xref: /linux/drivers/irqchip/irq-gic-v3.c (revision 576d7fed09c7edbae7600f29a8a3ed6c1ead904f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kstrtox.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/percpu.h>
20 #include <linux/refcount.h>
21 #include <linux/slab.h>
22 
23 #include <linux/irqchip.h>
24 #include <linux/irqchip/arm-gic-common.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26 #include <linux/irqchip/irq-partition-percpu.h>
27 #include <linux/bitfield.h>
28 #include <linux/bits.h>
29 #include <linux/arm-smccc.h>
30 
31 #include <asm/cputype.h>
32 #include <asm/exception.h>
33 #include <asm/smp_plat.h>
34 #include <asm/virt.h>
35 
36 #include "irq-gic-common.h"
37 
38 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
39 
40 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
41 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
42 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 2)
43 
44 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
45 
46 struct redist_region {
47 	void __iomem		*redist_base;
48 	phys_addr_t		phys_base;
49 	bool			single_redist;
50 };
51 
52 struct gic_chip_data {
53 	struct fwnode_handle	*fwnode;
54 	phys_addr_t		dist_phys_base;
55 	void __iomem		*dist_base;
56 	struct redist_region	*redist_regions;
57 	struct rdists		rdists;
58 	struct irq_domain	*domain;
59 	u64			redist_stride;
60 	u32			nr_redist_regions;
61 	u64			flags;
62 	bool			has_rss;
63 	unsigned int		ppi_nr;
64 	struct partition_desc	**ppi_descs;
65 };
66 
67 #define T241_CHIPS_MAX		4
68 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
69 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
70 
71 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
72 
73 static struct gic_chip_data gic_data __read_mostly;
74 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
75 
76 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
77 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
78 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
79 
80 /*
81  * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
82  * are potentially stolen by the secure side. Some code, especially code dealing
83  * with hwirq IDs, is simplified by accounting for all 16.
84  */
85 #define SGI_NR		16
86 
87 /*
88  * The behaviours of RPR and PMR registers differ depending on the value of
89  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
90  * distributor and redistributors depends on whether security is enabled in the
91  * GIC.
92  *
93  * When security is enabled, non-secure priority values from the (re)distributor
94  * are presented to the GIC CPUIF as follow:
95  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
96  *
97  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
98  * EL1 are subject to a similar operation thus matching the priorities presented
99  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
100  * these values are unchanged by the GIC.
101  *
102  * see GICv3/GICv4 Architecture Specification (IHI0069D):
103  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
104  *   priorities.
105  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
106  *   interrupt.
107  */
108 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
109 
110 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
111 EXPORT_SYMBOL(gic_nonsecure_priorities);
112 
113 /*
114  * When the Non-secure world has access to group 0 interrupts (as a
115  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
116  * return the Distributor's view of the interrupt priority.
117  *
118  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
119  * written by software is moved to the Non-secure range by the Distributor.
120  *
121  * If both are true (which is when gic_nonsecure_priorities gets enabled),
122  * we need to shift down the priority programmed by software to match it
123  * against the value returned by ICC_RPR_EL1.
124  */
125 #define GICD_INT_RPR_PRI(priority)					\
126 	({								\
127 		u32 __priority = (priority);				\
128 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
129 			__priority = 0x80 | (__priority >> 1);		\
130 									\
131 		__priority;						\
132 	})
133 
134 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
135 static refcount_t *rdist_nmi_refs;
136 
137 static struct gic_kvm_info gic_v3_kvm_info __initdata;
138 static DEFINE_PER_CPU(bool, has_rss);
139 
140 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
141 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
142 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
143 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
144 
145 /* Our default, arbitrary priority value. Linux only uses one anyway. */
146 #define DEFAULT_PMR_VALUE	0xf0
147 
148 enum gic_intid_range {
149 	SGI_RANGE,
150 	PPI_RANGE,
151 	SPI_RANGE,
152 	EPPI_RANGE,
153 	ESPI_RANGE,
154 	LPI_RANGE,
155 	__INVALID_RANGE__
156 };
157 
158 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
159 {
160 	switch (hwirq) {
161 	case 0 ... 15:
162 		return SGI_RANGE;
163 	case 16 ... 31:
164 		return PPI_RANGE;
165 	case 32 ... 1019:
166 		return SPI_RANGE;
167 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
168 		return EPPI_RANGE;
169 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
170 		return ESPI_RANGE;
171 	case 8192 ... GENMASK(23, 0):
172 		return LPI_RANGE;
173 	default:
174 		return __INVALID_RANGE__;
175 	}
176 }
177 
178 static enum gic_intid_range get_intid_range(struct irq_data *d)
179 {
180 	return __get_intid_range(d->hwirq);
181 }
182 
183 static inline unsigned int gic_irq(struct irq_data *d)
184 {
185 	return d->hwirq;
186 }
187 
188 static inline bool gic_irq_in_rdist(struct irq_data *d)
189 {
190 	switch (get_intid_range(d)) {
191 	case SGI_RANGE:
192 	case PPI_RANGE:
193 	case EPPI_RANGE:
194 		return true;
195 	default:
196 		return false;
197 	}
198 }
199 
200 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
201 {
202 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
203 		irq_hw_number_t hwirq = irqd_to_hwirq(d);
204 		u32 chip;
205 
206 		/*
207 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
208 		 * registers are directed to the chip that owns the SPI. The
209 		 * the alias region can also be used for writes to the
210 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
211 		 * for 320 {E}SPIs. Mappings for all 4 chips:
212 		 *    Chip0 = 32-351
213 		 *    Chip1 = 352-671
214 		 *    Chip2 = 672-991
215 		 *    Chip3 = 4096-4415
216 		 */
217 		switch (__get_intid_range(hwirq)) {
218 		case SPI_RANGE:
219 			chip = (hwirq - 32) / 320;
220 			break;
221 		case ESPI_RANGE:
222 			chip = 3;
223 			break;
224 		default:
225 			unreachable();
226 		}
227 		return t241_dist_base_alias[chip];
228 	}
229 
230 	return gic_data.dist_base;
231 }
232 
233 static inline void __iomem *gic_dist_base(struct irq_data *d)
234 {
235 	switch (get_intid_range(d)) {
236 	case SGI_RANGE:
237 	case PPI_RANGE:
238 	case EPPI_RANGE:
239 		/* SGI+PPI -> SGI_base for this CPU */
240 		return gic_data_rdist_sgi_base();
241 
242 	case SPI_RANGE:
243 	case ESPI_RANGE:
244 		/* SPI -> dist_base */
245 		return gic_data.dist_base;
246 
247 	default:
248 		return NULL;
249 	}
250 }
251 
252 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
253 {
254 	u32 count = 1000000;	/* 1s! */
255 
256 	while (readl_relaxed(base + GICD_CTLR) & bit) {
257 		count--;
258 		if (!count) {
259 			pr_err_ratelimited("RWP timeout, gone fishing\n");
260 			return;
261 		}
262 		cpu_relax();
263 		udelay(1);
264 	}
265 }
266 
267 /* Wait for completion of a distributor change */
268 static void gic_dist_wait_for_rwp(void)
269 {
270 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
271 }
272 
273 /* Wait for completion of a redistributor change */
274 static void gic_redist_wait_for_rwp(void)
275 {
276 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
277 }
278 
279 static void gic_enable_redist(bool enable)
280 {
281 	void __iomem *rbase;
282 	u32 count = 1000000;	/* 1s! */
283 	u32 val;
284 
285 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
286 		return;
287 
288 	rbase = gic_data_rdist_rd_base();
289 
290 	val = readl_relaxed(rbase + GICR_WAKER);
291 	if (enable)
292 		/* Wake up this CPU redistributor */
293 		val &= ~GICR_WAKER_ProcessorSleep;
294 	else
295 		val |= GICR_WAKER_ProcessorSleep;
296 	writel_relaxed(val, rbase + GICR_WAKER);
297 
298 	if (!enable) {		/* Check that GICR_WAKER is writeable */
299 		val = readl_relaxed(rbase + GICR_WAKER);
300 		if (!(val & GICR_WAKER_ProcessorSleep))
301 			return;	/* No PM support in this redistributor */
302 	}
303 
304 	while (--count) {
305 		val = readl_relaxed(rbase + GICR_WAKER);
306 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
307 			break;
308 		cpu_relax();
309 		udelay(1);
310 	}
311 	if (!count)
312 		pr_err_ratelimited("redistributor failed to %s...\n",
313 				   enable ? "wakeup" : "sleep");
314 }
315 
316 /*
317  * Routines to disable, enable, EOI and route interrupts
318  */
319 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
320 {
321 	switch (get_intid_range(d)) {
322 	case SGI_RANGE:
323 	case PPI_RANGE:
324 	case SPI_RANGE:
325 		*index = d->hwirq;
326 		return offset;
327 	case EPPI_RANGE:
328 		/*
329 		 * Contrary to the ESPI range, the EPPI range is contiguous
330 		 * to the PPI range in the registers, so let's adjust the
331 		 * displacement accordingly. Consistency is overrated.
