xref: /linux/drivers/irqchip/irq-gic-v3.c (revision 67f49869106f78882a8a09b736d4884be85aba18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kstrtox.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/percpu.h>
20 #include <linux/refcount.h>
21 #include <linux/slab.h>
22 
23 #include <linux/irqchip.h>
24 #include <linux/irqchip/arm-gic-common.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26 #include <linux/irqchip/irq-partition-percpu.h>
27 
28 #include <asm/cputype.h>
29 #include <asm/exception.h>
30 #include <asm/smp_plat.h>
31 #include <asm/virt.h>
32 
33 #include "irq-gic-common.h"
34 
35 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
36 
37 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
38 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
39 
40 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
41 
42 struct redist_region {
43 	void __iomem		*redist_base;
44 	phys_addr_t		phys_base;
45 	bool			single_redist;
46 };
47 
48 struct gic_chip_data {
49 	struct fwnode_handle	*fwnode;
50 	void __iomem		*dist_base;
51 	struct redist_region	*redist_regions;
52 	struct rdists		rdists;
53 	struct irq_domain	*domain;
54 	u64			redist_stride;
55 	u32			nr_redist_regions;
56 	u64			flags;
57 	bool			has_rss;
58 	unsigned int		ppi_nr;
59 	struct partition_desc	**ppi_descs;
60 };
61 
62 static struct gic_chip_data gic_data __read_mostly;
63 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
64 
65 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
66 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
67 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
68 
69 /*
70  * The behaviours of RPR and PMR registers differ depending on the value of
71  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
72  * distributor and redistributors depends on whether security is enabled in the
73  * GIC.
74  *
75  * When security is enabled, non-secure priority values from the (re)distributor
76  * are presented to the GIC CPUIF as follow:
77  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
78  *
79  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
80  * EL1 are subject to a similar operation thus matching the priorities presented
81  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
82  * these values are unchanged by the GIC.
83  *
84  * see GICv3/GICv4 Architecture Specification (IHI0069D):
85  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
86  *   priorities.
87  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
88  *   interrupt.
89  */
90 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
91 
92 /*
93  * Global static key controlling whether an update to PMR allowing more
94  * interrupts requires to be propagated to the redistributor (DSB SY).
95  * And this needs to be exported for modules to be able to enable
96  * interrupts...
97  */
98 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
99 EXPORT_SYMBOL(gic_pmr_sync);
100 
101 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
102 EXPORT_SYMBOL(gic_nonsecure_priorities);
103 
104 /*
105  * When the Non-secure world has access to group 0 interrupts (as a
106  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
107  * return the Distributor's view of the interrupt priority.
108  *
109  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
110  * written by software is moved to the Non-secure range by the Distributor.
111  *
112  * If both are true (which is when gic_nonsecure_priorities gets enabled),
113  * we need to shift down the priority programmed by software to match it
114  * against the value returned by ICC_RPR_EL1.
115  */
116 #define GICD_INT_RPR_PRI(priority)					\
117 	({								\
118 		u32 __priority = (priority);				\
119 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
120 			__priority = 0x80 | (__priority >> 1);		\
121 									\
122 		__priority;						\
123 	})
124 
125 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
126 static refcount_t *ppi_nmi_refs;
127 
128 static struct gic_kvm_info gic_v3_kvm_info __initdata;
129 static DEFINE_PER_CPU(bool, has_rss);
130 
131 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
132 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
133 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
134 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
135 
136 /* Our default, arbitrary priority value. Linux only uses one anyway. */
137 #define DEFAULT_PMR_VALUE	0xf0
138 
139 enum gic_intid_range {
140 	SGI_RANGE,
141 	PPI_RANGE,
142 	SPI_RANGE,
143 	EPPI_RANGE,
144 	ESPI_RANGE,
145 	LPI_RANGE,
146 	__INVALID_RANGE__
147 };
148 
149 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
150 {
151 	switch (hwirq) {
152 	case 0 ... 15:
153 		return SGI_RANGE;
154 	case 16 ... 31:
155 		return PPI_RANGE;
156 	case 32 ... 1019:
157 		return SPI_RANGE;
158 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
159 		return EPPI_RANGE;
160 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
161 		return ESPI_RANGE;
162 	case 8192 ... GENMASK(23, 0):
163 		return LPI_RANGE;
164 	default:
165 		return __INVALID_RANGE__;
166 	}
167 }
168 
169 static enum gic_intid_range get_intid_range(struct irq_data *d)
170 {
171 	return __get_intid_range(d->hwirq);
172 }
173 
174 static inline unsigned int gic_irq(struct irq_data *d)
175 {
176 	return d->hwirq;
177 }
178 
179 static inline bool gic_irq_in_rdist(struct irq_data *d)
180 {
181 	switch (get_intid_range(d)) {
182 	case SGI_RANGE:
183 	case PPI_RANGE:
184 	case EPPI_RANGE:
185 		return true;
186 	default:
187 		return false;
188 	}
189 }
190 
191 static inline void __iomem *gic_dist_base(struct irq_data *d)
192 {
193 	switch (get_intid_range(d)) {
194 	case SGI_RANGE:
195 	case PPI_RANGE:
196 	case EPPI_RANGE:
197 		/* SGI+PPI -> SGI_base for this CPU */
198 		return gic_data_rdist_sgi_base();
199 
200 	case SPI_RANGE:
201 	case ESPI_RANGE:
202 		/* SPI -> dist_base */
203 		return gic_data.dist_base;
204 
205 	default:
206 		return NULL;
207 	}
208 }
209 
210 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
211 {
212 	u32 count = 1000000;	/* 1s! */
213 
214 	while (readl_relaxed(base + GICD_CTLR) & bit) {
215 		count--;
216 		if (!count) {
217 			pr_err_ratelimited("RWP timeout, gone fishing\n");
218 			return;
219 		}
220 		cpu_relax();
221 		udelay(1);
222 	}
223 }
224 
225 /* Wait for completion of a distributor change */
226 static void gic_dist_wait_for_rwp(void)
227 {
228 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
229 }
230 
231 /* Wait for completion of a redistributor change */
232 static void gic_redist_wait_for_rwp(void)
233 {
234 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
235 }
236 
237 #ifdef CONFIG_ARM64
238 
239 static u64 __maybe_unused gic_read_iar(void)
240 {
241 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
242 		return gic_read_iar_cavium_thunderx();
243 	else
244 		return gic_read_iar_common();
245 }
246 #endif
247 
248 static void gic_enable_redist(bool enable)
249 {
250 	void __iomem *rbase;
251 	u32 count = 1000000;	/* 1s! */
252 	u32 val;
253 
254 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
255 		return;
256 
257 	rbase = gic_data_rdist_rd_base();
258 
259 	val = readl_relaxed(rbase + GICR_WAKER);
260 	if (enable)
261 		/* Wake up this CPU redistributor */
262 		val &= ~GICR_WAKER_ProcessorSleep;
263 	else
264 		val |= GICR_WAKER_ProcessorSleep;
265 	writel_relaxed(val, rbase + GICR_WAKER);
266 
267 	if (!enable) {		/* Check that GICR_WAKER is writeable */
268 		val = readl_relaxed(rbase + GICR_WAKER);
269 		if (!(val & GICR_WAKER_ProcessorSleep))
270 			return;	/* No PM support in this redistributor */
271 	}
272 
273 	while (--count) {
274 		val = readl_relaxed(rbase + GICR_WAKER);
275 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
276 			break;
277 		cpu_relax();
278 		udelay(1);
279 	}
280 	if (!count)
281 		pr_err_ratelimited("redistributor failed to %s...\n",
282 				   enable ? "wakeup" : "sleep");
283 }
284 
285 /*
286  * Routines to disable, enable, EOI and route interrupts
287  */
288 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
289 {
290 	switch (get_intid_range(d)) {
291 	case SGI_RANGE:
292 	case PPI_RANGE:
293 	case SPI_RANGE:
294 		*index = d->hwirq;
295 		return offset;
296 	case EPPI_RANGE:
297 		/*
298 		 * Contrary to the ESPI range, the EPPI range is contiguous
299 		 * to the PPI range in the registers, so let's adjust the
300 		 * displacement accordingly. Consistency is overrated.
