1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #define pr_fmt(fmt) "GICv3: " fmt 8 9 #include <linux/acpi.h> 10 #include <linux/cpu.h> 11 #include <linux/cpu_pm.h> 12 #include <linux/delay.h> 13 #include <linux/interrupt.h> 14 #include <linux/irqdomain.h> 15 #include <linux/kernel.h> 16 #include <linux/kstrtox.h> 17 #include <linux/of.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <linux/percpu.h> 21 #include <linux/refcount.h> 22 #include <linux/slab.h> 23 #include <linux/iopoll.h> 24 25 #include <linux/irqchip.h> 26 #include <linux/irqchip/arm-gic-common.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/irqchip/arm-gic-v3-prio.h> 29 #include <linux/irqchip/irq-partition-percpu.h> 30 #include <linux/bitfield.h> 31 #include <linux/bits.h> 32 #include <linux/arm-smccc.h> 33 34 #include <asm/cputype.h> 35 #include <asm/exception.h> 36 #include <asm/smp_plat.h> 37 #include <asm/virt.h> 38 39 #include "irq-gic-common.h" 40 41 static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ; 42 static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI; 43 44 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0) 45 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1) 46 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001 (1ULL << 2) 47 48 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1) 49 50 static struct cpumask broken_rdists __read_mostly __maybe_unused; 51 52 struct redist_region { 53 void __iomem *redist_base; 54 phys_addr_t phys_base; 55 bool single_redist; 56 }; 57 58 struct gic_chip_data { 59 struct fwnode_handle *fwnode; 60 phys_addr_t dist_phys_base; 61 void __iomem *dist_base; 62 struct redist_region *redist_regions; 63 struct rdists rdists; 64 struct irq_domain *domain; 65 u64 redist_stride; 66 u32 nr_redist_regions; 67 u64 flags; 68 bool has_rss; 69 unsigned int ppi_nr; 70 struct partition_desc **ppi_descs; 71 }; 72 73 #define T241_CHIPS_MAX 4 74 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly; 75 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum); 76 77 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum); 78 79 static struct gic_chip_data gic_data __read_mostly; 80 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); 81 82 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer)) 83 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U) 84 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer) 85 86 /* 87 * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs 88 * are potentially stolen by the secure side. Some code, especially code dealing 89 * with hwirq IDs, is simplified by accounting for all 16. 90 */ 91 #define SGI_NR 16 92 93 /* 94 * The behaviours of RPR and PMR registers differ depending on the value of 95 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the 96 * distributor and redistributors depends on whether security is enabled in the 97 * GIC. 98 * 99 * When security is enabled, non-secure priority values from the (re)distributor 100 * are presented to the GIC CPUIF as follow: 101 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80; 102 * 103 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure 104 * EL1 are subject to a similar operation thus matching the priorities presented 105 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0, 106 * these values are unchanged by the GIC. 107 * 108 * see GICv3/GICv4 Architecture Specification (IHI0069D): 109 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt 110 * priorities. 111 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1 112 * interrupt. 113 */ 114 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis); 115 116 static u32 gic_get_pribits(void) 117 { 118 u32 pribits; 119 120 pribits = gic_read_ctlr(); 121 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK; 122 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT; 123 pribits++; 124 125 return pribits; 126 } 127 128 static bool gic_has_group0(void) 129 { 130 u32 val; 131 u32 old_pmr; 132 133 old_pmr = gic_read_pmr(); 134 135 /* 136 * Let's find out if Group0 is under control of EL3 or not by 137 * setting the highest possible, non-zero priority in PMR. 138 * 139 * If SCR_EL3.FIQ is set, the priority gets shifted down in 140 * order for the CPU interface to set bit 7, and keep the 141 * actual priority in the non-secure range. In the process, it 142 * looses the least significant bit and the actual priority 143 * becomes 0x80. Reading it back returns 0, indicating that 144 * we're don't have access to Group0. 145 */ 146 gic_write_pmr(BIT(8 - gic_get_pribits())); 147 val = gic_read_pmr(); 148 149 gic_write_pmr(old_pmr); 150 151 return val != 0; 152 } 153 154 static inline bool gic_dist_security_disabled(void) 155 { 156 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; 157 } 158 159 static bool cpus_have_security_disabled __ro_after_init; 160 static bool cpus_have_group0 __ro_after_init; 161 162 static void __init gic_prio_init(void) 163 { 164 cpus_have_security_disabled = gic_dist_security_disabled(); 165 cpus_have_group0 = gic_has_group0(); 166 167 /* 168 * How priority values are used by the GIC depends on two things: 169 * the security state of the GIC (controlled by the GICD_CTRL.DS bit) 170 * and if Group 0 interrupts can be delivered to Linux in the non-secure 171 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the 172 * way priorities are presented in ICC_PMR_EL1 and in the distributor: 173 * 174 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor 175 * ------------------------------------------------------- 176 * 1 | - | unchanged | unchanged 177 * ------------------------------------------------------- 178 * 0 | 1 | non-secure | non-secure 179 * ------------------------------------------------------- 180 * 0 | 0 | unchanged | non-secure 181 * 182 * In the non-secure view reads and writes are modified: 183 * 184 * - A value written is right-shifted by one and the MSB is set, 185 * forcing the priority into the non-secure range. 186 * 187 * - A value read is left-shifted by one. 188 * 189 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority 190 * are both either modified or unchanged, we can use the same set of 191 * priorities. 192 * 193 * In the last case, where only the interrupt priorities are modified to 194 * be in the non-secure range, we program the non-secure values into 195 * the distributor to match the PMR values we want. 196 */ 197 if (cpus_have_group0 & !cpus_have_security_disabled) { 198 dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq); 199 dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi); 200 } 201 202 pr_info("GICD_CTRL.DS=%d, SCR_EL3.FIQ=%d\n", 203 cpus_have_security_disabled, 204 !cpus_have_group0); 205 } 206 207 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */ 208 static refcount_t *rdist_nmi_refs; 209 210 static struct gic_kvm_info gic_v3_kvm_info __initdata; 211 static DEFINE_PER_CPU(bool, has_rss); 212 213 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4) 214 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist)) 215 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 216 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K) 217 218 /* Our default, arbitrary priority value. Linux only uses one anyway. */ 219 #define DEFAULT_PMR_VALUE 0xf0 220 221 enum gic_intid_range { 222 SGI_RANGE, 223 PPI_RANGE, 224 SPI_RANGE, 225 EPPI_RANGE, 226 ESPI_RANGE, 227 LPI_RANGE, 228 __INVALID_RANGE__ 229 }; 230 231 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq) 232 { 233 switch (hwirq) { 234 case 0 ... 15: 235 return SGI_RANGE; 236 case 16 ... 31: 237 return PPI_RANGE; 238 case 32 ... 1019: 239 return SPI_RANGE; 240 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63): 241 return EPPI_RANGE; 242 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023): 243 return ESPI_RANGE; 244 case 8192 ... GENMASK(23, 0): 245 return LPI_RANGE; 246 default: 247 return __INVALID_RANGE__; 248 } 249 } 250 251 static enum gic_intid_range get_intid_range(struct irq_data *d) 252 { 253 return __get_intid_range(d->hwirq); 254 } 255 256 static inline bool gic_irq_in_rdist(struct irq_data *d) 257 { 258 switch (get_intid_range(d)) { 259 case SGI_RANGE: 260 case PPI_RANGE: 261 case EPPI_RANGE: 262 return true; 263 default: 264 return false; 265 } 266 } 267 268 static inline void __iomem *gic_dist_base_alias(struct irq_data *d) 269 { 270 if (static_branch_unlikely(&gic_nvidia_t241_erratum)) { 271 irq_hw_number_t hwirq = irqd_to_hwirq(d); 272 u32 chip; 273 274 /* 275 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E} 276 * registers are directed to the chip that owns the SPI. The 277 * the alias region can also be used for writes to the 278 * GICD_In{E} except GICD_ICENABLERn. Each chip has support 279 * for 320 {E}SPIs. Mappings for all 4 chips: 280 * Chip0 = 32-351 281 * Chip1 = 352-671 282 * Chip2 = 672-991 283 * Chip3 = 4096-4415 284 */ 285 switch (__get_intid_range(hwirq)) { 286 case SPI_RANGE: 287 chip = (hwirq - 32) / 320; 288 break; 289 case ESPI_RANGE: 290 chip = 3; 291 break; 292 default: 293 unreachable(); 294 } 295 return t241_dist_base_alias[chip]; 296 } 297 298 return gic_data.dist_base; 299 } 300 301 static inline void __iomem *gic_dist_base(struct irq_data *d) 302 { 303 switch (get_intid_range(d)) { 304 case SGI_RANGE: 305 case PPI_RANGE: 306 case EPPI_RANGE: 307 /* SGI+PPI -> SGI_base for this CPU */ 308 return gic_data_rdist_sgi_base(); 309 310 case SPI_RANGE: 311 case ESPI_RANGE: 312 /* SPI -> dist_base */ 313 return gic_data.dist_base; 314 315 default: 316 return NULL; 317 } 318 } 319 320 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit) 321 { 322 u32 val; 323 int ret; 324 325 ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit), 326 1, USEC_PER_SEC); 327 if (ret == -ETIMEDOUT) 328 pr_err_ratelimited("RWP timeout, gone fishing\n"); 329 } 330 331 /* Wait for completion of a distributor change */ 332 static void gic_dist_wait_for_rwp(void) 333 { 334 gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP); 335 } 336 337 /* Wait for completion of a redistributor change */ 338 static void gic_redist_wait_for_rwp(void) 339 { 340 gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP); 341 } 342 343 static void gic_enable_redist(bool enable) 344 { 345 void __iomem *rbase; 346 u32 val; 347 int ret; 348 349 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996) 350 return; 351 352 rbase = gic_data_rdist_rd_base(); 353 354 val = readl_relaxed(rbase + GICR_WAKER); 355 if (enable) 356 /* Wake up this CPU redistributor */ 357 val &= ~GICR_WAKER_ProcessorSleep; 358 else 359 val |= GICR_WAKER_ProcessorSleep; 360 writel_relaxed(val, rbase + GICR_WAKER); 361 362 if (!enable) { /* Check that GICR_WAKER is writeable */ 363 val = readl_relaxed(rbase + GICR_WAKER); 364 if (!