xref: /linux/drivers/irqchip/irq-gic-v3.c (revision 6490dda55dcabbd5cf408387f932c9343a22c872)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kernel.h>
16 #include <linux/kstrtox.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/percpu.h>
21 #include <linux/refcount.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24 
25 #include <linux/irqchip.h>
26 #include <linux/irqchip/arm-gic-common.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/irqchip/arm-gic-v3-prio.h>
29 #include <linux/irqchip/irq-partition-percpu.h>
30 #include <linux/bitfield.h>
31 #include <linux/bits.h>
32 #include <linux/arm-smccc.h>
33 
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/smp_plat.h>
37 #include <asm/virt.h>
38 
39 #include "irq-gic-common.h"
40 
41 static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ;
42 static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI;
43 
44 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
45 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
46 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 2)
47 
48 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
49 
50 static struct cpumask broken_rdists __read_mostly __maybe_unused;
51 
52 struct redist_region {
53 	void __iomem		*redist_base;
54 	phys_addr_t		phys_base;
55 	bool			single_redist;
56 };
57 
58 struct gic_chip_data {
59 	struct fwnode_handle	*fwnode;
60 	phys_addr_t		dist_phys_base;
61 	void __iomem		*dist_base;
62 	struct redist_region	*redist_regions;
63 	struct rdists		rdists;
64 	struct irq_domain	*domain;
65 	u64			redist_stride;
66 	u32			nr_redist_regions;
67 	u64			flags;
68 	bool			has_rss;
69 	unsigned int		ppi_nr;
70 	struct partition_desc	**ppi_descs;
71 };
72 
73 #define T241_CHIPS_MAX		4
74 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
75 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
76 
77 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
78 
79 static struct gic_chip_data gic_data __read_mostly;
80 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
81 
82 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
83 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
84 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
85 
86 /*
87  * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
88  * are potentially stolen by the secure side. Some code, especially code dealing
89  * with hwirq IDs, is simplified by accounting for all 16.
90  */
91 #define SGI_NR		16
92 
93 /*
94  * The behaviours of RPR and PMR registers differ depending on the value of
95  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
96  * distributor and redistributors depends on whether security is enabled in the
97  * GIC.
98  *
99  * When security is enabled, non-secure priority values from the (re)distributor
100  * are presented to the GIC CPUIF as follow:
101  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
102  *
103  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
104  * EL1 are subject to a similar operation thus matching the priorities presented
105  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
106  * these values are unchanged by the GIC.
107  *
108  * see GICv3/GICv4 Architecture Specification (IHI0069D):
109  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
110  *   priorities.
111  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
112  *   interrupt.
113  */
114 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
115 
116 static u32 gic_get_pribits(void)
117 {
118 	u32 pribits;
119 
120 	pribits = gic_read_ctlr();
121 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
122 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
123 	pribits++;
124 
125 	return pribits;
126 }
127 
128 static bool gic_has_group0(void)
129 {
130 	u32 val;
131 	u32 old_pmr;
132 
133 	old_pmr = gic_read_pmr();
134 
135 	/*
136 	 * Let's find out if Group0 is under control of EL3 or not by
137 	 * setting the highest possible, non-zero priority in PMR.
138 	 *
139 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
140 	 * order for the CPU interface to set bit 7, and keep the
141 	 * actual priority in the non-secure range. In the process, it
142 	 * looses the least significant bit and the actual priority
143 	 * becomes 0x80. Reading it back returns 0, indicating that
144 	 * we're don't have access to Group0.
145 	 */
146 	gic_write_pmr(BIT(8 - gic_get_pribits()));
147 	val = gic_read_pmr();
148 
149 	gic_write_pmr(old_pmr);
150 
151 	return val != 0;
152 }
153 
154 static inline bool gic_dist_security_disabled(void)
155 {
156 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
157 }
158 
159 static bool cpus_have_security_disabled __ro_after_init;
160 static bool cpus_have_group0 __ro_after_init;
161 
162 static void __init gic_prio_init(void)
163 {
164 	cpus_have_security_disabled = gic_dist_security_disabled();
165 	cpus_have_group0 = gic_has_group0();
166 
167 	/*
168 	 * How priority values are used by the GIC depends on two things:
169 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
170 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
171 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
172 	 * way priorities are presented in ICC_PMR_EL1 and in the distributor:
173 	 *
174 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor
175 	 * -------------------------------------------------------
176 	 *      1       |      -      |  unchanged  |  unchanged
177 	 * -------------------------------------------------------
178 	 *      0       |      1      |  non-secure |  non-secure
179 	 * -------------------------------------------------------
180 	 *      0       |      0      |  unchanged  |  non-secure
181 	 *
182 	 * In the non-secure view reads and writes are modified:
183 	 *
184 	 * - A value written is right-shifted by one and the MSB is set,
185 	 *   forcing the priority into the non-secure range.
186 	 *
187 	 * - A value read is left-shifted by one.
188 	 *
189 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
190 	 * are both either modified or unchanged, we can use the same set of
191 	 * priorities.
192 	 *
193 	 * In the last case, where only the interrupt priorities are modified to
194 	 * be in the non-secure range, we program the non-secure values into
195 	 * the distributor to match the PMR values we want.
196 	 */
197 	if (cpus_have_group0 & !cpus_have_security_disabled) {
198 		dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq);
199 		dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi);
200 	}
201 
202 	pr_info("GICD_CTRL.DS=%d, SCR_EL3.FIQ=%d\n",
203 		cpus_have_security_disabled,
204 		!cpus_have_group0);
205 }
206 
207 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
208 static refcount_t *rdist_nmi_refs;
209 
210 static struct gic_kvm_info gic_v3_kvm_info __initdata;
211 static DEFINE_PER_CPU(bool, has_rss);
212 
213 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
214 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
215 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
216 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
217 
218 /* Our default, arbitrary priority value. Linux only uses one anyway. */
219 #define DEFAULT_PMR_VALUE	0xf0
220 
221 enum gic_intid_range {
222 	SGI_RANGE,
223 	PPI_RANGE,
224 	SPI_RANGE,
225 	EPPI_RANGE,
226 	ESPI_RANGE,
227 	LPI_RANGE,
228 	__INVALID_RANGE__
229 };
230 
231 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
232 {
233 	switch (hwirq) {
234 	case 0 ... 15:
235 		return SGI_RANGE;
236 	case 16 ... 31:
237 		return PPI_RANGE;
238 	case 32 ... 1019:
239 		return SPI_RANGE;
240 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
241 		return EPPI_RANGE;
242 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
243 		return ESPI_RANGE;
244 	case 8192 ... GENMASK(23, 0):
245 		return LPI_RANGE;
246 	default:
247 		return __INVALID_RANGE__;
248 	}
249 }
250 
251 static enum gic_intid_range get_intid_range(struct irq_data *d)
252 {
253 	return __get_intid_range(d->hwirq);
254 }
255 
256 static inline bool gic_irq_in_rdist(struct irq_data *d)
257 {
258 	switch (get_intid_range(d)) {
259 	case SGI_RANGE:
260 	case PPI_RANGE:
261 	case EPPI_RANGE:
262 		return true;
263 	default:
264 		return false;
265 	}
266 }
267 
268 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
269 {
270 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
271 		irq_hw_number_t hwirq = irqd_to_hwirq(d);
272 		u32 chip;
273 
274 		/*
275 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
276 		 * registers are directed to the chip that owns the SPI. The
277 		 * the alias region can also be used for writes to the
278 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
279 		 * for 320 {E}SPIs. Mappings for all 4 chips:
280 		 *    Chip0 = 32-351
281 		 *    Chip1 = 352-671
282 		 *    Chip2 = 672-991
283 		 *    Chip3 = 4096-4415
284 		 */
285 		switch (__get_intid_range(hwirq)) {
286 		case SPI_RANGE:
287 			chip = (hwirq - 32) / 320;
288 			break;
289 		case ESPI_RANGE:
290 			chip = 3;
291 			break;
292 		default:
293 			unreachable();
294 		}
295 		return t241_dist_base_alias[chip];
296 	}
297 
298 	return gic_data.dist_base;
299 }
300 
301 static inline void __iomem *gic_dist_base(struct irq_data *d)
302 {
303 	switch (get_intid_range(d)) {
304 	case SGI_RANGE:
305 	case PPI_RANGE:
306 	case EPPI_RANGE:
307 		/* SGI+PPI -> SGI_base for this CPU */
308 		return gic_data_rdist_sgi_base();
309 
310 	case SPI_RANGE:
311 	case ESPI_RANGE:
312 		/* SPI -> dist_base */
313 		return gic_data.dist_base;
314 
315 	default:
316 		return NULL;
317 	}
318 }
319 
320 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
321 {
322 	u32 val;
323 	int ret;
324 
325 	ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit),
326 						1, USEC_PER_SEC);
327 	if (ret == -ETIMEDOUT)
328 		pr_err_ratelimited("RWP timeout, gone fishing\n");
329 }
330 
331 /* Wait for completion of a distributor change */
332 static void gic_dist_wait_for_rwp(void)
333 {
334 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
335 }
336 
337 /* Wait for completion of a redistributor change */
338 static void gic_redist_wait_for_rwp(void)
339 {
340 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
341 }
342 
343 static void gic_enable_redist(bool enable)
344 {
345 	void __iomem *rbase;
346 	u32 val;
347 	int ret;
348 
349 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
350 		return;
351 
352 	rbase = gic_data_rdist_rd_base();
353 
354 	val = readl_relaxed(rbase + GICR_WAKER);
355 	if (enable)
356 		/* Wake up this CPU redistributor */
357 		val &= ~GICR_WAKER_ProcessorSleep;
358 	else
359 		val |= GICR_WAKER_ProcessorSleep;
360 	writel_relaxed(val, rbase + GICR_WAKER);
361 
362 	if (!enable) {		/* Check that GICR_WAKER is writeable */
363 		val = readl_relaxed(rbase + GICR_WAKER);
364 		if (!(val & GICR_WAKER_ProcessorSleep))
365 			return;	/* No PM support in this redistributor */
366 	}
367 
368 	ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val,
369 						enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep),
370 						1, USEC_PER_SEC);
371 	if (ret == -ETIMEDOUT) {
372 		pr_err_ratelimited("redistributor failed to %s...\n",
373 				   enable ? "wakeup" : "sleep");
374 	}
375 }
376 
377 /*
378  * Routines to disable, enable, EOI and route interrupts
379  */
380 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
381 {
382 	switch (get_intid_range(d)) {
383 	case SGI_RANGE:
384 	case PPI_RANGE:
385 	case SPI_RANGE:
386 		*index = d->hwirq;
387 		return offset;
388 	case EPPI_RANGE:
389 		/*
390 		 * Contrary to the ESPI range, the EPPI range is contiguous
391 		 * to the PPI range in the registers, so let's adjust the
392 		 * displacement accordingly. Consistency is overrated.
