMI has been retired in
938 	 * the meantime, and that there is an IRQ pending. The IRQ
939 	 * would then be taken in NMI context, something that nobody
940 	 * wants to debug twice.
941 	 *
942 	 * Until we sort this, drop PMR again to a level that will
943 	 * actually only allow NMIs before reading IAR, and then
944 	 * restore it to what it was.
945 	 */
946 	pmr = gic_read_pmr();
947 	gic_pmr_mask_irqs();
948 	isb();
949 	irqnr = gic_read_iar();
950 	gic_write_pmr(pmr);
951 
952 	__gic_handle_nmi(irqnr, regs);
953 }
954 
955 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
956 {
957 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
958 		__gic_handle_irq_from_irqsoff(regs);
959 	else
960 		__gic_handle_irq_from_irqson(regs);
961 }
962 
963 static void __init gic_dist_init(void)
964 {
965 	unsigned int i;
966 	u64 affinity;
967 	void __iomem *base = gic_data.dist_base;
968 	u32 val;
969 
970 	/* Disable the distributor */
971 	writel_relaxed(0, base + GICD_CTLR);
972 	gic_dist_wait_for_rwp();
973 
974 	/*
975 	 * Configure SPIs as non-secure Group-1. This will only matter
976 	 * if the GIC only has a single security state. This will not
977 	 * do the right thing if the kernel is running in secure mode,
978 	 * but that's not the intended use case anyway.
979 	 */
980 	for (i = 32; i < GIC_LINE_NR; i += 32)
981 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
982 
983 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
984 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
985 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
986 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
987 	}
988 
989 	for (i = 0; i < GIC_ESPI_NR; i += 32)
990 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
991 
992 	for (i = 0; i < GIC_ESPI_NR; i += 16)
993 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
994 
995 	for (i = 0; i < GIC_ESPI_NR; i += 4)
996 		writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq),
997 			       base + GICD_IPRIORITYRnE + i);
998 
999 	/* Now do the common stuff */
1000 	gic_dist_config(base, GIC_LINE_NR, dist_prio_irq);
1001 
1002 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
1003 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
1004 		pr_info("Enabling SGIs without active state\n");
1005 		val |= GICD_CTLR_nASSGIreq;
1006 	}
1007 
1008 	/* Enable distributor with ARE, Group1, and wait for it to drain */
1009 	writel_relaxed(val, base + GICD_CTLR);
1010 	gic_dist_wait_for_rwp();
1011 
1012 	/*
1013 	 * Set all global interrupts to the boot CPU only. ARE must be
1014 	 * enabled.
1015 	 */
1016 	affinity = gic_cpu_to_affinity(smp_processor_id());
1017 	for (i = 32; i < GIC_LINE_NR; i++)
1018 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
1019 
1020 	for (i = 0; i < GIC_ESPI_NR; i++)
1021 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
1022 }
1023 
1024 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
1025 {
1026 	int ret = -ENODEV;
1027 	int i;
1028 
1029 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1030 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
1031 		u64 typer;
1032 		u32 reg;
1033 
1034 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
1035 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
1036 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
1037 			pr_warn("No redistributor present @%p\n", ptr);
1038 			break;
1039 		}
1040 
1041 		do {
1042 			typer = gic_read_typer(ptr + GICR_TYPER);
1043 			ret = fn(gic_data.redist_regions + i, ptr);
1044 			if (!ret)
1045 				return 0;
1046 
1047 			if (gic_data.redist_regions[i].single_redist)
1048 				break;
1049 
1050 			if (gic_data.redist_stride) {
1051 				ptr += gic_data.redist_stride;
1052 			} else {
1053 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
1054 				if (typer & GICR_TYPER_VLPIS)
1055 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
1056 			}
1057 		} while (!(typer & GICR_TYPER_LAST));
1058 	}
1059 
1060 	return ret ? -ENODEV : 0;
1061 }
1062 
1063 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1064 {
1065 	unsigned long mpidr;
1066 	u64 typer;
1067 	u32 aff;
1068 
1069 	/*
1070 	 * Convert affinity to a 32bit value that can be matched to
1071 	 * GICR_TYPER bits [63:32].
1072 	 */
1073 	mpidr = gic_cpu_to_affinity(smp_processor_id());
1074 
1075 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1076 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1077 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1078 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
1079 
1080 	typer = gic_read_typer(ptr + GICR_TYPER);
1081 	if ((typer >> 32) == aff) {
1082 		u64 offset = ptr - region->redist_base;
1083 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1084 		gic_data_rdist_rd_base() = ptr;
1085 		gic_data_rdist()->phys_base = region->phys_base + offset;
1086 
1087 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1088 			smp_processor_id(), mpidr,
1089 			(int)(region - gic_data.redist_regions),
1090 			&gic_data_rdist()->phys_base);
1091 		return 0;
1092 	}
1093 
1094 	/* Try next one */
1095 	return 1;
1096 }
1097 
1098 static int gic_populate_rdist(void)
1099 {
1100 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1101 		return 0;
1102 
1103 	/* We couldn't even deal with ourselves... */
1104 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1105 	     smp_processor_id(),
1106 	     (unsigned long)cpu_logical_map(smp_processor_id()));
1107 	return -ENODEV;
1108 }
1109 
1110 static int __gic_update_rdist_properties(struct redist_region *region,
1111 					 void __iomem *ptr)
1112 {
1113 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1114 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1115 
1116 	/* Boot-time cleanup */
1117 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1118 		u64 val;
1119 
1120 		/* Deactivate any present vPE */
1121 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1122 		if (val & GICR_VPENDBASER_Valid)
1123 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1124 					      ptr + SZ_128K + GICR_VPENDBASER);
1125 
1126 		/* Mark the VPE table as invalid */
1127 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1128 		val &= ~GICR_VPROPBASER_4_1_VALID;
1129 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1130 	}
1131 
1132 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1133 
1134 	/*
1135 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1136 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1137 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1138 	 *
1139 	 * These are 3 different ways to express the same thing, depending
1140 	 * on the revision of the architecture and its relaxations over
1141 	 * time. Just group them under the 'direct_lpi' banner.