(val & GICR_WAKER_ProcessorSleep)) 365 return; /* No PM support in this redistributor */ 366 } 367 368 ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val, 369 enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep), 370 1, USEC_PER_SEC); 371 if (ret == -ETIMEDOUT) { 372 pr_err_ratelimited("redistributor failed to %s...\n", 373 enable ? "wakeup" : "sleep"); 374 } 375 } 376 377 /* 378 * Routines to disable, enable, EOI and route interrupts 379 */ 380 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index) 381 { 382 switch (get_intid_range(d)) { 383 case SGI_RANGE: 384 case PPI_RANGE: 385 case SPI_RANGE: 386 *index = d->hwirq; 387 return offset; 388 case EPPI_RANGE: 389 /* 390 * Contrary to the ESPI range, the EPPI range is contiguous 391 * to the PPI range in the registers, so let's adjust the 392 * displacement accordingly. Consistency is overrated. 393 */ 394 *index = d->hwirq - EPPI_BASE_INTID + 32; 395 return offset; 396 case ESPI_RANGE: 397 *index = d->hwirq - ESPI_BASE_INTID; 398 switch (offset) { 399 case GICD_ISENABLER: 400 return GICD_ISENABLERnE; 401 case GICD_ICENABLER: 402 return GICD_ICENABLERnE; 403 case GICD_ISPENDR: 404 return GICD_ISPENDRnE; 405 case GICD_ICPENDR: 406 return GICD_ICPENDRnE; 407 case GICD_ISACTIVER: 408 return GICD_ISACTIVERnE; 409 case GICD_ICACTIVER: 410 return GICD_ICACTIVERnE; 411 case GICD_IPRIORITYR: 412 return GICD_IPRIORITYRnE; 413 case GICD_ICFGR: 414 return GICD_ICFGRnE; 415 case GICD_IROUTER: 416 return GICD_IROUTERnE; 417 default: 418 break; 419 } 420 break; 421 default: 422 break; 423 } 424 425 WARN_ON(1); 426 *index = d->hwirq; 427 return offset; 428 } 429 430 static int gic_peek_irq(struct irq_data *d, u32 offset) 431 { 432 void __iomem *base; 433 u32 index, mask; 434 435 offset = convert_offset_index(d, offset, &index); 436 mask = 1 << (index % 32); 437 438 if (gic_irq_in_rdist(d)) 439 base = gic_data_rdist_sgi_base(); 440 else 441 base = gic_dist_base_alias(d); 442 443 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask); 444 } 445 446 static void gic_poke_irq(struct irq_data *d, u32 offset) 447 { 448 void __iomem *base; 449 u32 index, mask; 450 451 offset = convert_offset_index(d, offset, &index); 452 mask = 1 << (index % 32); 453 454 if (gic_irq_in_rdist(d)) 455 base = gic_data_rdist_sgi_base(); 456 else 457 base = gic_data.dist_base; 458 459 writel_relaxed(mask, base + offset + (index / 32) * 4); 460 } 461 462 static void gic_mask_irq(struct irq_data *d) 463 { 464 gic_poke_irq(d, GICD_ICENABLER); 465 if (gic_irq_in_rdist(d)) 466 gic_redist_wait_for_rwp(); 467 else 468 gic_dist_wait_for_rwp(); 469 } 470 471 static void gic_eoimode1_mask_irq(struct irq_data *d) 472 { 473 gic_mask_irq(d); 474 /* 475 * When masking a forwarded interrupt, make sure it is 476 * deactivated as well. 477 * 478 * This ensures that an interrupt that is getting 479 * disabled/masked will not get "stuck", because there is 480 * noone to deactivate it (guest is being terminated). 481 */ 482 if (irqd_is_forwarded_to_vcpu(d)) 483 gic_poke_irq(d, GICD_ICACTIVER); 484 } 485 486 static void gic_unmask_irq(struct irq_data *d) 487 { 488 gic_poke_irq(d, GICD_ISENABLER); 489 } 490 491 static inline bool gic_supports_nmi(void) 492 { 493 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && 494 static_branch_likely(&supports_pseudo_nmis); 495 } 496 497 static int gic_irq_set_irqchip_state(struct irq_data *d, 498 enum irqchip_irq_state which, bool val) 499 { 500 u32 reg; 501 502 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */ 503 return -EINVAL; 504 505 switch (which) { 506 case IRQCHIP_STATE_PENDING: 507 reg = val ? GICD_ISPENDR : GICD_ICPENDR; 508 break; 509 510 case IRQCHIP_STATE_ACTIVE: 511 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; 512 break; 513 514 case IRQCHIP_STATE_MASKED: 515 if (val) { 516 gic_mask_irq(d); 517 return 0; 518 } 519 reg = GICD_ISENABLER; 520 break; 521 522 default: 523 return -EINVAL; 524 } 525 526 gic_poke_irq(d, reg); 527 528 /* 529 * Force read-back to guarantee that the active state has taken 530 * effect, and won't race with a guest-driven deactivation. 531 */ 532 if (reg == GICD_ISACTIVER) 533 gic_peek_irq(d, reg); 534 return 0; 535 } 536 537 static int gic_irq_get_irqchip_state(struct irq_data *d, 538 enum irqchip_irq_state which, bool *val) 539 { 540 if (d->hwirq >= 8192) /* PPI/SPI only */ 541 return -EINVAL; 542 543 switch (which) { 544 case IRQCHIP_STATE_PENDING: 545 *val = gic_peek_irq(d, GICD_ISPENDR); 546 break; 547 548 case IRQCHIP_STATE_ACTIVE: 549 *val = gic_peek_irq(d, GICD_ISACTIVER); 550 break; 551 552 case IRQCHIP_STATE_MASKED: 553 *val = !gic_peek_irq(d, GICD_ISENABLER); 554 break; 555 556 default: 557 return -EINVAL; 558 } 559 560 return 0; 561 } 562 563 static void gic_irq_set_prio(struct irq_data *d, u8 prio) 564 { 565 void __iomem *base = gic_dist_base(d); 566 u32 offset, index; 567 568 offset = convert_offset_index(d, GICD_IPRIORITYR, &index); 569 570 writeb_relaxed(prio, base + offset + index); 571 } 572 573 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq) 574 { 575 switch (__get_intid_range(hwirq)) { 576 case PPI_RANGE: 577 return hwirq - 16; 578 case EPPI_RANGE: 579 return hwirq - EPPI_BASE_INTID + 16; 580 default: 581 unreachable(); 582 } 583 } 584 585 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq) 586 { 587 switch (__get_intid_range(hwirq)) { 588 case SGI_RANGE: 589 case PPI_RANGE: 590 return hwirq; 591 case EPPI_RANGE: 592 return hwirq - EPPI_BASE_INTID + 32; 593 default: 594 unreachable(); 595 } 596 } 597 598 static u32 gic_get_rdist_index(struct irq_data *d) 599 { 600 return __gic_get_rdist_index(d->hwirq); 601 } 602 603 static int gic_irq_nmi_setup(struct irq_data *d) 604 { 605 struct irq_desc *desc = irq_to_desc(d->irq); 606 607 if (!gic_supports_nmi()) 608 return -EINVAL; 609 610 if (gic_peek_irq(d, GICD_ISENABLER)) { 611 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 612 return -EINVAL; 613 } 614 615 /* 616 * A secondary irq_chip should be in charge of LPI request, 617 * it should not be possible to get there 618 */ 619 if (WARN_ON(irqd_to_hwirq(d) >= 8192)) 620 return -EINVAL; 621 622 /* desc lock should already be held */ 623 if (gic_irq_in_rdist(d)) { 624 u32 idx = gic_get_rdist_index(d); 625 626 /* 627 * Setting up a percpu interrupt as NMI, only switch handler 628 * for first NMI 629 */ 630 if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) { 631 refcount_set(&rdist_nmi_refs[idx], 1); 632 desc->handle_irq = handle_percpu_devid_fasteoi_nmi; 633 } 634 } else { 635 desc->handle_irq = handle_fasteoi_nmi; 636 } 637 638 gic_irq_set_prio(d, dist_prio_nmi); 639 640 return 0; 641 } 642 643 static void gic_irq_nmi_teardown(struct irq_data *d) 644 { 645 struct irq_desc *desc = irq_to_desc(d->irq); 646 647 if (WARN_ON(!gic_supports_nmi())) 648 return; 649 650 if (gic_peek_irq(d, GICD_ISENABLER)) { 651 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 652 return; 653 } 654 655 /* 656 * A secondary irq_chip should be in charge of LPI request, 657 * it should not be possible to get there 658 */ 659 if (WARN_ON(irqd_to_hwirq(d) >= 8192)) 660 return; 661 662 /* desc lock should already be held */ 663 if (gic_irq_in_rdist(d)) { 664 u32 idx = gic_get_rdist_index(d); 665 666 /* Tearing down NMI, only switch handler for last NMI */ 667 if (refcount_dec_and_test(&rdist_nmi_refs[idx])) 668 desc->handle_irq = handle_percpu_devid_irq; 669 } else { 670 desc->handle_irq = handle_fasteoi_irq; 671 } 672 673 gic_irq_set_prio(d, dist_prio_irq); 674 } 675 676 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d) 677 { 678 enum gic_intid_range range; 679 680 if (!static_branch_unlikely(&gic_arm64_2941627_erratum)) 681 return false; 682 683 range = get_intid_range(d); 684 685 /* 686 * The workaround is needed if the IRQ is an SPI and 687 * the target cpu is different from the one we are 688 * executing on. 689 */ 690 return (range == SPI_RANGE || range == ESPI_RANGE) && 691 !cpumask_test_cpu(raw_smp_processor_id(), 692 irq_data_get_effective_affinity_mask(d)); 693 } 694 695 static void gic_eoi_irq(struct irq_data *d) 696 { 697 write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1); 698 isb(); 699 700 if (gic_arm64_erratum_2941627_needed(d)) { 701 /* 702 * Make sure the GIC stream deactivate packet 703 * issued by ICC_EOIR1_EL1 has completed before 704 * deactivating through GICD_IACTIVER. 