393 		 */
394 		*index = d->hwirq - EPPI_BASE_INTID + 32;
395 		return offset;
396 	case ESPI_RANGE:
397 		*index = d->hwirq - ESPI_BASE_INTID;
398 		switch (offset) {
399 		case GICD_ISENABLER:
400 			return GICD_ISENABLERnE;
401 		case GICD_ICENABLER:
402 			return GICD_ICENABLERnE;
403 		case GICD_ISPENDR:
404 			return GICD_ISPENDRnE;
405 		case GICD_ICPENDR:
406 			return GICD_ICPENDRnE;
407 		case GICD_ISACTIVER:
408 			return GICD_ISACTIVERnE;
409 		case GICD_ICACTIVER:
410 			return GICD_ICACTIVERnE;
411 		case GICD_IPRIORITYR:
412 			return GICD_IPRIORITYRnE;
413 		case GICD_ICFGR:
414 			return GICD_ICFGRnE;
415 		case GICD_IROUTER:
416 			return GICD_IROUTERnE;
417 		default:
418 			break;
419 		}
420 		break;
421 	default:
422 		break;
423 	}
424 
425 	WARN_ON(1);
426 	*index = d->hwirq;
427 	return offset;
428 }
429 
430 static int gic_peek_irq(struct irq_data *d, u32 offset)
431 {
432 	void __iomem *base;
433 	u32 index, mask;
434 
435 	offset = convert_offset_index(d, offset, &index);
436 	mask = 1 << (index % 32);
437 
438 	if (gic_irq_in_rdist(d))
439 		base = gic_data_rdist_sgi_base();
440 	else
441 		base = gic_dist_base_alias(d);
442 
443 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
444 }
445 
446 static void gic_poke_irq(struct irq_data *d, u32 offset)
447 {
448 	void __iomem *base;
449 	u32 index, mask;
450 
451 	offset = convert_offset_index(d, offset, &index);
452 	mask = 1 << (index % 32);
453 
454 	if (gic_irq_in_rdist(d))
455 		base = gic_data_rdist_sgi_base();
456 	else
457 		base = gic_data.dist_base;
458 
459 	writel_relaxed(mask, base + offset + (index / 32) * 4);
460 }
461 
462 static void gic_mask_irq(struct irq_data *d)
463 {
464 	gic_poke_irq(d, GICD_ICENABLER);
465 	if (gic_irq_in_rdist(d))
466 		gic_redist_wait_for_rwp();
467 	else
468 		gic_dist_wait_for_rwp();
469 }
470 
471 static void gic_eoimode1_mask_irq(struct irq_data *d)
472 {
473 	gic_mask_irq(d);
474 	/*
475 	 * When masking a forwarded interrupt, make sure it is
476 	 * deactivated as well.
477 	 *
478 	 * This ensures that an interrupt that is getting
479 	 * disabled/masked will not get "stuck", because there is
480 	 * noone to deactivate it (guest is being terminated).
481 	 */
482 	if (irqd_is_forwarded_to_vcpu(d))
483 		gic_poke_irq(d, GICD_ICACTIVER);
484 }
485 
486 static void gic_unmask_irq(struct irq_data *d)
487 {
488 	gic_poke_irq(d, GICD_ISENABLER);
489 }
490 
491 static inline bool gic_supports_nmi(void)
492 {
493 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
494 	       static_branch_likely(&supports_pseudo_nmis);
495 }
496 
497 static int gic_irq_set_irqchip_state(struct irq_data *d,
498 				     enum irqchip_irq_state which, bool val)
499 {
500 	u32 reg;
501 
502 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
503 		return -EINVAL;
504 
505 	switch (which) {
506 	case IRQCHIP_STATE_PENDING:
507 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
508 		break;
509 
510 	case IRQCHIP_STATE_ACTIVE:
511 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
512 		break;
513 
514 	case IRQCHIP_STATE_MASKED:
515 		if (val) {
516 			gic_mask_irq(d);
517 			return 0;
518 		}
519 		reg = GICD_ISENABLER;
520 		break;
521 
522 	default:
523 		return -EINVAL;
524 	}
525 
526 	gic_poke_irq(d, reg);
527 	return 0;
528 }
529 
530 static int gic_irq_get_irqchip_state(struct irq_data *d,
531 				     enum irqchip_irq_state which, bool *val)
532 {
533 	if (d->hwirq >= 8192) /* PPI/SPI only */
534 		return -EINVAL;
535 
536 	switch (which) {
537 	case IRQCHIP_STATE_PENDING:
538 		*val = gic_peek_irq(d, GICD_ISPENDR);
539 		break;
540 
541 	case IRQCHIP_STATE_ACTIVE:
542 		*val = gic_peek_irq(d, GICD_ISACTIVER);
543 		break;
544 
545 	case IRQCHIP_STATE_MASKED:
546 		*val = !gic_peek_irq(d, GICD_ISENABLER);
547 		break;
548 
549 	default:
550 		return -EINVAL;
551 	}
552 
553 	return 0;
554 }
555 
556 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
557 {
558 	void __iomem *base = gic_dist_base(d);
559 	u32 offset, index;
560 
561 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
562 
563 	writeb_relaxed(prio, base + offset + index);
564 }
565 
566 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
567 {
568 	switch (__get_intid_range(hwirq)) {
569 	case PPI_RANGE:
570 		return hwirq - 16;
571 	case EPPI_RANGE:
572 		return hwirq - EPPI_BASE_INTID + 16;
573 	default:
574 		unreachable();
575 	}
576 }
577 
578 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
579 {
580 	switch (__get_intid_range(hwirq)) {
581 	case SGI_RANGE:
582 	case PPI_RANGE:
583 		return hwirq;
584 	case EPPI_RANGE:
585 		return hwirq - EPPI_BASE_INTID + 32;
586 	default:
587 		unreachable();
588 	}
589 }
590 
591 static u32 gic_get_rdist_index(struct irq_data *d)
592 {
593 	return __gic_get_rdist_index(d->hwirq);
594 }
595 
596 static int gic_irq_nmi_setup(struct irq_data *d)
597 {
598 	struct irq_desc *desc = irq_to_desc(d->irq);
599 
600 	if (!gic_supports_nmi())
601 		return -EINVAL;
602 
603 	if (gic_peek_irq(d, GICD_ISENABLER)) {
604 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
605 		return -EINVAL;
606 	}
607 
608 	/*
609 	 * A secondary irq_chip should be in charge of LPI request,
610 	 * it should not be possible to get there
611 	 */
612 	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
613 		return -EINVAL;
614 
615 	/* desc lock should already be held */
616 	if (gic_irq_in_rdist(d)) {
617 		u32 idx = gic_get_rdist_index(d);
618 
619 		/*
620 		 * Setting up a percpu interrupt as NMI, only switch handler
621 		 * for first NMI
622 		 */
623 		if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
624 			refcount_set(&rdist_nmi_refs[idx], 1);
625 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
626 		}
627 	} else {
628 		desc->handle_irq = handle_fasteoi_nmi;
629 	}
630 
631 	gic_irq_set_prio(d, dist_prio_nmi);
632 
633 	return 0;
634 }
635 
636 static void gic_irq_nmi_teardown(struct irq_data *d)
637 {
638 	struct irq_desc *desc = irq_to_desc(d->irq);
639 
640 	if (WARN_ON(!gic_supports_nmi()))
641 		return;
642 
643 	if (gic_peek_irq(d, GICD_ISENABLER)) {
644 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
645 		return;
646 	}
647 
648 	/*
649 	 * A secondary irq_chip should be in charge of LPI request,
650 	 * it should not be possible to get there
651 	 */
652 	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
653 		return;
654 
655 	/* desc lock should already be held */
656 	if (gic_irq_in_rdist(d)) {
657 		u32 idx = gic_get_rdist_index(d);
658 
659 		/* Tearing down NMI, only switch handler for last NMI */
660 		if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
661 			desc->handle_irq = handle_percpu_devid_irq;
662 	} else {
663 		desc->handle_irq = handle_fasteoi_irq;
664 	}
665 
666 	gic_irq_set_prio(d, dist_prio_irq);
667 }
668 
669 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
670 {
671 	enum gic_intid_range range;
672 
673 	if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
674 		return false;
675 
676 	range = get_intid_range(d);
677 
678 	/*
679 	 * The workaround is needed if the IRQ is an SPI and
680 	 * the target cpu is different from the one we are
681 	 * executing on.
682 	 */
683 	return (range == SPI_RANGE || range == ESPI_RANGE) &&
684 		!cpumask_test_cpu(raw_smp_processor_id(),
685 				  irq_data_get_effective_affinity_mask(d));
686 }
687 
688 static void gic_eoi_irq(struct irq_data *d)
689 {
690 	write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1);
691 	isb();
692 
693 	if (gic_arm64_erratum_2941627_needed(d)) {
694 		/*
695 		 * Make sure the GIC stream deactivate packet
696 		 * issued by ICC_EOIR1_EL1 has completed before
697 		 * deactivating through GICD_IACTIVER.