301 		 */
302 		*index = d->hwirq - EPPI_BASE_INTID + 32;
303 		return offset;
304 	case ESPI_RANGE:
305 		*index = d->hwirq - ESPI_BASE_INTID;
306 		switch (offset) {
307 		case GICD_ISENABLER:
308 			return GICD_ISENABLERnE;
309 		case GICD_ICENABLER:
310 			return GICD_ICENABLERnE;
311 		case GICD_ISPENDR:
312 			return GICD_ISPENDRnE;
313 		case GICD_ICPENDR:
314 			return GICD_ICPENDRnE;
315 		case GICD_ISACTIVER:
316 			return GICD_ISACTIVERnE;
317 		case GICD_ICACTIVER:
318 			return GICD_ICACTIVERnE;
319 		case GICD_IPRIORITYR:
320 			return GICD_IPRIORITYRnE;
321 		case GICD_ICFGR:
322 			return GICD_ICFGRnE;
323 		case GICD_IROUTER:
324 			return GICD_IROUTERnE;
325 		default:
326 			break;
327 		}
328 		break;
329 	default:
330 		break;
331 	}
332 
333 	WARN_ON(1);
334 	*index = d->hwirq;
335 	return offset;
336 }
337 
338 static int gic_peek_irq(struct irq_data *d, u32 offset)
339 {
340 	void __iomem *base;
341 	u32 index, mask;
342 
343 	offset = convert_offset_index(d, offset, &index);
344 	mask = 1 << (index % 32);
345 
346 	if (gic_irq_in_rdist(d))
347 		base = gic_data_rdist_sgi_base();
348 	else
349 		base = gic_data.dist_base;
350 
351 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
352 }
353 
354 static void gic_poke_irq(struct irq_data *d, u32 offset)
355 {
356 	void __iomem *base;
357 	u32 index, mask;
358 
359 	offset = convert_offset_index(d, offset, &index);
360 	mask = 1 << (index % 32);
361 
362 	if (gic_irq_in_rdist(d))
363 		base = gic_data_rdist_sgi_base();
364 	else
365 		base = gic_data.dist_base;
366 
367 	writel_relaxed(mask, base + offset + (index / 32) * 4);
368 }
369 
370 static void gic_mask_irq(struct irq_data *d)
371 {
372 	gic_poke_irq(d, GICD_ICENABLER);
373 	if (gic_irq_in_rdist(d))
374 		gic_redist_wait_for_rwp();
375 	else
376 		gic_dist_wait_for_rwp();
377 }
378 
379 static void gic_eoimode1_mask_irq(struct irq_data *d)
380 {
381 	gic_mask_irq(d);
382 	/*
383 	 * When masking a forwarded interrupt, make sure it is
384 	 * deactivated as well.
385 	 *
386 	 * This ensures that an interrupt that is getting
387 	 * disabled/masked will not get "stuck", because there is
388 	 * noone to deactivate it (guest is being terminated).
389 	 */
390 	if (irqd_is_forwarded_to_vcpu(d))
391 		gic_poke_irq(d, GICD_ICACTIVER);
392 }
393 
394 static void gic_unmask_irq(struct irq_data *d)
395 {
396 	gic_poke_irq(d, GICD_ISENABLER);
397 }
398 
399 static inline bool gic_supports_nmi(void)
400 {
401 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
402 	       static_branch_likely(&supports_pseudo_nmis);
403 }
404 
405 static int gic_irq_set_irqchip_state(struct irq_data *d,
406 				     enum irqchip_irq_state which, bool val)
407 {
408 	u32 reg;
409 
410 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
411 		return -EINVAL;
412 
413 	switch (which) {
414 	case IRQCHIP_STATE_PENDING:
415 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
416 		break;
417 
418 	case IRQCHIP_STATE_ACTIVE:
419 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
420 		break;
421 
422 	case IRQCHIP_STATE_MASKED:
423 		if (val) {
424 			gic_mask_irq(d);
425 			return 0;
426 		}
427 		reg = GICD_ISENABLER;
428 		break;
429 
430 	default:
431 		return -EINVAL;
432 	}
433 
434 	gic_poke_irq(d, reg);
435 	return 0;
436 }
437 
438 static int gic_irq_get_irqchip_state(struct irq_data *d,
439 				     enum irqchip_irq_state which, bool *val)
440 {
441 	if (d->hwirq >= 8192) /* PPI/SPI only */
442 		return -EINVAL;
443 
444 	switch (which) {
445 	case IRQCHIP_STATE_PENDING:
446 		*val = gic_peek_irq(d, GICD_ISPENDR);
447 		break;
448 
449 	case IRQCHIP_STATE_ACTIVE:
450 		*val = gic_peek_irq(d, GICD_ISACTIVER);
451 		break;
452 
453 	case IRQCHIP_STATE_MASKED:
454 		*val = !gic_peek_irq(d, GICD_ISENABLER);
455 		break;
456 
457 	default:
458 		return -EINVAL;
459 	}
460 
461 	return 0;
462 }
463 
464 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
465 {
466 	void __iomem *base = gic_dist_base(d);
467 	u32 offset, index;
468 
469 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
470 
471 	writeb_relaxed(prio, base + offset + index);
472 }
473 
474 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
475 {
476 	switch (__get_intid_range(hwirq)) {
477 	case PPI_RANGE:
478 		return hwirq - 16;
479 	case EPPI_RANGE:
480 		return hwirq - EPPI_BASE_INTID + 16;
481 	default:
482 		unreachable();
483 	}
484 }
485 
486 static u32 gic_get_ppi_index(struct irq_data *d)
487 {
488 	return __gic_get_ppi_index(d->hwirq);
489 }
490 
491 static int gic_irq_nmi_setup(struct irq_data *d)
492 {
493 	struct irq_desc *desc = irq_to_desc(d->irq);
494 
495 	if (!gic_supports_nmi())
496 		return -EINVAL;
497 
498 	if (gic_peek_irq(d, GICD_ISENABLER)) {
499 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
500 		return -EINVAL;
501 	}
502 
503 	/*
504 	 * A secondary irq_chip should be in charge of LPI request,
505 	 * it should not be possible to get there
506 	 */
507 	if (WARN_ON(gic_irq(d) >= 8192))
508 		return -EINVAL;
509 
510 	/* desc lock should already be held */
511 	if (gic_irq_in_rdist(d)) {
512 		u32 idx = gic_get_ppi_index(d);
513 
514 		/* Setting up PPI as NMI, only switch handler for first NMI */
515 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
516 			refcount_set(&ppi_nmi_refs[idx], 1);
517 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
518 		}
519 	} else {
520 		desc->handle_irq = handle_fasteoi_nmi;
521 	}
522 
523 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
524 
525 	return 0;
526 }
527 
528 static void gic_irq_nmi_teardown(struct irq_data *d)
529 {
530 	struct irq_desc *desc = irq_to_desc(d->irq);
531 
532 	if (WARN_ON(!gic_supports_nmi()))
533 		return;
534 
535 	if (gic_peek_irq(d, GICD_ISENABLER)) {
536 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
537 		return;
538 	}
539 
540 	/*
541 	 * A secondary irq_chip should be in charge of LPI request,
542 	 * it should not be possible to get there
543 	 */
544 	if (WARN_ON(gic_irq(d) >= 8192))
545 		return;
546 
547 	/* desc lock should already be held */
548 	if (gic_irq_in_rdist(d)) {
549 		u32 idx = gic_get_ppi_index(d);
550 
551 		/* Tearing down NMI, only switch handler for last NMI */
552 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
553 			desc->handle_irq = handle_percpu_devid_irq;
554 	} else {
555 		desc->handle_irq = handle_fasteoi_irq;
556 	}
557 
558 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
559 }
560 
561 static void gic_eoi_irq(struct irq_data *d)
562 {
563 	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
564 	isb();
565 }
566 
567 static void gic_eoimode1_eoi_irq(struct irq_data *d)
568 {
569 	/*
570 	 * No need to deactivate an LPI, or an interrupt that
571 	 * is is getting forwarded to a vcpu.
572 	 */
573 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
574 		return;
575 	gic_write_dir(gic_irq(d));
576 }
577 
578 static int gic_set_type(struct irq_data *d, unsigned int type)
579 {
580 	enum gic_intid_range range;
581 	unsigned int irq = gic_irq(d);
582 	void __iomem *base;
583 	u32 offset, index;
584 	int ret;
585 
586 	range = get_intid_range(d);
587 
588 	/* Interrupt configuration for SGIs can't be changed */
589 	if (range == SGI_RANGE)
590 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
591 
592 	/* SPIs have restrictions on the supported types */
593 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
594 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
595 		return -EINVAL;
596 
597 	if (gic_irq_in_rdist(d))
598 		base = gic_data_rdist_sgi_base();
599 	else
600 		base = gic_data.dist_base;
601 
602 	offset = convert_offset_index(d, GICD_ICFGR, &index);
603 
604 	ret = gic_configure_irq(index, type, base + offset, NULL);
605 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
606 		/* Misconfigured PPIs are usually not fatal */
607 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
608 		ret = 0;
609 	}
610 
611 	return ret;
612 }
613 
614 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
615 {
616 	if (get_intid_range(d) == SGI_RANGE)
617 		return -EINVAL;
618 
619 	if (vcpu)
620 		irqd_set_forwarded_to_vcpu(d);
621 	else
622 		irqd_clr_forwarded_to_vcpu(d);
623 	return 0;
624 }
625 
626 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
627 {
628 	u64 aff;
629 
630 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
631 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
632 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
633 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
634 
635 	return aff;
636 }
637 
638 static void gic_deactivate_unhandled(u32 irqnr)
639 {
640 	if (static_branch_likely(&supports_deactivate_key)) {
641 		if (irqnr < 8192)
642 			gic_write_dir(irqnr);
643 	} else {
644 		write_gicreg(irqnr, ICC_EOIR1_EL1);
645 		isb();
646 	}
647 }
648 
649 /*
650  * Follow a read of the IAR with any HW maintenance that needs to happen prior
651  * to invoking the relevant IRQ handler. We must do two things:
652  *
653  * (1) Ensure instruction ordering between a read of IAR and subsequent
654  *     instructions in the IRQ handler using an ISB.