332 		 */
333 		*index = d->hwirq - EPPI_BASE_INTID + 32;
334 		return offset;
335 	case ESPI_RANGE:
336 		*index = d->hwirq - ESPI_BASE_INTID;
337 		switch (offset) {
338 		case GICD_ISENABLER:
339 			return GICD_ISENABLERnE;
340 		case GICD_ICENABLER:
341 			return GICD_ICENABLERnE;
342 		case GICD_ISPENDR:
343 			return GICD_ISPENDRnE;
344 		case GICD_ICPENDR:
345 			return GICD_ICPENDRnE;
346 		case GICD_ISACTIVER:
347 			return GICD_ISACTIVERnE;
348 		case GICD_ICACTIVER:
349 			return GICD_ICACTIVERnE;
350 		case GICD_IPRIORITYR:
351 			return GICD_IPRIORITYRnE;
352 		case GICD_ICFGR:
353 			return GICD_ICFGRnE;
354 		case GICD_IROUTER:
355 			return GICD_IROUTERnE;
356 		default:
357 			break;
358 		}
359 		break;
360 	default:
361 		break;
362 	}
363 
364 	WARN_ON(1);
365 	*index = d->hwirq;
366 	return offset;
367 }
368 
369 static int gic_peek_irq(struct irq_data *d, u32 offset)
370 {
371 	void __iomem *base;
372 	u32 index, mask;
373 
374 	offset = convert_offset_index(d, offset, &index);
375 	mask = 1 << (index % 32);
376 
377 	if (gic_irq_in_rdist(d))
378 		base = gic_data_rdist_sgi_base();
379 	else
380 		base = gic_dist_base_alias(d);
381 
382 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
383 }
384 
385 static void gic_poke_irq(struct irq_data *d, u32 offset)
386 {
387 	void __iomem *base;
388 	u32 index, mask;
389 
390 	offset = convert_offset_index(d, offset, &index);
391 	mask = 1 << (index % 32);
392 
393 	if (gic_irq_in_rdist(d))
394 		base = gic_data_rdist_sgi_base();
395 	else
396 		base = gic_data.dist_base;
397 
398 	writel_relaxed(mask, base + offset + (index / 32) * 4);
399 }
400 
401 static void gic_mask_irq(struct irq_data *d)
402 {
403 	gic_poke_irq(d, GICD_ICENABLER);
404 	if (gic_irq_in_rdist(d))
405 		gic_redist_wait_for_rwp();
406 	else
407 		gic_dist_wait_for_rwp();
408 }
409 
410 static void gic_eoimode1_mask_irq(struct irq_data *d)
411 {
412 	gic_mask_irq(d);
413 	/*
414 	 * When masking a forwarded interrupt, make sure it is
415 	 * deactivated as well.
416 	 *
417 	 * This ensures that an interrupt that is getting
418 	 * disabled/masked will not get "stuck", because there is
419 	 * noone to deactivate it (guest is being terminated).
420 	 */
421 	if (irqd_is_forwarded_to_vcpu(d))
422 		gic_poke_irq(d, GICD_ICACTIVER);
423 }
424 
425 static void gic_unmask_irq(struct irq_data *d)
426 {
427 	gic_poke_irq(d, GICD_ISENABLER);
428 }
429 
430 static inline bool gic_supports_nmi(void)
431 {
432 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
433 	       static_branch_likely(&supports_pseudo_nmis);
434 }
435 
436 static int gic_irq_set_irqchip_state(struct irq_data *d,
437 				     enum irqchip_irq_state which, bool val)
438 {
439 	u32 reg;
440 
441 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
442 		return -EINVAL;
443 
444 	switch (which) {
445 	case IRQCHIP_STATE_PENDING:
446 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
447 		break;
448 
449 	case IRQCHIP_STATE_ACTIVE:
450 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
451 		break;
452 
453 	case IRQCHIP_STATE_MASKED:
454 		if (val) {
455 			gic_mask_irq(d);
456 			return 0;
457 		}
458 		reg = GICD_ISENABLER;
459 		break;
460 
461 	default:
462 		return -EINVAL;
463 	}
464 
465 	gic_poke_irq(d, reg);
466 	return 0;
467 }
468 
469 static int gic_irq_get_irqchip_state(struct irq_data *d,
470 				     enum irqchip_irq_state which, bool *val)
471 {
472 	if (d->hwirq >= 8192) /* PPI/SPI only */
473 		return -EINVAL;
474 
475 	switch (which) {
476 	case IRQCHIP_STATE_PENDING:
477 		*val = gic_peek_irq(d, GICD_ISPENDR);
478 		break;
479 
480 	case IRQCHIP_STATE_ACTIVE:
481 		*val = gic_peek_irq(d, GICD_ISACTIVER);
482 		break;
483 
484 	case IRQCHIP_STATE_MASKED:
485 		*val = !gic_peek_irq(d, GICD_ISENABLER);
486 		break;
487 
488 	default:
489 		return -EINVAL;
490 	}
491 
492 	return 0;
493 }
494 
495 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
496 {
497 	void __iomem *base = gic_dist_base(d);
498 	u32 offset, index;
499 
500 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
501 
502 	writeb_relaxed(prio, base + offset + index);
503 }
504 
505 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
506 {
507 	switch (__get_intid_range(hwirq)) {
508 	case PPI_RANGE:
509 		return hwirq - 16;
510 	case EPPI_RANGE:
511 		return hwirq - EPPI_BASE_INTID + 16;
512 	default:
513 		unreachable();
514 	}
515 }
516 
517 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
518 {
519 	switch (__get_intid_range(hwirq)) {
520 	case SGI_RANGE:
521 	case PPI_RANGE:
522 		return hwirq;
523 	case EPPI_RANGE:
524 		return hwirq - EPPI_BASE_INTID + 32;
525 	default:
526 		unreachable();
527 	}
528 }
529 
530 static u32 gic_get_rdist_index(struct irq_data *d)
531 {
532 	return __gic_get_rdist_index(d->hwirq);
533 }
534 
535 static int gic_irq_nmi_setup(struct irq_data *d)
536 {
537 	struct irq_desc *desc = irq_to_desc(d->irq);
538 
539 	if (!gic_supports_nmi())
540 		return -EINVAL;
541 
542 	if (gic_peek_irq(d, GICD_ISENABLER)) {
543 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
544 		return -EINVAL;
545 	}
546 
547 	/*
548 	 * A secondary irq_chip should be in charge of LPI request,
549 	 * it should not be possible to get there
550 	 */
551 	if (WARN_ON(gic_irq(d) >= 8192))
552 		return -EINVAL;
553 
554 	/* desc lock should already be held */
555 	if (gic_irq_in_rdist(d)) {
556 		u32 idx = gic_get_rdist_index(d);
557 
558 		/*
559 		 * Setting up a percpu interrupt as NMI, only switch handler
560 		 * for first NMI
561 		 */
562 		if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
563 			refcount_set(&rdist_nmi_refs[idx], 1);
564 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
565 		}
566 	} else {
567 		desc->handle_irq = handle_fasteoi_nmi;
568 	}
569 
570 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
571 
572 	return 0;
573 }
574 
575 static void gic_irq_nmi_teardown(struct irq_data *d)
576 {
577 	struct irq_desc *desc = irq_to_desc(d->irq);
578 
579 	if (WARN_ON(!gic_supports_nmi()))
580 		return;
581 
582 	if (gic_peek_irq(d, GICD_ISENABLER)) {
583 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
584 		return;
585 	}
586 
587 	/*
588 	 * A secondary irq_chip should be in charge of LPI request,
589 	 * it should not be possible to get there
590 	 */
591 	if (WARN_ON(gic_irq(d) >= 8192))
592 		return;
593 
594 	/* desc lock should already be held */
595 	if (gic_irq_in_rdist(d)) {
596 		u32 idx = gic_get_rdist_index(d);
597 
598 		/* Tearing down NMI, only switch handler for last NMI */
599 		if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
600 			desc->handle_irq = handle_percpu_devid_irq;
601 	} else {
602 		desc->handle_irq = handle_fasteoi_irq;
603 	}
604 
605 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
606 }
607 
608 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
609 {
610 	enum gic_intid_range range;
611 
612 	if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
613 		return false;
614 
615 	range = get_intid_range(d);
616 
617 	/*
618 	 * The workaround is needed if the IRQ is an SPI and
619 	 * the target cpu is different from the one we are
620 	 * executing on.
621 	 */
622 	return (range == SPI_RANGE || range == ESPI_RANGE) &&
623 		!cpumask_test_cpu(raw_smp_processor_id(),
624 				  irq_data_get_effective_affinity_mask(d));
625 }
626 
627 static void gic_eoi_irq(struct irq_data *d)
628 {
629 	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
630 	isb();
631 
632 	if (gic_arm64_erratum_2941627_needed(d)) {
633 		/*
634 		 * Make sure the GIC stream deactivate packet
635 		 * issued by ICC_EOIR1_EL1 has completed before
636 		 * deactivating through GICD_IACTIVER.
637 		 */
638 		dsb(sy);
639 		gic_poke_irq(d, GICD_ICACTIVER);
640 	}
641 }
642 
643 static void gic_eoimode1_eoi_irq(struct irq_data *d)
644 {
645 	/*
646 	 * No need to deactivate an LPI, or an interrupt that
647 	 * is is getting forwarded to a vcpu.