698 		 */
699 		dsb(sy);
700 		gic_poke_irq(d, GICD_ICACTIVER);
701 	}
702 }
703 
704 static void gic_eoimode1_eoi_irq(struct irq_data *d)
705 {
706 	/*
707 	 * No need to deactivate an LPI, or an interrupt that
708 	 * is is getting forwarded to a vcpu.
709 	 */
710 	if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
711 		return;
712 
713 	if (!gic_arm64_erratum_2941627_needed(d))
714 		gic_write_dir(irqd_to_hwirq(d));
715 	else
716 		gic_poke_irq(d, GICD_ICACTIVER);
717 }
718 
719 static int gic_set_type(struct irq_data *d, unsigned int type)
720 {
721 	irq_hw_number_t irq = irqd_to_hwirq(d);
722 	enum gic_intid_range range;
723 	void __iomem *base;
724 	u32 offset, index;
725 	int ret;
726 
727 	range = get_intid_range(d);
728 
729 	/* Interrupt configuration for SGIs can't be changed */
730 	if (range == SGI_RANGE)
731 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
732 
733 	/* SPIs have restrictions on the supported types */
734 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
735 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
736 		return -EINVAL;
737 
738 	if (gic_irq_in_rdist(d))
739 		base = gic_data_rdist_sgi_base();
740 	else
741 		base = gic_dist_base_alias(d);
742 
743 	offset = convert_offset_index(d, GICD_ICFGR, &index);
744 
745 	ret = gic_configure_irq(index, type, base + offset);
746 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
747 		/* Misconfigured PPIs are usually not fatal */
748 		pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq);
749 		ret = 0;
750 	}
751 
752 	return ret;
753 }
754 
755 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
756 {
757 	if (get_intid_range(d) == SGI_RANGE)
758 		return -EINVAL;
759 
760 	if (vcpu)
761 		irqd_set_forwarded_to_vcpu(d);
762 	else
763 		irqd_clr_forwarded_to_vcpu(d);
764 	return 0;
765 }
766 
767 static u64 gic_cpu_to_affinity(int cpu)
768 {
769 	u64 mpidr = cpu_logical_map(cpu);
770 	u64 aff;
771 
772 	/* ASR8601 needs to have its affinities shifted down... */
773 	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
774 		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	|
775 			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
776 
777 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
778 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
779 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
780 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
781 
782 	return aff;
783 }
784 
785 static void gic_deactivate_unhandled(u32 irqnr)
786 {
787 	if (static_branch_likely(&supports_deactivate_key)) {
788 		if (irqnr < 8192)
789 			gic_write_dir(irqnr);
790 	} else {
791 		write_gicreg(irqnr, ICC_EOIR1_EL1);
792 		isb();
793 	}
794 }
795 
796 /*
797  * Follow a read of the IAR with any HW maintenance that needs to happen prior
798  * to invoking the relevant IRQ handler. We must do two things:
799  *
800  * (1) Ensure instruction ordering between a read of IAR and subsequent
801  *     instructions in the IRQ handler using an ISB.
802  *
803  *     It is possible for the IAR to report an IRQ which was signalled *after*
804  *     the CPU took an IRQ exception as multiple interrupts can race to be
805  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
806  *     later interrupts could be prioritized by the GIC.
807  *
808  *     For devices which are tightly coupled to the CPU, such as PMUs, a
809  *     context synchronization event is necessary to ensure that system
810  *     register state is not stale, as these may have been indirectly written
811  *     *after* exception entry.
812  *
813  * (2) Deactivate the interrupt when EOI mode 1 is in use.
814  */
815 static inline void gic_complete_ack(u32 irqnr)
816 {
817 	if (static_branch_likely(&supports_deactivate_key))
818 		write_gicreg(irqnr, ICC_EOIR1_EL1);
819 
820 	isb();
821 }
822 
823 static bool gic_rpr_is_nmi_prio(void)
824 {
825 	if (!gic_supports_nmi())
826 		return false;
827 
828 	return unlikely(gic_read_rpr() == GICV3_PRIO_NMI);
829 }
830 
831 static bool gic_irqnr_is_special(u32 irqnr)
832 {
833 	return irqnr >= 1020 && irqnr <= 1023;
834 }
835 
836 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
837 {
838 	if (gic_irqnr_is_special(irqnr))
839 		return;
840 
841 	gic_complete_ack(irqnr);
842 
843 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
844 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
845 		gic_deactivate_unhandled(irqnr);
846 	}
847 }
848 
849 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
850 {
851 	if (gic_irqnr_is_special(irqnr))
852 		return;
853 
854 	gic_complete_ack(irqnr);
855 
856 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
857 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
858 		gic_deactivate_unhandled(irqnr);
859 	}
860 }
861 
862 /*
863  * An exception has been taken from a context with IRQs enabled, and this could
864  * be an IRQ or an NMI.
865  *
866  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
867  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
868  * after handling any NMI but before handling any IRQ.
869  *
870  * The entry code has performed IRQ entry, and if an NMI is detected we must
871  * perform NMI entry/exit around invoking the handler.
872  */
873 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
874 {
875 	bool is_nmi;
876 	u32 irqnr;
877 
878 	irqnr = gic_read_iar();
879 
880 	is_nmi = gic_rpr_is_nmi_prio();
881 
882 	if (is_nmi) {
883 		nmi_enter();
884 		__gic_handle_nmi(irqnr, regs);
885 		nmi_exit();
886 	}
887 
888 	if (gic_prio_masking_enabled()) {
889 		gic_pmr_mask_irqs();
890 		gic_arch_enable_irqs();
891 	}
892 
893 	if (!is_nmi)
894 		__gic_handle_irq(irqnr, regs);
895 }
896 
897 /*
898  * An exception has been taken from a context with IRQs disabled, which can only
899  * be an NMI.
900  *
901  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
902  * DAIF.IF (and ICC_PMR_EL1) unchanged.
903  *
904  * The entry code has performed NMI entry.
905  */
906 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
907 {
908 	u64 pmr;
909 	u32 irqnr;
910 
911 	/*
912 	 * We were in a context with IRQs disabled. However, the
913 	 * entry code has set PMR to a value that allows any
914 	 * interrupt to be acknowledged, and not just NMIs. This can
915 	 * lead to surprising effects if the NMI has been retired in
916 	 * the meantime, and that there is an IRQ pending. The IRQ
917 	 * would then be taken in NMI context, something that nobody
918 	 * wants to debug twice.
919 	 *
920 	 * Until we sort this, drop PMR again to a level that will
921 	 * actually only allow NMIs before reading IAR, and then
922 	 * restore it to what it was.
923 	 */
924 	pmr = gic_read_pmr();
925 	gic_pmr_mask_irqs();
926 	isb();
927 	irqnr = gic_read_iar();
928 	gic_write_pmr(pmr);
929 
930 	__gic_handle_nmi(irqnr, regs);
931 }
932 
933 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
934 {
935 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
936 		__gic_handle_irq_from_irqsoff(regs);
937 	else
938 		__gic_handle_irq_from_irqson(regs);
939 }
940 
941 static void __init gic_dist_init(void)
942 {
943 	unsigned int i;
944 	u64 affinity;
945 	void __iomem *base = gic_data.dist_base;
946 	u32 val;
947 
948 	/* Disable the distributor */
949 	writel_relaxed(0, base + GICD_CTLR);
950 	gic_dist_wait_for_rwp();
951 
952 	/*
953 	 * Configure SPIs as non-secure Group-1. This will only matter
954 	 * if the GIC only has a single security state. This will not
955 	 * do the right thing if the kernel is running in secure mode,
956 	 * but that's not the intended use case anyway.
957 	 */
958 	for (i = 32; i < GIC_LINE_NR; i += 32)
959 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
960 
961 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
962 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
963 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
964 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
965 	}
966 
967 	for (i = 0; i < GIC_ESPI_NR; i += 32)
968 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
969 
970 	for (i = 0; i < GIC_ESPI_NR; i += 16)
971 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
972 
973 	for (i = 0; i < GIC_ESPI_NR; i += 4)
974 		writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq),
975 			       base + GICD_IPRIORITYRnE + i);
976 
977 	/* Now do the common stuff */
978 	gic_dist_config(base, GIC_LINE_NR, dist_prio_irq);
979 
980 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
981 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
982 		pr_info("Enabling SGIs without active state\n");
983 		val |= GICD_CTLR_nASSGIreq;
984 	}
985 
986 	/* Enable distributor with ARE, Group1, and wait for it to drain */
987 	writel_relaxed(val, base + GICD_CTLR);
988 	gic_dist_wait_for_rwp();
989 
990 	/*
991 	 * Set all global interrupts to the boot CPU only. ARE must be
992 	 * enabled.
993 	 */
994 	affinity = gic_cpu_to_affinity(smp_processor_id());
995 	for (i = 32; i < GIC_LINE_NR; i++)
996 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
997 
998 	for (i = 0; i < GIC_ESPI_NR; i++)
999 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
1000 }
1001 
1002 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
1003 {
1004 	int ret = -ENODEV;
1005 	int i;
1006 
1007 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1008 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
1009 		u64 typer;
1010 		u32 reg;
1011 
1012 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
1013 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
1014 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
1015 			pr_warn("No redistributor present @%p\n", ptr);
1016 			break;
1017 		}
1018 
1019 		do {
1020 			typer = gic_read_typer(ptr + GICR_TYPER);
1021 			ret = fn(gic_data.redist_regions + i, ptr);
1022 			if (!ret)
1023 				return 0;
1024 
1025 			if (gic_data.redist_regions[i].single_redist)
1026 				break;
1027 
1028 			if (gic_data.redist_stride) {
1029 				ptr += gic_data.redist_stride;
1030 			} else {
1031 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
1032 				if (typer & GICR_TYPER_VLPIS)
1033 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
1034 			}
1035 		} while (!(typer & GICR_TYPER_LAST));
1036 	}
1037 
1038 	return ret ? -ENODEV : 0;
1039 }
1040 
1041 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1042 {
1043 	unsigned long mpidr;
1044 	u64 typer;
1045 	u32 aff;
1046 
1047 	/*
1048 	 * Convert affinity to a 32bit value that can be matched to
1049 	 * GICR_TYPER bits [63:32].