655  *
656  *     It is possible for the IAR to report an IRQ which was signalled *after*
657  *     the CPU took an IRQ exception as multiple interrupts can race to be
658  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
659  *     later interrupts could be prioritized by the GIC.
660  *
661  *     For devices which are tightly coupled to the CPU, such as PMUs, a
662  *     context synchronization event is necessary to ensure that system
663  *     register state is not stale, as these may have been indirectly written
664  *     *after* exception entry.
665  *
666  * (2) Deactivate the interrupt when EOI mode 1 is in use.
667  */
668 static inline void gic_complete_ack(u32 irqnr)
669 {
670 	if (static_branch_likely(&supports_deactivate_key))
671 		write_gicreg(irqnr, ICC_EOIR1_EL1);
672 
673 	isb();
674 }
675 
676 static bool gic_rpr_is_nmi_prio(void)
677 {
678 	if (!gic_supports_nmi())
679 		return false;
680 
681 	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
682 }
683 
684 static bool gic_irqnr_is_special(u32 irqnr)
685 {
686 	return irqnr >= 1020 && irqnr <= 1023;
687 }
688 
689 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
690 {
691 	if (gic_irqnr_is_special(irqnr))
692 		return;
693 
694 	gic_complete_ack(irqnr);
695 
696 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
697 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
698 		gic_deactivate_unhandled(irqnr);
699 	}
700 }
701 
702 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
703 {
704 	if (gic_irqnr_is_special(irqnr))
705 		return;
706 
707 	gic_complete_ack(irqnr);
708 
709 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
710 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
711 		gic_deactivate_unhandled(irqnr);
712 	}
713 }
714 
715 /*
716  * An exception has been taken from a context with IRQs enabled, and this could
717  * be an IRQ or an NMI.
718  *
719  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
720  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
721  * after handling any NMI but before handling any IRQ.
722  *
723  * The entry code has performed IRQ entry, and if an NMI is detected we must
724  * perform NMI entry/exit around invoking the handler.
725  */
726 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
727 {
728 	bool is_nmi;
729 	u32 irqnr;
730 
731 	irqnr = gic_read_iar();
732 
733 	is_nmi = gic_rpr_is_nmi_prio();
734 
735 	if (is_nmi) {
736 		nmi_enter();
737 		__gic_handle_nmi(irqnr, regs);
738 		nmi_exit();
739 	}
740 
741 	if (gic_prio_masking_enabled()) {
742 		gic_pmr_mask_irqs();
743 		gic_arch_enable_irqs();
744 	}
745 
746 	if (!is_nmi)
747 		__gic_handle_irq(irqnr, regs);
748 }
749 
750 /*
751  * An exception has been taken from a context with IRQs disabled, which can only
752  * be an NMI.
753  *
754  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
755  * DAIF.IF (and ICC_PMR_EL1) unchanged.
756  *
757  * The entry code has performed NMI entry.
758  */
759 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
760 {
761 	u64 pmr;
762 	u32 irqnr;
763 
764 	/*
765 	 * We were in a context with IRQs disabled. However, the
766 	 * entry code has set PMR to a value that allows any
767 	 * interrupt to be acknowledged, and not just NMIs. This can
768 	 * lead to surprising effects if the NMI has been retired in
769 	 * the meantime, and that there is an IRQ pending. The IRQ
770 	 * would then be taken in NMI context, something that nobody
771 	 * wants to debug twice.
772 	 *
773 	 * Until we sort this, drop PMR again to a level that will
774 	 * actually only allow NMIs before reading IAR, and then
775 	 * restore it to what it was.
776 	 */
777 	pmr = gic_read_pmr();
778 	gic_pmr_mask_irqs();
779 	isb();
780 	irqnr = gic_read_iar();
781 	gic_write_pmr(pmr);
782 
783 	__gic_handle_nmi(irqnr, regs);
784 }
785 
786 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
787 {
788 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
789 		__gic_handle_irq_from_irqsoff(regs);
790 	else
791 		__gic_handle_irq_from_irqson(regs);
792 }
793 
794 static u32 gic_get_pribits(void)
795 {
796 	u32 pribits;
797 
798 	pribits = gic_read_ctlr();
799 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
800 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
801 	pribits++;
802 
803 	return pribits;
804 }
805 
806 static bool gic_has_group0(void)
807 {
808 	u32 val;
809 	u32 old_pmr;
810 
811 	old_pmr = gic_read_pmr();
812 
813 	/*
814 	 * Let's find out if Group0 is under control of EL3 or not by
815 	 * setting the highest possible, non-zero priority in PMR.
816 	 *
817 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
818 	 * order for the CPU interface to set bit 7, and keep the
819 	 * actual priority in the non-secure range. In the process, it
820 	 * looses the least significant bit and the actual priority
821 	 * becomes 0x80. Reading it back returns 0, indicating that
822 	 * we're don't have access to Group0.
823 	 */
824 	gic_write_pmr(BIT(8 - gic_get_pribits()));
825 	val = gic_read_pmr();
826 
827 	gic_write_pmr(old_pmr);
828 
829 	return val != 0;
830 }
831 
832 static void __init gic_dist_init(void)
833 {
834 	unsigned int i;
835 	u64 affinity;
836 	void __iomem *base = gic_data.dist_base;
837 	u32 val;
838 
839 	/* Disable the distributor */
840 	writel_relaxed(0, base + GICD_CTLR);
841 	gic_dist_wait_for_rwp();
842 
843 	/*
844 	 * Configure SPIs as non-secure Group-1. This will only matter
845 	 * if the GIC only has a single security state. This will not
846 	 * do the right thing if the kernel is running in secure mode,
847 	 * but that's not the intended use case anyway.
848 	 */
849 	for (i = 32; i < GIC_LINE_NR; i += 32)
850 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
851 
852 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
853 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
854 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
855 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
856 	}
857 
858 	for (i = 0; i < GIC_ESPI_NR; i += 32)
859 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
860 
861 	for (i = 0; i < GIC_ESPI_NR; i += 16)
862 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
863 
864 	for (i = 0; i < GIC_ESPI_NR; i += 4)
865 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
866 
867 	/* Now do the common stuff */
868 	gic_dist_config(base, GIC_LINE_NR, NULL);
869 
870 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
871 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
872 		pr_info("Enabling SGIs without active state\n");
873 		val |= GICD_CTLR_nASSGIreq;
874 	}
875 
876 	/* Enable distributor with ARE, Group1, and wait for it to drain */
877 	writel_relaxed(val, base + GICD_CTLR);
878 	gic_dist_wait_for_rwp();
879 
880 	/*
881 	 * Set all global interrupts to the boot CPU only. ARE must be
882 	 * enabled.
883 	 */
884 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
885 	for (i = 32; i < GIC_LINE_NR; i++)
886 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
887 
888 	for (i = 0; i < GIC_ESPI_NR; i++)
889 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
890 }
891 
892 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
893 {
894 	int ret = -ENODEV;
895 	int i;
896 
897 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
898 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
899 		u64 typer;
900 		u32 reg;
901 
902 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
903 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
904 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
905 			pr_warn("No redistributor present @%p\n", ptr);
906 			break;
907 		}
908 
909 		do {
910 			typer = gic_read_typer(ptr + GICR_TYPER);
911 			ret = fn(gic_data.redist_regions + i, ptr);
912 			if (!ret)
913 				return 0;
914 
915 			if (gic_data.redist_regions[i].single_redist)
916 				break;
917 
918 			if (gic_data.redist_stride) {
919 				ptr += gic_data.redist_stride;
920 			} else {
921 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
922 				if (typer & GICR_TYPER_VLPIS)
923 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
924 			}
925 		} while (!(typer & GICR_TYPER_LAST));
926 	}
927 
928 	return ret ? -ENODEV : 0;
929 }
930 
931 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
932 {
933 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
934 	u64 typer;
935 	u32 aff;
936 
937 	/*
938 	 * Convert affinity to a 32bit value that can be matched to
939 	 * GICR_TYPER bits [63:32].