705 */ 706 dsb(sy); 707 gic_poke_irq(d, GICD_ICACTIVER); 708 } 709 } 710 711 static void gic_eoimode1_eoi_irq(struct irq_data *d) 712 { 713 /* 714 * No need to deactivate an LPI, or an interrupt that 715 * is is getting forwarded to a vcpu. 716 */ 717 if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) 718 return; 719 720 if (!gic_arm64_erratum_2941627_needed(d)) 721 gic_write_dir(irqd_to_hwirq(d)); 722 else 723 gic_poke_irq(d, GICD_ICACTIVER); 724 } 725 726 static int gic_set_type(struct irq_data *d, unsigned int type) 727 { 728 irq_hw_number_t irq = irqd_to_hwirq(d); 729 enum gic_intid_range range; 730 void __iomem *base; 731 u32 offset, index; 732 int ret; 733 734 range = get_intid_range(d); 735 736 /* Interrupt configuration for SGIs can't be changed */ 737 if (range == SGI_RANGE) 738 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; 739 740 /* SPIs have restrictions on the supported types */ 741 if ((range == SPI_RANGE || range == ESPI_RANGE) && 742 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) 743 return -EINVAL; 744 745 if (gic_irq_in_rdist(d)) 746 base = gic_data_rdist_sgi_base(); 747 else 748 base = gic_dist_base_alias(d); 749 750 offset = convert_offset_index(d, GICD_ICFGR, &index); 751 752 ret = gic_configure_irq(index, type, base + offset); 753 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) { 754 /* Misconfigured PPIs are usually not fatal */ 755 pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq); 756 ret = 0; 757 } 758 759 return ret; 760 } 761 762 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) 763 { 764 if (get_intid_range(d) == SGI_RANGE) 765 return -EINVAL; 766 767 if (vcpu) 768 irqd_set_forwarded_to_vcpu(d); 769 else 770 irqd_clr_forwarded_to_vcpu(d); 771 return 0; 772 } 773 774 static u64 gic_cpu_to_affinity(int cpu) 775 { 776 u64 mpidr = cpu_logical_map(cpu); 777 u64 aff; 778 779 /* ASR8601 needs to have its affinities shifted down... */ 780 if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001)) 781 mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) | 782 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8)); 783 784 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | 785 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 786 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 787 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 788 789 return aff; 790 } 791 792 static void gic_deactivate_unhandled(u32 irqnr) 793 { 794 if (static_branch_likely(&supports_deactivate_key)) { 795 if (irqnr < 8192) 796 gic_write_dir(irqnr); 797 } else { 798 write_gicreg(irqnr, ICC_EOIR1_EL1); 799 isb(); 800 } 801 } 802 803 /* 804 * Follow a read of the IAR with any HW maintenance that needs to happen prior 805 * to invoking the relevant IRQ handler. We must do two things: 806 * 807 * (1) Ensure instruction ordering between a read of IAR and subsequent 808 * instructions in the IRQ handler using an ISB. 809 * 810 * It is possible for the IAR to report an IRQ which was signalled *after* 811 * the CPU took an IRQ exception as multiple interrupts can race to be 812 * recognized by the GIC, earlier interrupts could be withdrawn, and/or 813 * later interrupts could be prioritized by the GIC. 814 * 815 * For devices which are tightly coupled to the CPU, such as PMUs, a 816 * context synchronization event is necessary to ensure that system 817 * register state is not stale, as these may have been indirectly written 818 * *after* exception entry. 819 * 820 * (2) Execute an interrupt priority drop when EOI mode 1 is in use. 821 */ 822 static inline void gic_complete_ack(u32 irqnr) 823 { 824 if (static_branch_likely(&supports_deactivate_key)) 825 write_gicreg(irqnr, ICC_EOIR1_EL1); 826 827 isb(); 828 } 829 830 static bool gic_rpr_is_nmi_prio(void) 831 { 832 if (!gic_supports_nmi()) 833 return false; 834 835 return unlikely(gic_read_rpr() == GICV3_PRIO_NMI); 836 } 837 838 static bool gic_irqnr_is_special(u32 irqnr) 839 { 840 return irqnr >= 1020 && irqnr <= 1023; 841 } 842 843 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs) 844 { 845 if (gic_irqnr_is_special(irqnr)) 846 return; 847 848 gic_complete_ack(irqnr); 849 850 if (generic_handle_domain_irq(gic_data.domain, irqnr)) { 851 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr); 852 gic_deactivate_unhandled(irqnr); 853 } 854 } 855 856 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs) 857 { 858 if (gic_irqnr_is_special(irqnr)) 859 return; 860 861 gic_complete_ack(irqnr); 862 863 if (generic_handle_domain_nmi(gic_data.domain, irqnr)) { 864 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr); 865 gic_deactivate_unhandled(irqnr); 866 } 867 } 868 869 /* 870 * An exception has been taken from a context with IRQs enabled, and this could 871 * be an IRQ or an NMI. 872 * 873 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear 874 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning, 875 * after handling any NMI but before handling any IRQ. 876 * 877 * The entry code has performed IRQ entry, and if an NMI is detected we must 878 * perform NMI entry/exit around invoking the handler. 879 */ 880 static void __gic_handle_irq_from_irqson(struct pt_regs *regs) 881 { 882 bool is_nmi; 883 u32 irqnr; 884 885 irqnr = gic_read_iar(); 886 887 is_nmi = gic_rpr_is_nmi_prio(); 888 889 if (is_nmi) { 890 nmi_enter(); 891 __gic_handle_nmi(irqnr, regs); 892 nmi_exit(); 893 } 894 895 if (gic_prio_masking_enabled()) { 896 gic_pmr_mask_irqs(); 897 gic_arch_enable_irqs(); 898 } 899 900 if (!is_nmi) 901 __gic_handle_irq(irqnr, regs); 902 } 903 904 /* 905 * An exception has been taken from a context with IRQs disabled, which can only 906 * be an NMI. 907 * 908 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave 909 * DAIF.IF (and ICC_PMR_EL1) unchanged. 910 * 911 * The entry code has performed NMI entry. 912 */ 913 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs) 914 { 915 u64 pmr; 916 u32 irqnr; 917 918 /* 919 * We were in a context with IRQs disabled. However, the 920 * entry code has set PMR to a value that allows any 921 * interrupt to be acknowledged, and not just NMIs. This can 922 * lead to surprising effects if the NMI has been retired in 923 * the meantime, and that there is an IRQ pending. The IRQ 924 * would then be taken in NMI context, something that nobody 925 * wants to debug twice. 926 * 927 * Until we sort this, drop PMR again to a level that will 928 * actually only allow NMIs before reading IAR, and then 929 * restore it to what it was. 930 */ 931 pmr = gic_read_pmr(); 932 gic_pmr_mask_irqs(); 933 isb(); 934 irqnr = gic_read_iar(); 935 gic_write_pmr(pmr); 936 937 __gic_handle_nmi(irqnr, regs); 938 } 939 940 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) 941 { 942 if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs))) 943 __gic_handle_irq_from_irqsoff(regs); 944 else 945 __gic_handle_irq_from_irqson(regs); 946 } 947 948 static void __init gic_dist_init(void) 949 { 950 unsigned int i; 951 u64 affinity; 952 void __iomem *base = gic_data.dist_base; 953 u32 val; 954 955 /* Disable the distributor */ 956 writel_relaxed(0, base + GICD_CTLR); 957 gic_dist_wait_for_rwp(); 958 959 /* 960 * Configure SPIs as non-secure Group-1. This will only matter 961 * if the GIC only has a single security state. This will not 962 * do the right thing if the kernel is running in secure mode, 963 * but that's not the intended use case anyway. 964 */ 965 for (i = 32; i < GIC_LINE_NR; i += 32) 966 writel_relaxed(~0, base + GICD_IGROUPR + i / 8); 967 968 /* Extended SPI range, not handled by the GICv2/GICv3 common code */ 969 for (i = 0; i < GIC_ESPI_NR; i += 32) { 970 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8); 971 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8); 972 } 973 974 for (i = 0; i < GIC_ESPI_NR; i += 32) 975 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8); 976 977 for (i = 0; i < GIC_ESPI_NR; i += 16) 978 writel_relaxed(0, base + GICD_ICFGRnE + i / 4); 979 980 for (i = 0; i < GIC_ESPI_NR; i += 4) 981 writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq), 982 base + GICD_IPRIORITYRnE + i); 983 984 /* Now do the common stuff */ 985 gic_dist_config(base, GIC_LINE_NR, dist_prio_irq); 986 987 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1; 988 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) { 989 pr_info("Enabling SGIs without active state\n"); 990 val |= GICD_CTLR_nASSGIreq; 991 } 992 993 /* Enable distributor with ARE, Group1, and wait for it to drain */ 994 writel_relaxed(val, base + GICD_CTLR); 995 gic_dist_wait_for_rwp(); 996 997 /* 998 * Set all global interrupts to the boot CPU only. ARE must be 999 * enabled. 1000 */ 1001 affinity = gic_cpu_to_affinity(smp_processor_id()); 1002 for (i = 32; i < GIC_LINE_NR; i++) 1003 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); 1004 1005 for (i = 0; i < GIC_ESPI_NR; i++) 1006 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8); 1007 } 1008 1009 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *)) 1010 { 1011 int ret = -ENODEV; 1012 int i; 1013 1014 for (i = 0; i < gic_data.nr_redist_regions; i++) { 1015 void __iomem *ptr = gic_data.redist_regions[i].redist_base; 1016 u64 typer; 1017 u32 reg; 1018 1019 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; 1020 if (reg != GIC_PIDR2_ARCH_GICv3 && 1021 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ 1022 pr_warn("No redistributor present @%p\n", ptr); 1023 break; 1024 } 1025 1026 do { 1027 typer = gic_read_typer(ptr + GICR_TYPER); 1028 ret = fn(gic_data.redist_regions + i, ptr); 1029 if (!ret) 1030 return 0; 1031 1032 if (gic_data.redist_regions[i].single_redist) 1033 break; 1034 1035 if (gic_data.redist_stride) { 1036 ptr += gic_data.redist_stride; 1037 } else { 1038 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ 1039 if (typer & GICR_TYPER_VLPIS) 1040 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ 1041 } 1042 } while (!