1142 	 */
1143 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1144 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1145 					   !!(ctlr & GICR_CTLR_IR) |
1146 					   gic_data.rdists.has_rvpeid);
1147 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1148 
1149 	/* Detect non-sensical configurations */
1150 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1151 		gic_data.rdists.has_direct_lpi = false;
1152 		gic_data.rdists.has_vlpis = false;
1153 		gic_data.rdists.has_rvpeid = false;
1154 	}
1155 
1156 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1157 
1158 	return 1;
1159 }
1160 
1161 static void gic_update_rdist_properties(void)
1162 {
1163 	gic_data.ppi_nr = UINT_MAX;
1164 	gic_iterate_rdists(__gic_update_rdist_properties);
1165 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1166 		gic_data.ppi_nr = 0;
1167 	pr_info("GICv3 features: %d PPIs%s%s\n",
1168 		gic_data.ppi_nr,
1169 		gic_data.has_rss ? ", RSS" : "",
1170 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1171 
1172 	if (gic_data.rdists.has_vlpis)
1173 		pr_info("GICv4 features: %s%s%s\n",
1174 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1175 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1176 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1177 }
1178 
1179 static void gic_cpu_sys_reg_enable(void)
1180 {
1181 	/*
1182 	 * Need to check that the SRE bit has actually been set. If
1183 	 * not, it means that SRE is disabled at EL2. We're going to
1184 	 * die painfully, and there is nothing we can do about it.
1185 	 *
1186 	 * Kindly inform the luser.
1187 	 */
1188 	if (!gic_enable_sre())
1189 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1190 
1191 }
1192 
1193 static void gic_cpu_sys_reg_init(void)
1194 {
1195 	int i, cpu = smp_processor_id();
1196 	u64 mpidr = gic_cpu_to_affinity(cpu);
1197 	u64 need_rss = MPIDR_RS(mpidr);
1198 	bool group0;
1199 	u32 pribits;
1200 
1201 	pribits = gic_get_pribits();
1202 
1203 	group0 = gic_has_group0();
1204 
1205 	/* Set priority mask register */
1206 	if (!gic_prio_masking_enabled()) {
1207 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1208 	} else if (gic_supports_nmi()) {
1209 		/*
1210 		 * Check that all CPUs use the same priority space.
1211 		 *
1212 		 * If there's a mismatch with the boot CPU, the system is
1213 		 * likely to die as interrupt masking will not work properly on
1214 		 * all CPUs.
1215 		 */
1216 		WARN_ON(group0 != cpus_have_group0);
1217 		WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled);
1218 	}
1219 
1220 	/*
1221 	 * Some firmwares hand over to the kernel with the BPR changed from
1222 	 * its reset value (and with a value large enough to prevent
1223 	 * any pre-emptive interrupts from working at all). Writing a zero
1224 	 * to BPR restores is reset value.
1225 	 */
1226 	gic_write_bpr1(0);
1227 
1228 	if (static_branch_likely(&supports_deactivate_key)) {
1229 		/* EOI drops priority only (mode 1) */
1230 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1231 	} else {
1232 		/* EOI deactivates interrupt too (mode 0) */
1233 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1234 	}
1235 
1236 	/* Always whack Group0 before Group1 */
1237 	if (group0) {
1238 		switch(pribits) {
1239 		case 8:
1240 		case 7:
1241 			write_gicreg(0, ICC_AP0R3_EL1);
1242 			write_gicreg(0, ICC_AP0R2_EL1);
1243 			fallthrough;
1244 		case 6:
1245 			write_gicreg(0, ICC_AP0R1_EL1);
1246 			fallthrough;
1247 		case 5:
1248 		case 4:
1249 			write_gicreg(0, ICC_AP0R0_EL1);
1250 		}
1251 
1252 		isb();
1253 	}
1254 
1255 	switch(pribits) {
1256 	case 8:
1257 	case 7:
1258 		write_gicreg(0, ICC_AP1R3_EL1);
1259 		write_gicreg(0, ICC_AP1R2_EL1);
1260 		fallthrough;
1261 	case 6:
1262 		write_gicreg(0, ICC_AP1R1_EL1);
1263 		fallthrough;
1264 	case 5:
1265 	case 4:
1266 		write_gicreg(0, ICC_AP1R0_EL1);
1267 	}
1268 
1269 	isb();
1270 
1271 	/* ... and let's hit the road... */
1272 	gic_write_grpen1(1);
1273 
1274 	/* Keep the RSS capability status in per_cpu variable */
1275 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1276 
1277 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1278 	for_each_online_cpu(i) {
1279 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1280 
1281 		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1282 		if (need_rss && (!have_rss))
1283 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1284 				cpu, (unsigned long)mpidr,
1285 				i, (unsigned long)gic_cpu_to_affinity(i));
1286 	}
1287 
1288 	/**
1289 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1290 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1291 	 * UNPREDICTABLE choice of :
1292 	 *   - The write is ignored.
1293 	 *   - The RS field is treated as 0.
1294 	 */
1295 	if (need_rss && (!gic_data.has_rss))
1296 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1297 }
1298 
1299 static bool gicv3_nolpi;
1300 
1301 static int __init gicv3_nolpi_cfg(char *buf)
1302 {
1303 	return kstrtobool(buf, &gicv3_nolpi);
1304 }
1305 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1306 
1307 static int gic_dist_supports_lpis(void)
1308 {
1309 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1310 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1311 		!gicv3_nolpi);
1312 }
1313 
1314 static void gic_cpu_init(void)
1315 {
1316 	void __iomem *rbase;
1317 	int i;
1318 
1319 	/* Register ourselves with the rest of the world */
1320 	if (gic_populate_rdist())
1321 		return;
1322 
1323 	gic_enable_redist(true);
1324 
1325 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1326 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1327 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1328 	     smp_processor_id());
1329 
1330 	rbase = gic_data_rdist_sgi_base();
1331 
1332 	/* Configure SGIs/PPIs as non-secure Group-1 */
1333 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1334 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1335 
1336 	gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq);
1337 	gic_redist_wait_for_rwp();
1338 
1339 	/* initialise system registers */
1340 	gic_cpu_sys_reg_init();
1341 }
1342 
1343 #ifdef CONFIG_SMP
1344 
1345 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1346 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1347 
1348 /*
1349  * gic_starting_cpu() is called after the last point where cpuhp is allowed
1350  * to fail. So pre check for problems earlier.