940 	 */
941 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
942 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
943 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
944 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
945 
946 	typer = gic_read_typer(ptr + GICR_TYPER);
947 	if ((typer >> 32) == aff) {
948 		u64 offset = ptr - region->redist_base;
949 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
950 		gic_data_rdist_rd_base() = ptr;
951 		gic_data_rdist()->phys_base = region->phys_base + offset;
952 
953 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
954 			smp_processor_id(), mpidr,
955 			(int)(region - gic_data.redist_regions),
956 			&gic_data_rdist()->phys_base);
957 		return 0;
958 	}
959 
960 	/* Try next one */
961 	return 1;
962 }
963 
964 static int gic_populate_rdist(void)
965 {
966 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
967 		return 0;
968 
969 	/* We couldn't even deal with ourselves... */
970 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
971 	     smp_processor_id(),
972 	     (unsigned long)cpu_logical_map(smp_processor_id()));
973 	return -ENODEV;
974 }
975 
976 static int __gic_update_rdist_properties(struct redist_region *region,
977 					 void __iomem *ptr)
978 {
979 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
980 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
981 
982 	/* Boot-time cleanup */
983 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
984 		u64 val;
985 
986 		/* Deactivate any present vPE */
987 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
988 		if (val & GICR_VPENDBASER_Valid)
989 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
990 					      ptr + SZ_128K + GICR_VPENDBASER);
991 
992 		/* Mark the VPE table as invalid */
993 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
994 		val &= ~GICR_VPROPBASER_4_1_VALID;
995 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
996 	}
997 
998 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
999 
1000 	/*
1001 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1002 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1003 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1004 	 *
1005 	 * These are 3 different ways to express the same thing, depending
1006 	 * on the revision of the architecture and its relaxations over
1007 	 * time. Just group them under the 'direct_lpi' banner.
1008 	 */
1009 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1010 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1011 					   !!(ctlr & GICR_CTLR_IR) |
1012 					   gic_data.rdists.has_rvpeid);
1013 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1014 
1015 	/* Detect non-sensical configurations */
1016 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1017 		gic_data.rdists.has_direct_lpi = false;
1018 		gic_data.rdists.has_vlpis = false;
1019 		gic_data.rdists.has_rvpeid = false;
1020 	}
1021 
1022 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1023 
1024 	return 1;
1025 }
1026 
1027 static void gic_update_rdist_properties(void)
1028 {
1029 	gic_data.ppi_nr = UINT_MAX;
1030 	gic_iterate_rdists(__gic_update_rdist_properties);
1031 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1032 		gic_data.ppi_nr = 0;
1033 	pr_info("GICv3 features: %d PPIs%s%s\n",
1034 		gic_data.ppi_nr,
1035 		gic_data.has_rss ? ", RSS" : "",
1036 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1037 
1038 	if (gic_data.rdists.has_vlpis)
1039 		pr_info("GICv4 features: %s%s%s\n",
1040 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1041 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1042 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1043 }
1044 
1045 /* Check whether it's single security state view */
1046 static inline bool gic_dist_security_disabled(void)
1047 {
1048 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1049 }
1050 
1051 static void gic_cpu_sys_reg_init(void)
1052 {
1053 	int i, cpu = smp_processor_id();
1054 	u64 mpidr = cpu_logical_map(cpu);
1055 	u64 need_rss = MPIDR_RS(mpidr);
1056 	bool group0;
1057 	u32 pribits;
1058 
1059 	/*
1060 	 * Need to check that the SRE bit has actually been set. If
1061 	 * not, it means that SRE is disabled at EL2. We're going to
1062 	 * die painfully, and there is nothing we can do about it.
1063 	 *
1064 	 * Kindly inform the luser.
1065 	 */
1066 	if (!gic_enable_sre())
1067 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1068 
1069 	pribits = gic_get_pribits();
1070 
1071 	group0 = gic_has_group0();
1072 
1073 	/* Set priority mask register */
1074 	if (!gic_prio_masking_enabled()) {
1075 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1076 	} else if (gic_supports_nmi()) {
1077 		/*
1078 		 * Mismatch configuration with boot CPU, the system is likely
1079 		 * to die as interrupt masking will not work properly on all
1080 		 * CPUs
1081 		 *
1082 		 * The boot CPU calls this function before enabling NMI support,
1083 		 * and as a result we'll never see this warning in the boot path
1084 		 * for that CPU.
1085 		 */
1086 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1087 			WARN_ON(!group0 || gic_dist_security_disabled());
1088 		else
1089 			WARN_ON(group0 && !gic_dist_security_disabled());
1090 	}
1091 
1092 	/*
1093 	 * Some firmwares hand over to the kernel with the BPR changed from
1094 	 * its reset value (and with a value large enough to prevent
1095 	 * any pre-emptive interrupts from working at all). Writing a zero
1096 	 * to BPR restores is reset value.
1097 	 */
1098 	gic_write_bpr1(0);
1099 
1100 	if (static_branch_likely(&supports_deactivate_key)) {
1101 		/* EOI drops priority only (mode 1) */
1102 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1103 	} else {
1104 		/* EOI deactivates interrupt too (mode 0) */
1105 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1106 	}
1107 
1108 	/* Always whack Group0 before Group1 */
1109 	if (group0) {
1110 		switch(pribits) {
1111 		case 8:
1112 		case 7:
1113 			write_gicreg(0, ICC_AP0R3_EL1);
1114 			write_gicreg(0, ICC_AP0R2_EL1);
1115 			fallthrough;
1116 		case 6:
1117 			write_gicreg(0, ICC_AP0R1_EL1);
1118 			fallthrough;
1119 		case 5:
1120 		case 4:
1121 			write_gicreg(0, ICC_AP0R0_EL1);
1122 		}
1123 
1124 		isb();
1125 	}
1126 
1127 	switch(pribits) {
1128 	case 8:
1129 	case 7:
1130 		write_gicreg(0, ICC_AP1R3_EL1);
1131 		write_gicreg(0, ICC_AP1R2_EL1);
1132 		fallthrough;
1133 	case 6:
1134 		write_gicreg(0, ICC_AP1R1_EL1);
1135 		fallthrough;
1136 	case 5:
1137 	case 4:
1138 		write_gicreg(0, ICC_AP1R0_EL1);
1139 	}
1140 
1141 	isb();
1142 
1143 	/* ... and let's hit the road... */
1144 	gic_write_grpen1(1);
1145 
1146 	/* Keep the RSS capability status in per_cpu variable */
1147 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1148 
1149 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1150 	for_each_online_cpu(i) {
1151 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1152 
1153 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1154 		if (need_rss && (!have_rss))
1155 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1156 				cpu, (unsigned long)mpidr,
1157 				i, (unsigned long)cpu_logical_map(i));
1158 	}
1159 
1160 	/**
1161 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1162 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1163 	 * UNPREDICTABLE choice of :
1164 	 *   - The write is ignored.
1165 	 *   - The RS field is treated as 0.
1166 	 */
1167 	if (need_rss && (!gic_data.has_rss))
1168 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1169 }
1170 
1171 static bool gicv3_nolpi;
1172 
1173 static int __init gicv3_nolpi_cfg(char *buf)
1174 {
1175 	return kstrtobool(buf, &gicv3_nolpi);
1176 }
1177 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1178 
1179 static int gic_dist_supports_lpis(void)
1180 {
1181 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1182 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1183 		!gicv3_nolpi);
1184 }
1185 
1186 static void gic_cpu_init(void)
1187 {
1188 	void __iomem *rbase;
1189 	int i;
1190 
1191 	/* Register ourselves with the rest of the world */
1192 	if (gic_populate_rdist())
1193 		return;
1194 
1195 	gic_enable_redist(true);
1196 
1197 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1198 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1199 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1200 	     smp_processor_id());
1201 
1202 	rbase = gic_data_rdist_sgi_base();
1203 
1204 	/* Configure SGIs/PPIs as non-secure Group-1 */
1205 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1206 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1207 
1208 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1209 
1210 	/* initialise system registers */
1211 	gic_cpu_sys_reg_init();
1212 }
1213 
1214 #ifdef CONFIG_SMP
1215 
1216 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1217 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1218 
1219 static int gic_starting_cpu(unsigned int cpu)
1220 {
1221 	gic_cpu_init();
1222 
1223 	if (gic_dist_supports_lpis())
1224 		its_cpu_init();
1225 
1226 	return 0;
1227 }
1228 
1229 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1230 				   unsigned long cluster_id)
1231 {
1232 	int next_cpu, cpu = *base_cpu;
1233 	unsigned long mpidr = cpu_logical_map(cpu);
1234 	u16 tlist = 0;
1235 
1236 	while (cpu < nr_cpu_ids) {
1237 		tlist |= 1 << (mpidr & 0xf);
1238 
1239 		next_cpu = cpumask_next(cpu, mask);
1240 		if (next_cpu >= nr_cpu_ids)
1241 			goto out;
1242 		cpu = next_cpu;
1243 
1244 		mpidr = cpu_logical_map(cpu);
1245 
1246 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1247 			cpu--;
1248 			goto out;
1249 		}
1250 	}
1251 out:
1252 	*base_cpu = cpu;
1253 	return tlist;
1254 }
1255 
1256 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1257 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1258 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1259 
1260 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1261 {
1262 	u64 val;
1263 
1264 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1265 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1266 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1267 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1268 	       MPIDR_TO_SGI_RS(cluster_id)		|
1269 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1270 
1271 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1272 	gic_write_sgi1r(val);
1273 }
1274 
1275 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1276 {
1277 	int cpu;
1278 
1279 	if (WARN_ON(d->hwirq >= 16))
1280 		return;
1281 
1282 	/*
1283 	 * Ensure that stores to Normal memory are visible to the
1284 	 * other CPUs before issuing the IPI.