1050 	 */
1051 	mpidr = gic_cpu_to_affinity(smp_processor_id());
1052 
1053 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1054 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1055 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1056 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
1057 
1058 	typer = gic_read_typer(ptr + GICR_TYPER);
1059 	if ((typer >> 32) == aff) {
1060 		u64 offset = ptr - region->redist_base;
1061 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1062 		gic_data_rdist_rd_base() = ptr;
1063 		gic_data_rdist()->phys_base = region->phys_base + offset;
1064 
1065 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1066 			smp_processor_id(), mpidr,
1067 			(int)(region - gic_data.redist_regions),
1068 			&gic_data_rdist()->phys_base);
1069 		return 0;
1070 	}
1071 
1072 	/* Try next one */
1073 	return 1;
1074 }
1075 
1076 static int gic_populate_rdist(void)
1077 {
1078 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1079 		return 0;
1080 
1081 	/* We couldn't even deal with ourselves... */
1082 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1083 	     smp_processor_id(),
1084 	     (unsigned long)cpu_logical_map(smp_processor_id()));
1085 	return -ENODEV;
1086 }
1087 
1088 static int __gic_update_rdist_properties(struct redist_region *region,
1089 					 void __iomem *ptr)
1090 {
1091 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1092 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1093 
1094 	/* Boot-time cleanup */
1095 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1096 		u64 val;
1097 
1098 		/* Deactivate any present vPE */
1099 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1100 		if (val & GICR_VPENDBASER_Valid)
1101 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1102 					      ptr + SZ_128K + GICR_VPENDBASER);
1103 
1104 		/* Mark the VPE table as invalid */
1105 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1106 		val &= ~GICR_VPROPBASER_4_1_VALID;
1107 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1108 	}
1109 
1110 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1111 
1112 	/*
1113 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1114 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1115 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1116 	 *
1117 	 * These are 3 different ways to express the same thing, depending
1118 	 * on the revision of the architecture and its relaxations over
1119 	 * time. Just group them under the 'direct_lpi' banner.
1120 	 */
1121 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1122 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1123 					   !!(ctlr & GICR_CTLR_IR) |
1124 					   gic_data.rdists.has_rvpeid);
1125 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1126 
1127 	/* Detect non-sensical configurations */
1128 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1129 		gic_data.rdists.has_direct_lpi = false;
1130 		gic_data.rdists.has_vlpis = false;
1131 		gic_data.rdists.has_rvpeid = false;
1132 	}
1133 
1134 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1135 
1136 	return 1;
1137 }
1138 
1139 static void gic_update_rdist_properties(void)
1140 {
1141 	gic_data.ppi_nr = UINT_MAX;
1142 	gic_iterate_rdists(__gic_update_rdist_properties);
1143 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1144 		gic_data.ppi_nr = 0;
1145 	pr_info("GICv3 features: %d PPIs%s%s\n",
1146 		gic_data.ppi_nr,
1147 		gic_data.has_rss ? ", RSS" : "",
1148 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1149 
1150 	if (gic_data.rdists.has_vlpis)
1151 		pr_info("GICv4 features: %s%s%s\n",
1152 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1153 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1154 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1155 }
1156 
1157 static void gic_cpu_sys_reg_enable(void)
1158 {
1159 	/*
1160 	 * Need to check that the SRE bit has actually been set. If
1161 	 * not, it means that SRE is disabled at EL2. We're going to
1162 	 * die painfully, and there is nothing we can do about it.
1163 	 *
1164 	 * Kindly inform the luser.
1165 	 */
1166 	if (!gic_enable_sre())
1167 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1168 
1169 }
1170 
1171 static void gic_cpu_sys_reg_init(void)
1172 {
1173 	int i, cpu = smp_processor_id();
1174 	u64 mpidr = gic_cpu_to_affinity(cpu);
1175 	u64 need_rss = MPIDR_RS(mpidr);
1176 	bool group0;
1177 	u32 pribits;
1178 
1179 	pribits = gic_get_pribits();
1180 
1181 	group0 = gic_has_group0();
1182 
1183 	/* Set priority mask register */
1184 	if (!gic_prio_masking_enabled()) {
1185 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1186 	} else if (gic_supports_nmi()) {
1187 		/*
1188 		 * Check that all CPUs use the same priority space.
1189 		 *
1190 		 * If there's a mismatch with the boot CPU, the system is
1191 		 * likely to die as interrupt masking will not work properly on
1192 		 * all CPUs.
1193 		 */
1194 		WARN_ON(group0 != cpus_have_group0);
1195 		WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled);
1196 	}
1197 
1198 	/*
1199 	 * Some firmwares hand over to the kernel with the BPR changed from
1200 	 * its reset value (and with a value large enough to prevent
1201 	 * any pre-emptive interrupts from working at all). Writing a zero
1202 	 * to BPR restores is reset value.
1203 	 */
1204 	gic_write_bpr1(0);
1205 
1206 	if (static_branch_likely(&supports_deactivate_key)) {
1207 		/* EOI drops priority only (mode 1) */
1208 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1209 	} else {
1210 		/* EOI deactivates interrupt too (mode 0) */
1211 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1212 	}
1213 
1214 	/* Always whack Group0 before Group1 */
1215 	if (group0) {
1216 		switch(pribits) {
1217 		case 8:
1218 		case 7:
1219 			write_gicreg(0, ICC_AP0R3_EL1);
1220 			write_gicreg(0, ICC_AP0R2_EL1);
1221 			fallthrough;
1222 		case 6:
1223 			write_gicreg(0, ICC_AP0R1_EL1);
1224 			fallthrough;
1225 		case 5:
1226 		case 4:
1227 			write_gicreg(0, ICC_AP0R0_EL1);
1228 		}
1229 
1230 		isb();
1231 	}
1232 
1233 	switch(pribits) {
1234 	case 8:
1235 	case 7:
1236 		write_gicreg(0, ICC_AP1R3_EL1);
1237 		write_gicreg(0, ICC_AP1R2_EL1);
1238 		fallthrough;
1239 	case 6:
1240 		write_gicreg(0, ICC_AP1R1_EL1);
1241 		fallthrough;
1242 	case 5:
1243 	case 4:
1244 		write_gicreg(0, ICC_AP1R0_EL1);
1245 	}
1246 
1247 	isb();
1248 
1249 	/* ... and let's hit the road... */
1250 	gic_write_grpen1(1);
1251 
1252 	/* Keep the RSS capability status in per_cpu variable */
1253 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1254 
1255 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1256 	for_each_online_cpu(i) {
1257 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1258 
1259 		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1260 		if (need_rss && (!have_rss))
1261 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1262 				cpu, (unsigned long)mpidr,
1263 				i, (unsigned long)gic_cpu_to_affinity(i));
1264 	}
1265 
1266 	/**
1267 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1268 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1269 	 * UNPREDICTABLE choice of :
1270 	 *   - The write is ignored.
1271 	 *   - The RS field is treated as 0.
1272 	 */
1273 	if (need_rss && (!gic_data.has_rss))
1274 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1275 }
1276 
1277 static bool gicv3_nolpi;
1278 
1279 static int __init gicv3_nolpi_cfg(char *buf)
1280 {
1281 	return kstrtobool(buf, &gicv3_nolpi);
1282 }
1283 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1284 
1285 static int gic_dist_supports_lpis(void)
1286 {
1287 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1288 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1289 		!gicv3_nolpi);
1290 }
1291 
1292 static void gic_cpu_init(void)
1293 {
1294 	void __iomem *rbase;
1295 	int i;
1296 
1297 	/* Register ourselves with the rest of the world */
1298 	if (gic_populate_rdist())
1299 		return;
1300 
1301 	gic_enable_redist(true);
1302 
1303 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1304 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1305 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1306 	     smp_processor_id());
1307 
1308 	rbase = gic_data_rdist_sgi_base();
1309 
1310 	/* Configure SGIs/PPIs as non-secure Group-1 */
1311 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1312 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1313 
1314 	gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq);
1315 	gic_redist_wait_for_rwp();
1316 
1317 	/* initialise system registers */
1318 	gic_cpu_sys_reg_init();
1319 }
1320 
1321 #ifdef CONFIG_SMP
1322 
1323 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1324 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1325 
1326 /*
1327  * gic_starting_cpu() is called after the last point where cpuhp is allowed
1328  * to fail. So pre check for problems earlier.
1329  */
1330 static int gic_check_rdist(unsigned int cpu)
1331 {
1332 	if (cpumask_test_cpu(cpu, &broken_rdists))
1333 		return -EINVAL;
1334 
1335 	return 0;
1336 }
1337 
1338 static int gic_starting_cpu(unsigned int cpu)
1339 {
1340 	gic_cpu_sys_reg_enable();
1341 	gic_cpu_init();
1342 
1343 	if (gic_dist_supports_lpis())
1344 		its_cpu_init();
1345 
1346 	return 0;
1347 }
1348 
1349 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1350 				   unsigned long cluster_id)
1351 {
1352 	int next_cpu, cpu = *base_cpu;
1353 	unsigned long mpidr;
1354 	u16 tlist = 0;
1355 
1356 	mpidr = gic_cpu_to_affinity(cpu);
1357 
1358 	while (cpu < nr_cpu_ids) {
1359 		tlist |= 1 << (mpidr & 0xf);
1360 
1361 		next_cpu = cpumask_next(cpu, mask);
1362 		if (next_cpu >= nr_cpu_ids)
1363 			goto out;
1364 		cpu = next_cpu;
1365 
1366 		mpidr = gic_cpu_to_affinity(cpu);
1367 
1368 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1369 			cpu--;
1370 			goto out;
1371 		}
1372 	}
1373 out:
1374 	*base_cpu = cpu;
1375 	return tlist;
1376 }
1377 
1378 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1379 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1380 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1381 
1382 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1383 {
1384 	u64 val;
1385 
1386 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1387 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1388 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1389 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1390 	       MPIDR_TO_SGI_RS(cluster_id)		|
1391 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1392 
1393 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1394 	gic_write_sgi1r(val);
1395 }
1396 
1397 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1398 {
1399 	int cpu;
1400 
1401 	if (WARN_ON(d->hwirq >= 16))
1402 		return;
1403 
1404 	/*
1405 	 * Ensure that stores to Normal memory are visible to the
1406 	 * other CPUs before issuing the IPI.