(typer & GICR_TYPER_LAST)); 1043 } 1044 1045 return ret ? -ENODEV : 0; 1046 } 1047 1048 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr) 1049 { 1050 unsigned long mpidr; 1051 u64 typer; 1052 u32 aff; 1053 1054 /* 1055 * Convert affinity to a 32bit value that can be matched to 1056 * GICR_TYPER bits [63:32]. 1057 */ 1058 mpidr = gic_cpu_to_affinity(smp_processor_id()); 1059 1060 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | 1061 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 1062 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 1063 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 1064 1065 typer = gic_read_typer(ptr + GICR_TYPER); 1066 if ((typer >> 32) == aff) { 1067 u64 offset = ptr - region->redist_base; 1068 raw_spin_lock_init(&gic_data_rdist()->rd_lock); 1069 gic_data_rdist_rd_base() = ptr; 1070 gic_data_rdist()->phys_base = region->phys_base + offset; 1071 1072 pr_info("CPU%d: found redistributor %lx region %d:%pa\n", 1073 smp_processor_id(), mpidr, 1074 (int)(region - gic_data.redist_regions), 1075 &gic_data_rdist()->phys_base); 1076 return 0; 1077 } 1078 1079 /* Try next one */ 1080 return 1; 1081 } 1082 1083 static int gic_populate_rdist(void) 1084 { 1085 if (gic_iterate_rdists(__gic_populate_rdist) == 0) 1086 return 0; 1087 1088 /* We couldn't even deal with ourselves... */ 1089 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n", 1090 smp_processor_id(), 1091 (unsigned long)cpu_logical_map(smp_processor_id())); 1092 return -ENODEV; 1093 } 1094 1095 static int __gic_update_rdist_properties(struct redist_region *region, 1096 void __iomem *ptr) 1097 { 1098 u64 typer = gic_read_typer(ptr + GICR_TYPER); 1099 u32 ctlr = readl_relaxed(ptr + GICR_CTLR); 1100 1101 /* Boot-time cleanup */ 1102 if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) { 1103 u64 val; 1104 1105 /* Deactivate any present vPE */ 1106 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER); 1107 if (val & GICR_VPENDBASER_Valid) 1108 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 1109 ptr + SZ_128K + GICR_VPENDBASER); 1110 1111 /* Mark the VPE table as invalid */ 1112 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER); 1113 val &= ~GICR_VPROPBASER_4_1_VALID; 1114 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER); 1115 } 1116 1117 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS); 1118 1119 /* 1120 * TYPER.RVPEID implies some form of DirectLPI, no matter what the 1121 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI 1122 * that the ITS driver can make use of for LPIs (and not VLPIs). 1123 * 1124 * These are 3 different ways to express the same thing, depending 1125 * on the revision of the architecture and its relaxations over 1126 * time. Just group them under the 'direct_lpi' banner. 1127 */ 1128 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID); 1129 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) | 1130 !!(ctlr & GICR_CTLR_IR) | 1131 gic_data.rdists.has_rvpeid); 1132 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY); 1133 1134 /* Detect non-sensical configurations */ 1135 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) { 1136 gic_data.rdists.has_direct_lpi = false; 1137 gic_data.rdists.has_vlpis = false; 1138 gic_data.rdists.has_rvpeid = false; 1139 } 1140 1141 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr); 1142 1143 return 1; 1144 } 1145 1146 static void gic_update_rdist_properties(void) 1147 { 1148 gic_data.ppi_nr = UINT_MAX; 1149 gic_iterate_rdists(__gic_update_rdist_properties); 1150 if (WARN_ON(gic_data.ppi_nr == UINT_MAX)) 1151 gic_data.ppi_nr = 0; 1152 pr_info("GICv3 features: %d PPIs%s%s\n", 1153 gic_data.ppi_nr, 1154 gic_data.has_rss ? ", RSS" : "", 1155 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : ""); 1156 1157 if (gic_data.rdists.has_vlpis) 1158 pr_info("GICv4 features: %s%s%s\n", 1159 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "", 1160 gic_data.rdists.has_rvpeid ? "RVPEID " : "", 1161 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : ""); 1162 } 1163 1164 static void gic_cpu_sys_reg_enable(void) 1165 { 1166 /* 1167 * Need to check that the SRE bit has actually been set. If 1168 * not, it means that SRE is disabled at EL2. We're going to 1169 * die painfully, and there is nothing we can do about it. 1170 * 1171 * Kindly inform the luser. 1172 */ 1173 if (!gic_enable_sre()) 1174 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n"); 1175 1176 } 1177 1178 static void gic_cpu_sys_reg_init(void) 1179 { 1180 int i, cpu = smp_processor_id(); 1181 u64 mpidr = gic_cpu_to_affinity(cpu); 1182 u64 need_rss = MPIDR_RS(mpidr); 1183 bool group0; 1184 u32 pribits; 1185 1186 pribits = gic_get_pribits(); 1187 1188 group0 = gic_has_group0(); 1189 1190 /* Set priority mask register */ 1191 if (!gic_prio_masking_enabled()) { 1192 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1); 1193 } else if (gic_supports_nmi()) { 1194 /* 1195 * Check that all CPUs use the same priority space. 1196 * 1197 * If there's a mismatch with the boot CPU, the system is 1198 * likely to die as interrupt masking will not work properly on 1199 * all CPUs. 1200 */ 1201 WARN_ON(group0 != cpus_have_group0); 1202 WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled); 1203 } 1204 1205 /* 1206 * Some firmwares hand over to the kernel with the BPR changed from 1207 * its reset value (and with a value large enough to prevent 1208 * any pre-emptive interrupts from working at all). Writing a zero 1209 * to BPR restores is reset value. 1210 */ 1211 gic_write_bpr1(0); 1212 1213 if (static_branch_likely(&supports_deactivate_key)) { 1214 /* EOI drops priority only (mode 1) */ 1215 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); 1216 } else { 1217 /* EOI deactivates interrupt too (mode 0) */ 1218 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); 1219 } 1220 1221 /* Always whack Group0 before Group1 */ 1222 if (group0) { 1223 switch(pribits) { 1224 case 8: 1225 case 7: 1226 write_gicreg(0, ICC_AP0R3_EL1); 1227 write_gicreg(0, ICC_AP0R2_EL1); 1228 fallthrough; 1229 case 6: 1230 write_gicreg(0, ICC_AP0R1_EL1); 1231 fallthrough; 1232 case 5: 1233 case 4: 1234 write_gicreg(0, ICC_AP0R0_EL1); 1235 } 1236 1237 isb(); 1238 } 1239 1240 switch(pribits) { 1241 case 8: 1242 case 7: 1243 write_gicreg(0, ICC_AP1R3_EL1); 1244 write_gicreg(0, ICC_AP1R2_EL1); 1245 fallthrough; 1246 case 6: 1247 write_gicreg(0, ICC_AP1R1_EL1); 1248 fallthrough; 1249 case 5: 1250 case 4: 1251 write_gicreg(0, ICC_AP1R0_EL1); 1252 } 1253 1254 isb(); 1255 1256 /* ... and let's hit the road... */ 1257 gic_write_grpen1(1); 1258 1259 /* Keep the RSS capability status in per_cpu variable */ 1260 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS); 1261 1262 /* Check all the CPUs have capable of sending SGIs to other CPUs */ 1263 for_each_online_cpu(i) { 1264 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu); 1265 1266 need_rss |= MPIDR_RS(gic_cpu_to_affinity(i)); 1267 if (need_rss && (!have_rss)) 1268 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n", 1269 cpu, (unsigned long)mpidr, 1270 i, (unsigned long)gic_cpu_to_affinity(i)); 1271 } 1272 1273 /** 1274 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, 1275 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED 1276 * UNPREDICTABLE choice of : 1277 * - The write is ignored. 1278 * - The RS field is treated as 0. 1279 */ 1280 if (need_rss && (!gic_data.has_rss)) 1281 pr_crit_once("RSS is required but GICD doesn't support it\n"); 1282 } 1283 1284 static bool gicv3_nolpi; 1285 1286 static int __init gicv3_nolpi_cfg(char *buf) 1287 { 1288 return kstrtobool(buf, &gicv3_nolpi); 1289 } 1290 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg); 1291 1292 static int gic_dist_supports_lpis(void) 1293 { 1294 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && 1295 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) && 1296 !gicv3_nolpi); 1297 } 1298 1299 static void gic_cpu_init(void) 1300 { 1301 void __iomem *rbase; 1302 int i; 1303 1304 /* Register ourselves with the rest of the world */ 1305 if (gic_populate_rdist()) 1306 return; 1307 1308 gic_enable_redist(true); 1309 1310 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) && 1311 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange), 1312 "Distributor has extended ranges, but CPU%d doesn't\n", 1313 smp_processor_id()); 1314 1315 rbase = gic_data_rdist_sgi_base(); 1316 1317 /* Configure SGIs/PPIs as non-secure Group-1 */ 1318 for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32) 1319 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8); 1320 1321 gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq); 1322 gic_redist_wait_for_rwp(); 1323 1324 /* initialise system registers */ 1325 gic_cpu_sys_reg_init(); 1326 } 1327 1328 #ifdef CONFIG_SMP 1329 1330 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT) 1331 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL) 1332 1333 /* 1334 * gic_starting_cpu() is called after the last point where cpuhp is allowed 1335 * to fail. So pre check for problems earlier. 