1285 	 */
1286 	dsb(ishst);
1287 
1288 	for_each_cpu(cpu, mask) {
1289 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1290 		u16 tlist;
1291 
1292 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1293 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1294 	}
1295 
1296 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1297 	isb();
1298 }
1299 
1300 static void __init gic_smp_init(void)
1301 {
1302 	struct irq_fwspec sgi_fwspec = {
1303 		.fwnode		= gic_data.fwnode,
1304 		.param_count	= 1,
1305 	};
1306 	int base_sgi;
1307 
1308 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1309 				  "irqchip/arm/gicv3:starting",
1310 				  gic_starting_cpu, NULL);
1311 
1312 	/* Register all 8 non-secure SGIs */
1313 	base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1314 					   NUMA_NO_NODE, &sgi_fwspec,
1315 					   false, NULL);
1316 	if (WARN_ON(base_sgi <= 0))
1317 		return;
1318 
1319 	set_smp_ipi_range(base_sgi, 8);
1320 }
1321 
1322 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1323 			    bool force)
1324 {
1325 	unsigned int cpu;
1326 	u32 offset, index;
1327 	void __iomem *reg;
1328 	int enabled;
1329 	u64 val;
1330 
1331 	if (force)
1332 		cpu = cpumask_first(mask_val);
1333 	else
1334 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1335 
1336 	if (cpu >= nr_cpu_ids)
1337 		return -EINVAL;
1338 
1339 	if (gic_irq_in_rdist(d))
1340 		return -EINVAL;
1341 
1342 	/* If interrupt was enabled, disable it first */
1343 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1344 	if (enabled)
1345 		gic_mask_irq(d);
1346 
1347 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1348 	reg = gic_dist_base(d) + offset + (index * 8);
1349 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1350 
1351 	gic_write_irouter(val, reg);
1352 
1353 	/*
1354 	 * If the interrupt was enabled, enabled it again. Otherwise,
1355 	 * just wait for the distributor to have digested our changes.
1356 	 */
1357 	if (enabled)
1358 		gic_unmask_irq(d);
1359 
1360 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1361 
1362 	return IRQ_SET_MASK_OK_DONE;
1363 }
1364 #else
1365 #define gic_set_affinity	NULL
1366 #define gic_ipi_send_mask	NULL
1367 #define gic_smp_init()		do { } while(0)
1368 #endif
1369 
1370 static int gic_retrigger(struct irq_data *data)
1371 {
1372 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1373 }
1374 
1375 #ifdef CONFIG_CPU_PM
1376 static int gic_cpu_pm_notifier(struct notifier_block *self,
1377 			       unsigned long cmd, void *v)
1378 {
1379 	if (cmd == CPU_PM_EXIT) {
1380 		if (gic_dist_security_disabled())
1381 			gic_enable_redist(true);
1382 		gic_cpu_sys_reg_init();
1383 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1384 		gic_write_grpen1(0);
1385 		gic_enable_redist(false);
1386 	}
1387 	return NOTIFY_OK;
1388 }
1389 
1390 static struct notifier_block gic_cpu_pm_notifier_block = {
1391 	.notifier_call = gic_cpu_pm_notifier,
1392 };
1393 
1394 static void gic_cpu_pm_init(void)
1395 {
1396 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1397 }
1398 
1399 #else
1400 static inline void gic_cpu_pm_init(void) { }
1401 #endif /* CONFIG_CPU_PM */
1402 
1403 static struct irq_chip gic_chip = {
1404 	.name			= "GICv3",
1405 	.irq_mask		= gic_mask_irq,
1406 	.irq_unmask		= gic_unmask_irq,
1407 	.irq_eoi		= gic_eoi_irq,
1408 	.irq_set_type		= gic_set_type,
1409 	.irq_set_affinity	= gic_set_affinity,
1410 	.irq_retrigger          = gic_retrigger,
1411 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1412 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1413 	.irq_nmi_setup		= gic_irq_nmi_setup,
1414 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1415 	.ipi_send_mask		= gic_ipi_send_mask,
1416 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1417 				  IRQCHIP_SKIP_SET_WAKE |
1418 				  IRQCHIP_MASK_ON_SUSPEND,
1419 };
1420 
1421 static struct irq_chip gic_eoimode1_chip = {
1422 	.name			= "GICv3",
1423 	.irq_mask		= gic_eoimode1_mask_irq,
1424 	.irq_unmask		= gic_unmask_irq,
1425 	.irq_eoi		= gic_eoimode1_eoi_irq,
1426 	.irq_set_type		= gic_set_type,
1427 	.irq_set_affinity	= gic_set_affinity,
1428 	.irq_retrigger          = gic_retrigger,
1429 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1430 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1431 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1432 	.irq_nmi_setup		= gic_irq_nmi_setup,
1433 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1434 	.ipi_send_mask		= gic_ipi_send_mask,
1435 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1436 				  IRQCHIP_SKIP_SET_WAKE |
1437 				  IRQCHIP_MASK_ON_SUSPEND,
1438 };
1439 
1440 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1441 			      irq_hw_number_t hw)
1442 {
1443 	struct irq_chip *chip = &gic_chip;
1444 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1445 
1446 	if (static_branch_likely(&supports_deactivate_key))
1447 		chip = &gic_eoimode1_chip;
1448 
1449 	switch (__get_intid_range(hw)) {
1450 	case SGI_RANGE:
1451 	case PPI_RANGE:
1452 	case EPPI_RANGE:
1453 		irq_set_percpu_devid(irq);
1454 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1455 				    handle_percpu_devid_irq, NULL, NULL);
1456 		break;
1457 
1458 	case SPI_RANGE:
1459 	case ESPI_RANGE:
1460 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1461 				    handle_fasteoi_irq, NULL, NULL);
1462 		irq_set_probe(irq);
1463 		irqd_set_single_target(irqd);
1464 		break;
1465 
1466 	case LPI_RANGE:
1467 		if (!gic_dist_supports_lpis())
1468 			return -EPERM;
1469 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1470 				    handle_fasteoi_irq, NULL, NULL);
1471 		break;
1472 
1473 	default:
1474 		return -EPERM;
1475 	}
1476 
1477 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1478 	irqd_set_handle_enforce_irqctx(irqd);
1479 	return 0;
1480 }
1481 
1482 static int gic_irq_domain_translate(struct irq_domain *d,
1483 				    struct irq_fwspec *fwspec,
1484 				    unsigned long *hwirq,
1485 				    unsigned int *type)
1486 {
1487 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1488 		*hwirq = fwspec->param[0];
1489 		*type = IRQ_TYPE_EDGE_RISING;
1490 		return 0;
1491 	}
1492 
1493 	if (is_of_node(fwspec->fwnode)) {
1494 		if (fwspec->param_count < 3)
1495 			return -EINVAL;
1496 
1497 		switch (fwspec->param[0]) {
1498 		case 0:			/* SPI */
1499 			*hwirq = fwspec->param[1] + 32;
1500 			break;
1501 		case 1:			/* PPI */
1502 			*hwirq = fwspec->param[1] + 16;
1503 			break;
1504 		case 2:			/* ESPI */
1505 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1506 			break;
1507 		case 3:			/* EPPI */
1508 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1509 			break;
1510 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1511 			*hwirq = fwspec->param[1];
1512 			break;
1513 		case GIC_IRQ_TYPE_PARTITION:
1514 			*hwirq = fwspec->param[1];
1515 			if (fwspec->param[1] >= 16)
1516 				*hwirq += EPPI_BASE_INTID - 16;
1517 			else
1518 				*hwirq += 16;
1519 			break;
1520 		default:
1521 			return -EINVAL;
1522 		}
1523 
1524 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1525 
1526 		/*
1527 		 * Make it clear that broken DTs are... broken.
1528 		 * Partitioned PPIs are an unfortunate exception.