1407 	 */
1408 	dsb(ishst);
1409 
1410 	for_each_cpu(cpu, mask) {
1411 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1412 		u16 tlist;
1413 
1414 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1415 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1416 	}
1417 
1418 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1419 	isb();
1420 }
1421 
1422 static void __init gic_smp_init(void)
1423 {
1424 	struct irq_fwspec sgi_fwspec = {
1425 		.fwnode		= gic_data.fwnode,
1426 		.param_count	= 1,
1427 	};
1428 	int base_sgi;
1429 
1430 	cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
1431 				  "irqchip/arm/gicv3:checkrdist",
1432 				  gic_check_rdist, NULL);
1433 
1434 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1435 				  "irqchip/arm/gicv3:starting",
1436 				  gic_starting_cpu, NULL);
1437 
1438 	/* Register all 8 non-secure SGIs */
1439 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1440 	if (WARN_ON(base_sgi <= 0))
1441 		return;
1442 
1443 	set_smp_ipi_range(base_sgi, 8);
1444 }
1445 
1446 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1447 			    bool force)
1448 {
1449 	unsigned int cpu;
1450 	u32 offset, index;
1451 	void __iomem *reg;
1452 	int enabled;
1453 	u64 val;
1454 
1455 	if (force)
1456 		cpu = cpumask_first(mask_val);
1457 	else
1458 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1459 
1460 	if (cpu >= nr_cpu_ids)
1461 		return -EINVAL;
1462 
1463 	if (gic_irq_in_rdist(d))
1464 		return -EINVAL;
1465 
1466 	/* If interrupt was enabled, disable it first */
1467 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1468 	if (enabled)
1469 		gic_mask_irq(d);
1470 
1471 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1472 	reg = gic_dist_base(d) + offset + (index * 8);
1473 	val = gic_cpu_to_affinity(cpu);
1474 
1475 	gic_write_irouter(val, reg);
1476 
1477 	/*
1478 	 * If the interrupt was enabled, enabled it again. Otherwise,
1479 	 * just wait for the distributor to have digested our changes.
1480 	 */
1481 	if (enabled)
1482 		gic_unmask_irq(d);
1483 
1484 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1485 
1486 	return IRQ_SET_MASK_OK_DONE;
1487 }
1488 #else
1489 #define gic_set_affinity	NULL
1490 #define gic_ipi_send_mask	NULL
1491 #define gic_smp_init()		do { } while(0)
1492 #endif
1493 
1494 static int gic_retrigger(struct irq_data *data)
1495 {
1496 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1497 }
1498 
1499 #ifdef CONFIG_CPU_PM
1500 static int gic_cpu_pm_notifier(struct notifier_block *self,
1501 			       unsigned long cmd, void *v)
1502 {
1503 	if (cmd == CPU_PM_EXIT) {
1504 		if (gic_dist_security_disabled())
1505 			gic_enable_redist(true);
1506 		gic_cpu_sys_reg_enable();
1507 		gic_cpu_sys_reg_init();
1508 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1509 		gic_write_grpen1(0);
1510 		gic_enable_redist(false);
1511 	}
1512 	return NOTIFY_OK;
1513 }
1514 
1515 static struct notifier_block gic_cpu_pm_notifier_block = {
1516 	.notifier_call = gic_cpu_pm_notifier,
1517 };
1518 
1519 static void gic_cpu_pm_init(void)
1520 {
1521 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1522 }
1523 
1524 #else
1525 static inline void gic_cpu_pm_init(void) { }
1526 #endif /* CONFIG_CPU_PM */
1527 
1528 static struct irq_chip gic_chip = {
1529 	.name			= "GICv3",
1530 	.irq_mask		= gic_mask_irq,
1531 	.irq_unmask		= gic_unmask_irq,
1532 	.irq_eoi		= gic_eoi_irq,
1533 	.irq_set_type		= gic_set_type,
1534 	.irq_set_affinity	= gic_set_affinity,
1535 	.irq_retrigger          = gic_retrigger,
1536 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1537 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1538 	.irq_nmi_setup		= gic_irq_nmi_setup,
1539 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1540 	.ipi_send_mask		= gic_ipi_send_mask,
1541 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1542 				  IRQCHIP_SKIP_SET_WAKE |
1543 				  IRQCHIP_MASK_ON_SUSPEND,
1544 };
1545 
1546 static struct irq_chip gic_eoimode1_chip = {
1547 	.name			= "GICv3",
1548 	.irq_mask		= gic_eoimode1_mask_irq,
1549 	.irq_unmask		= gic_unmask_irq,
1550 	.irq_eoi		= gic_eoimode1_eoi_irq,
1551 	.irq_set_type		= gic_set_type,
1552 	.irq_set_affinity	= gic_set_affinity,
1553 	.irq_retrigger          = gic_retrigger,
1554 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1555 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1556 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1557 	.irq_nmi_setup		= gic_irq_nmi_setup,
1558 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1559 	.ipi_send_mask		= gic_ipi_send_mask,
1560 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1561 				  IRQCHIP_SKIP_SET_WAKE |
1562 				  IRQCHIP_MASK_ON_SUSPEND,
1563 };
1564 
1565 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1566 			      irq_hw_number_t hw)
1567 {
1568 	struct irq_chip *chip = &gic_chip;
1569 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1570 
1571 	if (static_branch_likely(&supports_deactivate_key))
1572 		chip = &gic_eoimode1_chip;
1573 
1574 	switch (__get_intid_range(hw)) {
1575 	case SGI_RANGE:
1576 	case PPI_RANGE:
1577 	case EPPI_RANGE:
1578 		irq_set_percpu_devid(irq);
1579 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1580 				    handle_percpu_devid_irq, NULL, NULL);
1581 		break;
1582 
1583 	case SPI_RANGE:
1584 	case ESPI_RANGE:
1585 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1586 				    handle_fasteoi_irq, NULL, NULL);
1587 		irq_set_probe(irq);
1588 		irqd_set_single_target(irqd);
1589 		break;
1590 
1591 	case LPI_RANGE:
1592 		if (!gic_dist_supports_lpis())
1593 			return -EPERM;
1594 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1595 				    handle_fasteoi_irq, NULL, NULL);
1596 		break;
1597 
1598 	default:
1599 		return -EPERM;
1600 	}
1601 
1602 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1603 	irqd_set_handle_enforce_irqctx(irqd);
1604 	return 0;
1605 }
1606 
1607 static int gic_irq_domain_translate(struct irq_domain *d,
1608 				    struct irq_fwspec *fwspec,
1609 				    unsigned long *hwirq,
1610 				    unsigned int *type)
1611 {
1612 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1613 		*hwirq = fwspec->param[0];
1614 		*type = IRQ_TYPE_EDGE_RISING;
1615 		return 0;
1616 	}
1617 
1618 	if (is_of_node(fwspec->fwnode)) {
1619 		if (fwspec->param_count < 3)
1620 			return -EINVAL;
1621 
1622 		switch (fwspec->param[0]) {
1623 		case 0:			/* SPI */
1624 			*hwirq = fwspec->param[1] + 32;
1625 			break;
1626 		case 1:			/* PPI */
1627 			*hwirq = fwspec->param[1] + 16;
1628 			break;
1629 		case 2:			/* ESPI */
1630 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1631 			break;
1632 		case 3:			/* EPPI */
1633 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1634 			break;
1635 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1636 			*hwirq = fwspec->param[1];
1637 			break;
1638 		case GIC_IRQ_TYPE_PARTITION:
1639 			*hwirq = fwspec->param[1];
1640 			if (fwspec->param[1] >= 16)
1641 				*hwirq += EPPI_BASE_INTID - 16;
1642 			else
1643 				*hwirq += 16;
1644 			break;
1645 		default:
1646 			return -EINVAL;
1647 		}
1648 
1649 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1650 
1651 		/*
1652 		 * Make it clear that broken DTs are... broken.
1653 		 * Partitioned PPIs are an unfortunate exception.