1336 */ 1337 static int gic_check_rdist(unsigned int cpu) 1338 { 1339 if (cpumask_test_cpu(cpu, &broken_rdists)) 1340 return -EINVAL; 1341 1342 return 0; 1343 } 1344 1345 static int gic_starting_cpu(unsigned int cpu) 1346 { 1347 gic_cpu_sys_reg_enable(); 1348 gic_cpu_init(); 1349 1350 if (gic_dist_supports_lpis()) 1351 its_cpu_init(); 1352 1353 return 0; 1354 } 1355 1356 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, 1357 unsigned long cluster_id) 1358 { 1359 int next_cpu, cpu = *base_cpu; 1360 unsigned long mpidr; 1361 u16 tlist = 0; 1362 1363 mpidr = gic_cpu_to_affinity(cpu); 1364 1365 while (cpu < nr_cpu_ids) { 1366 tlist |= 1 << (mpidr & 0xf); 1367 1368 next_cpu = cpumask_next(cpu, mask); 1369 if (next_cpu >= nr_cpu_ids) 1370 goto out; 1371 cpu = next_cpu; 1372 1373 mpidr = gic_cpu_to_affinity(cpu); 1374 1375 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) { 1376 cpu--; 1377 goto out; 1378 } 1379 } 1380 out: 1381 *base_cpu = cpu; 1382 return tlist; 1383 } 1384 1385 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ 1386 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ 1387 << ICC_SGI1R_AFFINITY_## level ##_SHIFT) 1388 1389 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) 1390 { 1391 u64 val; 1392 1393 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | 1394 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | 1395 irq << ICC_SGI1R_SGI_ID_SHIFT | 1396 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | 1397 MPIDR_TO_SGI_RS(cluster_id) | 1398 tlist << ICC_SGI1R_TARGET_LIST_SHIFT); 1399 1400 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); 1401 gic_write_sgi1r(val); 1402 } 1403 1404 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) 1405 { 1406 int cpu; 1407 1408 if (WARN_ON(d->hwirq >= 16)) 1409 return; 1410 1411 /* 1412 * Ensure that stores to Normal memory are visible to the 1413 * other CPUs before issuing the IPI. 1414 */ 1415 dsb(ishst); 1416 1417 for_each_cpu(cpu, mask) { 1418 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu)); 1419 u16 tlist; 1420 1421 tlist = gic_compute_target_list(&cpu, mask, cluster_id); 1422 gic_send_sgi(cluster_id, tlist, d->hwirq); 1423 } 1424 1425 /* Force the above writes to ICC_SGI1R_EL1 to be executed */ 1426 isb(); 1427 } 1428 1429 static void __init gic_smp_init(void) 1430 { 1431 struct irq_fwspec sgi_fwspec = { 1432 .fwnode = gic_data.fwnode, 1433 .param_count = 1, 1434 }; 1435 int base_sgi; 1436 1437 cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, 1438 "irqchip/arm/gicv3:checkrdist", 1439 gic_check_rdist, NULL); 1440 1441 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, 1442 "irqchip/arm/gicv3:starting", 1443 gic_starting_cpu, NULL); 1444 1445 /* Register all 8 non-secure SGIs */ 1446 base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec); 1447 if (WARN_ON(base_sgi <= 0)) 1448 return; 1449 1450 set_smp_ipi_range(base_sgi, 8); 1451 } 1452 1453 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1454 bool force) 1455 { 1456 unsigned int cpu; 1457 u32 offset, index; 1458 void __iomem *reg; 1459 int enabled; 1460 u64 val; 1461 1462 if (force) 1463 cpu = cpumask_first(mask_val); 1464 else 1465 cpu = cpumask_any_and(mask_val, cpu_online_mask); 1466 1467 if (cpu >= nr_cpu_ids) 1468 return -EINVAL; 1469 1470 if (gic_irq_in_rdist(d)) 1471 return -EINVAL; 1472 1473 /* If interrupt was enabled, disable it first */ 1474 enabled = gic_peek_irq(d, GICD_ISENABLER); 1475 if (enabled) 1476 gic_mask_irq(d); 1477 1478 offset = convert_offset_index(d, GICD_IROUTER, &index); 1479 reg = gic_dist_base(d) + offset + (index * 8); 1480 val = gic_cpu_to_affinity(cpu); 1481 1482 gic_write_irouter(val, reg); 1483 1484 /* 1485 * If the interrupt was enabled, enabled it again. Otherwise, 1486 * just wait for the distributor to have digested our changes. 1487 */ 1488 if (enabled) 1489 gic_unmask_irq(d); 1490 1491 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1492 1493 return IRQ_SET_MASK_OK_DONE; 1494 } 1495 #else 1496 #define gic_set_affinity NULL 1497 #define gic_ipi_send_mask NULL 1498 #define gic_smp_init() do { } while(0) 1499 #endif 1500 1501 static int gic_retrigger(struct irq_data *data) 1502 { 1503 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); 1504 } 1505 1506 #ifdef CONFIG_CPU_PM 1507 static int gic_cpu_pm_notifier(struct notifier_block *self, 1508 unsigned long cmd, void *v) 1509 { 1510 if (cmd == CPU_PM_EXIT) { 1511 if (gic_dist_security_disabled()) 1512 gic_enable_redist(true); 1513 gic_cpu_sys_reg_enable(); 1514 gic_cpu_sys_reg_init(); 1515 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { 1516 gic_write_grpen1(0); 1517 gic_enable_redist(false); 1518 } 1519 return NOTIFY_OK; 1520 } 1521 1522 static struct notifier_block gic_cpu_pm_notifier_block = { 1523 .notifier_call = gic_cpu_pm_notifier, 1524 }; 1525 1526 static void gic_cpu_pm_init(void) 1527 { 1528 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); 1529 } 1530 1531 #else 1532 static inline void gic_cpu_pm_init(void) { } 1533 #endif /* CONFIG_CPU_PM */ 1534 1535 static struct irq_chip gic_chip = { 1536 .name = "GICv3", 1537 .irq_mask = gic_mask_irq, 1538 .irq_unmask = gic_unmask_irq, 1539 .irq_eoi = gic_eoi_irq, 1540 .irq_set_type = gic_set_type, 1541 .irq_set_affinity = gic_set_affinity, 1542 .irq_retrigger = gic_retrigger, 1543 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1544 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1545 .irq_nmi_setup = gic_irq_nmi_setup, 1546 .irq_nmi_teardown = gic_irq_nmi_teardown, 1547 .ipi_send_mask = gic_ipi_send_mask, 1548 .flags = IRQCHIP_SET_TYPE_MASKED | 1549 IRQCHIP_SKIP_SET_WAKE | 1550 IRQCHIP_MASK_ON_SUSPEND, 1551 }; 1552 1553 static struct irq_chip gic_eoimode1_chip = { 1554 .name = "GICv3", 1555 .irq_mask = gic_eoimode1_mask_irq, 1556 .irq_unmask = gic_unmask_irq, 1557 .irq_eoi = gic_eoimode1_eoi_irq, 1558 .irq_set_type = gic_set_type, 1559 .irq_set_affinity = gic_set_affinity, 1560 .irq_retrigger = gic_retrigger, 1561 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1562 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1563 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, 1564 .irq_nmi_setup = gic_irq_nmi_setup, 1565 .irq_nmi_teardown = gic_irq_nmi_teardown, 1566 .ipi_send_mask = gic_ipi_send_mask, 1567 .flags = IRQCHIP_SET_TYPE_MASKED | 1568 IRQCHIP_SKIP_SET_WAKE | 1569 IRQCHIP_MASK_ON_SUSPEND, 1570 }; 1571 1572 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, 1573 irq_hw_number_t hw) 1574 { 1575 struct irq_chip *chip = &gic_chip; 1576 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); 1577 1578 if (static_branch_likely(&supports_deactivate_key)) 1579 chip = &gic_eoimode1_chip; 1580 1581 switch (__get_intid_range(hw)) { 1582 case SGI_RANGE: 1583 case PPI_RANGE: 1584 case EPPI_RANGE: 1585 irq_set_percpu_devid(irq); 1586 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1587 handle_percpu_devid_irq, NULL, NULL); 1588 break; 1589 1590 case SPI_RANGE: 1591 case ESPI_RANGE: 1592 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1593 handle_fasteoi_irq, NULL, NULL); 1594 irq_set_probe(irq); 1595 irqd_set_single_target(irqd); 1596 break; 1597 1598 case LPI_RANGE: 1599 if (!gic_dist_supports_lpis()) 1600 return -EPERM; 1601 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1602 handle_fasteoi_irq, NULL, NULL); 1603 break; 1604 1605 default: 1606 return -EPERM; 1607 } 1608 1609 /* Prevents SW retriggers which mess up the ACK/EOI ordering */ 1610 irqd_set_handle_enforce_irqctx(irqd); 1611 return 0; 1612 } 1613 1614 static int gic_irq_domain_translate(struct irq_domain *d, 1615 struct irq_fwspec *fwspec, 1616 unsigned long *hwirq, 1617 unsigned int *type) 1618 { 1619 if (fwspec->param_count == 1 && fwspec->param[0] < 16) { 1620 *hwirq = fwspec->param[0]; 1621 *type = IRQ_TYPE_EDGE_RISING; 1622 return 0; 1623 } 1624 1625 if (is_of_node(fwspec->fwnode)) { 1626 if (fwspec->param_count < 3) 1627 return -EINVAL; 1628 1629 switch (fwspec->param[0]) { 1630 case 0: /* SPI */ 1631 *hwirq = fwspec->param[1] + 32; 1632 break; 1633 case 1: /* PPI */ 1634 *hwirq = fwspec->param[1] + 16; 1635 break; 1636 case 2: /* ESPI */ 1637 *hwirq = fwspec->param[1] + ESPI_BASE_INTID; 1638 break; 1639 case 3: /* EPPI */ 1640 *hwirq = fwspec->param[1] + EPPI_BASE_INTID; 1641 break; 1642 case GIC_IRQ_TYPE_LPI: /* LPI */ 1643 *hwirq = fwspec->param[1]; 1644 break; 1645 case GIC_IRQ_TYPE_PARTITION: 1646 *hwirq = fwspec->param[1]; 1647 if (fwspec->param[1] >= 16) 1648 *hwirq += EPPI_BASE_INTID - 16; 1649 else 1650 *hwirq += 16; 1651 break; 1652 default: 1653 return -EINVAL; 1654 } 1655 1656 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1657 1658 /* 1659 * Make it clear that broken DTs are... broken. 1660 * Partitioned PPIs are an unfortunate exception. 