1529 		 */
1530 		WARN_ON(*type == IRQ_TYPE_NONE &&
1531 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1532 		return 0;
1533 	}
1534 
1535 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1536 		if(fwspec->param_count != 2)
1537 			return -EINVAL;
1538 
1539 		if (fwspec->param[0] < 16) {
1540 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1541 			       fwspec->param[0]);
1542 			return -EINVAL;
1543 		}
1544 
1545 		*hwirq = fwspec->param[0];
1546 		*type = fwspec->param[1];
1547 
1548 		WARN_ON(*type == IRQ_TYPE_NONE);
1549 		return 0;
1550 	}
1551 
1552 	return -EINVAL;
1553 }
1554 
1555 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1556 				unsigned int nr_irqs, void *arg)
1557 {
1558 	int i, ret;
1559 	irq_hw_number_t hwirq;
1560 	unsigned int type = IRQ_TYPE_NONE;
1561 	struct irq_fwspec *fwspec = arg;
1562 
1563 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1564 	if (ret)
1565 		return ret;
1566 
1567 	for (i = 0; i < nr_irqs; i++) {
1568 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1569 		if (ret)
1570 			return ret;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1577 				unsigned int nr_irqs)
1578 {
1579 	int i;
1580 
1581 	for (i = 0; i < nr_irqs; i++) {
1582 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1583 		irq_set_handler(virq + i, NULL);
1584 		irq_domain_reset_irq_data(d);
1585 	}
1586 }
1587 
1588 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1589 				      irq_hw_number_t hwirq)
1590 {
1591 	enum gic_intid_range range;
1592 
1593 	if (!gic_data.ppi_descs)
1594 		return false;
1595 
1596 	if (!is_of_node(fwspec->fwnode))
1597 		return false;
1598 
1599 	if (fwspec->param_count < 4 || !fwspec->param[3])
1600 		return false;
1601 
1602 	range = __get_intid_range(hwirq);
1603 	if (range != PPI_RANGE && range != EPPI_RANGE)
1604 		return false;
1605 
1606 	return true;
1607 }
1608 
1609 static int gic_irq_domain_select(struct irq_domain *d,
1610 				 struct irq_fwspec *fwspec,
1611 				 enum irq_domain_bus_token bus_token)
1612 {
1613 	unsigned int type, ret, ppi_idx;
1614 	irq_hw_number_t hwirq;
1615 
1616 	/* Not for us */
1617         if (fwspec->fwnode != d->fwnode)
1618 		return 0;
1619 
1620 	/* If this is not DT, then we have a single domain */
1621 	if (!is_of_node(fwspec->fwnode))
1622 		return 1;
1623 
1624 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1625 	if (WARN_ON_ONCE(ret))
1626 		return 0;
1627 
1628 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1629 		return d == gic_data.domain;
1630 
1631 	/*
1632 	 * If this is a PPI and we have a 4th (non-null) parameter,
1633 	 * then we need to match the partition domain.
1634 	 */
1635 	ppi_idx = __gic_get_ppi_index(hwirq);
1636 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1637 }
1638 
1639 static const struct irq_domain_ops gic_irq_domain_ops = {
1640 	.translate = gic_irq_domain_translate,
1641 	.alloc = gic_irq_domain_alloc,
1642 	.free = gic_irq_domain_free,
1643 	.select = gic_irq_domain_select,
1644 };
1645 
1646 static int partition_domain_translate(struct irq_domain *d,
1647 				      struct irq_fwspec *fwspec,
1648 				      unsigned long *hwirq,
1649 				      unsigned int *type)
1650 {
1651 	unsigned long ppi_intid;
1652 	struct device_node *np;
1653 	unsigned int ppi_idx;
1654 	int ret;
1655 
1656 	if (!gic_data.ppi_descs)
1657 		return -ENOMEM;
1658 
1659 	np = of_find_node_by_phandle(fwspec->param[3]);
1660 	if (WARN_ON(!np))
1661 		return -EINVAL;
1662 
1663 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1664 	if (WARN_ON_ONCE(ret))
1665 		return 0;
1666 
1667 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1668 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1669 				     of_node_to_fwnode(np));
1670 	if (ret < 0)
1671 		return ret;
1672 
1673 	*hwirq = ret;
1674 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1675 
1676 	return 0;
1677 }
1678 
1679 static const struct irq_domain_ops partition_domain_ops = {
1680 	.translate = partition_domain_translate,
1681 	.select = gic_irq_domain_select,
1682 };
1683 
1684 static bool gic_enable_quirk_msm8996(void *data)
1685 {
1686 	struct gic_chip_data *d = data;
1687 
1688 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1689 
1690 	return true;
1691 }
1692 
1693 static bool gic_enable_quirk_cavium_38539(void *data)
1694 {
1695 	struct gic_chip_data *d = data;
1696 
1697 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1698 
1699 	return true;
1700 }
1701 
1702 static bool gic_enable_quirk_hip06_07(void *data)
1703 {
1704 	struct gic_chip_data *d = data;
1705 
1706 	/*
1707 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1708 	 * not being an actual ARM implementation). The saving grace is
1709 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1710 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1711 	 * have ESPI. In both cases, put them right.
1712 	 */
1713 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1714 		/* Zero both ESPI and the RES0 field next to it... */
1715 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1716 		return true;
1717 	}
1718 
1719 	return false;
1720 }
1721 
1722 static const struct gic_quirk gic_quirks[] = {
1723 	{
1724 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1725 		.compatible = "qcom,msm8996-gic-v3",
1726 		.init	= gic_enable_quirk_msm8996,
1727 	},
1728 	{
1729 		.desc	= "GICv3: HIP06 erratum 161010803",
1730 		.iidr	= 0x0204043b,
1731 		.mask	= 0xffffffff,
1732 		.init	= gic_enable_quirk_hip06_07,
1733 	},
1734 	{
1735 		.desc	= "GICv3: HIP07 erratum 161010803",
1736 		.iidr	= 0x00000000,
1737 		.mask	= 0xffffffff,
1738 		.init	= gic_enable_quirk_hip06_07,
1739 	},
1740 	{
1741 		/*
1742 		 * Reserved register accesses generate a Synchronous
1743 		 * External Abort. This erratum applies to:
1744 		 * - ThunderX: CN88xx
1745 		 * - OCTEON TX: CN83xx, CN81xx
1746 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1747 		 */
1748 		.desc	= "GICv3: Cavium erratum 38539",
1749 		.iidr	= 0xa000034c,
1750 		.mask	= 0xe8f00fff,
1751 		.init	= gic_enable_quirk_cavium_38539,
1752 	},
1753 	{
1754 	}
1755 };
1756 
1757 static void gic_enable_nmi_support(void)
1758 {
1759 	int i;
1760 
1761 	if (!gic_prio_masking_enabled())
1762 		return;
1763 
1764 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1765 	if (!ppi_nmi_refs)
1766 		return;
1767 
1768 	for (i = 0; i < gic_data.ppi_nr; i++)
1769 		refcount_set(&ppi_nmi_refs[i], 0);
1770 
1771 	/*
1772 	 * Linux itself doesn't use 1:N distribution, so has no need to
1773 	 * set PMHE. The only reason to have it set is if EL3 requires it
1774 	 * (and we can't change it).
1775 	 */
1776 	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1777 		static_branch_enable(&gic_pmr_sync);
1778 
1779 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1780 		static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1781 
1782 	/*
1783 	 * How priority values are used by the GIC depends on two things:
1784 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1785 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1786 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1787 	 * ICC_PMR_EL1 register and the priority that software assigns to
1788 	 * interrupts:
1789 	 *
1790 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1791 	 * -----------------------------------------------------------
1792 	 *      1       |      -      |  unchanged  |    unchanged
1793 	 * -----------------------------------------------------------
1794 	 *      0       |      1      |  non-secure |    non-secure
1795 	 * -----------------------------------------------------------
1796 	 *      0       |      0      |  unchanged  |    non-secure
1797 	 *
1798 	 * where non-secure means that the value is right-shifted by one and the
1799 	 * MSB bit set, to make it fit in the non-secure priority range.
1800 	 *
1801 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1802 	 * are both either modified or unchanged, we can use the same set of
1803 	 * priorities.
1804 	 *
1805 	 * In the last case, where only the interrupt priorities are modified to
1806 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1807 	 * and the rest of the values that we use remain unchanged.
1808 	 */
1809 	if (gic_has_group0() && !gic_dist_security_disabled())
1810 		static_branch_enable(&gic_nonsecure_priorities);
1811 
1812 	static_branch_enable(&supports_pseudo_nmis);
1813 
1814 	if (static_branch_likely(&supports_deactivate_key))
1815 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1816 	else
1817 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1818 }
1819 
1820 static int __init gic_init_bases(void __iomem *dist_base,
1821 				 struct redist_region *rdist_regs,
1822 				 u32 nr_redist_regions,
1823 				 u64 redist_stride,
1824 				 struct fwnode_handle *handle)
1825 {
1826 	u32 typer;
1827 	int err;
1828 
1829 	if (!is_hyp_mode_available())
1830 		static_branch_disable(&supports_deactivate_key);
1831 
1832 	if (static_branch_likely(&supports_deactivate_key))
1833 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1834 
1835 	gic_data.fwnode = handle;
1836 	gic_data.dist_base = dist_base;
1837 	gic_data.redist_regions = rdist_regs;
1838 	gic_data.nr_redist_regions = nr_redist_regions;
1839 	gic_data.redist_stride = redist_stride;
1840 
1841 	/*
1842 	 * Find out how many interrupts are supported.