1654 		 */
1655 		WARN_ON(*type == IRQ_TYPE_NONE &&
1656 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1657 		return 0;
1658 	}
1659 
1660 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1661 		if(fwspec->param_count != 2)
1662 			return -EINVAL;
1663 
1664 		if (fwspec->param[0] < 16) {
1665 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1666 			       fwspec->param[0]);
1667 			return -EINVAL;
1668 		}
1669 
1670 		*hwirq = fwspec->param[0];
1671 		*type = fwspec->param[1];
1672 
1673 		WARN_ON(*type == IRQ_TYPE_NONE);
1674 		return 0;
1675 	}
1676 
1677 	return -EINVAL;
1678 }
1679 
1680 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1681 				unsigned int nr_irqs, void *arg)
1682 {
1683 	int i, ret;
1684 	irq_hw_number_t hwirq;
1685 	unsigned int type = IRQ_TYPE_NONE;
1686 	struct irq_fwspec *fwspec = arg;
1687 
1688 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1689 	if (ret)
1690 		return ret;
1691 
1692 	for (i = 0; i < nr_irqs; i++) {
1693 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1694 		if (ret)
1695 			return ret;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1702 				unsigned int nr_irqs)
1703 {
1704 	int i;
1705 
1706 	for (i = 0; i < nr_irqs; i++) {
1707 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1708 		irq_set_handler(virq + i, NULL);
1709 		irq_domain_reset_irq_data(d);
1710 	}
1711 }
1712 
1713 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1714 				      irq_hw_number_t hwirq)
1715 {
1716 	enum gic_intid_range range;
1717 
1718 	if (!gic_data.ppi_descs)
1719 		return false;
1720 
1721 	if (!is_of_node(fwspec->fwnode))
1722 		return false;
1723 
1724 	if (fwspec->param_count < 4 || !fwspec->param[3])
1725 		return false;
1726 
1727 	range = __get_intid_range(hwirq);
1728 	if (range != PPI_RANGE && range != EPPI_RANGE)
1729 		return false;
1730 
1731 	return true;
1732 }
1733 
1734 static int gic_irq_domain_select(struct irq_domain *d,
1735 				 struct irq_fwspec *fwspec,
1736 				 enum irq_domain_bus_token bus_token)
1737 {
1738 	unsigned int type, ret, ppi_idx;
1739 	irq_hw_number_t hwirq;
1740 
1741 	/* Not for us */
1742 	if (fwspec->fwnode != d->fwnode)
1743 		return 0;
1744 
1745 	/* Handle pure domain searches */
1746 	if (!fwspec->param_count)
1747 		return d->bus_token == bus_token;
1748 
1749 	/* If this is not DT, then we have a single domain */
1750 	if (!is_of_node(fwspec->fwnode))
1751 		return 1;
1752 
1753 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1754 	if (WARN_ON_ONCE(ret))
1755 		return 0;
1756 
1757 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1758 		return d == gic_data.domain;
1759 
1760 	/*
1761 	 * If this is a PPI and we have a 4th (non-null) parameter,
1762 	 * then we need to match the partition domain.
1763 	 */
1764 	ppi_idx = __gic_get_ppi_index(hwirq);
1765 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1766 }
1767 
1768 static const struct irq_domain_ops gic_irq_domain_ops = {
1769 	.translate = gic_irq_domain_translate,
1770 	.alloc = gic_irq_domain_alloc,
1771 	.free = gic_irq_domain_free,
1772 	.select = gic_irq_domain_select,
1773 };
1774 
1775 static int partition_domain_translate(struct irq_domain *d,
1776 				      struct irq_fwspec *fwspec,
1777 				      unsigned long *hwirq,
1778 				      unsigned int *type)
1779 {
1780 	unsigned long ppi_intid;
1781 	struct device_node *np;
1782 	unsigned int ppi_idx;
1783 	int ret;
1784 
1785 	if (!gic_data.ppi_descs)
1786 		return -ENOMEM;
1787 
1788 	np = of_find_node_by_phandle(fwspec->param[3]);
1789 	if (WARN_ON(!np))
1790 		return -EINVAL;
1791 
1792 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1793 	if (WARN_ON_ONCE(ret))
1794 		return 0;
1795 
1796 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1797 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1798 				     of_node_to_fwnode(np));
1799 	if (ret < 0)
1800 		return ret;
1801 
1802 	*hwirq = ret;
1803 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1804 
1805 	return 0;
1806 }
1807 
1808 static const struct irq_domain_ops partition_domain_ops = {
1809 	.translate = partition_domain_translate,
1810 	.select = gic_irq_domain_select,
1811 };
1812 
1813 static bool gic_enable_quirk_msm8996(void *data)
1814 {
1815 	struct gic_chip_data *d = data;
1816 
1817 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1818 
1819 	return true;
1820 }
1821 
1822 static bool gic_enable_quirk_cavium_38539(void *data)
1823 {
1824 	struct gic_chip_data *d = data;
1825 
1826 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1827 
1828 	return true;
1829 }
1830 
1831 static bool gic_enable_quirk_hip06_07(void *data)
1832 {
1833 	struct gic_chip_data *d = data;
1834 
1835 	/*
1836 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1837 	 * not being an actual ARM implementation). The saving grace is
1838 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1839 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1840 	 * have ESPI. In both cases, put them right.
1841 	 */
1842 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1843 		/* Zero both ESPI and the RES0 field next to it... */
1844 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1845 		return true;
1846 	}
1847 
1848 	return false;
1849 }
1850 
1851 #define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1852 #define T241_CHIP_GICDA_OFFSET	0x1580000
1853 #define SMCCC_SOC_ID_T241	0x036b0241
1854 
1855 static bool gic_enable_quirk_nvidia_t241(void *data)
1856 {
1857 	s32 soc_id = arm_smccc_get_soc_id_version();
1858 	unsigned long chip_bmask = 0;
1859 	phys_addr_t phys;
1860 	u32 i;
1861 
1862 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1863 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1864 		return false;
1865 
1866 	/* Find the chips based on GICR regions PHYS addr */
1867 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1868 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1869 				  (u64)gic_data.redist_regions[i].phys_base));
1870 	}
1871 
1872 	if (hweight32(chip_bmask) < 3)
1873 		return false;
1874 
1875 	/* Setup GICD alias regions */
1876 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1877 		if (chip_bmask & BIT(i)) {
1878 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1879 			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1880 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1881 			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1882 		}
1883 	}
1884 	static_branch_enable(&gic_nvidia_t241_erratum);
1885 	return true;
1886 }
1887 
1888 static bool gic_enable_quirk_asr8601(void *data)
1889 {
1890 	struct gic_chip_data *d = data;
1891 
1892 	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1893 
1894 	return true;
1895 }
1896 
1897 static bool gic_enable_quirk_arm64_2941627(void *data)
1898 {
1899 	static_branch_enable(&gic_arm64_2941627_erratum);
1900 	return true;
1901 }
1902 
1903 static bool rd_set_non_coherent(void *data)
1904 {
1905 	struct gic_chip_data *d = data;
1906 
1907 	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1908 	return true;
1909 }
1910 
1911 static const struct gic_quirk gic_quirks[] = {
1912 	{
1913 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1914 		.compatible = "qcom,msm8996-gic-v3",
1915 		.init	= gic_enable_quirk_msm8996,
1916 	},
1917 	{
1918 		.desc	= "GICv3: ASR erratum 8601001",
1919 		.compatible = "asr,asr8601-gic-v3",
1920 		.init	= gic_enable_quirk_asr8601,
1921 	},
1922 	{
1923 		.desc	= "GICv3: HIP06 erratum 161010803",
1924 		.iidr	= 0x0204043b,
1925 		.mask	= 0xffffffff,
1926 		.init	= gic_enable_quirk_hip06_07,
1927 	},
1928 	{
1929 		.desc	= "GICv3: HIP07 erratum 161010803",
1930 		.iidr	= 0x00000000,
1931 		.mask	= 0xffffffff,
1932 		.init	= gic_enable_quirk_hip06_07,
1933 	},
1934 	{
1935 		/*
1936 		 * Reserved register accesses generate a Synchronous
1937 		 * External Abort. This erratum applies to:
1938 		 * - ThunderX: CN88xx
1939 		 * - OCTEON TX: CN83xx, CN81xx
1940 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1941 		 */
1942 		.desc	= "GICv3: Cavium erratum 38539",
1943 		.iidr	= 0xa000034c,
1944 		.mask	= 0xe8f00fff,
1945 		.init	= gic_enable_quirk_cavium_38539,
1946 	},
1947 	{
1948 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1949 		.iidr	= 0x0402043b,
1950 		.mask	= 0xffffffff,
1951 		.init	= gic_enable_quirk_nvidia_t241,
1952 	},
1953 	{
1954 		/*
1955 		 * GIC-700: 2941627 workaround - IP variant [0,1]
1956 		 *
1957 		 */
1958 		.desc	= "GICv3: ARM64 erratum 2941627",
1959 		.iidr	= 0x0400043b,
1960 		.mask	= 0xff0e0fff,
1961 		.init	= gic_enable_quirk_arm64_2941627,
1962 	},
1963 	{
1964 		/*
1965 		 * GIC-700: 2941627 workaround - IP variant [2]
1966 		 */
1967 		.desc	= "GICv3: ARM64 erratum 2941627",
1968 		.iidr	= 0x0402043b,
1969 		.mask	= 0xff0f0fff,
1970 		.init	= gic_enable_quirk_arm64_2941627,
1971 	},
1972 	{
1973 		.desc   = "GICv3: non-coherent attribute",
1974 		.property = "dma-noncoherent",
1975 		.init   = rd_set_non_coherent,
1976 	},
1977 	{
1978 	}
1979 };
1980 
1981 static void gic_enable_nmi_support(void)
1982 {
1983 	int i;
1984 
1985 	if (!gic_prio_masking_enabled())
1986 		return;
1987 
1988 	rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
1989 				 sizeof(*rdist_nmi_refs), GFP_KERNEL);
1990 	if (!rdist_nmi_refs)
1991 		return;
1992 
1993 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
1994 		refcount_set(&rdist_nmi_refs[i], 0);
1995 
1996 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1997 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1998 
1999 	static_branch_enable(&supports_pseudo_nmis);
2000 
2001 	if (static_branch_likely(&supports_deactivate_key))
2002 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2003 	else
2004 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2005 }
2006 
2007 static int __init gic_init_bases(phys_addr_t dist_phys_base,
2008 				 void __iomem *dist_base,
2009 				 struct redist_region *rdist_regs,
2010 				 u32 nr_redist_regions,
2011 				 u64 redist_stride,
2012 				 struct fwnode_handle *handle)
2013 {
2014 	u32 typer;
2015 	int err;
2016 
2017 	if (!is_hyp_mode_available())
2018 		static_branch_disable(&supports_deactivate_key);
2019 
2020 	if (static_branch_likely(&supports_deactivate_key))
2021 		pr_info("GIC: Using split EOI/Deactivate mode\n");
2022 
2023 	gic_data.fwnode = handle;
2024 	gic_data.dist_phys_base = dist_phys_base;
2025 	gic_data.dist_base = dist_base;
2026 	gic_data.redist_regions = rdist_regs;
2027 	gic_data.nr_redist_regions = nr_redist_regions;
2028 	gic_data.redist_stride = redist_stride;
2029 
2030 	/*
2031 	 * Find out how many interrupts are supported.