648 	 */
649 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
650 		return;
651 
652 	if (!gic_arm64_erratum_2941627_needed(d))
653 		gic_write_dir(gic_irq(d));
654 	else
655 		gic_poke_irq(d, GICD_ICACTIVER);
656 }
657 
658 static int gic_set_type(struct irq_data *d, unsigned int type)
659 {
660 	enum gic_intid_range range;
661 	unsigned int irq = gic_irq(d);
662 	void __iomem *base;
663 	u32 offset, index;
664 	int ret;
665 
666 	range = get_intid_range(d);
667 
668 	/* Interrupt configuration for SGIs can't be changed */
669 	if (range == SGI_RANGE)
670 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
671 
672 	/* SPIs have restrictions on the supported types */
673 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
674 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
675 		return -EINVAL;
676 
677 	if (gic_irq_in_rdist(d))
678 		base = gic_data_rdist_sgi_base();
679 	else
680 		base = gic_dist_base_alias(d);
681 
682 	offset = convert_offset_index(d, GICD_ICFGR, &index);
683 
684 	ret = gic_configure_irq(index, type, base + offset, NULL);
685 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
686 		/* Misconfigured PPIs are usually not fatal */
687 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
688 		ret = 0;
689 	}
690 
691 	return ret;
692 }
693 
694 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
695 {
696 	if (get_intid_range(d) == SGI_RANGE)
697 		return -EINVAL;
698 
699 	if (vcpu)
700 		irqd_set_forwarded_to_vcpu(d);
701 	else
702 		irqd_clr_forwarded_to_vcpu(d);
703 	return 0;
704 }
705 
706 static u64 gic_cpu_to_affinity(int cpu)
707 {
708 	u64 mpidr = cpu_logical_map(cpu);
709 	u64 aff;
710 
711 	/* ASR8601 needs to have its affinities shifted down... */
712 	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
713 		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	|
714 			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
715 
716 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
717 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
718 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
719 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
720 
721 	return aff;
722 }
723 
724 static void gic_deactivate_unhandled(u32 irqnr)
725 {
726 	if (static_branch_likely(&supports_deactivate_key)) {
727 		if (irqnr < 8192)
728 			gic_write_dir(irqnr);
729 	} else {
730 		write_gicreg(irqnr, ICC_EOIR1_EL1);
731 		isb();
732 	}
733 }
734 
735 /*
736  * Follow a read of the IAR with any HW maintenance that needs to happen prior
737  * to invoking the relevant IRQ handler. We must do two things:
738  *
739  * (1) Ensure instruction ordering between a read of IAR and subsequent
740  *     instructions in the IRQ handler using an ISB.
741  *
742  *     It is possible for the IAR to report an IRQ which was signalled *after*
743  *     the CPU took an IRQ exception as multiple interrupts can race to be
744  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
745  *     later interrupts could be prioritized by the GIC.
746  *
747  *     For devices which are tightly coupled to the CPU, such as PMUs, a
748  *     context synchronization event is necessary to ensure that system
749  *     register state is not stale, as these may have been indirectly written
750  *     *after* exception entry.
751  *
752  * (2) Deactivate the interrupt when EOI mode 1 is in use.
753  */
754 static inline void gic_complete_ack(u32 irqnr)
755 {
756 	if (static_branch_likely(&supports_deactivate_key))
757 		write_gicreg(irqnr, ICC_EOIR1_EL1);
758 
759 	isb();
760 }
761 
762 static bool gic_rpr_is_nmi_prio(void)
763 {
764 	if (!gic_supports_nmi())
765 		return false;
766 
767 	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
768 }
769 
770 static bool gic_irqnr_is_special(u32 irqnr)
771 {
772 	return irqnr >= 1020 && irqnr <= 1023;
773 }
774 
775 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
776 {
777 	if (gic_irqnr_is_special(irqnr))
778 		return;
779 
780 	gic_complete_ack(irqnr);
781 
782 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
783 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
784 		gic_deactivate_unhandled(irqnr);
785 	}
786 }
787 
788 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
789 {
790 	if (gic_irqnr_is_special(irqnr))
791 		return;
792 
793 	gic_complete_ack(irqnr);
794 
795 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
796 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
797 		gic_deactivate_unhandled(irqnr);
798 	}
799 }
800 
801 /*
802  * An exception has been taken from a context with IRQs enabled, and this could
803  * be an IRQ or an NMI.
804  *
805  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
806  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
807  * after handling any NMI but before handling any IRQ.
808  *
809  * The entry code has performed IRQ entry, and if an NMI is detected we must
810  * perform NMI entry/exit around invoking the handler.
811  */
812 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
813 {
814 	bool is_nmi;
815 	u32 irqnr;
816 
817 	irqnr = gic_read_iar();
818 
819 	is_nmi = gic_rpr_is_nmi_prio();
820 
821 	if (is_nmi) {
822 		nmi_enter();
823 		__gic_handle_nmi(irqnr, regs);
824 		nmi_exit();
825 	}
826 
827 	if (gic_prio_masking_enabled()) {
828 		gic_pmr_mask_irqs();
829 		gic_arch_enable_irqs();
830 	}
831 
832 	if (!is_nmi)
833 		__gic_handle_irq(irqnr, regs);
834 }
835 
836 /*
837  * An exception has been taken from a context with IRQs disabled, which can only
838  * be an NMI.
839  *
840  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
841  * DAIF.IF (and ICC_PMR_EL1) unchanged.
842  *
843  * The entry code has performed NMI entry.
844  */
845 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
846 {
847 	u64 pmr;
848 	u32 irqnr;
849 
850 	/*
851 	 * We were in a context with IRQs disabled. However, the
852 	 * entry code has set PMR to a value that allows any
853 	 * interrupt to be acknowledged, and not just NMIs. This can
854 	 * lead to surprising effects if the NMI has been retired in
855 	 * the meantime, and that there is an IRQ pending. The IRQ
856 	 * would then be taken in NMI context, something that nobody
857 	 * wants to debug twice.
858 	 *
859 	 * Until we sort this, drop PMR again to a level that will
860 	 * actually only allow NMIs before reading IAR, and then
861 	 * restore it to what it was.
862 	 */
863 	pmr = gic_read_pmr();
864 	gic_pmr_mask_irqs();
865 	isb();
866 	irqnr = gic_read_iar();
867 	gic_write_pmr(pmr);
868 
869 	__gic_handle_nmi(irqnr, regs);
870 }
871 
872 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
873 {
874 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
875 		__gic_handle_irq_from_irqsoff(regs);
876 	else
877 		__gic_handle_irq_from_irqson(regs);
878 }
879 
880 static u32 gic_get_pribits(void)
881 {
882 	u32 pribits;
883 
884 	pribits = gic_read_ctlr();
885 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
886 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
887 	pribits++;
888 
889 	return pribits;
890 }
891 
892 static bool gic_has_group0(void)
893 {
894 	u32 val;
895 	u32 old_pmr;
896 
897 	old_pmr = gic_read_pmr();
898 
899 	/*
900 	 * Let's find out if Group0 is under control of EL3 or not by
901 	 * setting the highest possible, non-zero priority in PMR.
902 	 *
903 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
904 	 * order for the CPU interface to set bit 7, and keep the
905 	 * actual priority in the non-secure range. In the process, it
906 	 * looses the least significant bit and the actual priority
907 	 * becomes 0x80. Reading it back returns 0, indicating that
908 	 * we're don't have access to Group0.
909 	 */
910 	gic_write_pmr(BIT(8 - gic_get_pribits()));
911 	val = gic_read_pmr();
912 
913 	gic_write_pmr(old_pmr);
914 
915 	return val != 0;
916 }
917 
918 static void __init gic_dist_init(void)
919 {
920 	unsigned int i;
921 	u64 affinity;
922 	void __iomem *base = gic_data.dist_base;
923 	u32 val;
924 
925 	/* Disable the distributor */
926 	writel_relaxed(0, base + GICD_CTLR);
927 	gic_dist_wait_for_rwp();
928 
929 	/*
930 	 * Configure SPIs as non-secure Group-1. This will only matter
931 	 * if the GIC only has a single security state. This will not
932 	 * do the right thing if the kernel is running in secure mode,
933 	 * but that's not the intended use case anyway.
934 	 */
935 	for (i = 32; i < GIC_LINE_NR; i += 32)
936 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
937 
938 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
939 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
940 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
941 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
942 	}
943 
944 	for (i = 0; i < GIC_ESPI_NR; i += 32)
945 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
946 
947 	for (i = 0; i < GIC_ESPI_NR; i += 16)
948 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
949 
950 	for (i = 0; i < GIC_ESPI_NR; i += 4)
951 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
952 
953 	/* Now do the common stuff */
954 	gic_dist_config(base, GIC_LINE_NR, NULL);
955 
956 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
957 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
958 		pr_info("Enabling SGIs without active state\n");
959 		val |= GICD_CTLR_nASSGIreq;
960 	}
961 
962 	/* Enable distributor with ARE, Group1, and wait for it to drain */
963 	writel_relaxed(val, base + GICD_CTLR);
964 	gic_dist_wait_for_rwp();
965 
966 	/*
967 	 * Set all global interrupts to the boot CPU only. ARE must be
968 	 * enabled.
969 	 */
970 	affinity = gic_cpu_to_affinity(smp_processor_id());
971 	for (i = 32; i < GIC_LINE_NR; i++)
972 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
973 
974 	for (i = 0; i < GIC_ESPI_NR; i++)
975 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
976 }
977 
978 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
979 {
980 	int ret = -ENODEV;
981 	int i;
982 
983 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
984 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
985 		u64 typer;
986 		u32 reg;
987 
988 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
989 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
990 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
991 			pr_warn("No redistributor present @%p\n", ptr);
992 			break;
993 		}
994 
995 		do {
996 			typer = gic_read_typer(ptr + GICR_TYPER);
997 			ret = fn(gic_data.redist_regions + i, ptr);
998 			if (!ret)
999 				return 0;
1000 
1001 			if (gic_data.redist_regions[i].single_redist)
1002 				break;
1003 
1004 			if (gic_data.redist_stride) {
1005 				ptr += gic_data.redist_stride;
1006 			} else {
1007 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
1008 				if (typer & GICR_TYPER_VLPIS)
1009 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
1010 			}
1011 		} while (!(typer & GICR_TYPER_LAST));
1012 	}
1013 
1014 	return ret ? -ENODEV : 0;
1015 }
1016 
1017 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1018 {
1019 	unsigned long mpidr;
1020 	u64 typer;
1021 	u32 aff;
1022 
1023 	/*
1024 	 * Convert affinity to a 32bit value that can be matched to
1025 	 * GICR_TYPER bits [63:32].