1661 */ 1662 WARN_ON(*type == IRQ_TYPE_NONE && 1663 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION); 1664 return 0; 1665 } 1666 1667 if (is_fwnode_irqchip(fwspec->fwnode)) { 1668 if(fwspec->param_count != 2) 1669 return -EINVAL; 1670 1671 if (fwspec->param[0] < 16) { 1672 pr_err(FW_BUG "Illegal GSI%d translation request\n", 1673 fwspec->param[0]); 1674 return -EINVAL; 1675 } 1676 1677 *hwirq = fwspec->param[0]; 1678 *type = fwspec->param[1]; 1679 1680 WARN_ON(*type == IRQ_TYPE_NONE); 1681 return 0; 1682 } 1683 1684 return -EINVAL; 1685 } 1686 1687 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1688 unsigned int nr_irqs, void *arg) 1689 { 1690 int i, ret; 1691 irq_hw_number_t hwirq; 1692 unsigned int type = IRQ_TYPE_NONE; 1693 struct irq_fwspec *fwspec = arg; 1694 1695 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); 1696 if (ret) 1697 return ret; 1698 1699 for (i = 0; i < nr_irqs; i++) { 1700 ret = gic_irq_domain_map(domain, virq + i, hwirq + i); 1701 if (ret) 1702 return ret; 1703 } 1704 1705 return 0; 1706 } 1707 1708 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1709 unsigned int nr_irqs) 1710 { 1711 int i; 1712 1713 for (i = 0; i < nr_irqs; i++) { 1714 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); 1715 irq_set_handler(virq + i, NULL); 1716 irq_domain_reset_irq_data(d); 1717 } 1718 } 1719 1720 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec, 1721 irq_hw_number_t hwirq) 1722 { 1723 enum gic_intid_range range; 1724 1725 if (!gic_data.ppi_descs) 1726 return false; 1727 1728 if (!is_of_node(fwspec->fwnode)) 1729 return false; 1730 1731 if (fwspec->param_count < 4 || !fwspec->param[3]) 1732 return false; 1733 1734 range = __get_intid_range(hwirq); 1735 if (range != PPI_RANGE && range != EPPI_RANGE) 1736 return false; 1737 1738 return true; 1739 } 1740 1741 static int gic_irq_domain_select(struct irq_domain *d, 1742 struct irq_fwspec *fwspec, 1743 enum irq_domain_bus_token bus_token) 1744 { 1745 unsigned int type, ret, ppi_idx; 1746 irq_hw_number_t hwirq; 1747 1748 /* Not for us */ 1749 if (fwspec->fwnode != d->fwnode) 1750 return 0; 1751 1752 /* Handle pure domain searches */ 1753 if (!fwspec->param_count) 1754 return d->bus_token == bus_token; 1755 1756 /* If this is not DT, then we have a single domain */ 1757 if (!is_of_node(fwspec->fwnode)) 1758 return 1; 1759 1760 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type); 1761 if (WARN_ON_ONCE(ret)) 1762 return 0; 1763 1764 if (!fwspec_is_partitioned_ppi(fwspec, hwirq)) 1765 return d == gic_data.domain; 1766 1767 /* 1768 * If this is a PPI and we have a 4th (non-null) parameter, 1769 * then we need to match the partition domain. 1770 */ 1771 ppi_idx = __gic_get_ppi_index(hwirq); 1772 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]); 1773 } 1774 1775 static const struct irq_domain_ops gic_irq_domain_ops = { 1776 .translate = gic_irq_domain_translate, 1777 .alloc = gic_irq_domain_alloc, 1778 .free = gic_irq_domain_free, 1779 .select = gic_irq_domain_select, 1780 }; 1781 1782 static int partition_domain_translate(struct irq_domain *d, 1783 struct irq_fwspec *fwspec, 1784 unsigned long *hwirq, 1785 unsigned int *type) 1786 { 1787 unsigned long ppi_intid; 1788 struct device_node *np; 1789 unsigned int ppi_idx; 1790 int ret; 1791 1792 if (!gic_data.ppi_descs) 1793 return -ENOMEM; 1794 1795 np = of_find_node_by_phandle(fwspec->param[3]); 1796 if (WARN_ON(!np)) 1797 return -EINVAL; 1798 1799 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type); 1800 if (WARN_ON_ONCE(ret)) 1801 return 0; 1802 1803 ppi_idx = __gic_get_ppi_index(ppi_intid); 1804 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx], 1805 of_node_to_fwnode(np)); 1806 if (ret < 0) 1807 return ret; 1808 1809 *hwirq = ret; 1810 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1811 1812 return 0; 1813 } 1814 1815 static const struct irq_domain_ops partition_domain_ops = { 1816 .translate = partition_domain_translate, 1817 .select = gic_irq_domain_select, 1818 }; 1819 1820 static bool gic_enable_quirk_msm8996(void *data) 1821 { 1822 struct gic_chip_data *d = data; 1823 1824 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996; 1825 1826 return true; 1827 } 1828 1829 static bool gic_enable_quirk_cavium_38539(void *data) 1830 { 1831 struct gic_chip_data *d = data; 1832 1833 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539; 1834 1835 return true; 1836 } 1837 1838 static bool gic_enable_quirk_hip06_07(void *data) 1839 { 1840 struct gic_chip_data *d = data; 1841 1842 /* 1843 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite 1844 * not being an actual ARM implementation). The saving grace is 1845 * that GIC-600 doesn't have ESPI, so nothing to do in that case. 1846 * HIP07 doesn't even have a proper IIDR, and still pretends to 1847 * have ESPI. In both cases, put them right. 1848 */ 1849 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) { 1850 /* Zero both ESPI and the RES0 field next to it... */ 1851 d->rdists.gicd_typer &= ~GENMASK(9, 8); 1852 return true; 1853 } 1854 1855 return false; 1856 } 1857 1858 #define T241_CHIPN_MASK GENMASK_ULL(45, 44) 1859 #define T241_CHIP_GICDA_OFFSET 0x1580000 1860 #define SMCCC_SOC_ID_T241 0x036b0241 1861 1862 static bool gic_enable_quirk_nvidia_t241(void *data) 1863 { 1864 s32 soc_id = arm_smccc_get_soc_id_version(); 1865 unsigned long chip_bmask = 0; 1866 phys_addr_t phys; 1867 u32 i; 1868 1869 /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */ 1870 if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241)) 1871 return false; 1872 1873 /* Find the chips based on GICR regions PHYS addr */ 1874 for (i = 0; i < gic_data.nr_redist_regions; i++) { 1875 chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK, 1876 (u64)gic_data.redist_regions[i].phys_base)); 1877 } 1878 1879 if (hweight32(chip_bmask) < 3) 1880 return false; 1881 1882 /* Setup GICD alias regions */ 1883 for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) { 1884 if (chip_bmask & BIT(i)) { 1885 phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET; 1886 phys |= FIELD_PREP(T241_CHIPN_MASK, i); 1887 t241_dist_base_alias[i] = ioremap(phys, SZ_64K); 1888 WARN_ON_ONCE(!t241_dist_base_alias[i]); 1889 } 1890 } 1891 static_branch_enable(&gic_nvidia_t241_erratum); 1892 return true; 1893 } 1894 1895 static bool gic_enable_quirk_asr8601(void *data) 1896 { 1897 struct gic_chip_data *d = data; 1898 1899 d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001; 1900 1901 return true; 1902 } 1903 1904 static bool gic_enable_quirk_arm64_2941627(void *data) 1905 { 1906 static_branch_enable(&gic_arm64_2941627_erratum); 1907 return true; 1908 } 1909 1910 static bool rd_set_non_coherent(void *data) 1911 { 1912 struct gic_chip_data *d = data; 1913 1914 d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 1915 return true; 1916 } 1917 1918 static const struct gic_quirk gic_quirks[] = { 1919 { 1920 .desc = "GICv3: Qualcomm MSM8996 broken firmware", 1921 .compatible = "qcom,msm8996-gic-v3", 1922 .init = gic_enable_quirk_msm8996, 1923 }, 1924 { 1925 .desc = "GICv3: ASR erratum 8601001", 1926 .compatible = "asr,asr8601-gic-v3", 1927 .init = gic_enable_quirk_asr8601, 1928 }, 1929 { 1930 .desc = "GICv3: HIP06 erratum 161010803", 1931 .iidr = 0x0204043b, 1932 .mask = 0xffffffff, 1933 .init = gic_enable_quirk_hip06_07, 1934 }, 1935 { 1936 .desc = "GICv3: HIP07 erratum 161010803", 1937 .iidr = 0x00000000, 1938 .mask = 0xffffffff, 1939 .init = gic_enable_quirk_hip06_07, 1940 }, 1941 { 1942 /* 1943 * Reserved register accesses generate a Synchronous 1944 * External Abort. This erratum applies to: 1945 * - ThunderX: CN88xx 1946 * - OCTEON TX: CN83xx, CN81xx 1947 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx* 1948 */ 1949 .desc = "GICv3: Cavium erratum 38539", 1950 .iidr = 0xa000034c, 1951 .mask = 0xe8f00fff, 1952 .init = gic_enable_quirk_cavium_38539, 1953 }, 1954 { 1955 .desc = "GICv3: NVIDIA erratum T241-FABRIC-4", 1956 .iidr = 0x0402043b, 1957 .mask = 0xffffffff, 1958 .init = gic_enable_quirk_nvidia_t241, 1959 }, 1960 { 1961 /* 1962 * GIC-700: 2941627 workaround - IP variant [0,1] 1963 * 1964 */ 1965 .desc = "GICv3: ARM64 erratum 2941627", 1966 .iidr = 0x0400043b, 1967 .mask = 0xff0e0fff, 1968 .init = gic_enable_quirk_arm64_2941627, 1969 }, 1970 { 1971 /* 1972 * GIC-700: 2941627 workaround - IP variant [2] 1973 */ 1974 .desc = "GICv3: ARM64 erratum 2941627", 1975 .iidr = 0x0402043b, 1976 .mask = 0xff0f0fff, 1977 .init = gic_enable_quirk_arm64_2941627, 1978 }, 1979 { 1980 .desc = "GICv3: non-coherent attribute", 1981 .property = "dma-noncoherent", 1982 .init = rd_set_non_coherent, 1983 }, 1984 { 1985 } 1986 }; 1987 1988 static void gic_enable_nmi_support(void) 1989 { 1990 int i; 1991 1992 if (!gic_prio_masking_enabled()) 1993 return; 1994 1995 rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR, 1996 sizeof(*rdist_nmi_refs), GFP_KERNEL); 1997 if (!rdist_nmi_refs) 1998 return; 1999 2000 for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++) 2001 refcount_set(&rdist_nmi_refs[i], 0); 2002 2003 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n", 2004 gic_has_relaxed_pmr_sync() ? "relaxed" : "forced"); 2005 2006 static_branch_enable(&supports_pseudo_nmis); 2007 2008 if (static_branch_likely(&supports_deactivate_key)) 2009 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI; 2010 else 2011 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI; 2012 } 2013 2014 static int __init gic_init_bases(phys_addr_t dist_phys_base, 2015 void __iomem *dist_base, 2016 struct redist_region *rdist_regs, 2017 u32 nr_redist_regions, 2018 u64 redist_stride, 2019 struct fwnode_handle *handle) 2020 { 2021 u32 typer; 2022 int err; 2023 2024 if (!is_hyp_mode_available()) 2025 static_branch_disable(&supports_deactivate_key); 2026 2027 if (static_branch_likely(&supports_deactivate_key)) 2028 pr_info("GIC: Using split EOI/Deactivate mode\n"); 2029 2030 gic_data.fwnode = handle; 2031 gic_data.dist_phys_base = dist_phys_base; 2032 gic_data.dist_base = dist_base; 2033 gic_data.redist_regions = rdist_regs; 2034 gic_data.nr_redist_regions = nr_redist_regions; 2035 gic_data.redist_stride = redist_stride; 2036 2037 /* 2038 * Find out how many interrupts are supported. 