1351  */
1352 static int gic_check_rdist(unsigned int cpu)
1353 {
1354 	if (cpumask_test_cpu(cpu, &broken_rdists))
1355 		return -EINVAL;
1356 
1357 	return 0;
1358 }
1359 
1360 static int gic_starting_cpu(unsigned int cpu)
1361 {
1362 	gic_cpu_sys_reg_enable();
1363 	gic_cpu_init();
1364 
1365 	if (gic_dist_supports_lpis())
1366 		its_cpu_init();
1367 
1368 	return 0;
1369 }
1370 
1371 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1372 				   unsigned long cluster_id)
1373 {
1374 	int next_cpu, cpu = *base_cpu;
1375 	unsigned long mpidr;
1376 	u16 tlist = 0;
1377 
1378 	mpidr = gic_cpu_to_affinity(cpu);
1379 
1380 	while (cpu < nr_cpu_ids) {
1381 		tlist |= 1 << (mpidr & 0xf);
1382 
1383 		next_cpu = cpumask_next(cpu, mask);
1384 		if (next_cpu >= nr_cpu_ids)
1385 			goto out;
1386 		cpu = next_cpu;
1387 
1388 		mpidr = gic_cpu_to_affinity(cpu);
1389 
1390 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1391 			cpu--;
1392 			goto out;
1393 		}
1394 	}
1395 out:
1396 	*base_cpu = cpu;
1397 	return tlist;
1398 }
1399 
1400 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1401 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1402 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1403 
1404 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1405 {
1406 	u64 val;
1407 
1408 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1409 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1410 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1411 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1412 	       MPIDR_TO_SGI_RS(cluster_id)		|
1413 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1414 
1415 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1416 	gic_write_sgi1r(val);
1417 }
1418 
1419 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1420 {
1421 	int cpu;
1422 
1423 	if (WARN_ON(d->hwirq >= 16))
1424 		return;
1425 
1426 	/*
1427 	 * Ensure that stores to Normal memory are visible to the
1428 	 * other CPUs before issuing the IPI.
1429 	 */
1430 	dsb(ishst);
1431 
1432 	for_each_cpu(cpu, mask) {
1433 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1434 		u16 tlist;
1435 
1436 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1437 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1438 	}
1439 
1440 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1441 	isb();
1442 }
1443 
1444 static void __init gic_smp_init(void)
1445 {
1446 	struct irq_fwspec sgi_fwspec = {
1447 		.fwnode		= gic_data.fwnode,
1448 		.param_count	= 1,
1449 	};
1450 	int base_sgi;
1451 
1452 	cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
1453 				  "irqchip/arm/gicv3:checkrdist",
1454 				  gic_check_rdist, NULL);
1455 
1456 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1457 				  "irqchip/arm/gicv3:starting",
1458 				  gic_starting_cpu, NULL);
1459 
1460 	/* Register all 8 non-secure SGIs */
1461 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1462 	if (WARN_ON(base_sgi <= 0))
1463 		return;
1464 
1465 	set_smp_ipi_range(base_sgi, 8);
1466 }
1467 
1468 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1469 			    bool force)
1470 {
1471 	unsigned int cpu;
1472 	u32 offset, index;
1473 	void __iomem *reg;
1474 	int enabled;
1475 	u64 val;
1476 
1477 	if (force)
1478 		cpu = cpumask_first(mask_val);
1479 	else
1480 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1481 
1482 	if (cpu >= nr_cpu_ids)
1483 		return -EINVAL;
1484 
1485 	if (gic_irq_in_rdist(d))
1486 		return -EINVAL;
1487 
1488 	/* If interrupt was enabled, disable it first */
1489 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1490 	if (enabled)
1491 		gic_mask_irq(d);
1492 
1493 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1494 	reg = gic_dist_base(d) + offset + (index * 8);
1495 	val = gic_cpu_to_affinity(cpu);
1496 
1497 	gic_write_irouter(val, reg);
1498 
1499 	/*
1500 	 * If the interrupt was enabled, enabled it again. Otherwise,
1501 	 * just wait for the distributor to have digested our changes.
1502 	 */
1503 	if (enabled)
1504 		gic_unmask_irq(d);
1505 
1506 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1507 
1508 	return IRQ_SET_MASK_OK_DONE;
1509 }
1510 #else
1511 #define gic_set_affinity	NULL
1512 #define gic_ipi_send_mask	NULL
1513 #define gic_smp_init()		do { } while(0)
1514 #endif
1515 
1516 static int gic_retrigger(struct irq_data *data)
1517 {
1518 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1519 }
1520 
1521 #ifdef CONFIG_CPU_PM
1522 static int gic_cpu_pm_notifier(struct notifier_block *self,
1523 			       unsigned long cmd, void *v)
1524 {
1525 	if (cmd == CPU_PM_EXIT) {
1526 		if (gic_dist_security_disabled())
1527 			gic_enable_redist(true);
1528 		gic_cpu_sys_reg_enable();
1529 		gic_cpu_sys_reg_init();
1530 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1531 		gic_write_grpen1(0);
1532 		gic_enable_redist(false);
1533 	}
1534 	return NOTIFY_OK;
1535 }
1536 
1537 static struct notifier_block gic_cpu_pm_notifier_block = {
1538 	.notifier_call = gic_cpu_pm_notifier,
1539 };
1540 
1541 static void gic_cpu_pm_init(void)
1542 {
1543 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1544 }
1545 
1546 #else
1547 static inline void gic_cpu_pm_init(void) { }
1548 #endif /* CONFIG_CPU_PM */
1549 
1550 static struct irq_chip gic_chip = {
1551 	.name			= "GICv3",
1552 	.irq_mask		= gic_mask_irq,
1553 	.irq_unmask		= gic_unmask_irq,
1554 	.irq_eoi		= gic_eoi_irq,
1555 	.irq_set_type		= gic_set_type,
1556 	.irq_set_affinity	= gic_set_affinity,
1557 	.irq_retrigger          = gic_retrigger,
1558 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1559 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1560 	.irq_nmi_setup		= gic_irq_nmi_setup,
1561 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1562 	.ipi_send_mask		= gic_ipi_send_mask,
1563 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1564 				  IRQCHIP_SKIP_SET_WAKE |
1565 				  IRQCHIP_MASK_ON_SUSPEND,
1566 };
1567 
1568 static struct irq_chip gic_eoimode1_chip = {
1569 	.name			= "GICv3",
1570 	.irq_mask		= gic_eoimode1_mask_irq,
1571 	.irq_unmask		= gic_unmask_irq,
1572 	.irq_eoi		= gic_eoimode1_eoi_irq,
1573 	.irq_set_type		= gic_set_type,
1574 	.irq_set_affinity	= gic_set_affinity,
1575 	.irq_retrigger          = gic_retrigger,
1576 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1577 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1578 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1579 	.irq_nmi_setup		= gic_irq_nmi_setup,
1580 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1581 	.ipi_send_mask		= gic_ipi_send_mask,
1582 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1583 				  IRQCHIP_SKIP_SET_WAKE |
1584 				  IRQCHIP_MASK_ON_SUSPEND,
1585 };
1586 
1587 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1588 			      irq_hw_number_t hw)
1589 {
1590 	struct irq_chip *chip = &gic_chip;
1591 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1592 
1593 	if (static_branch_likely(&supports_deactivate_key))
1594 		chip = &gic_eoimode1_chip;
1595 
1596 	switch (__get_intid_range(hw)) {
1597 	case SGI_RANGE:
1598 	case PPI_RANGE:
1599 	case EPPI_RANGE:
1600 		irq_set_percpu_devid(irq);
1601 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1602 				    handle_percpu_devid_irq, NULL, NULL);
1603 		break;
1604 
1605 	case SPI_RANGE:
1606 	case ESPI_RANGE:
1607 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1608 				    handle_fasteoi_irq, NULL, NULL);
1609 		irq_set_probe(irq);
1610 		irqd_set_single_target(irqd);
1611 		break;
1612 
1613 	case LPI_RANGE:
1614 		if (!gic_dist_supports_lpis())
1615 			return -EPERM;
1616 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1617 				    handle_fasteoi_irq, NULL, NULL);
1618 		break;
1619 
1620 	default:
1621 		return -EPERM;
1622 	}
1623 
1624 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1625 	irqd_set_handle_enforce_irqctx(irqd);
1626 	return 0;
1627 }
1628 
1629 static int gic_irq_domain_translate(struct irq_domain *d,
1630 				    struct irq_fwspec *fwspec,
1631 				    unsigned long *hwirq,
1632 				    unsigned int *type)
1633 {
1634 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1635 		*hwirq = fwspec->param[0];
1636 		*type = IRQ_TYPE_EDGE_RISING;
1637 		return 0;
1638 	}
1639 
1640 	if (is_of_node(fwspec->fwnode)) {
1641 		if (fwspec->param_count < 3)
1642 			return -EINVAL;
1643 
1644 		switch (fwspec->param[0]) {
1645 		case 0:			/* SPI */
1646 			*hwirq = fwspec->param[1] + 32;
1647 			break;
1648 		case 1:			/* PPI */
1649 			*hwirq = fwspec->param[1] + 16;
1650 			break;
1651 		case 2:			/* ESPI */
1652 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1653 			break;
1654 		case 3:			/* EPPI */
1655 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1656 			break;
1657 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1658 			*hwirq = fwspec->param[1];
1659 			break;
1660 		case GIC_IRQ_TYPE_PARTITION:
1661 			*hwirq = fwspec->param[1];
1662 			if (fwspec->param[1] >= 16)
1663 				*hwirq += EPPI_BASE_INTID - 16;
1664 			else
1665 				*hwirq += 16;
1666 			break;
1667 		default:
1668 			return -EINVAL;
1669 		}
1670 
1671 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1672 
1673 		/*
1674 		 * Make it clear that broken DTs are... broken.
1675 		 * Partitioned PPIs are an unfortunate exception.
1676 		 */
1677 		WARN_ON(*type == IRQ_TYPE_NONE &&
1678 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1679 		return 0;
1680 	}
1681 
1682 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1683 		if(fwspec->param_count != 2)
1684 			return -EINVAL;
1685 
1686 		if (fwspec->param[0] < 16) {
1687 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1688 			       fwspec->param[0]);
1689 			return -EINVAL;
1690 		}
1691 
1692 		*hwirq = fwspec->param[0];
1693 		*type = fwspec->param[1];
1694 
1695 		WARN_ON(*type == IRQ_TYPE_NONE);
1696 		return 0;
1697 	}
1698 
1699 	return -EINVAL;
1700 }
1701 
1702 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1703 				unsigned int nr_irqs, void *arg)
1704 {
1705 	int i, ret;
1706 	irq_hw_number_t hwirq;
1707 	unsigned int type = IRQ_TYPE_NONE;
1708 	struct irq_fwspec *fwspec = arg;
1709 
1710 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1711 	if (ret)
1712 		return ret;
1713 
1714 	for (i = 0; i < nr_irqs; i++) {
1715 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1716 		if (ret)
1717 			return ret;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1724 				unsigned int nr_irqs)
1725 {
1726 	int i;
1727 
1728 	for (i = 0; i < nr_irqs; i++) {
1729 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1730 		irq_set_handler(virq + i, NULL);
1731 		irq_domain_reset_irq_data(d);
1732 	}
1733 }
1734 
1735 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1736 				      irq_hw_number_t hwirq)
1737 {
1738 	enum gic_intid_range range;
1739 
1740 	if (!gic_data.ppi_descs)
1741 		return false;
1742 
1743 	if (!is_of_node(fwspec->fwnode))
1744 		return false;
1745 
1746 	if (fwspec->param_count < 4 || !fwspec->param[3])
1747 		return false;
1748 
1749 	range = __get_intid_range(hwirq);
1750 	if (range != PPI_RANGE && range != EPPI_RANGE)
1751 		return false;
1752 
1753 	return true;
1754 }
1755 
1756 static int gic_irq_domain_select(struct irq_domain *d,
1757 				 struct irq_fwspec *fwspec,
1758 				 enum irq_domain_bus_token bus_token)
1759 {
1760 	unsigned int type, ret, ppi_idx;
1761 	irq_hw_number_t hwirq;
1762 
1763 	/* Not for us */
1764 	if (fwspec->fwnode != d->fwnode)
1765 		return 0;
1766 
1767 	/* Handle pure domain searches */
1768 	if (!fwspec->param_count)
1769 		return d->bus_token == bus_token;
1770 
1771 	/* If this is not DT, then we have a single domain */
1772 	if (!is_of_node(fwspec->fwnode))
1773 		return 1;
1774 
1775 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1776 	if (WARN_ON_ONCE(ret))
1777 		return 0;
1778 
1779 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1780 		return d == gic_data.domain;
1781 
1782 	/*
1783 	 * If this is a PPI and we have a 4th (non-null) parameter,
1784 	 * then we need to match the partition domain.
1785 	 */
1786 	ppi_idx = __gic_get_ppi_index(hwirq);
1787 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1788 }
1789 
1790 static const struct irq_domain_ops gic_irq_domain_ops = {
1791 	.translate = gic_irq_domain_translate,
1792 	.alloc = gic_irq_domain_alloc,
1793 	.free = gic_irq_domain_free,
1794 	.select = gic_irq_domain_select,
1795 };
1796 
1797 static int partition_domain_translate(struct irq_domain *d,
1798 				      struct irq_fwspec *fwspec,
1799 				      unsigned long *hwirq,
1800 				      unsigned int *type)
1801 {
1802 	unsigned long ppi_intid;
1803 	struct device_node *np;
1804 	unsigned int ppi_idx;
1805 	int ret;
1806 
1807 	if (!gic_data.ppi_descs)
1808 		return -ENOMEM;
1809 
1810 	np = of_find_node_by_phandle(fwspec->param[3]);
1811 	if (WARN_ON(!np))
1812 		return -EINVAL;
1813 
1814 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1815 	if (WARN_ON_ONCE(ret))
1816 		return 0;
1817 
1818 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1819 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1820 				     of_node_to_fwnode(np));
1821 	if (ret < 0)
1822 		return ret;
1823 
1824 	*hwirq = ret;
1825 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1826 
1827 	return 0;
1828 }
1829 
1830 static const struct irq_domain_ops partition_domain_ops = {
1831 	.translate = partition_domain_translate,
1832 	.select = gic_irq_domain_select,
1833 };
1834 
1835 static bool gic_enable_quirk_msm8996(void *data)
1836 {
1837 	struct gic_chip_data *d = data;
1838 
1839 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1840 
1841 	return true;
1842 }
1843 
1844 static bool gic_enable_quirk_cavium_38539(void *data)
1845 {
1846 	struct gic_chip_data *d = data;
1847 
1848 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1849 
1850 	return true;
1851 }
1852 
1853 static bool gic_enable_quirk_hip06_07(void *data)
1854 {
1855 	struct gic_chip_data *d = data;
1856 
1857 	/*
1858 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1859 	 * not being an actual ARM implementation). The saving grace is
1860 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1861 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1862 	 * have ESPI. In both cases, put them right.