1026 	 */
1027 	mpidr = gic_cpu_to_affinity(smp_processor_id());
1028 
1029 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1030 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1031 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1032 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
1033 
1034 	typer = gic_read_typer(ptr + GICR_TYPER);
1035 	if ((typer >> 32) == aff) {
1036 		u64 offset = ptr - region->redist_base;
1037 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1038 		gic_data_rdist_rd_base() = ptr;
1039 		gic_data_rdist()->phys_base = region->phys_base + offset;
1040 
1041 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1042 			smp_processor_id(), mpidr,
1043 			(int)(region - gic_data.redist_regions),
1044 			&gic_data_rdist()->phys_base);
1045 		return 0;
1046 	}
1047 
1048 	/* Try next one */
1049 	return 1;
1050 }
1051 
1052 static int gic_populate_rdist(void)
1053 {
1054 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1055 		return 0;
1056 
1057 	/* We couldn't even deal with ourselves... */
1058 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1059 	     smp_processor_id(),
1060 	     (unsigned long)cpu_logical_map(smp_processor_id()));
1061 	return -ENODEV;
1062 }
1063 
1064 static int __gic_update_rdist_properties(struct redist_region *region,
1065 					 void __iomem *ptr)
1066 {
1067 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1068 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1069 
1070 	/* Boot-time cleanup */
1071 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1072 		u64 val;
1073 
1074 		/* Deactivate any present vPE */
1075 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1076 		if (val & GICR_VPENDBASER_Valid)
1077 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1078 					      ptr + SZ_128K + GICR_VPENDBASER);
1079 
1080 		/* Mark the VPE table as invalid */
1081 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1082 		val &= ~GICR_VPROPBASER_4_1_VALID;
1083 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1084 	}
1085 
1086 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1087 
1088 	/*
1089 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1090 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1091 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1092 	 *
1093 	 * These are 3 different ways to express the same thing, depending
1094 	 * on the revision of the architecture and its relaxations over
1095 	 * time. Just group them under the 'direct_lpi' banner.
1096 	 */
1097 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1098 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1099 					   !!(ctlr & GICR_CTLR_IR) |
1100 					   gic_data.rdists.has_rvpeid);
1101 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1102 
1103 	/* Detect non-sensical configurations */
1104 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1105 		gic_data.rdists.has_direct_lpi = false;
1106 		gic_data.rdists.has_vlpis = false;
1107 		gic_data.rdists.has_rvpeid = false;
1108 	}
1109 
1110 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1111 
1112 	return 1;
1113 }
1114 
1115 static void gic_update_rdist_properties(void)
1116 {
1117 	gic_data.ppi_nr = UINT_MAX;
1118 	gic_iterate_rdists(__gic_update_rdist_properties);
1119 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1120 		gic_data.ppi_nr = 0;
1121 	pr_info("GICv3 features: %d PPIs%s%s\n",
1122 		gic_data.ppi_nr,
1123 		gic_data.has_rss ? ", RSS" : "",
1124 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1125 
1126 	if (gic_data.rdists.has_vlpis)
1127 		pr_info("GICv4 features: %s%s%s\n",
1128 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1129 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1130 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1131 }
1132 
1133 /* Check whether it's single security state view */
1134 static inline bool gic_dist_security_disabled(void)
1135 {
1136 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1137 }
1138 
1139 static void gic_cpu_sys_reg_init(void)
1140 {
1141 	int i, cpu = smp_processor_id();
1142 	u64 mpidr = gic_cpu_to_affinity(cpu);
1143 	u64 need_rss = MPIDR_RS(mpidr);
1144 	bool group0;
1145 	u32 pribits;
1146 
1147 	/*
1148 	 * Need to check that the SRE bit has actually been set. If
1149 	 * not, it means that SRE is disabled at EL2. We're going to
1150 	 * die painfully, and there is nothing we can do about it.
1151 	 *
1152 	 * Kindly inform the luser.
1153 	 */
1154 	if (!gic_enable_sre())
1155 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1156 
1157 	pribits = gic_get_pribits();
1158 
1159 	group0 = gic_has_group0();
1160 
1161 	/* Set priority mask register */
1162 	if (!gic_prio_masking_enabled()) {
1163 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1164 	} else if (gic_supports_nmi()) {
1165 		/*
1166 		 * Mismatch configuration with boot CPU, the system is likely
1167 		 * to die as interrupt masking will not work properly on all
1168 		 * CPUs
1169 		 *
1170 		 * The boot CPU calls this function before enabling NMI support,
1171 		 * and as a result we'll never see this warning in the boot path
1172 		 * for that CPU.
1173 		 */
1174 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1175 			WARN_ON(!group0 || gic_dist_security_disabled());
1176 		else
1177 			WARN_ON(group0 && !gic_dist_security_disabled());
1178 	}
1179 
1180 	/*
1181 	 * Some firmwares hand over to the kernel with the BPR changed from
1182 	 * its reset value (and with a value large enough to prevent
1183 	 * any pre-emptive interrupts from working at all). Writing a zero
1184 	 * to BPR restores is reset value.
1185 	 */
1186 	gic_write_bpr1(0);
1187 
1188 	if (static_branch_likely(&supports_deactivate_key)) {
1189 		/* EOI drops priority only (mode 1) */
1190 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1191 	} else {
1192 		/* EOI deactivates interrupt too (mode 0) */
1193 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1194 	}
1195 
1196 	/* Always whack Group0 before Group1 */
1197 	if (group0) {
1198 		switch(pribits) {
1199 		case 8:
1200 		case 7:
1201 			write_gicreg(0, ICC_AP0R3_EL1);
1202 			write_gicreg(0, ICC_AP0R2_EL1);
1203 			fallthrough;
1204 		case 6:
1205 			write_gicreg(0, ICC_AP0R1_EL1);
1206 			fallthrough;
1207 		case 5:
1208 		case 4:
1209 			write_gicreg(0, ICC_AP0R0_EL1);
1210 		}
1211 
1212 		isb();
1213 	}
1214 
1215 	switch(pribits) {
1216 	case 8:
1217 	case 7:
1218 		write_gicreg(0, ICC_AP1R3_EL1);
1219 		write_gicreg(0, ICC_AP1R2_EL1);
1220 		fallthrough;
1221 	case 6:
1222 		write_gicreg(0, ICC_AP1R1_EL1);
1223 		fallthrough;
1224 	case 5:
1225 	case 4:
1226 		write_gicreg(0, ICC_AP1R0_EL1);
1227 	}
1228 
1229 	isb();
1230 
1231 	/* ... and let's hit the road... */
1232 	gic_write_grpen1(1);
1233 
1234 	/* Keep the RSS capability status in per_cpu variable */
1235 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1236 
1237 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1238 	for_each_online_cpu(i) {
1239 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1240 
1241 		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1242 		if (need_rss && (!have_rss))
1243 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1244 				cpu, (unsigned long)mpidr,
1245 				i, (unsigned long)gic_cpu_to_affinity(i));
1246 	}
1247 
1248 	/**
1249 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1250 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1251 	 * UNPREDICTABLE choice of :
1252 	 *   - The write is ignored.
1253 	 *   - The RS field is treated as 0.
1254 	 */
1255 	if (need_rss && (!gic_data.has_rss))
1256 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1257 }
1258 
1259 static bool gicv3_nolpi;
1260 
1261 static int __init gicv3_nolpi_cfg(char *buf)
1262 {
1263 	return kstrtobool(buf, &gicv3_nolpi);
1264 }
1265 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1266 
1267 static int gic_dist_supports_lpis(void)
1268 {
1269 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1270 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1271 		!gicv3_nolpi);
1272 }
1273 
1274 static void gic_cpu_init(void)
1275 {
1276 	void __iomem *rbase;
1277 	int i;
1278 
1279 	/* Register ourselves with the rest of the world */
1280 	if (gic_populate_rdist())
1281 		return;
1282 
1283 	gic_enable_redist(true);
1284 
1285 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1286 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1287 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1288 	     smp_processor_id());
1289 
1290 	rbase = gic_data_rdist_sgi_base();
1291 
1292 	/* Configure SGIs/PPIs as non-secure Group-1 */
1293 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1294 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1295 
1296 	gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, gic_redist_wait_for_rwp);
1297 
1298 	/* initialise system registers */
1299 	gic_cpu_sys_reg_init();
1300 }
1301 
1302 #ifdef CONFIG_SMP
1303 
1304 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1305 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1306 
1307 static int gic_starting_cpu(unsigned int cpu)
1308 {
1309 	gic_cpu_init();
1310 
1311 	if (gic_dist_supports_lpis())
1312 		its_cpu_init();
1313 
1314 	return 0;
1315 }
1316 
1317 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1318 				   unsigned long cluster_id)
1319 {
1320 	int next_cpu, cpu = *base_cpu;
1321 	unsigned long mpidr;
1322 	u16 tlist = 0;
1323 
1324 	mpidr = gic_cpu_to_affinity(cpu);
1325 
1326 	while (cpu < nr_cpu_ids) {
1327 		tlist |= 1 << (mpidr & 0xf);
1328 
1329 		next_cpu = cpumask_next(cpu, mask);
1330 		if (next_cpu >= nr_cpu_ids)
1331 			goto out;
1332 		cpu = next_cpu;
1333 
1334 		mpidr = gic_cpu_to_affinity(cpu);
1335 
1336 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1337 			cpu--;
1338 			goto out;
1339 		}
1340 	}
1341 out:
1342 	*base_cpu = cpu;
1343 	return tlist;
1344 }
1345 
1346 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1347 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1348 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1349 
1350 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1351 {
1352 	u64 val;
1353 
1354 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1355 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1356 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1357 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1358 	       MPIDR_TO_SGI_RS(cluster_id)		|
1359 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1360 
1361 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1362 	gic_write_sgi1r(val);
1363 }
1364 
1365 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1366 {
1367 	int cpu;
1368 
1369 	if (WARN_ON(d->hwirq >= 16))
1370 		return;
1371 
1372 	/*
1373 	 * Ensure that stores to Normal memory are visible to the
1374 	 * other CPUs before issuing the IPI.