2039 */ 2040 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); 2041 gic_data.rdists.gicd_typer = typer; 2042 2043 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR), 2044 gic_quirks, &gic_data); 2045 2046 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32); 2047 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR); 2048 2049 /* 2050 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the 2051 * architecture spec (which says that reserved registers are RES0). 2052 */ 2053 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539)) 2054 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2); 2055 2056 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, 2057 &gic_data); 2058 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); 2059 if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) { 2060 /* Disable GICv4.x features for the erratum T241-FABRIC-4 */ 2061 gic_data.rdists.has_rvpeid = true; 2062 gic_data.rdists.has_vlpis = true; 2063 gic_data.rdists.has_direct_lpi = true; 2064 gic_data.rdists.has_vpend_valid_dirty = true; 2065 } 2066 2067 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { 2068 err = -ENOMEM; 2069 goto out_free; 2070 } 2071 2072 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED); 2073 2074 gic_data.has_rss = !!(typer & GICD_TYPER_RSS); 2075 2076 if (typer & GICD_TYPER_MBIS) { 2077 err = mbi_init(handle, gic_data.domain); 2078 if (err) 2079 pr_err("Failed to initialize MBIs\n"); 2080 } 2081 2082 set_handle_irq(gic_handle_irq); 2083 2084 gic_update_rdist_properties(); 2085 2086 gic_cpu_sys_reg_enable(); 2087 gic_prio_init(); 2088 gic_dist_init(); 2089 gic_cpu_init(); 2090 gic_enable_nmi_support(); 2091 gic_smp_init(); 2092 gic_cpu_pm_init(); 2093 2094 if (gic_dist_supports_lpis()) { 2095 its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq); 2096 its_cpu_init(); 2097 its_lpi_memreserve_init(); 2098 } else { 2099 if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) 2100 gicv2m_init(handle, gic_data.domain); 2101 } 2102 2103 return 0; 2104 2105 out_free: 2106 if (gic_data.domain) 2107 irq_domain_remove(gic_data.domain); 2108 free_percpu(gic_data.rdists.rdist); 2109 return err; 2110 } 2111 2112 static int __init gic_validate_dist_version(void __iomem *dist_base) 2113 { 2114 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 2115 2116 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) 2117 return -ENODEV; 2118 2119 return 0; 2120 } 2121 2122 /* Create all possible partitions at boot time */ 2123 static void __init gic_populate_ppi_partitions(struct device_node *gic_node) 2124 { 2125 struct device_node *parts_node, *child_part; 2126 int part_idx = 0, i; 2127 int nr_parts; 2128 struct partition_affinity *parts; 2129 2130 parts_node = of_get_child_by_name(gic_node, "ppi-partitions"); 2131 if (!parts_node) 2132 return; 2133 2134 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL); 2135 if (!gic_data.ppi_descs) 2136 goto out_put_node; 2137 2138 nr_parts = of_get_child_count(parts_node); 2139 2140 if (!nr_parts) 2141 goto out_put_node; 2142 2143 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); 2144 if (WARN_ON(!parts)) 2145 goto out_put_node; 2146 2147 for_each_child_of_node(parts_node, child_part) { 2148 struct partition_affinity *part; 2149 int n; 2150 2151 part = &parts[part_idx]; 2152 2153 part->partition_id = of_node_to_fwnode(child_part); 2154 2155 pr_info("GIC: PPI partition %pOFn[%d] { ", 2156 child_part, part_idx); 2157 2158 n = of_property_count_elems_of_size(child_part, "affinity", 2159 sizeof(u32)); 2160 WARN_ON(n <= 0); 2161 2162 for (i = 0; i < n; i++) { 2163 int err, cpu; 2164 u32 cpu_phandle; 2165 struct device_node *cpu_node; 2166 2167 err = of_property_read_u32_index(child_part, "affinity", 2168 i, &cpu_phandle); 2169 if (WARN_ON(err)) 2170 continue; 2171 2172 cpu_node = of_find_node_by_phandle(cpu_phandle); 2173 if (WARN_ON(!cpu_node)) 2174 continue; 2175 2176 cpu = of_cpu_node_to_id(cpu_node); 2177 if (WARN_ON(cpu < 0)) { 2178 of_node_put(cpu_node); 2179 continue; 2180 } 2181 2182 pr_cont("%pOF[%d] ", cpu_node, cpu); 2183 2184 cpumask_set_cpu(cpu, &part->mask); 2185 of_node_put(cpu_node); 2186 } 2187 2188 pr_cont("}\n"); 2189 part_idx++; 2190 } 2191 2192 for (i = 0; i < gic_data.ppi_nr; i++) { 2193 unsigned int irq; 2194 struct partition_desc *desc; 2195 struct irq_fwspec ppi_fwspec = { 2196 .fwnode = gic_data.fwnode, 2197 .param_count = 3, 2198 .param = { 2199 [0] = GIC_IRQ_TYPE_PARTITION, 2200 [1] = i, 2201 [2] = IRQ_TYPE_NONE, 2202 }, 2203 }; 2204 2205 irq = irq_create_fwspec_mapping(&ppi_fwspec); 2206 if (WARN_ON(!irq)) 2207 continue; 2208 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts, 2209 irq, &partition_domain_ops); 2210 if (WARN_ON(!desc)) 2211 continue; 2212 2213 gic_data.ppi_descs[i] = desc; 2214 } 2215 2216 out_put_node: 2217 of_node_put(parts_node); 2218 } 2219 2220 static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions) 2221 { 2222 int ret; 2223 struct resource r; 2224 2225 gic_v3_kvm_info.type = GIC_V3; 2226 2227 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); 2228 if (!gic_v3_kvm_info.maint_irq) 2229 return; 2230 2231 /* Also skip GICD, GICC, GICH */ 2232 ret = of_address_to_resource(node, nr_redist_regions + 3, &r); 2233 if (!ret) 2234 gic_v3_kvm_info.vcpu = r; 2235 2236 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2237 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2238 vgic_set_kvm_info(&gic_v3_kvm_info); 2239 } 2240 2241 static void gic_request_region(resource_size_t base, resource_size_t size, 2242 const char *name) 2243 { 2244 if (!request_mem_region(base, size, name)) 2245 pr_warn_once(FW_BUG "%s region %pa has overlapping address\n", 2246 name, &base); 2247 } 2248 2249 static void __iomem *gic_of_iomap(struct device_node *node, int idx, 2250 const char *name, struct resource *res) 2251 { 2252 void __iomem *base; 2253 int ret; 2254 2255 ret = of_address_to_resource(node, idx, res); 2256 if (ret) 2257 return IOMEM_ERR_PTR(ret); 2258 2259 gic_request_region(res->start, resource_size(res), name); 2260 base = of_iomap(node, idx); 2261 2262 return base ?: IOMEM_ERR_PTR(-ENOMEM); 2263 } 2264 2265 static int __init gic_of_init(struct device_node *node, struct device_node *parent) 2266 { 2267 phys_addr_t dist_phys_base; 2268 void __iomem *dist_base; 2269 struct redist_region *rdist_regs; 2270 struct resource res; 2271 u64 redist_stride; 2272 u32 nr_redist_regions; 2273 int err, i; 2274 2275 dist_base = gic_of_iomap(node, 0, "GICD", &res); 2276 if (IS_ERR(dist_base)) { 2277 pr_err("%pOF: unable to map gic dist registers\n", node); 2278 return PTR_ERR(dist_base); 2279 } 2280 2281 dist_phys_base = res.start; 2282 2283 err = gic_validate_dist_version(dist_base); 2284 if (err) { 2285 pr_err("%pOF: no distributor detected, giving up\n", node); 2286 goto out_unmap_dist; 2287 } 2288 2289 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) 2290 nr_redist_regions = 1; 2291 2292 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), 2293 GFP_KERNEL); 2294 if (!rdist_regs) { 2295 err = -ENOMEM; 2296 goto out_unmap_dist; 2297 } 2298 2299 for (i = 0; i < nr_redist_regions; i++) { 2300 rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res); 2301 if (IS_ERR(rdist_regs[i].redist_base)) { 2302 pr_err("%pOF: couldn't map region %d\n", node, i); 2303 err = -ENODEV; 2304 goto out_unmap_rdist; 2305 } 2306 rdist_regs[i].phys_base = res.start; 2307 } 2308 2309 if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) 2310 redist_stride = 0; 2311 2312 gic_enable_of_quirks(node, gic_quirks, &gic_data); 2313 2314 err = gic_init_bases(dist_phys_base, dist_base, rdist_regs, 2315 nr_redist_regions, redist_stride, &node->fwnode); 2316 if (err) 2317 goto out_unmap_rdist; 2318 2319 gic_populate_ppi_partitions(node); 2320 2321 if (static_branch_likely(&supports_deactivate_key)) 2322 gic_of_setup_kvm_info(node, nr_redist_regions); 2323 return 0; 2324 2325 out_unmap_rdist: 2326 for (i = 0; i < nr_redist_regions; i++) 2327 if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base)) 2328 iounmap(rdist_regs[i].redist_base); 2329 kfree(rdist_regs); 2330 out_unmap_dist: 2331 iounmap(dist_base); 2332 return err; 2333 } 2334 2335 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init); 2336 2337 #ifdef CONFIG_ACPI 2338 static struct 2339 { 2340 void __iomem *dist_base; 2341 struct redist_region *redist_regs; 2342 u32 nr_redist_regions; 2343 bool single_redist; 2344 int enabled_rdists; 2345 u32 maint_irq; 2346 int maint_irq_mode; 2347 phys_addr_t vcpu_base; 2348 } acpi_data __initdata; 2349 2350 static void __init 2351 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) 2352 { 2353 static int count = 0; 2354 2355 acpi_data.redist_regs[count].phys_base = phys_base; 2356 acpi_data.redist_regs[count].redist_base = redist_base; 2357 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; 2358 count++; 2359 } 2360 2361 static int __init 2362 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header, 2363 const unsigned long end) 2364 { 2365 struct acpi_madt_generic_redistributor *redist = 2366 (struct acpi_madt_generic_redistributor *)header; 2367 void __iomem *redist_base; 2368 2369 redist_base = ioremap(redist->base_address, redist->length); 2370 if (!redist_base) { 2371 pr_err("Couldn't map GICR region @%llx\n", redist->base_address); 2372 return -ENOMEM; 2373 } 2374 2375 if (acpi_get_madt_revision() >= 7 && 2376 (redist->flags & ACPI_MADT_GICR_NON_COHERENT)) 2377 gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 2378 2379 gic_request_region(redist->base_address, redist->length, "GICR"); 2380 2381 gic_acpi_register_redist(redist->base_address, redist_base); 2382 return 0; 2383 } 2384 2385 static int __init 2386 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header, 2387 const unsigned long end) 2388 { 2389 struct acpi_madt_generic_interrupt *gicc = 2390 (struct acpi_madt_generic_interrupt *)header; 2391 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 2392 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; 2393 void __iomem *redist_base; 2394 2395 /* Neither enabled or online capable means it doesn't exist, skip it */ 2396 if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) 2397 return 0; 2398 2399 /* 2400 * Capable but disabled CPUs can be brought online later. What about 2401 * the redistributor? ACPI doesn't want to say! 2402 * Virtual hotplug systems can use the MADT's "always-on" GICR entries. 