1863 	 */
1864 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1865 		/* Zero both ESPI and the RES0 field next to it... */
1866 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1867 		return true;
1868 	}
1869 
1870 	return false;
1871 }
1872 
1873 #define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1874 #define T241_CHIP_GICDA_OFFSET	0x1580000
1875 #define SMCCC_SOC_ID_T241	0x036b0241
1876 
1877 static bool gic_enable_quirk_nvidia_t241(void *data)
1878 {
1879 	s32 soc_id = arm_smccc_get_soc_id_version();
1880 	unsigned long chip_bmask = 0;
1881 	phys_addr_t phys;
1882 	u32 i;
1883 
1884 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1885 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1886 		return false;
1887 
1888 	/* Find the chips based on GICR regions PHYS addr */
1889 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1890 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1891 				  (u64)gic_data.redist_regions[i].phys_base));
1892 	}
1893 
1894 	if (hweight32(chip_bmask) < 3)
1895 		return false;
1896 
1897 	/* Setup GICD alias regions */
1898 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1899 		if (chip_bmask & BIT(i)) {
1900 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1901 			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1902 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1903 			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1904 		}
1905 	}
1906 	static_branch_enable(&gic_nvidia_t241_erratum);
1907 	return true;
1908 }
1909 
1910 static bool gic_enable_quirk_asr8601(void *data)
1911 {
1912 	struct gic_chip_data *d = data;
1913 
1914 	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1915 
1916 	return true;
1917 }
1918 
1919 static bool gic_enable_quirk_arm64_2941627(void *data)
1920 {
1921 	static_branch_enable(&gic_arm64_2941627_erratum);
1922 	return true;
1923 }
1924 
1925 static bool rd_set_non_coherent(void *data)
1926 {
1927 	struct gic_chip_data *d = data;
1928 
1929 	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1930 	return true;
1931 }
1932 
1933 static const struct gic_quirk gic_quirks[] = {
1934 	{
1935 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1936 		.compatible = "qcom,msm8996-gic-v3",
1937 		.init	= gic_enable_quirk_msm8996,
1938 	},
1939 	{
1940 		.desc	= "GICv3: ASR erratum 8601001",
1941 		.compatible = "asr,asr8601-gic-v3",
1942 		.init	= gic_enable_quirk_asr8601,
1943 	},
1944 	{
1945 		.desc	= "GICv3: HIP06 erratum 161010803",
1946 		.iidr	= 0x0204043b,
1947 		.mask	= 0xffffffff,
1948 		.init	= gic_enable_quirk_hip06_07,
1949 	},
1950 	{
1951 		.desc	= "GICv3: HIP07 erratum 161010803",
1952 		.iidr	= 0x00000000,
1953 		.mask	= 0xffffffff,
1954 		.init	= gic_enable_quirk_hip06_07,
1955 	},
1956 	{
1957 		/*
1958 		 * Reserved register accesses generate a Synchronous
1959 		 * External Abort. This erratum applies to:
1960 		 * - ThunderX: CN88xx
1961 		 * - OCTEON TX: CN83xx, CN81xx
1962 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1963 		 */
1964 		.desc	= "GICv3: Cavium erratum 38539",
1965 		.iidr	= 0xa000034c,
1966 		.mask	= 0xe8f00fff,
1967 		.init	= gic_enable_quirk_cavium_38539,
1968 	},
1969 	{
1970 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1971 		.iidr	= 0x0402043b,
1972 		.mask	= 0xffffffff,
1973 		.init	= gic_enable_quirk_nvidia_t241,
1974 	},
1975 	{
1976 		/*
1977 		 * GIC-700: 2941627 workaround - IP variant [0,1]
1978 		 *
1979 		 */
1980 		.desc	= "GICv3: ARM64 erratum 2941627",
1981 		.iidr	= 0x0400043b,
1982 		.mask	= 0xff0e0fff,
1983 		.init	= gic_enable_quirk_arm64_2941627,
1984 	},
1985 	{
1986 		/*
1987 		 * GIC-700: 2941627 workaround - IP variant [2]
1988 		 */
1989 		.desc	= "GICv3: ARM64 erratum 2941627",
1990 		.iidr	= 0x0402043b,
1991 		.mask	= 0xff0f0fff,
1992 		.init	= gic_enable_quirk_arm64_2941627,
1993 	},
1994 	{
1995 		.desc   = "GICv3: non-coherent attribute",
1996 		.property = "dma-noncoherent",
1997 		.init   = rd_set_non_coherent,
1998 	},
1999 	{
2000 	}
2001 };
2002 
2003 static void gic_enable_nmi_support(void)
2004 {
2005 	int i;
2006 
2007 	if (!gic_prio_masking_enabled())
2008 		return;
2009 
2010 	rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
2011 				 sizeof(*rdist_nmi_refs), GFP_KERNEL);
2012 	if (!rdist_nmi_refs)
2013 		return;
2014 
2015 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
2016 		refcount_set(&rdist_nmi_refs[i], 0);
2017 
2018 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
2019 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
2020 
2021 	static_branch_enable(&supports_pseudo_nmis);
2022 
2023 	if (static_branch_likely(&supports_deactivate_key))
2024 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2025 	else
2026 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2027 }
2028 
2029 static int __init gic_init_bases(phys_addr_t dist_phys_base,
2030 				 void __iomem *dist_base,
2031 				 struct redist_region *rdist_regs,
2032 				 u32 nr_redist_regions,
2033 				 u64 redist_stride,
2034 				 struct fwnode_handle *handle)
2035 {
2036 	u32 typer;
2037 	int err;
2038 
2039 	if (!is_hyp_mode_available())
2040 		static_branch_disable(&supports_deactivate_key);
2041 
2042 	if (static_branch_likely(&supports_deactivate_key))
2043 		pr_info("GIC: Using split EOI/Deactivate mode\n");
2044 
2045 	gic_data.fwnode = handle;
2046 	gic_data.dist_phys_base = dist_phys_base;
2047 	gic_data.dist_base = dist_base;
2048 	gic_data.redist_regions = rdist_regs;
2049 	gic_data.nr_redist_regions = nr_redist_regions;
2050 	gic_data.redist_stride = redist_stride;
2051 
2052 	/*
2053 	 * Find out how many interrupts are supported.