1375 	 */
1376 	dsb(ishst);
1377 
1378 	for_each_cpu(cpu, mask) {
1379 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1380 		u16 tlist;
1381 
1382 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1383 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1384 	}
1385 
1386 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1387 	isb();
1388 }
1389 
1390 static void __init gic_smp_init(void)
1391 {
1392 	struct irq_fwspec sgi_fwspec = {
1393 		.fwnode		= gic_data.fwnode,
1394 		.param_count	= 1,
1395 	};
1396 	int base_sgi;
1397 
1398 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1399 				  "irqchip/arm/gicv3:starting",
1400 				  gic_starting_cpu, NULL);
1401 
1402 	/* Register all 8 non-secure SGIs */
1403 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1404 	if (WARN_ON(base_sgi <= 0))
1405 		return;
1406 
1407 	set_smp_ipi_range(base_sgi, 8);
1408 }
1409 
1410 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1411 			    bool force)
1412 {
1413 	unsigned int cpu;
1414 	u32 offset, index;
1415 	void __iomem *reg;
1416 	int enabled;
1417 	u64 val;
1418 
1419 	if (force)
1420 		cpu = cpumask_first(mask_val);
1421 	else
1422 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1423 
1424 	if (cpu >= nr_cpu_ids)
1425 		return -EINVAL;
1426 
1427 	if (gic_irq_in_rdist(d))
1428 		return -EINVAL;
1429 
1430 	/* If interrupt was enabled, disable it first */
1431 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1432 	if (enabled)
1433 		gic_mask_irq(d);
1434 
1435 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1436 	reg = gic_dist_base(d) + offset + (index * 8);
1437 	val = gic_cpu_to_affinity(cpu);
1438 
1439 	gic_write_irouter(val, reg);
1440 
1441 	/*
1442 	 * If the interrupt was enabled, enabled it again. Otherwise,
1443 	 * just wait for the distributor to have digested our changes.
1444 	 */
1445 	if (enabled)
1446 		gic_unmask_irq(d);
1447 
1448 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1449 
1450 	return IRQ_SET_MASK_OK_DONE;
1451 }
1452 #else
1453 #define gic_set_affinity	NULL
1454 #define gic_ipi_send_mask	NULL
1455 #define gic_smp_init()		do { } while(0)
1456 #endif
1457 
1458 static int gic_retrigger(struct irq_data *data)
1459 {
1460 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1461 }
1462 
1463 #ifdef CONFIG_CPU_PM
1464 static int gic_cpu_pm_notifier(struct notifier_block *self,
1465 			       unsigned long cmd, void *v)
1466 {
1467 	if (cmd == CPU_PM_EXIT) {
1468 		if (gic_dist_security_disabled())
1469 			gic_enable_redist(true);
1470 		gic_cpu_sys_reg_init();
1471 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1472 		gic_write_grpen1(0);
1473 		gic_enable_redist(false);
1474 	}
1475 	return NOTIFY_OK;
1476 }
1477 
1478 static struct notifier_block gic_cpu_pm_notifier_block = {
1479 	.notifier_call = gic_cpu_pm_notifier,
1480 };
1481 
1482 static void gic_cpu_pm_init(void)
1483 {
1484 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1485 }
1486 
1487 #else
1488 static inline void gic_cpu_pm_init(void) { }
1489 #endif /* CONFIG_CPU_PM */
1490 
1491 static struct irq_chip gic_chip = {
1492 	.name			= "GICv3",
1493 	.irq_mask		= gic_mask_irq,
1494 	.irq_unmask		= gic_unmask_irq,
1495 	.irq_eoi		= gic_eoi_irq,
1496 	.irq_set_type		= gic_set_type,
1497 	.irq_set_affinity	= gic_set_affinity,
1498 	.irq_retrigger          = gic_retrigger,
1499 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1500 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1501 	.irq_nmi_setup		= gic_irq_nmi_setup,
1502 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1503 	.ipi_send_mask		= gic_ipi_send_mask,
1504 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1505 				  IRQCHIP_SKIP_SET_WAKE |
1506 				  IRQCHIP_MASK_ON_SUSPEND,
1507 };
1508 
1509 static struct irq_chip gic_eoimode1_chip = {
1510 	.name			= "GICv3",
1511 	.irq_mask		= gic_eoimode1_mask_irq,
1512 	.irq_unmask		= gic_unmask_irq,
1513 	.irq_eoi		= gic_eoimode1_eoi_irq,
1514 	.irq_set_type		= gic_set_type,
1515 	.irq_set_affinity	= gic_set_affinity,
1516 	.irq_retrigger          = gic_retrigger,
1517 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1518 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1519 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1520 	.irq_nmi_setup		= gic_irq_nmi_setup,
1521 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1522 	.ipi_send_mask		= gic_ipi_send_mask,
1523 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1524 				  IRQCHIP_SKIP_SET_WAKE |
1525 				  IRQCHIP_MASK_ON_SUSPEND,
1526 };
1527 
1528 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1529 			      irq_hw_number_t hw)
1530 {
1531 	struct irq_chip *chip = &gic_chip;
1532 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1533 
1534 	if (static_branch_likely(&supports_deactivate_key))
1535 		chip = &gic_eoimode1_chip;
1536 
1537 	switch (__get_intid_range(hw)) {
1538 	case SGI_RANGE:
1539 	case PPI_RANGE:
1540 	case EPPI_RANGE:
1541 		irq_set_percpu_devid(irq);
1542 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1543 				    handle_percpu_devid_irq, NULL, NULL);
1544 		break;
1545 
1546 	case SPI_RANGE:
1547 	case ESPI_RANGE:
1548 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1549 				    handle_fasteoi_irq, NULL, NULL);
1550 		irq_set_probe(irq);
1551 		irqd_set_single_target(irqd);
1552 		break;
1553 
1554 	case LPI_RANGE:
1555 		if (!gic_dist_supports_lpis())
1556 			return -EPERM;
1557 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1558 				    handle_fasteoi_irq, NULL, NULL);
1559 		break;
1560 
1561 	default:
1562 		return -EPERM;
1563 	}
1564 
1565 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1566 	irqd_set_handle_enforce_irqctx(irqd);
1567 	return 0;
1568 }
1569 
1570 static int gic_irq_domain_translate(struct irq_domain *d,
1571 				    struct irq_fwspec *fwspec,
1572 				    unsigned long *hwirq,
1573 				    unsigned int *type)
1574 {
1575 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1576 		*hwirq = fwspec->param[0];
1577 		*type = IRQ_TYPE_EDGE_RISING;
1578 		return 0;
1579 	}
1580 
1581 	if (is_of_node(fwspec->fwnode)) {
1582 		if (fwspec->param_count < 3)
1583 			return -EINVAL;
1584 
1585 		switch (fwspec->param[0]) {
1586 		case 0:			/* SPI */
1587 			*hwirq = fwspec->param[1] + 32;
1588 			break;
1589 		case 1:			/* PPI */
1590 			*hwirq = fwspec->param[1] + 16;
1591 			break;
1592 		case 2:			/* ESPI */
1593 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1594 			break;
1595 		case 3:			/* EPPI */
1596 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1597 			break;
1598 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1599 			*hwirq = fwspec->param[1];
1600 			break;
1601 		case GIC_IRQ_TYPE_PARTITION:
1602 			*hwirq = fwspec->param[1];
1603 			if (fwspec->param[1] >= 16)
1604 				*hwirq += EPPI_BASE_INTID - 16;
1605 			else
1606 				*hwirq += 16;
1607 			break;
1608 		default:
1609 			return -EINVAL;
1610 		}
1611 
1612 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1613 
1614 		/*
1615 		 * Make it clear that broken DTs are... broken.
1616 		 * Partitioned PPIs are an unfortunate exception.
1617 		 */
1618 		WARN_ON(*type == IRQ_TYPE_NONE &&
1619 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1620 		return 0;
1621 	}
1622 
1623 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1624 		if(fwspec->param_count != 2)
1625 			return -EINVAL;
1626 
1627 		if (fwspec->param[0] < 16) {
1628 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1629 			       fwspec->param[0]);
1630 			return -EINVAL;
1631 		}
1632 
1633 		*hwirq = fwspec->param[0];
1634 		*type = fwspec->param[1];
1635 
1636 		WARN_ON(*type == IRQ_TYPE_NONE);
1637 		return 0;
1638 	}
1639 
1640 	return -EINVAL;
1641 }
1642 
1643 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1644 				unsigned int nr_irqs, void *arg)
1645 {
1646 	int i, ret;
1647 	irq_hw_number_t hwirq;
1648 	unsigned int type = IRQ_TYPE_NONE;
1649 	struct irq_fwspec *fwspec = arg;
1650 
1651 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1652 	if (ret)
1653 		return ret;
1654 
1655 	for (i = 0; i < nr_irqs; i++) {
1656 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1657 		if (ret)
1658 			return ret;
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1665 				unsigned int nr_irqs)
1666 {
1667 	int i;
1668 
1669 	for (i = 0; i < nr_irqs; i++) {
1670 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1671 		irq_set_handler(virq + i, NULL);
1672 		irq_domain_reset_irq_data(d);
1673 	}
1674 }
1675 
1676 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1677 				      irq_hw_number_t hwirq)
1678 {
1679 	enum gic_intid_range range;
1680 
1681 	if (!gic_data.ppi_descs)
1682 		return false;
1683 
1684 	if (!is_of_node(fwspec->fwnode))
1685 		return false;
1686 
1687 	if (fwspec->param_count < 4 || !fwspec->param[3])
1688 		return false;
1689 
1690 	range = __get_intid_range(hwirq);
1691 	if (range != PPI_RANGE && range != EPPI_RANGE)
1692 		return false;
1693 
1694 	return true;
1695 }
1696 
1697 static int gic_irq_domain_select(struct irq_domain *d,
1698 				 struct irq_fwspec *fwspec,
1699 				 enum irq_domain_bus_token bus_token)
1700 {
1701 	unsigned int type, ret, ppi_idx;
1702 	irq_hw_number_t hwirq;
1703 
1704 	/* Not for us */
1705         if (fwspec->fwnode != d->fwnode)
1706 		return 0;
1707 
1708 	/* If this is not DT, then we have a single domain */
1709 	if (!is_of_node(fwspec->fwnode))
1710 		return 1;
1711 
1712 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1713 	if (WARN_ON_ONCE(ret))
1714 		return 0;
1715 
1716 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1717 		return d == gic_data.domain;
1718 
1719 	/*
1720 	 * If this is a PPI and we have a 4th (non-null) parameter,
1721 	 * then we need to match the partition domain.