1843 	 */
1844 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1845 	gic_data.rdists.gicd_typer = typer;
1846 
1847 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1848 			  gic_quirks, &gic_data);
1849 
1850 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1851 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1852 
1853 	/*
1854 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1855 	 * architecture spec (which says that reserved registers are RES0).
1856 	 */
1857 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1858 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1859 
1860 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1861 						 &gic_data);
1862 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1863 	gic_data.rdists.has_rvpeid = true;
1864 	gic_data.rdists.has_vlpis = true;
1865 	gic_data.rdists.has_direct_lpi = true;
1866 	gic_data.rdists.has_vpend_valid_dirty = true;
1867 
1868 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1869 		err = -ENOMEM;
1870 		goto out_free;
1871 	}
1872 
1873 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1874 
1875 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1876 
1877 	if (typer & GICD_TYPER_MBIS) {
1878 		err = mbi_init(handle, gic_data.domain);
1879 		if (err)
1880 			pr_err("Failed to initialize MBIs\n");
1881 	}
1882 
1883 	set_handle_irq(gic_handle_irq);
1884 
1885 	gic_update_rdist_properties();
1886 
1887 	gic_dist_init();
1888 	gic_cpu_init();
1889 	gic_smp_init();
1890 	gic_cpu_pm_init();
1891 
1892 	if (gic_dist_supports_lpis()) {
1893 		its_init(handle, &gic_data.rdists, gic_data.domain);
1894 		its_cpu_init();
1895 		its_lpi_memreserve_init();
1896 	} else {
1897 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1898 			gicv2m_init(handle, gic_data.domain);
1899 	}
1900 
1901 	gic_enable_nmi_support();
1902 
1903 	return 0;
1904 
1905 out_free:
1906 	if (gic_data.domain)
1907 		irq_domain_remove(gic_data.domain);
1908 	free_percpu(gic_data.rdists.rdist);
1909 	return err;
1910 }
1911 
1912 static int __init gic_validate_dist_version(void __iomem *dist_base)
1913 {
1914 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1915 
1916 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1917 		return -ENODEV;
1918 
1919 	return 0;
1920 }
1921 
1922 /* Create all possible partitions at boot time */
1923 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1924 {
1925 	struct device_node *parts_node, *child_part;
1926 	int part_idx = 0, i;
1927 	int nr_parts;
1928 	struct partition_affinity *parts;
1929 
1930 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1931 	if (!parts_node)
1932 		return;
1933 
1934 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1935 	if (!gic_data.ppi_descs)
1936 		goto out_put_node;
1937 
1938 	nr_parts = of_get_child_count(parts_node);
1939 
1940 	if (!nr_parts)
1941 		goto out_put_node;
1942 
1943 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1944 	if (WARN_ON(!parts))
1945 		goto out_put_node;
1946 
1947 	for_each_child_of_node(parts_node, child_part) {
1948 		struct partition_affinity *part;
1949 		int n;
1950 
1951 		part = &parts[part_idx];
1952 
1953 		part->partition_id = of_node_to_fwnode(child_part);
1954 
1955 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1956 			child_part, part_idx);
1957 
1958 		n = of_property_count_elems_of_size(child_part, "affinity",
1959 						    sizeof(u32));
1960 		WARN_ON(n <= 0);
1961 
1962 		for (i = 0; i < n; i++) {
1963 			int err, cpu;
1964 			u32 cpu_phandle;
1965 			struct device_node *cpu_node;
1966 
1967 			err = of_property_read_u32_index(child_part, "affinity",
1968 							 i, &cpu_phandle);
1969 			if (WARN_ON(err))
1970 				continue;
1971 
1972 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1973 			if (WARN_ON(!cpu_node))
1974 				continue;
1975 
1976 			cpu = of_cpu_node_to_id(cpu_node);
1977 			if (WARN_ON(cpu < 0)) {
1978 				of_node_put(cpu_node);
1979 				continue;
1980 			}
1981 
1982 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1983 
1984 			cpumask_set_cpu(cpu, &part->mask);
1985 			of_node_put(cpu_node);
1986 		}
1987 
1988 		pr_cont("}\n");
1989 		part_idx++;
1990 	}
1991 
1992 	for (i = 0; i < gic_data.ppi_nr; i++) {
1993 		unsigned int irq;
1994 		struct partition_desc *desc;
1995 		struct irq_fwspec ppi_fwspec = {
1996 			.fwnode		= gic_data.fwnode,
1997 			.param_count	= 3,
1998 			.param		= {
1999 				[0]	= GIC_IRQ_TYPE_PARTITION,
2000 				[1]	= i,
2001 				[2]	= IRQ_TYPE_NONE,
2002 			},
2003 		};
2004 
2005 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2006 		if (WARN_ON(!irq))
2007 			continue;
2008 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2009 					     irq, &partition_domain_ops);
2010 		if (WARN_ON(!desc))
2011 			continue;
2012 
2013 		gic_data.ppi_descs[i] = desc;
2014 	}
2015 
2016 out_put_node:
2017 	of_node_put(parts_node);
2018 }
2019 
2020 static void __init gic_of_setup_kvm_info(struct device_node *node)
2021 {
2022 	int ret;
2023 	struct resource r;
2024 	u32 gicv_idx;
2025 
2026 	gic_v3_kvm_info.type = GIC_V3;
2027 
2028 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2029 	if (!gic_v3_kvm_info.maint_irq)
2030 		return;
2031 
2032 	if (of_property_read_u32(node, "#redistributor-regions",
2033 				 &gicv_idx))
2034 		gicv_idx = 1;
2035 
2036 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2037 	ret = of_address_to_resource(node, gicv_idx, &r);
2038 	if (!ret)
2039 		gic_v3_kvm_info.vcpu = r;
2040 
2041 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2042 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2043 	vgic_set_kvm_info(&gic_v3_kvm_info);
2044 }
2045 
2046 static void gic_request_region(resource_size_t base, resource_size_t size,
2047 			       const char *name)
2048 {
2049 	if (!request_mem_region(base, size, name))
2050 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2051 			     name, &base);
2052 }
2053 
2054 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2055 				  const char *name, struct resource *res)
2056 {
2057 	void __iomem *base;
2058 	int ret;
2059 
2060 	ret = of_address_to_resource(node, idx, res);
2061 	if (ret)
2062 		return IOMEM_ERR_PTR(ret);
2063 
2064 	gic_request_region(res->start, resource_size(res), name);
2065 	base = of_iomap(node, idx);
2066 
2067 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2068 }
2069 
2070 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2071 {
2072 	void __iomem *dist_base;
2073 	struct redist_region *rdist_regs;
2074 	struct resource res;
2075 	u64 redist_stride;
2076 	u32 nr_redist_regions;
2077 	int err, i;
2078 
2079 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2080 	if (IS_ERR(dist_base)) {
2081 		pr_err("%pOF: unable to map gic dist registers\n", node);
2082 		return PTR_ERR(dist_base);
2083 	}
2084 
2085 	err = gic_validate_dist_version(dist_base);
2086 	if (err) {
2087 		pr_err("%pOF: no distributor detected, giving up\n", node);
2088 		goto out_unmap_dist;
2089 	}
2090 
2091 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2092 		nr_redist_regions = 1;
2093 
2094 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2095 			     GFP_KERNEL);
2096 	if (!rdist_regs) {
2097 		err = -ENOMEM;
2098 		goto out_unmap_dist;
2099 	}
2100 
2101 	for (i = 0; i < nr_redist_regions; i++) {
2102 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2103 		if (IS_ERR(rdist_regs[i].redist_base)) {
2104 			pr_err("%pOF: couldn't map region %d\n", node, i);
2105 			err = -ENODEV;
2106 			goto out_unmap_rdist;
2107 		}
2108 		rdist_regs[i].phys_base = res.start;
2109 	}
2110 
2111 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2112 		redist_stride = 0;
2113 
2114 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2115 
2116 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2117 			     redist_stride, &node->fwnode);
2118 	if (err)
2119 		goto out_unmap_rdist;
2120 
2121 	gic_populate_ppi_partitions(node);
2122 
2123 	if (static_branch_likely(&supports_deactivate_key))
2124 		gic_of_setup_kvm_info(node);
2125 	return 0;
2126 
2127 out_unmap_rdist:
2128 	for (i = 0; i < nr_redist_regions; i++)
2129 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2130 			iounmap(rdist_regs[i].redist_base);
2131 	kfree(rdist_regs);
2132 out_unmap_dist:
2133 	iounmap(dist_base);
2134 	return err;
2135 }
2136 
2137 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2138 
2139 #ifdef CONFIG_ACPI
2140 static struct
2141 {
2142 	void __iomem *dist_base;
2143 	struct redist_region *redist_regs;
2144 	u32 nr_redist_regions;
2145 	bool single_redist;
2146 	int enabled_rdists;
2147 	u32 maint_irq;
2148 	int maint_irq_mode;
2149 	phys_addr_t vcpu_base;
2150 } acpi_data __initdata;
2151 
2152 static void __init
2153 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2154 {
2155 	static int count = 0;
2156 
2157 	acpi_data.redist_regs[count].phys_base = phys_base;
2158 	acpi_data.redist_regs[count].redist_base = redist_base;
2159 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2160 	count++;
2161 }
2162 
2163 static int __init
2164 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2165 			   const unsigned long end)
2166 {