2054 	 */
2055 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2056 	gic_data.rdists.gicd_typer = typer;
2057 
2058 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2059 			  gic_quirks, &gic_data);
2060 
2061 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2062 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2063 
2064 	/*
2065 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2066 	 * architecture spec (which says that reserved registers are RES0).
2067 	 */
2068 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2069 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2070 
2071 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2072 						 &gic_data);
2073 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2074 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2075 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2076 		gic_data.rdists.has_rvpeid = true;
2077 		gic_data.rdists.has_vlpis = true;
2078 		gic_data.rdists.has_direct_lpi = true;
2079 		gic_data.rdists.has_vpend_valid_dirty = true;
2080 	}
2081 
2082 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2083 		err = -ENOMEM;
2084 		goto out_free;
2085 	}
2086 
2087 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2088 
2089 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2090 
2091 	if (typer & GICD_TYPER_MBIS) {
2092 		err = mbi_init(handle, gic_data.domain);
2093 		if (err)
2094 			pr_err("Failed to initialize MBIs\n");
2095 	}
2096 
2097 	set_handle_irq(gic_handle_irq);
2098 
2099 	gic_update_rdist_properties();
2100 
2101 	gic_cpu_sys_reg_enable();
2102 	gic_prio_init();
2103 	gic_dist_init();
2104 	gic_cpu_init();
2105 	gic_enable_nmi_support();
2106 	gic_smp_init();
2107 	gic_cpu_pm_init();
2108 
2109 	if (gic_dist_supports_lpis()) {
2110 		its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq);
2111 		its_cpu_init();
2112 		its_lpi_memreserve_init();
2113 	} else {
2114 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2115 			gicv2m_init(handle, gic_data.domain);
2116 	}
2117 
2118 	return 0;
2119 
2120 out_free:
2121 	if (gic_data.domain)
2122 		irq_domain_remove(gic_data.domain);
2123 	free_percpu(gic_data.rdists.rdist);
2124 	return err;
2125 }
2126 
2127 static int __init gic_validate_dist_version(void __iomem *dist_base)
2128 {
2129 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2130 
2131 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2132 		return -ENODEV;
2133 
2134 	return 0;
2135 }
2136 
2137 /* Create all possible partitions at boot time */
2138 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2139 {
2140 	struct device_node *parts_node, *child_part;
2141 	int part_idx = 0, i;
2142 	int nr_parts;
2143 	struct partition_affinity *parts;
2144 
2145 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2146 	if (!parts_node)
2147 		return;
2148 
2149 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2150 	if (!gic_data.ppi_descs)
2151 		goto out_put_node;
2152 
2153 	nr_parts = of_get_child_count(parts_node);
2154 
2155 	if (!nr_parts)
2156 		goto out_put_node;
2157 
2158 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2159 	if (WARN_ON(!parts))
2160 		goto out_put_node;
2161 
2162 	for_each_child_of_node(parts_node, child_part) {
2163 		struct partition_affinity *part;
2164 		int n;
2165 
2166 		part = &parts[part_idx];
2167 
2168 		part->partition_id = of_node_to_fwnode(child_part);
2169 
2170 		pr_info("GIC: PPI partition %pOFn[%d] { ",
2171 			child_part, part_idx);
2172 
2173 		n = of_property_count_elems_of_size(child_part, "affinity",
2174 						    sizeof(u32));
2175 		WARN_ON(n <= 0);
2176 
2177 		for (i = 0; i < n; i++) {
2178 			int err, cpu;
2179 			u32 cpu_phandle;
2180 			struct device_node *cpu_node;
2181 
2182 			err = of_property_read_u32_index(child_part, "affinity",
2183 							 i, &cpu_phandle);
2184 			if (WARN_ON(err))
2185 				continue;
2186 
2187 			cpu_node = of_find_node_by_phandle(cpu_phandle);
2188 			if (WARN_ON(!cpu_node))
2189 				continue;
2190 
2191 			cpu = of_cpu_node_to_id(cpu_node);
2192 			if (WARN_ON(cpu < 0)) {
2193 				of_node_put(cpu_node);
2194 				continue;
2195 			}
2196 
2197 			pr_cont("%pOF[%d] ", cpu_node, cpu);
2198 
2199 			cpumask_set_cpu(cpu, &part->mask);
2200 			of_node_put(cpu_node);
2201 		}
2202 
2203 		pr_cont("}\n");
2204 		part_idx++;
2205 	}
2206 
2207 	for (i = 0; i < gic_data.ppi_nr; i++) {
2208 		unsigned int irq;
2209 		struct partition_desc *desc;
2210 		struct irq_fwspec ppi_fwspec = {
2211 			.fwnode		= gic_data.fwnode,
2212 			.param_count	= 3,
2213 			.param		= {
2214 				[0]	= GIC_IRQ_TYPE_PARTITION,
2215 				[1]	= i,
2216 				[2]	= IRQ_TYPE_NONE,
2217 			},
2218 		};
2219 
2220 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2221 		if (WARN_ON(!irq))
2222 			continue;
2223 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2224 					     irq, &partition_domain_ops);
2225 		if (WARN_ON(!desc))
2226 			continue;
2227 
2228 		gic_data.ppi_descs[i] = desc;
2229 	}
2230 
2231 out_put_node:
2232 	of_node_put(parts_node);
2233 }
2234 
2235 static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions)
2236 {
2237 	int ret;
2238 	struct resource r;
2239 
2240 	gic_v3_kvm_info.type = GIC_V3;
2241 
2242 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2243 	if (!gic_v3_kvm_info.maint_irq)
2244 		return;
2245 
2246 	/* Also skip GICD, GICC, GICH */
2247 	ret = of_address_to_resource(node, nr_redist_regions + 3, &r);
2248 	if (!ret)
2249 		gic_v3_kvm_info.vcpu = r;
2250 
2251 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2252 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2253 	vgic_set_kvm_info(&gic_v3_kvm_info);
2254 }
2255 
2256 static void gic_request_region(resource_size_t base, resource_size_t size,
2257 			       const char *name)
2258 {
2259 	if (!request_mem_region(base, size, name))
2260 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2261 			     name, &base);
2262 }
2263 
2264 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2265 				  const char *name, struct resource *res)
2266 {
2267 	void __iomem *base;
2268 	int ret;
2269 
2270 	ret = of_address_to_resource(node, idx, res);
2271 	if (ret)
2272 		return IOMEM_ERR_PTR(ret);
2273 
2274 	gic_request_region(res->start, resource_size(res), name);
2275 	base = of_iomap(node, idx);
2276 
2277 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2278 }
2279 
2280 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2281 {