1722 	 */
1723 	ppi_idx = __gic_get_ppi_index(hwirq);
1724 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1725 }
1726 
1727 static const struct irq_domain_ops gic_irq_domain_ops = {
1728 	.translate = gic_irq_domain_translate,
1729 	.alloc = gic_irq_domain_alloc,
1730 	.free = gic_irq_domain_free,
1731 	.select = gic_irq_domain_select,
1732 };
1733 
1734 static int partition_domain_translate(struct irq_domain *d,
1735 				      struct irq_fwspec *fwspec,
1736 				      unsigned long *hwirq,
1737 				      unsigned int *type)
1738 {
1739 	unsigned long ppi_intid;
1740 	struct device_node *np;
1741 	unsigned int ppi_idx;
1742 	int ret;
1743 
1744 	if (!gic_data.ppi_descs)
1745 		return -ENOMEM;
1746 
1747 	np = of_find_node_by_phandle(fwspec->param[3]);
1748 	if (WARN_ON(!np))
1749 		return -EINVAL;
1750 
1751 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1752 	if (WARN_ON_ONCE(ret))
1753 		return 0;
1754 
1755 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1756 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1757 				     of_node_to_fwnode(np));
1758 	if (ret < 0)
1759 		return ret;
1760 
1761 	*hwirq = ret;
1762 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1763 
1764 	return 0;
1765 }
1766 
1767 static const struct irq_domain_ops partition_domain_ops = {
1768 	.translate = partition_domain_translate,
1769 	.select = gic_irq_domain_select,
1770 };
1771 
1772 static bool gic_enable_quirk_msm8996(void *data)
1773 {
1774 	struct gic_chip_data *d = data;
1775 
1776 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1777 
1778 	return true;
1779 }
1780 
1781 static bool gic_enable_quirk_cavium_38539(void *data)
1782 {
1783 	struct gic_chip_data *d = data;
1784 
1785 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1786 
1787 	return true;
1788 }
1789 
1790 static bool gic_enable_quirk_hip06_07(void *data)
1791 {
1792 	struct gic_chip_data *d = data;
1793 
1794 	/*
1795 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1796 	 * not being an actual ARM implementation). The saving grace is
1797 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1798 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1799 	 * have ESPI. In both cases, put them right.
1800 	 */
1801 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1802 		/* Zero both ESPI and the RES0 field next to it... */
1803 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1804 		return true;
1805 	}
1806 
1807 	return false;
1808 }
1809 
1810 #define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1811 #define T241_CHIP_GICDA_OFFSET	0x1580000
1812 #define SMCCC_SOC_ID_T241	0x036b0241
1813 
1814 static bool gic_enable_quirk_nvidia_t241(void *data)
1815 {
1816 	s32 soc_id = arm_smccc_get_soc_id_version();
1817 	unsigned long chip_bmask = 0;
1818 	phys_addr_t phys;
1819 	u32 i;
1820 
1821 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1822 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1823 		return false;
1824 
1825 	/* Find the chips based on GICR regions PHYS addr */
1826 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1827 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1828 				  (u64)gic_data.redist_regions[i].phys_base));
1829 	}
1830 
1831 	if (hweight32(chip_bmask) < 3)
1832 		return false;
1833 
1834 	/* Setup GICD alias regions */
1835 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1836 		if (chip_bmask & BIT(i)) {
1837 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1838 			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1839 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1840 			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1841 		}
1842 	}
1843 	static_branch_enable(&gic_nvidia_t241_erratum);
1844 	return true;
1845 }
1846 
1847 static bool gic_enable_quirk_asr8601(void *data)
1848 {
1849 	struct gic_chip_data *d = data;
1850 
1851 	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1852 
1853 	return true;
1854 }
1855 
1856 static bool gic_enable_quirk_arm64_2941627(void *data)
1857 {
1858 	static_branch_enable(&gic_arm64_2941627_erratum);
1859 	return true;
1860 }
1861 
1862 static bool rd_set_non_coherent(void *data)
1863 {
1864 	struct gic_chip_data *d = data;
1865 
1866 	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1867 	return true;
1868 }
1869 
1870 static const struct gic_quirk gic_quirks[] = {
1871 	{
1872 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1873 		.compatible = "qcom,msm8996-gic-v3",
1874 		.init	= gic_enable_quirk_msm8996,
1875 	},
1876 	{
1877 		.desc	= "GICv3: ASR erratum 8601001",
1878 		.compatible = "asr,asr8601-gic-v3",
1879 		.init	= gic_enable_quirk_asr8601,
1880 	},
1881 	{
1882 		.desc	= "GICv3: HIP06 erratum 161010803",
1883 		.iidr	= 0x0204043b,
1884 		.mask	= 0xffffffff,
1885 		.init	= gic_enable_quirk_hip06_07,
1886 	},
1887 	{
1888 		.desc	= "GICv3: HIP07 erratum 161010803",
1889 		.iidr	= 0x00000000,
1890 		.mask	= 0xffffffff,
1891 		.init	= gic_enable_quirk_hip06_07,
1892 	},
1893 	{
1894 		/*
1895 		 * Reserved register accesses generate a Synchronous
1896 		 * External Abort. This erratum applies to:
1897 		 * - ThunderX: CN88xx
1898 		 * - OCTEON TX: CN83xx, CN81xx
1899 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1900 		 */
1901 		.desc	= "GICv3: Cavium erratum 38539",
1902 		.iidr	= 0xa000034c,
1903 		.mask	= 0xe8f00fff,
1904 		.init	= gic_enable_quirk_cavium_38539,
1905 	},
1906 	{
1907 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1908 		.iidr	= 0x0402043b,
1909 		.mask	= 0xffffffff,
1910 		.init	= gic_enable_quirk_nvidia_t241,
1911 	},
1912 	{
1913 		/*
1914 		 * GIC-700: 2941627 workaround - IP variant [0,1]
1915 		 *
1916 		 */
1917 		.desc	= "GICv3: ARM64 erratum 2941627",
1918 		.iidr	= 0x0400043b,
1919 		.mask	= 0xff0e0fff,
1920 		.init	= gic_enable_quirk_arm64_2941627,
1921 	},
1922 	{
1923 		/*
1924 		 * GIC-700: 2941627 workaround - IP variant [2]
1925 		 */
1926 		.desc	= "GICv3: ARM64 erratum 2941627",
1927 		.iidr	= 0x0402043b,
1928 		.mask	= 0xff0f0fff,
1929 		.init	= gic_enable_quirk_arm64_2941627,
1930 	},
1931 	{
1932 		.desc   = "GICv3: non-coherent attribute",
1933 		.property = "dma-noncoherent",
1934 		.init   = rd_set_non_coherent,
1935 	},
1936 	{
1937 	}
1938 };
1939 
1940 static void gic_enable_nmi_support(void)
1941 {
1942 	int i;
1943 
1944 	if (!gic_prio_masking_enabled())
1945 		return;
1946 
1947 	rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
1948 				 sizeof(*rdist_nmi_refs), GFP_KERNEL);
1949 	if (!rdist_nmi_refs)
1950 		return;
1951 
1952 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
1953 		refcount_set(&rdist_nmi_refs[i], 0);
1954 
1955 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1956 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1957 
1958 	/*
1959 	 * How priority values are used by the GIC depends on two things:
1960 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1961 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1962 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1963 	 * ICC_PMR_EL1 register and the priority that software assigns to
1964 	 * interrupts:
1965 	 *
1966 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1967 	 * -----------------------------------------------------------
1968 	 *      1       |      -      |  unchanged  |    unchanged
1969 	 * -----------------------------------------------------------
1970 	 *      0       |      1      |  non-secure |    non-secure
1971 	 * -----------------------------------------------------------
1972 	 *      0       |      0      |  unchanged  |    non-secure
1973 	 *
1974 	 * where non-secure means that the value is right-shifted by one and the
1975 	 * MSB bit set, to make it fit in the non-secure priority range.
1976 	 *
1977 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1978 	 * are both either modified or unchanged, we can use the same set of
1979 	 * priorities.
1980 	 *
1981 	 * In the last case, where only the interrupt priorities are modified to
1982 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1983 	 * and the rest of the values that we use remain unchanged.