2403 * Otherwise, prevent such CPUs from being brought online. 2404 */ 2405 if (!(gicc->flags & ACPI_MADT_ENABLED)) { 2406 int cpu = get_cpu_for_acpi_id(gicc->uid); 2407 2408 pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu); 2409 if (cpu >= 0) 2410 cpumask_set_cpu(cpu, &broken_rdists); 2411 return 0; 2412 } 2413 2414 redist_base = ioremap(gicc->gicr_base_address, size); 2415 if (!redist_base) 2416 return -ENOMEM; 2417 gic_request_region(gicc->gicr_base_address, size, "GICR"); 2418 2419 if (acpi_get_madt_revision() >= 7 && 2420 (gicc->flags & ACPI_MADT_GICC_NON_COHERENT)) 2421 gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 2422 2423 gic_acpi_register_redist(gicc->gicr_base_address, redist_base); 2424 return 0; 2425 } 2426 2427 static int __init gic_acpi_collect_gicr_base(void) 2428 { 2429 acpi_tbl_entry_handler redist_parser; 2430 enum acpi_madt_type type; 2431 2432 if (acpi_data.single_redist) { 2433 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; 2434 redist_parser = gic_acpi_parse_madt_gicc; 2435 } else { 2436 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; 2437 redist_parser = gic_acpi_parse_madt_redist; 2438 } 2439 2440 /* Collect redistributor base addresses in GICR entries */ 2441 if (acpi_table_parse_madt(type, redist_parser, 0) > 0) 2442 return 0; 2443 2444 pr_info("No valid GICR entries exist\n"); 2445 return -ENODEV; 2446 } 2447 2448 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header, 2449 const unsigned long end) 2450 { 2451 /* Subtable presence means that redist exists, that's it */ 2452 return 0; 2453 } 2454 2455 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header, 2456 const unsigned long end) 2457 { 2458 struct acpi_madt_generic_interrupt *gicc = 2459 (struct acpi_madt_generic_interrupt *)header; 2460 2461 /* 2462 * If GICC is enabled and has valid gicr base address, then it means 2463 * GICR base is presented via GICC. The redistributor is only known to 2464 * be accessible if the GICC is marked as enabled. If this bit is not 2465 * set, we'd need to add the redistributor at runtime, which isn't 2466 * supported. 2467 */ 2468 if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address) 2469 acpi_data.enabled_rdists++; 2470 2471 return 0; 2472 } 2473 2474 static int __init gic_acpi_count_gicr_regions(void) 2475 { 2476 int count; 2477 2478 /* 2479 * Count how many redistributor regions we have. It is not allowed 2480 * to mix redistributor description, GICR and GICC subtables have to be 2481 * mutually exclusive. 2482 */ 2483 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, 2484 gic_acpi_match_gicr, 0); 2485 if (count > 0) { 2486 acpi_data.single_redist = false; 2487 return count; 2488 } 2489 2490 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2491 gic_acpi_match_gicc, 0); 2492 if (count > 0) { 2493 acpi_data.single_redist = true; 2494 count = acpi_data.enabled_rdists; 2495 } 2496 2497 return count; 2498 } 2499 2500 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header, 2501 struct acpi_probe_entry *ape) 2502 { 2503 struct acpi_madt_generic_distributor *dist; 2504 int count; 2505 2506 dist = (struct acpi_madt_generic_distributor *)header; 2507 if (dist->version != ape->driver_data) 2508 return false; 2509 2510 /* We need to do that exercise anyway, the sooner the better */ 2511 count = gic_acpi_count_gicr_regions(); 2512 if (count <= 0) 2513 return false; 2514 2515 acpi_data.nr_redist_regions = count; 2516 return true; 2517 } 2518 2519 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header, 2520 const unsigned long end) 2521 { 2522 struct acpi_madt_generic_interrupt *gicc = 2523 (struct acpi_madt_generic_interrupt *)header; 2524 int maint_irq_mode; 2525 static int first_madt = true; 2526 2527 if (!(gicc->flags & 2528 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) 2529 return 0; 2530 2531 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? 2532 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; 2533 2534 if (first_madt) { 2535 first_madt = false; 2536 2537 acpi_data.maint_irq = gicc->vgic_interrupt; 2538 acpi_data.maint_irq_mode = maint_irq_mode; 2539 acpi_data.vcpu_base = gicc->gicv_base_address; 2540 2541 return 0; 2542 } 2543 2544 /* 2545 * The maintenance interrupt and GICV should be the same for every CPU 2546 */ 2547 if ((acpi_data.maint_irq != gicc->vgic_interrupt) || 2548 (acpi_data.maint_irq_mode != maint_irq_mode) || 2549 (acpi_data.vcpu_base != gicc->gicv_base_address)) 2550 return -EINVAL; 2551 2552 return 0; 2553 } 2554 2555 static bool __init gic_acpi_collect_virt_info(void) 2556 { 2557 int count; 2558 2559 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2560 gic_acpi_parse_virt_madt_gicc, 0); 2561 2562 return (count > 0); 2563 } 2564 2565 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) 2566 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) 2567 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) 2568 2569 static void __init gic_acpi_setup_kvm_info(void) 2570 { 2571 int irq; 2572 2573 if (!gic_acpi_collect_virt_info()) { 2574 pr_warn("Unable to get hardware information used for virtualization\n"); 2575 return; 2576 } 2577 2578 gic_v3_kvm_info.type = GIC_V3; 2579 2580 irq = acpi_register_gsi(NULL, acpi_data.maint_irq, 2581 acpi_data.maint_irq_mode, 2582 ACPI_ACTIVE_HIGH); 2583 if (irq <= 0) 2584 return; 2585 2586 gic_v3_kvm_info.maint_irq = irq; 2587 2588 if (acpi_data.vcpu_base) { 2589 struct resource *vcpu = &gic_v3_kvm_info.vcpu; 2590 2591 vcpu->flags = IORESOURCE_MEM; 2592 vcpu->start = acpi_data.vcpu_base; 2593 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; 2594 } 2595 2596 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2597 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2598 vgic_set_kvm_info(&gic_v3_kvm_info); 2599 } 2600 2601 static struct fwnode_handle *gsi_domain_handle; 2602 2603 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi) 2604 { 2605 return gsi_domain_handle; 2606 } 2607 2608 static int __init 2609 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end) 2610 { 2611 struct acpi_madt_generic_distributor *dist; 2612 size_t size; 2613 int i, err; 2614 2615 /* Get distributor base address */ 2616 dist = (struct acpi_madt_generic_distributor *)header; 2617 acpi_data.dist_base = ioremap(dist->base_address, 2618 ACPI_GICV3_DIST_MEM_SIZE); 2619 if (!acpi_data.dist_base) { 2620 pr_err("Unable to map GICD registers\n"); 2621 return -ENOMEM; 2622 } 2623 gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD"); 2624 2625 err = gic_validate_dist_version(acpi_data.dist_base); 2626 if (err) { 2627 pr_err("No distributor detected at @%p, giving up\n", 2628 acpi_data.dist_base); 2629 goto out_dist_unmap; 2630 } 2631 2632 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; 2633 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); 2634 if (!acpi_data.redist_regs) { 2635 err = -ENOMEM; 2636 goto out_dist_unmap; 2637 } 2638 2639 err = gic_acpi_collect_gicr_base(); 2640 if (err) 2641 goto out_redist_unmap; 2642 2643 gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address); 2644 if (!gsi_domain_handle) { 2645 err = -ENOMEM; 2646 goto out_redist_unmap; 2647 } 2648 2649 err = gic_init_bases(dist->base_address, acpi_data.dist_base, 2650 acpi_data.redist_regs, acpi_data.nr_redist_regions, 2651 0, gsi_domain_handle); 2652 if (err) 2653 goto out_fwhandle_free; 2654 2655 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id); 2656 2657 if (static_branch_likely(&supports_deactivate_key)) 2658 gic_acpi_setup_kvm_info(); 2659 2660 return 0; 2661 2662 out_fwhandle_free: 2663 irq_domain_free_fwnode(gsi_domain_handle); 2664 out_redist_unmap: 2665 for (i = 0; i < acpi_data.nr_redist_regions; i++) 2666 if (acpi_data.redist_regs[i].redist_base) 2667 iounmap(acpi_data.redist_regs[i].redist_base); 2668 kfree(acpi_data.redist_regs); 2669 out_dist_unmap: 2670 iounmap(acpi_data.dist_base); 2671 return err; 2672 } 2673 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2674 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, 2675 gic_acpi_init); 2676 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2677 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, 2678 gic_acpi_init); 2679 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2680 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, 2681 gic_acpi_init); 2682 #endif 2683