2032 	 */
2033 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2034 	gic_data.rdists.gicd_typer = typer;
2035 
2036 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2037 			  gic_quirks, &gic_data);
2038 
2039 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2040 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2041 
2042 	/*
2043 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2044 	 * architecture spec (which says that reserved registers are RES0).
2045 	 */
2046 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2047 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2048 
2049 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2050 						 &gic_data);
2051 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2052 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2053 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2054 		gic_data.rdists.has_rvpeid = true;
2055 		gic_data.rdists.has_vlpis = true;
2056 		gic_data.rdists.has_direct_lpi = true;
2057 		gic_data.rdists.has_vpend_valid_dirty = true;
2058 	}
2059 
2060 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2061 		err = -ENOMEM;
2062 		goto out_free;
2063 	}
2064 
2065 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2066 
2067 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2068 
2069 	if (typer & GICD_TYPER_MBIS) {
2070 		err = mbi_init(handle, gic_data.domain);
2071 		if (err)
2072 			pr_err("Failed to initialize MBIs\n");
2073 	}
2074 
2075 	set_handle_irq(gic_handle_irq);
2076 
2077 	gic_update_rdist_properties();
2078 
2079 	gic_cpu_sys_reg_enable();
2080 	gic_prio_init();
2081 	gic_dist_init();
2082 	gic_cpu_init();
2083 	gic_enable_nmi_support();
2084 	gic_smp_init();
2085 	gic_cpu_pm_init();
2086 
2087 	if (gic_dist_supports_lpis()) {
2088 		its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq);
2089 		its_cpu_init();
2090 		its_lpi_memreserve_init();
2091 	} else {
2092 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2093 			gicv2m_init(handle, gic_data.domain);
2094 	}
2095 
2096 	return 0;
2097 
2098 out_free:
2099 	if (gic_data.domain)
2100 		irq_domain_remove(gic_data.domain);
2101 	free_percpu(gic_data.rdists.rdist);
2102 	return err;
2103 }
2104 
2105 static int __init gic_validate_dist_version(void __iomem *dist_base)
2106 {
2107 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2108 
2109 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2110 		return -ENODEV;
2111 
2112 	return 0;
2113 }
2114 
2115 /* Create all possible partitions at boot time */
2116 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2117 {
2118 	struct device_node *parts_node, *child_part;
2119 	int part_idx = 0, i;
2120 	int nr_parts;
2121 	struct partition_affinity *parts;
2122 
2123 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2124 	if (!parts_node)
2125 		return;
2126 
2127 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2128 	if (!gic_data.ppi_descs)
2129 		goto out_put_node;
2130 
2131 	nr_parts = of_get_child_count(parts_node);
2132 
2133 	if (!nr_parts)
2134 		goto out_put_node;
2135 
2136 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2137 	if (WARN_ON(!parts))
2138 		goto out_put_node;
2139 
2140 	for_each_child_of_node(parts_node, child_part) {
2141 		struct partition_affinity *part;
2142 		int n;
2143 
2144 		part = &parts[part_idx];
2145 
2146 		part->partition_id = of_node_to_fwnode(child_part);
2147 
2148 		pr_info("GIC: PPI partition %pOFn[%d] { ",
2149 			child_part, part_idx);
2150 
2151 		n = of_property_count_elems_of_size(child_part, "affinity",
2152 						    sizeof(u32));
2153 		WARN_ON(n <= 0);
2154 
2155 		for (i = 0; i < n; i++) {
2156 			int err, cpu;
2157 			u32 cpu_phandle;
2158 			struct device_node *cpu_node;
2159 
2160 			err = of_property_read_u32_index(child_part, "affinity",
2161 							 i, &cpu_phandle);
2162 			if (WARN_ON(err))
2163 				continue;
2164 
2165 			cpu_node = of_find_node_by_phandle(cpu_phandle);
2166 			if (WARN_ON(!cpu_node))
2167 				continue;
2168 
2169 			cpu = of_cpu_node_to_id(cpu_node);
2170 			if (WARN_ON(cpu < 0)) {
2171 				of_node_put(cpu_node);
2172 				continue;
2173 			}
2174 
2175 			pr_cont("%pOF[%d] ", cpu_node, cpu);
2176 
2177 			cpumask_set_cpu(cpu, &part->mask);
2178 			of_node_put(cpu_node);
2179 		}
2180 
2181 		pr_cont("}\n");
2182 		part_idx++;
2183 	}
2184 
2185 	for (i = 0; i < gic_data.ppi_nr; i++) {
2186 		unsigned int irq;
2187 		struct partition_desc *desc;
2188 		struct irq_fwspec ppi_fwspec = {
2189 			.fwnode		= gic_data.fwnode,
2190 			.param_count	= 3,
2191 			.param		= {
2192 				[0]	= GIC_IRQ_TYPE_PARTITION,
2193 				[1]	= i,
2194 				[2]	= IRQ_TYPE_NONE,
2195 			},
2196 		};
2197 
2198 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2199 		if (WARN_ON(!irq))
2200 			continue;
2201 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2202 					     irq, &partition_domain_ops);
2203 		if (WARN_ON(!desc))
2204 			continue;
2205 
2206 		gic_data.ppi_descs[i] = desc;
2207 	}
2208 
2209 out_put_node:
2210 	of_node_put(parts_node);
2211 }
2212 
2213 static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions)
2214 {
2215 	int ret;
2216 	struct resource r;
2217 
2218 	gic_v3_kvm_info.type = GIC_V3;
2219 
2220 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2221 	if (!gic_v3_kvm_info.maint_irq)
2222 		return;
2223 
2224 	/* Also skip GICD, GICC, GICH */
2225 	ret = of_address_to_resource(node, nr_redist_regions + 3, &r);
2226 	if (!ret)
2227 		gic_v3_kvm_info.vcpu = r;
2228 
2229 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2230 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2231 	vgic_set_kvm_info(&gic_v3_kvm_info);
2232 }
2233 
2234 static void gic_request_region(resource_size_t base, resource_size_t size,
2235 			       const char *name)
2236 {
2237 	if (!request_mem_region(base, size, name))
2238 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2239 			     name, &base);
2240 }
2241 
2242 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2243 				  const char *name, struct resource *res)
2244 {
2245 	void __iomem *base;
2246 	int ret;
2247 
2248 	ret = of_address_to_resource(node, idx, res);
2249 	if (ret)
2250 		return IOMEM_ERR_PTR(ret);
2251 
2252 	gic_request_region(res->start, resource_size(res), name);
2253 	base = of_iomap(node, idx);
2254 
2255 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2256 }
2257 
2258 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2259 {
2260 	phys_addr_t dist_phys_base;
2261 	void __iomem *dist_base;
2262 	struct redist_region *rdist_regs;
2263 	struct resource res;
2264 	u64 redist_stride;
2265 	u32 nr_redist_regions;
2266 	int err, i;
2267 
2268 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2269 	if (IS_ERR(dist_base)) {
2270 		pr_err("%pOF: unable to map gic dist registers\n", node);
2271 		return PTR_ERR(dist_base);
2272 	}
2273 
2274 	dist_phys_base = res.start;
2275 
2276 	err = gic_validate_dist_version(dist_base);
2277 	if (err) {
2278 		pr_err("%pOF: no distributor detected, giving up\n", node);
2279 		goto out_unmap_dist;
2280 	}
2281 
2282 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2283 		nr_redist_regions = 1;
2284 
2285 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2286 			     GFP_KERNEL);
2287 	if (!rdist_regs) {
2288 		err = -ENOMEM;
2289 		goto out_unmap_dist;
2290 	}
2291 
2292 	for (i = 0; i < nr_redist_regions; i++) {
2293 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2294 		if (IS_ERR(rdist_regs[i].redist_base)) {
2295 			pr_err("%pOF: couldn't map region %d\n", node, i);
2296 			err = -ENODEV;
2297 			goto out_unmap_rdist;
2298 		}
2299 		rdist_regs[i].phys_base = res.start;
2300 	}
2301 
2302 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2303 		redist_stride = 0;
2304 
2305 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2306 
2307 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2308 			     nr_redist_regions, redist_stride, &node->fwnode);
2309 	if (err)
2310 		goto out_unmap_rdist;
2311 
2312 	gic_populate_ppi_partitions(node);
2313 
2314 	if (static_branch_likely(&supports_deactivate_key))
2315 		gic_of_setup_kvm_info(node, nr_redist_regions);
2316 	return 0;
2317 
2318 out_unmap_rdist:
2319 	for (i = 0; i < nr_redist_regions; i++)
2320 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2321 			iounmap(rdist_regs[i].redist_base);
2322 	kfree(rdist_regs);
2323 out_unmap_dist:
2324 	iounmap(dist_base);
2325 	return err;
2326 }
2327 
2328 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2329 
2330 #ifdef CONFIG_ACPI
2331 static struct
2332 {
2333 	void __iomem *dist_base;
2334 	struct redist_region *redist_regs;
2335 	u32 nr_redist_regions;
2336 	bool single_redist;
2337 	int enabled_rdists;
2338 	u32 maint_irq;
2339 	int maint_irq_mode;
2340 	phys_addr_t vcpu_base;
2341 } acpi_data __initdata;
2342 
2343 static void __init
2344 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2345 {
2346 	static int count = 0;
2347 
2348 	acpi_data.redist_regs[count].phys_base = phys_base;
2349 	acpi_data.redist_regs[count].redist_base = redist_base;
2350 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2351 	count++;
2352 }
2353 
2354 static int __init
2355 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2356 			   const unsigned long end)
2357 {
2358 	struct acpi_madt_generic_redistributor *redist =
2359 			(struct acpi_madt_generic_redistributor *)header;
2360 	void __iomem *redist_base;
2361 
2362 	redist_base = ioremap(redist->base_address, redist->length);
2363 	if (!redist_base) {
2364 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2365 		return -ENOMEM;
2366 	}
2367 
2368 	if (acpi_get_madt_revision() >= 7 &&
2369 	    (redist->flags & ACPI_MADT_GICR_NON_COHERENT))
2370 		gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2371 
2372 	gic_request_region(redist->base_address, redist->length, "GICR");
2373 
2374 	gic_acpi_register_redist(redist->base_address, redist_base);
2375 	return 0;
2376 }
2377 
2378 static int __init
2379 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2380 			 const unsigned long end)
2381 {
2382 	struct acpi_madt_generic_interrupt *gicc =
2383 				(struct acpi_madt_generic_interrupt *)header;
2384 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2385 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2386 	void __iomem *redist_base;
2387 
2388 	/* Neither enabled or online capable means it doesn't exist, skip it */
2389 	if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2390 		return 0;
2391 
2392 	/*
2393 	 * Capable but disabled CPUs can be brought online later. What about
2394 	 * the redistributor? ACPI doesn't want to say!