1984 	 */
1985 	if (gic_has_group0() && !gic_dist_security_disabled())
1986 		static_branch_enable(&gic_nonsecure_priorities);
1987 
1988 	static_branch_enable(&supports_pseudo_nmis);
1989 
1990 	if (static_branch_likely(&supports_deactivate_key))
1991 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1992 	else
1993 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1994 }
1995 
1996 static int __init gic_init_bases(phys_addr_t dist_phys_base,
1997 				 void __iomem *dist_base,
1998 				 struct redist_region *rdist_regs,
1999 				 u32 nr_redist_regions,
2000 				 u64 redist_stride,
2001 				 struct fwnode_handle *handle)
2002 {
2003 	u32 typer;
2004 	int err;
2005 
2006 	if (!is_hyp_mode_available())
2007 		static_branch_disable(&supports_deactivate_key);
2008 
2009 	if (static_branch_likely(&supports_deactivate_key))
2010 		pr_info("GIC: Using split EOI/Deactivate mode\n");
2011 
2012 	gic_data.fwnode = handle;
2013 	gic_data.dist_phys_base = dist_phys_base;
2014 	gic_data.dist_base = dist_base;
2015 	gic_data.redist_regions = rdist_regs;
2016 	gic_data.nr_redist_regions = nr_redist_regions;
2017 	gic_data.redist_stride = redist_stride;
2018 
2019 	/*
2020 	 * Find out how many interrupts are supported.
2021 	 */
2022 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2023 	gic_data.rdists.gicd_typer = typer;
2024 
2025 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2026 			  gic_quirks, &gic_data);
2027 
2028 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2029 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2030 
2031 	/*
2032 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2033 	 * architecture spec (which says that reserved registers are RES0).
2034 	 */
2035 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2036 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2037 
2038 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2039 						 &gic_data);
2040 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2041 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2042 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2043 		gic_data.rdists.has_rvpeid = true;
2044 		gic_data.rdists.has_vlpis = true;
2045 		gic_data.rdists.has_direct_lpi = true;
2046 		gic_data.rdists.has_vpend_valid_dirty = true;
2047 	}
2048 
2049 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2050 		err = -ENOMEM;
2051 		goto out_free;
2052 	}
2053 
2054 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2055 
2056 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2057 
2058 	if (typer & GICD_TYPER_MBIS) {
2059 		err = mbi_init(handle, gic_data.domain);
2060 		if (err)
2061 			pr_err("Failed to initialize MBIs\n");
2062 	}
2063 
2064 	set_handle_irq(gic_handle_irq);
2065 
2066 	gic_update_rdist_properties();
2067 
2068 	gic_dist_init();
2069 	gic_cpu_init();
2070 	gic_enable_nmi_support();
2071 	gic_smp_init();
2072 	gic_cpu_pm_init();
2073 
2074 	if (gic_dist_supports_lpis()) {
2075 		its_init(handle, &gic_data.rdists, gic_data.domain);
2076 		its_cpu_init();
2077 		its_lpi_memreserve_init();
2078 	} else {
2079 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2080 			gicv2m_init(handle, gic_data.domain);
2081 	}
2082 
2083 	return 0;
2084 
2085 out_free:
2086 	if (gic_data.domain)
2087 		irq_domain_remove(gic_data.domain);
2088 	free_percpu(gic_data.rdists.rdist);
2089 	return err;
2090 }
2091 
2092 static int __init gic_validate_dist_version(void __iomem *dist_base)
2093 {
2094 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2095 
2096 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2097 		return -ENODEV;
2098 
2099 	return 0;
2100 }
2101 
2102 /* Create all possible partitions at boot time */
2103 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2104 {
2105 	struct device_node *parts_node, *child_part;
2106 	int part_idx = 0, i;
2107 	int nr_parts;
2108 	struct partition_affinity *parts;
2109 
2110 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2111 	if (!parts_node)
2112 		return;
2113 
2114 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2115 	if (!gic_data.ppi_descs)
2116 		goto out_put_node;
2117 
2118 	nr_parts = of_get_child_count(parts_node);
2119 
2120 	if (!nr_parts)
2121 		goto out_put_node;
2122 
2123 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2124 	if (WARN_ON(!parts))
2125 		goto out_put_node;
2126 
2127 	for_each_child_of_node(parts_node, child_part) {
2128 		struct partition_affinity *part;
2129 		int n;
2130 
2131 		part = &parts[part_idx];
2132 
2133 		part->partition_id = of_node_to_fwnode(child_part);
2134 
2135 		pr_info("GIC: PPI partition %pOFn[%d] { ",
2136 			child_part, part_idx);
2137 
2138 		n = of_property_count_elems_of_size(child_part, "affinity",
2139 						    sizeof(u32));
2140 		WARN_ON(n <= 0);
2141 
2142 		for (i = 0; i < n; i++) {
2143 			int err, cpu;
2144 			u32 cpu_phandle;
2145 			struct device_node *cpu_node;
2146 
2147 			err = of_property_read_u32_index(child_part, "affinity",
2148 							 i, &cpu_phandle);
2149 			if (WARN_ON(err))
2150 				continue;
2151 
2152 			cpu_node = of_find_node_by_phandle(cpu_phandle);
2153 			if (WARN_ON(!cpu_node))
2154 				continue;
2155 
2156 			cpu = of_cpu_node_to_id(cpu_node);
2157 			if (WARN_ON(cpu < 0)) {
2158 				of_node_put(cpu_node);
2159 				continue;
2160 			}
2161 
2162 			pr_cont("%pOF[%d] ", cpu_node, cpu);
2163 
2164 			cpumask_set_cpu(cpu, &part->mask);
2165 			of_node_put(cpu_node);
2166 		}
2167 
2168 		pr_cont("}\n");
2169 		part_idx++;
2170 	}
2171 
2172 	for (i = 0; i < gic_data.ppi_nr; i++) {
2173 		unsigned int irq;
2174 		struct partition_desc *desc;
2175 		struct irq_fwspec ppi_fwspec = {
2176 			.fwnode		= gic_data.fwnode,
2177 			.param_count	= 3,
2178 			.param		= {
2179 				[0]	= GIC_IRQ_TYPE_PARTITION,
2180 				[1]	= i,
2181 				[2]	= IRQ_TYPE_NONE,
2182 			},
2183 		};
2184 
2185 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2186 		if (WARN_ON(!irq))
2187 			continue;
2188 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2189 					     irq, &partition_domain_ops);
2190 		if (WARN_ON(!desc))
2191 			continue;
2192 
2193 		gic_data.ppi_descs[i] = desc;
2194 	}
2195 
2196 out_put_node:
2197 	of_node_put(parts_node);
2198 }
2199 
2200 static void __init gic_of_setup_kvm_info(struct device_node *node)
2201 {
2202 	int ret;
2203 	struct resource r;
2204 	u32 gicv_idx;
2205 
2206 	gic_v3_kvm_info.type = GIC_V3;
2207 
2208 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2209 	if (!gic_v3_kvm_info.maint_irq)
2210 		return;
2211 
2212 	if (of_property_read_u32(node, "#redistributor-regions",
2213 				 &gicv_idx))
2214 		gicv_idx = 1;
2215 
2216 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2217 	ret = of_address_to_resource(node, gicv_idx, &r);
2218 	if (!ret)
2219 		gic_v3_kvm_info.vcpu = r;
2220 
2221 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2222 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2223 	vgic_set_kvm_info(&gic_v3_kvm_info);
2224 }
2225 
2226 static void gic_request_region(resource_size_t base, resource_size_t size,
2227 			       const char *name)
2228 {
2229 	if (!request_mem_region(base, size, name))
2230 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2231 			     name, &base);
2232 }
2233 
2234 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2235 				  const char *name, struct resource *res)
2236 {
2237 	void __iomem *base;
2238 	int ret;
2239 
2240 	ret = of_address_to_resource(node, idx, res);
2241 	if (ret)
2242 		return IOMEM_ERR_PTR(ret);
2243 
2244 	gic_request_region(res->start, resource_size(res), name);
2245 	base = of_iomap(node, idx);
2246 
2247 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2248 }
2249 
2250 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2251 {
2252 	phys_addr_t dist_phys_base;
2253 	void __iomem *dist_base;
2254 	struct redist_region *rdist_regs;
2255 	struct resource res;
2256 	u64 redist_stride;
2257 	u32 nr_redist_regions;
2258 	int err, i;
2259 
2260 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2261 	if (IS_ERR(dist_base)) {
2262 		pr_err("%pOF: unable to map gic dist registers\n", node);
2263 		return PTR_ERR(dist_base);
2264 	}
2265 
2266 	dist_phys_base = res.start;
2267 
2268 	err = gic_validate_dist_version(dist_base);
2269 	if (err) {
2270 		pr_err("%pOF: no distributor detected, giving up\n", node);
2271 		goto out_unmap_dist;
2272 	}
2273 
2274 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2275 		nr_redist_regions = 1;
2276 
2277 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2278 			     GFP_KERNEL);
2279 	if (!rdist_regs) {
2280 		err = -ENOMEM;
2281 		goto out_unmap_dist;
2282 	}
2283 
2284 	for (i = 0; i < nr_redist_regions; i++) {
2285 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2286 		if (IS_ERR(rdist_regs[i].redist_base)) {
2287 			pr_err("%pOF: couldn't map region %d\n", node, i);
2288 			err = -ENODEV;
2289 			goto out_unmap_rdist;
2290 		}
2291 		rdist_regs[i].phys_base = res.start;
2292 	}
2293 
2294 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2295 		redist_stride = 0;
2296 
2297 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2298 
2299 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2300 			     nr_redist_regions, redist_stride, &node->fwnode);
2301 	if (err)
2302 		goto out_unmap_rdist;
2303 
2304 	gic_populate_ppi_partitions(node);
2305 
2306 	if (static_branch_likely(&supports_deactivate_key))
2307 		gic_of_setup_kvm_info(node);
2308 	return 0;
2309 
2310 out_unmap_rdist:
2311 	for (i = 0; i < nr_redist_regions; i++)
2312 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2313 			iounmap(rdist_regs[i].redist_base);
2314 	kfree(rdist_regs);
2315 out_unmap_dist:
2316 	iounmap(dist_base);
2317 	return err;
2318 }
2319 
2320 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2321 