2282 	phys_addr_t dist_phys_base;
2283 	void __iomem *dist_base;
2284 	struct redist_region *rdist_regs;
2285 	struct resource res;
2286 	u64 redist_stride;
2287 	u32 nr_redist_regions;
2288 	int err, i;
2289 
2290 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2291 	if (IS_ERR(dist_base)) {
2292 		pr_err("%pOF: unable to map gic dist registers\n", node);
2293 		return PTR_ERR(dist_base);
2294 	}
2295 
2296 	dist_phys_base = res.start;
2297 
2298 	err = gic_validate_dist_version(dist_base);
2299 	if (err) {
2300 		pr_err("%pOF: no distributor detected, giving up\n", node);
2301 		goto out_unmap_dist;
2302 	}
2303 
2304 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2305 		nr_redist_regions = 1;
2306 
2307 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2308 			     GFP_KERNEL);
2309 	if (!rdist_regs) {
2310 		err = -ENOMEM;
2311 		goto out_unmap_dist;
2312 	}
2313 
2314 	for (i = 0; i < nr_redist_regions; i++) {
2315 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2316 		if (IS_ERR(rdist_regs[i].redist_base)) {
2317 			pr_err("%pOF: couldn't map region %d\n", node, i);
2318 			err = -ENODEV;
2319 			goto out_unmap_rdist;
2320 		}
2321 		rdist_regs[i].phys_base = res.start;
2322 	}
2323 
2324 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2325 		redist_stride = 0;
2326 
2327 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2328 
2329 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2330 			     nr_redist_regions, redist_stride, &node->fwnode);
2331 	if (err)
2332 		goto out_unmap_rdist;
2333 
2334 	gic_populate_ppi_partitions(node);
2335 
2336 	if (static_branch_likely(&supports_deactivate_key))
2337 		gic_of_setup_kvm_info(node, nr_redist_regions);
2338 	return 0;
2339 
2340 out_unmap_rdist:
2341 	for (i = 0; i < nr_redist_regions; i++)
2342 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2343 			iounmap(rdist_regs[i].redist_base);
2344 	kfree(rdist_regs);
2345 out_unmap_dist:
2346 	iounmap(dist_base);
2347 	return err;
2348 }
2349 
2350 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2351 
2352 #ifdef CONFIG_ACPI
2353 static struct
2354 {
2355 	void __iomem *dist_base;
2356 	struct redist_region *redist_regs;
2357 	u32 nr_redist_regions;
2358 	bool single_redist;
2359 	int enabled_rdists;
2360 	u32 maint_irq;
2361 	int maint_irq_mode;
2362 	phys_addr_t vcpu_base;
2363 } acpi_data __initdata;
2364 
2365 static void __init
2366 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2367 {
2368 	static int count = 0;
2369 
2370 	acpi_data.redist_regs[count].phys_base = phys_base;
2371 	acpi_data.redist_regs[count].redist_base = redist_base;
2372 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2373 	count++;
2374 }
2375 
2376 static int __init
2377 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2378 			   const unsigned long end)
2379 {
2380 	struct acpi_madt_generic_redistributor *redist =
2381 			(struct acpi_madt_generic_redistributor *)header;
2382 	void __iomem *redist_base;
2383 
2384 	redist_base = ioremap(redist->base_address, redist->length);
2385 	if (!redist_base) {
2386 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2387 		return -ENOMEM;
2388 	}
2389 
2390 	if (acpi_get_madt_revision() >= 7 &&
2391 	    (redist->flags & ACPI_MADT_GICR_NON_COHERENT))
2392 		gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2393 
2394 	gic_request_region(redist->base_address, redist->length, "GICR");
2395 
2396 	gic_acpi_register_redist(redist->base_address, redist_base);
2397 	return 0;
2398 }
2399 
2400 static int __init
2401 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2402 			 const unsigned long end)
2403 {
2404 	struct acpi_madt_generic_interrupt *gicc =
2405 				(struct acpi_madt_generic_interrupt *)header;
2406 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2407 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2408 	void __iomem *redist_base;
2409 
2410 	/* Neither enabled or online capable means it doesn't exist, skip it */
2411 	if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2412 		return 0;
2413 
2414 	/*
2415 	 * Capable but disabled CPUs can be brought online later. What about
2416 	 * the redistributor? ACPI doesn't want to say!
2417 	 * Virtual hotplug systems can use the MADT's "always-on" GICR entries.
2418 	 * Otherwise, prevent such CPUs from being brought online.
2419 	 */
2420 	if (!(gicc->flags & ACPI_MADT_ENABLED)) {
2421 		int cpu = get_cpu_for_acpi_id(gicc->uid);
2422 
2423 		pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu);
2424 		if (cpu >= 0)
2425 			cpumask_set_cpu(cpu, &broken_rdists);
2426 		return 0;
2427 	}
2428 
2429 	redist_base = ioremap(gicc->gicr_base_address, size);
2430 	if (!redist_base)
2431 		return -ENOMEM;
2432 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2433 
2434 	if (acpi_get_madt_revision() >= 7 &&
2435 	    (gicc->flags & ACPI_MADT_GICC_NON_COHERENT))
2436 		gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2437 
2438 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2439 	return 0;
2440 }
2441 
2442 static int __init gic_acpi_collect_gicr_base(void)
2443 {
2444 	acpi_tbl_entry_handler redist_parser;
2445 	enum acpi_madt_type type;
2446 
2447 	if (acpi_data.single_redist) {
2448 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2449 		redist_parser = gic_acpi_parse_madt_gicc;
2450 	} else {
2451 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2452 		redist_parser = gic_acpi_parse_madt_redist;
2453 	}
2454 
2455 	/* Collect redistributor base addresses in GICR entries */
2456 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2457 		return 0;
2458 
2459 	pr_info("No valid GICR entries exist\n");
2460 	return -ENODEV;
2461 }
2462 
2463 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2464 				  const unsigned long end)
2465 {
2466 	/* Subtable presence means that redist exists, that's it */
2467 	return 0;
2468 }
2469 
2470 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2471 				      const unsigned long end)
2472 {
2473 	struct acpi_madt_generic_interrupt *gicc =
2474 				(struct acpi_madt_generic_interrupt *)header;
2475 
2476 	/*
2477 	 * If GICC is enabled and has valid gicr base address, then it means
2478 	 * GICR base is presented via GICC. The redistributor is only known to
2479 	 * be accessible if the GICC is marked as enabled. If this bit is not
2480 	 * set, we'd need to add the redistributor at runtime, which isn't
2481 	 * supported.