2167 	struct acpi_madt_generic_redistributor *redist =
2168 			(struct acpi_madt_generic_redistributor *)header;
2169 	void __iomem *redist_base;
2170 
2171 	redist_base = ioremap(redist->base_address, redist->length);
2172 	if (!redist_base) {
2173 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2174 		return -ENOMEM;
2175 	}
2176 	gic_request_region(redist->base_address, redist->length, "GICR");
2177 
2178 	gic_acpi_register_redist(redist->base_address, redist_base);
2179 	return 0;
2180 }
2181 
2182 static int __init
2183 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2184 			 const unsigned long end)
2185 {
2186 	struct acpi_madt_generic_interrupt *gicc =
2187 				(struct acpi_madt_generic_interrupt *)header;
2188 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2189 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2190 	void __iomem *redist_base;
2191 
2192 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2193 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2194 		return 0;
2195 
2196 	redist_base = ioremap(gicc->gicr_base_address, size);
2197 	if (!redist_base)
2198 		return -ENOMEM;
2199 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2200 
2201 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2202 	return 0;
2203 }
2204 
2205 static int __init gic_acpi_collect_gicr_base(void)
2206 {
2207 	acpi_tbl_entry_handler redist_parser;
2208 	enum acpi_madt_type type;
2209 
2210 	if (acpi_data.single_redist) {
2211 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2212 		redist_parser = gic_acpi_parse_madt_gicc;
2213 	} else {
2214 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2215 		redist_parser = gic_acpi_parse_madt_redist;
2216 	}
2217 
2218 	/* Collect redistributor base addresses in GICR entries */
2219 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2220 		return 0;
2221 
2222 	pr_info("No valid GICR entries exist\n");
2223 	return -ENODEV;
2224 }
2225 
2226 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2227 				  const unsigned long end)
2228 {
2229 	/* Subtable presence means that redist exists, that's it */
2230 	return 0;
2231 }
2232 
2233 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2234 				      const unsigned long end)
2235 {
2236 	struct acpi_madt_generic_interrupt *gicc =
2237 				(struct acpi_madt_generic_interrupt *)header;
2238 
2239 	/*
2240 	 * If GICC is enabled and has valid gicr base address, then it means
2241 	 * GICR base is presented via GICC
2242 	 */
2243 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2244 		acpi_data.enabled_rdists++;
2245 		return 0;
2246 	}
2247 
2248 	/*
2249 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2250 	 * should not treat as errors, skip the entry instead of probe fail.
2251 	 */
2252 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2253 		return 0;
2254 
2255 	return -ENODEV;
2256 }
2257 
2258 static int __init gic_acpi_count_gicr_regions(void)
2259 {
2260 	int count;
2261 
2262 	/*
2263 	 * Count how many redistributor regions we have. It is not allowed
2264 	 * to mix redistributor description, GICR and GICC subtables have to be
2265 	 * mutually exclusive.
2266 	 */
2267 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2268 				      gic_acpi_match_gicr, 0);
2269 	if (count > 0) {
2270 		acpi_data.single_redist = false;
2271 		return count;
2272 	}
2273 
2274 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2275 				      gic_acpi_match_gicc, 0);
2276 	if (count > 0) {
2277 		acpi_data.single_redist = true;
2278 		count = acpi_data.enabled_rdists;
2279 	}
2280 
2281 	return count;
2282 }
2283 
2284 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2285 					   struct acpi_probe_entry *ape)
2286 {
2287 	struct acpi_madt_generic_distributor *dist;
2288 	int count;
2289 
2290 	dist = (struct acpi_madt_generic_distributor *)header;
2291 	if (dist->version != ape->driver_data)
2292 		return false;
2293 
2294 	/* We need to do that exercise anyway, the sooner the better */
2295 	count = gic_acpi_count_gicr_regions();
2296 	if (count <= 0)
2297 		return false;
2298 
2299 	acpi_data.nr_redist_regions = count;
2300 	return true;
2301 }
2302 
2303 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2304 						const unsigned long end)
2305 {
2306 	struct acpi_madt_generic_interrupt *gicc =
2307 		(struct acpi_madt_generic_interrupt *)header;
2308 	int maint_irq_mode;
2309 	static int first_madt = true;
2310 
2311 	/* Skip unusable CPUs */
2312 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2313 		return 0;
2314 
2315 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2316 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2317 
2318 	if (first_madt) {
2319 		first_madt = false;
2320 
2321 		acpi_data.maint_irq = gicc->vgic_interrupt;
2322 		acpi_data.maint_irq_mode = maint_irq_mode;
2323 		acpi_data.vcpu_base = gicc->gicv_base_address;
2324 
2325 		return 0;
2326 	}
2327 
2328 	/*
2329 	 * The maintenance interrupt and GICV should be the same for every CPU
2330 	 */
2331 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2332 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2333 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2334 		return -EINVAL;
2335 
2336 	return 0;
2337 }
2338 
2339 static bool __init gic_acpi_collect_virt_info(void)
2340 {
2341 	int count;
2342 
2343 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2344 				      gic_acpi_parse_virt_madt_gicc, 0);
2345 
2346 	return (count > 0);
2347 }
2348 
2349 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2350 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2351 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2352 
2353 static void __init gic_acpi_setup_kvm_info(void)
2354 {
2355 	int irq;
2356 
2357 	if (!gic_acpi_collect_virt_info()) {
2358 		pr_warn("Unable to get hardware information used for virtualization\n");
2359 		return;
2360 	}
2361 
2362 	gic_v3_kvm_info.type = GIC_V3;
2363 
2364 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2365 				acpi_data.maint_irq_mode,
2366 				ACPI_ACTIVE_HIGH);
2367 	if (irq <= 0)
2368 		return;
2369 
2370 	gic_v3_kvm_info.maint_irq = irq;
2371 
2372 	if (acpi_data.vcpu_base) {
2373 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2374 
2375 		vcpu->flags = IORESOURCE_MEM;
2376 		vcpu->start = acpi_data.vcpu_base;
2377 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2378 	}
2379 
2380 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2381 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2382 	vgic_set_kvm_info(&gic_v3_kvm_info);
2383 }
2384 
2385 static struct fwnode_handle *gsi_domain_handle;
2386 
2387 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2388 {
2389 	return gsi_domain_handle;
2390 }
2391 
2392 static int __init
2393 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2394 {
2395 	struct acpi_madt_generic_distributor *dist;
2396 	size_t size;
2397 	int i, err;
2398 
2399 	/* Get distributor base address */
2400 	dist = (struct acpi_madt_generic_distributor *)header;
2401 	acpi_data.dist_base = ioremap(dist->base_address,
2402 				      ACPI_GICV3_DIST_MEM_SIZE);
2403 	if (!acpi_data.dist_base) {
2404 		pr_err("Unable to map GICD registers\n");
2405 		return -ENOMEM;
2406 	}
2407 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2408 
2409 	err = gic_validate_dist_version(acpi_data.dist_base);
2410 	if (err) {
2411 		pr_err("No distributor detected at @%p, giving up\n",
2412 		       acpi_data.dist_base);
2413 		goto out_dist_unmap;
2414 	}
2415 
2416 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2417 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2418 	if (!acpi_data.redist_regs) {
2419 		err = -ENOMEM;
2420 		goto out_dist_unmap;
2421 	}
2422 
2423 	err = gic_acpi_collect_gicr_base();
2424 	if (err)
2425 		goto out_redist_unmap;
2426 
2427 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2428 	if (!gsi_domain_handle) {
2429 		err = -ENOMEM;
2430 		goto out_redist_unmap;
2431 	}
2432 
2433 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2434 			     acpi_data.nr_redist_regions, 0, gsi_domain_handle);
2435 	if (err)
2436 		goto out_fwhandle_free;
2437 
2438 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2439 
2440 	if (static_branch_likely(&supports_deactivate_key))
2441 		gic_acpi_setup_kvm_info();
2442 
2443 	return 0;
2444 
2445 out_fwhandle_free:
2446 	irq_domain_free_fwnode(gsi_domain_handle);
2447 out_redist_unmap:
2448 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2449 		if (acpi_data.redist_regs[i].redist_base)
2450 			iounmap(acpi_data.redist_regs[i].redist_base);
2451 	kfree(acpi_data.redist_regs);
2452 out_dist_unmap:
2453 	iounmap(acpi_data.dist_base);
2454 	return err;
2455 }
2456 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2457 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2458 		     gic_acpi_init);
2459 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2460 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2461 		     gic_acpi_init);
2462 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2463 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2464 		     gic_acpi_init);
2465 #endif
2466