2322 #ifdef CONFIG_ACPI
2323 static struct
2324 {
2325 	void __iomem *dist_base;
2326 	struct redist_region *redist_regs;
2327 	u32 nr_redist_regions;
2328 	bool single_redist;
2329 	int enabled_rdists;
2330 	u32 maint_irq;
2331 	int maint_irq_mode;
2332 	phys_addr_t vcpu_base;
2333 } acpi_data __initdata;
2334 
2335 static void __init
2336 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2337 {
2338 	static int count = 0;
2339 
2340 	acpi_data.redist_regs[count].phys_base = phys_base;
2341 	acpi_data.redist_regs[count].redist_base = redist_base;
2342 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2343 	count++;
2344 }
2345 
2346 static int __init
2347 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2348 			   const unsigned long end)
2349 {
2350 	struct acpi_madt_generic_redistributor *redist =
2351 			(struct acpi_madt_generic_redistributor *)header;
2352 	void __iomem *redist_base;
2353 
2354 	redist_base = ioremap(redist->base_address, redist->length);
2355 	if (!redist_base) {
2356 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2357 		return -ENOMEM;
2358 	}
2359 	gic_request_region(redist->base_address, redist->length, "GICR");
2360 
2361 	gic_acpi_register_redist(redist->base_address, redist_base);
2362 	return 0;
2363 }
2364 
2365 static int __init
2366 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2367 			 const unsigned long end)
2368 {
2369 	struct acpi_madt_generic_interrupt *gicc =
2370 				(struct acpi_madt_generic_interrupt *)header;
2371 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2372 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2373 	void __iomem *redist_base;
2374 
2375 	if (!acpi_gicc_is_usable(gicc))
2376 		return 0;
2377 
2378 	redist_base = ioremap(gicc->gicr_base_address, size);
2379 	if (!redist_base)
2380 		return -ENOMEM;
2381 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2382 
2383 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2384 	return 0;
2385 }
2386 
2387 static int __init gic_acpi_collect_gicr_base(void)
2388 {
2389 	acpi_tbl_entry_handler redist_parser;
2390 	enum acpi_madt_type type;
2391 
2392 	if (acpi_data.single_redist) {
2393 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2394 		redist_parser = gic_acpi_parse_madt_gicc;
2395 	} else {
2396 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2397 		redist_parser = gic_acpi_parse_madt_redist;
2398 	}
2399 
2400 	/* Collect redistributor base addresses in GICR entries */
2401 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2402 		return 0;
2403 
2404 	pr_info("No valid GICR entries exist\n");
2405 	return -ENODEV;
2406 }
2407 
2408 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2409 				  const unsigned long end)
2410 {
2411 	/* Subtable presence means that redist exists, that's it */
2412 	return 0;
2413 }
2414 
2415 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2416 				      const unsigned long end)
2417 {
2418 	struct acpi_madt_generic_interrupt *gicc =
2419 				(struct acpi_madt_generic_interrupt *)header;
2420 
2421 	/*
2422 	 * If GICC is enabled and has valid gicr base address, then it means
2423 	 * GICR base is presented via GICC
2424 	 */
2425 	if (acpi_gicc_is_usable(gicc) && gicc->gicr_base_address) {
2426 		acpi_data.enabled_rdists++;
2427 		return 0;
2428 	}
2429 
2430 	/*
2431 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2432 	 * should not treat as errors, skip the entry instead of probe fail.
2433 	 */
2434 	if (!acpi_gicc_is_usable(gicc))
2435 		return 0;
2436 
2437 	return -ENODEV;
2438 }
2439 
2440 static int __init gic_acpi_count_gicr_regions(void)
2441 {
2442 	int count;
2443 
2444 	/*
2445 	 * Count how many redistributor regions we have. It is not allowed
2446 	 * to mix redistributor description, GICR and GICC subtables have to be
2447 	 * mutually exclusive.
2448 	 */
2449 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2450 				      gic_acpi_match_gicr, 0);
2451 	if (count > 0) {
2452 		acpi_data.single_redist = false;
2453 		return count;
2454 	}
2455 
2456 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2457 				      gic_acpi_match_gicc, 0);
2458 	if (count > 0) {
2459 		acpi_data.single_redist = true;
2460 		count = acpi_data.enabled_rdists;
2461 	}
2462 
2463 	return count;
2464 }
2465 
2466 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2467 					   struct acpi_probe_entry *ape)
2468 {
2469 	struct acpi_madt_generic_distributor *dist;
2470 	int count;
2471 
2472 	dist = (struct acpi_madt_generic_distributor *)header;
2473 	if (dist->version != ape->driver_data)
2474 		return false;
2475 
2476 	/* We need to do that exercise anyway, the sooner the better */
2477 	count = gic_acpi_count_gicr_regions();
2478 	if (count <= 0)
2479 		return false;
2480 
2481 	acpi_data.nr_redist_regions = count;
2482 	return true;
2483 }
2484 
2485 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2486 						const unsigned long end)
2487 {
2488 	struct acpi_madt_generic_interrupt *gicc =
2489 		(struct acpi_madt_generic_interrupt *)header;
2490 	int maint_irq_mode;
2491 	static int first_madt = true;
2492 
2493 	if (!acpi_gicc_is_usable(gicc))
2494 		return 0;
2495 
2496 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2497 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2498 
2499 	if (first_madt) {
2500 		first_madt = false;
2501 
2502 		acpi_data.maint_irq = gicc->vgic_interrupt;
2503 		acpi_data.maint_irq_mode = maint_irq_mode;
2504 		acpi_data.vcpu_base = gicc->gicv_base_address;
2505 
2506 		return 0;
2507 	}
2508 
2509 	/*
2510 	 * The maintenance interrupt and GICV should be the same for every CPU
2511 	 */
2512 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2513 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2514 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2515 		return -EINVAL;
2516 
2517 	return 0;
2518 }
2519 
2520 static bool __init gic_acpi_collect_virt_info(void)
2521 {
2522 	int count;
2523 
2524 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2525 				      gic_acpi_parse_virt_madt_gicc, 0);
2526 
2527 	return (count > 0);
2528 }
2529 
2530 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2531 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2532 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2533 
2534 static void __init gic_acpi_setup_kvm_info(void)
2535 {
2536 	int irq;
2537 
2538 	if (!gic_acpi_collect_virt_info()) {
2539 		pr_warn("Unable to get hardware information used for virtualization\n");
2540 		return;
2541 	}
2542 
2543 	gic_v3_kvm_info.type = GIC_V3;
2544 
2545 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2546 				acpi_data.maint_irq_mode,
2547 				ACPI_ACTIVE_HIGH);
2548 	if (irq <= 0)
2549 		return;
2550 
2551 	gic_v3_kvm_info.maint_irq = irq;
2552 
2553 	if (acpi_data.vcpu_base) {
2554 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2555 
2556 		vcpu->flags = IORESOURCE_MEM;
2557 		vcpu->start = acpi_data.vcpu_base;
2558 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2559 	}
2560 
2561 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2562 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2563 	vgic_set_kvm_info(&gic_v3_kvm_info);
2564 }
2565 
2566 static struct fwnode_handle *gsi_domain_handle;
2567 
2568 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2569 {
2570 	return gsi_domain_handle;
2571 }
2572 
2573 static int __init
2574 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2575 {
2576 	struct acpi_madt_generic_distributor *dist;
2577 	size_t size;
2578 	int i, err;
2579 
2580 	/* Get distributor base address */
2581 	dist = (struct acpi_madt_generic_distributor *)header;
2582 	acpi_data.dist_base = ioremap(dist->base_address,
2583 				      ACPI_GICV3_DIST_MEM_SIZE);
2584 	if (!acpi_data.dist_base) {
2585 		pr_err("Unable to map GICD registers\n");
2586 		return -ENOMEM;
2587 	}
2588 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2589 
2590 	err = gic_validate_dist_version(acpi_data.dist_base);
2591 	if (err) {
2592 		pr_err("No distributor detected at @%p, giving up\n",
2593 		       acpi_data.dist_base);
2594 		goto out_dist_unmap;
2595 	}
2596 
2597 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2598 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2599 	if (!acpi_data.redist_regs) {
2600 		err = -ENOMEM;
2601 		goto out_dist_unmap;
2602 	}
2603 
2604 	err = gic_acpi_collect_gicr_base();
2605 	if (err)
2606 		goto out_redist_unmap;
2607 
2608 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2609 	if (!gsi_domain_handle) {
2610 		err = -ENOMEM;
2611 		goto out_redist_unmap;
2612 	}
2613 
2614 	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2615 			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2616 			     0, gsi_domain_handle);
2617 	if (err)
2618 		goto out_fwhandle_free;
2619 
2620 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2621 
2622 	if (static_branch_likely(&supports_deactivate_key))
2623 		gic_acpi_setup_kvm_info();
2624 
2625 	return 0;
2626 
2627 out_fwhandle_free:
2628 	irq_domain_free_fwnode(gsi_domain_handle);
2629 out_redist_unmap:
2630 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2631 		if (acpi_data.redist_regs[i].redist_base)
2632 			iounmap(acpi_data.redist_regs[i].redist_base);
2633 	kfree(acpi_data.redist_regs);
2634 out_dist_unmap:
2635 	iounmap(acpi_data.dist_base);
2636 	return err;
2637 }
2638 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2639 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2640 		     gic_acpi_init);
2641 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2642 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2643 		     gic_acpi_init);
2644 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2645 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2646 		     gic_acpi_init);
2647 #endif
2648