2482 	 */
2483 	if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address)
2484 		acpi_data.enabled_rdists++;
2485 
2486 	return 0;
2487 }
2488 
2489 static int __init gic_acpi_count_gicr_regions(void)
2490 {
2491 	int count;
2492 
2493 	/*
2494 	 * Count how many redistributor regions we have. It is not allowed
2495 	 * to mix redistributor description, GICR and GICC subtables have to be
2496 	 * mutually exclusive.
2497 	 */
2498 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2499 				      gic_acpi_match_gicr, 0);
2500 	if (count > 0) {
2501 		acpi_data.single_redist = false;
2502 		return count;
2503 	}
2504 
2505 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2506 				      gic_acpi_match_gicc, 0);
2507 	if (count > 0) {
2508 		acpi_data.single_redist = true;
2509 		count = acpi_data.enabled_rdists;
2510 	}
2511 
2512 	return count;
2513 }
2514 
2515 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2516 					   struct acpi_probe_entry *ape)
2517 {
2518 	struct acpi_madt_generic_distributor *dist;
2519 	int count;
2520 
2521 	dist = (struct acpi_madt_generic_distributor *)header;
2522 	if (dist->version != ape->driver_data)
2523 		return false;
2524 
2525 	/* We need to do that exercise anyway, the sooner the better */
2526 	count = gic_acpi_count_gicr_regions();
2527 	if (count <= 0)
2528 		return false;
2529 
2530 	acpi_data.nr_redist_regions = count;
2531 	return true;
2532 }
2533 
2534 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2535 						const unsigned long end)
2536 {
2537 	struct acpi_madt_generic_interrupt *gicc =
2538 		(struct acpi_madt_generic_interrupt *)header;
2539 	int maint_irq_mode;
2540 	static int first_madt = true;
2541 
2542 	if (!(gicc->flags &
2543 	      (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2544 		return 0;
2545 
2546 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2547 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2548 
2549 	if (first_madt) {
2550 		first_madt = false;
2551 
2552 		acpi_data.maint_irq = gicc->vgic_interrupt;
2553 		acpi_data.maint_irq_mode = maint_irq_mode;
2554 		acpi_data.vcpu_base = gicc->gicv_base_address;
2555 
2556 		return 0;
2557 	}
2558 
2559 	/*
2560 	 * The maintenance interrupt and GICV should be the same for every CPU
2561 	 */
2562 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2563 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2564 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2565 		return -EINVAL;
2566 
2567 	return 0;
2568 }
2569 
2570 static bool __init gic_acpi_collect_virt_info(void)
2571 {
2572 	int count;
2573 
2574 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2575 				      gic_acpi_parse_virt_madt_gicc, 0);
2576 
2577 	return (count > 0);
2578 }
2579 
2580 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2581 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2582 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2583 
2584 static void __init gic_acpi_setup_kvm_info(void)
2585 {
2586 	int irq;
2587 
2588 	if (!gic_acpi_collect_virt_info()) {
2589 		pr_warn("Unable to get hardware information used for virtualization\n");
2590 		return;
2591 	}
2592 
2593 	gic_v3_kvm_info.type = GIC_V3;
2594 
2595 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2596 				acpi_data.maint_irq_mode,
2597 				ACPI_ACTIVE_HIGH);
2598 	if (irq <= 0)
2599 		return;
2600 
2601 	gic_v3_kvm_info.maint_irq = irq;
2602 
2603 	if (acpi_data.vcpu_base) {
2604 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2605 
2606 		vcpu->flags = IORESOURCE_MEM;
2607 		vcpu->start = acpi_data.vcpu_base;
2608 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2609 	}
2610 
2611 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2612 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2613 	vgic_set_kvm_info(&gic_v3_kvm_info);
2614 }
2615 
2616 static struct fwnode_handle *gsi_domain_handle;
2617 
2618 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2619 {
2620 	return gsi_domain_handle;
2621 }
2622 
2623 static int __init
2624 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2625 {
2626 	struct acpi_madt_generic_distributor *dist;
2627 	size_t size;
2628 	int i, err;
2629 
2630 	/* Get distributor base address */
2631 	dist = (struct acpi_madt_generic_distributor *)header;
2632 	acpi_data.dist_base = ioremap(dist->base_address,
2633 				      ACPI_GICV3_DIST_MEM_SIZE);
2634 	if (!acpi_data.dist_base) {
2635 		pr_err("Unable to map GICD registers\n");
2636 		return -ENOMEM;
2637 	}
2638 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2639 
2640 	err = gic_validate_dist_version(acpi_data.dist_base);
2641 	if (err) {
2642 		pr_err("No distributor detected at @%p, giving up\n",
2643 		       acpi_data.dist_base);
2644 		goto out_dist_unmap;
2645 	}
2646 
2647 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2648 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2649 	if (!acpi_data.redist_regs) {
2650 		err = -ENOMEM;
2651 		goto out_dist_unmap;
2652 	}
2653 
2654 	err = gic_acpi_collect_gicr_base();
2655 	if (err)
2656 		goto out_redist_unmap;
2657 
2658 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2659 	if (!gsi_domain_handle) {
2660 		err = -ENOMEM;
2661 		goto out_redist_unmap;
2662 	}
2663 
2664 	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2665 			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2666 			     0, gsi_domain_handle);
2667 	if (err)
2668 		goto out_fwhandle_free;
2669 
2670 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2671 
2672 	if (static_branch_likely(&supports_deactivate_key))
2673 		gic_acpi_setup_kvm_info();
2674 
2675 	return 0;
2676 
2677 out_fwhandle_free:
2678 	irq_domain_free_fwnode(gsi_domain_handle);
2679 out_redist_unmap:
2680 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2681 		if (acpi_data.redist_regs[i].redist_base)
2682 			iounmap(acpi_data.redist_regs[i].redist_base);
2683 	kfree(acpi_data.redist_regs);
2684 out_dist_unmap:
2685 	iounmap(acpi_data.dist_base);
2686 	return err;
2687 }
2688 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2689 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2690 		     gic_acpi_init);
2691 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2692 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2693 		     gic_acpi_init);
2694 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2695 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2696 		     gic_acpi_init);
2697 #endif
2698