2395 	 * Virtual hotplug systems can use the MADT's "always-on" GICR entries.
2396 	 * Otherwise, prevent such CPUs from being brought online.
2397 	 */
2398 	if (!(gicc->flags & ACPI_MADT_ENABLED)) {
2399 		int cpu = get_cpu_for_acpi_id(gicc->uid);
2400 
2401 		pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu);
2402 		if (cpu >= 0)
2403 			cpumask_set_cpu(cpu, &broken_rdists);
2404 		return 0;
2405 	}
2406 
2407 	redist_base = ioremap(gicc->gicr_base_address, size);
2408 	if (!redist_base)
2409 		return -ENOMEM;
2410 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2411 
2412 	if (acpi_get_madt_revision() >= 7 &&
2413 	    (gicc->flags & ACPI_MADT_GICC_NON_COHERENT))
2414 		gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
2415 
2416 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2417 	return 0;
2418 }
2419 
2420 static int __init gic_acpi_collect_gicr_base(void)
2421 {
2422 	acpi_tbl_entry_handler redist_parser;
2423 	enum acpi_madt_type type;
2424 
2425 	if (acpi_data.single_redist) {
2426 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2427 		redist_parser = gic_acpi_parse_madt_gicc;
2428 	} else {
2429 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2430 		redist_parser = gic_acpi_parse_madt_redist;
2431 	}
2432 
2433 	/* Collect redistributor base addresses in GICR entries */
2434 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2435 		return 0;
2436 
2437 	pr_info("No valid GICR entries exist\n");
2438 	return -ENODEV;
2439 }
2440 
2441 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2442 				  const unsigned long end)
2443 {
2444 	/* Subtable presence means that redist exists, that's it */
2445 	return 0;
2446 }
2447 
2448 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2449 				      const unsigned long end)
2450 {
2451 	struct acpi_madt_generic_interrupt *gicc =
2452 				(struct acpi_madt_generic_interrupt *)header;
2453 
2454 	/*
2455 	 * If GICC is enabled and has valid gicr base address, then it means
2456 	 * GICR base is presented via GICC. The redistributor is only known to
2457 	 * be accessible if the GICC is marked as enabled. If this bit is not
2458 	 * set, we'd need to add the redistributor at runtime, which isn't
2459 	 * supported.
2460 	 */
2461 	if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address)
2462 		acpi_data.enabled_rdists++;
2463 
2464 	return 0;
2465 }
2466 
2467 static int __init gic_acpi_count_gicr_regions(void)
2468 {
2469 	int count;
2470 
2471 	/*
2472 	 * Count how many redistributor regions we have. It is not allowed
2473 	 * to mix redistributor description, GICR and GICC subtables have to be
2474 	 * mutually exclusive.
2475 	 */
2476 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2477 				      gic_acpi_match_gicr, 0);
2478 	if (count > 0) {
2479 		acpi_data.single_redist = false;
2480 		return count;
2481 	}
2482 
2483 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2484 				      gic_acpi_match_gicc, 0);
2485 	if (count > 0) {
2486 		acpi_data.single_redist = true;
2487 		count = acpi_data.enabled_rdists;
2488 	}
2489 
2490 	return count;
2491 }
2492 
2493 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2494 					   struct acpi_probe_entry *ape)
2495 {
2496 	struct acpi_madt_generic_distributor *dist;
2497 	int count;
2498 
2499 	dist = (struct acpi_madt_generic_distributor *)header;
2500 	if (dist->version != ape->driver_data)
2501 		return false;
2502 
2503 	/* We need to do that exercise anyway, the sooner the better */
2504 	count = gic_acpi_count_gicr_regions();
2505 	if (count <= 0)
2506 		return false;
2507 
2508 	acpi_data.nr_redist_regions = count;
2509 	return true;
2510 }
2511 
2512 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2513 						const unsigned long end)
2514 {
2515 	struct acpi_madt_generic_interrupt *gicc =
2516 		(struct acpi_madt_generic_interrupt *)header;
2517 	int maint_irq_mode;
2518 	static int first_madt = true;
2519 
2520 	if (!(gicc->flags &
2521 	      (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
2522 		return 0;
2523 
2524 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2525 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2526 
2527 	if (first_madt) {
2528 		first_madt = false;
2529 
2530 		acpi_data.maint_irq = gicc->vgic_interrupt;
2531 		acpi_data.maint_irq_mode = maint_irq_mode;
2532 		acpi_data.vcpu_base = gicc->gicv_base_address;
2533 
2534 		return 0;
2535 	}
2536 
2537 	/*
2538 	 * The maintenance interrupt and GICV should be the same for every CPU
2539 	 */
2540 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2541 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2542 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2543 		return -EINVAL;
2544 
2545 	return 0;
2546 }
2547 
2548 static bool __init gic_acpi_collect_virt_info(void)
2549 {
2550 	int count;
2551 
2552 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2553 				      gic_acpi_parse_virt_madt_gicc, 0);
2554 
2555 	return (count > 0);
2556 }
2557 
2558 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2559 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2560 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2561 
2562 static void __init gic_acpi_setup_kvm_info(void)
2563 {
2564 	int irq;
2565 
2566 	if (!gic_acpi_collect_virt_info()) {
2567 		pr_warn("Unable to get hardware information used for virtualization\n");
2568 		return;
2569 	}
2570 
2571 	gic_v3_kvm_info.type = GIC_V3;
2572 
2573 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2574 				acpi_data.maint_irq_mode,
2575 				ACPI_ACTIVE_HIGH);
2576 	if (irq <= 0)
2577 		return;
2578 
2579 	gic_v3_kvm_info.maint_irq = irq;
2580 
2581 	if (acpi_data.vcpu_base) {
2582 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2583 
2584 		vcpu->flags = IORESOURCE_MEM;
2585 		vcpu->start = acpi_data.vcpu_base;
2586 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2587 	}
2588 
2589 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2590 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2591 	vgic_set_kvm_info(&gic_v3_kvm_info);
2592 }
2593 
2594 static struct fwnode_handle *gsi_domain_handle;
2595 
2596 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2597 {
2598 	return gsi_domain_handle;
2599 }
2600 
2601 static int __init
2602 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2603 {
2604 	struct acpi_madt_generic_distributor *dist;
2605 	size_t size;
2606 	int i, err;
2607 
2608 	/* Get distributor base address */
2609 	dist = (struct acpi_madt_generic_distributor *)header;
2610 	acpi_data.dist_base = ioremap(dist->base_address,
2611 				      ACPI_GICV3_DIST_MEM_SIZE);
2612 	if (!acpi_data.dist_base) {
2613 		pr_err("Unable to map GICD registers\n");
2614 		return -ENOMEM;
2615 	}
2616 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2617 
2618 	err = gic_validate_dist_version(acpi_data.dist_base);
2619 	if (err) {
2620 		pr_err("No distributor detected at @%p, giving up\n",
2621 		       acpi_data.dist_base);
2622 		goto out_dist_unmap;
2623 	}
2624 
2625 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2626 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2627 	if (!acpi_data.redist_regs) {
2628 		err = -ENOMEM;
2629 		goto out_dist_unmap;
2630 	}
2631 
2632 	err = gic_acpi_collect_gicr_base();
2633 	if (err)
2634 		goto out_redist_unmap;
2635 
2636 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2637 	if (!gsi_domain_handle) {
2638 		err = -ENOMEM;
2639 		goto out_redist_unmap;
2640 	}
2641 
2642 	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2643 			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2644 			     0, gsi_domain_handle);
2645 	if (err)
2646 		goto out_fwhandle_free;
2647 
2648 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2649 
2650 	if (static_branch_likely(&supports_deactivate_key))
2651 		gic_acpi_setup_kvm_info();
2652 
2653 	return 0;
2654 
2655 out_fwhandle_free:
2656 	irq_domain_free_fwnode(gsi_domain_handle);
2657 out_redist_unmap:
2658 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2659 		if (acpi_data.redist_regs[i].redist_base)
2660 			iounmap(acpi_data.redist_regs[i].redist_base);
2661 	kfree(acpi_data.redist_regs);
2662 out_dist_unmap:
2663 	iounmap(acpi_data.dist_base);
2664 	return err;
2665 }
2666 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2667 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2668 		     gic_acpi_init);
2669 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2670 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2671 		     gic_acpi_init);
2672 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2673 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2674 		     gic_acpi_init);
2675 #endif
2676