xref: /linux/drivers/irqchip/irq-gic-v3.c (revision 249ebf3f65f8530beb2cbfb91bff1d83ba88d23c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kstrtox.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/percpu.h>
20 #include <linux/refcount.h>
21 #include <linux/slab.h>
22 #include <linux/iopoll.h>
23 
24 #include <linux/irqchip.h>
25 #include <linux/irqchip/arm-gic-common.h>
26 #include <linux/irqchip/arm-gic-v3.h>
27 #include <linux/irqchip/irq-partition-percpu.h>
28 #include <linux/bitfield.h>
29 #include <linux/bits.h>
30 #include <linux/arm-smccc.h>
31 
32 #include <asm/cputype.h>
33 #include <asm/exception.h>
34 #include <asm/smp_plat.h>
35 #include <asm/virt.h>
36 
37 #include "irq-gic-common.h"
38 
39 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
40 
41 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
42 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
43 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 2)
44 
45 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
46 
47 struct redist_region {
48 	void __iomem		*redist_base;
49 	phys_addr_t		phys_base;
50 	bool			single_redist;
51 };
52 
53 struct gic_chip_data {
54 	struct fwnode_handle	*fwnode;
55 	phys_addr_t		dist_phys_base;
56 	void __iomem		*dist_base;
57 	struct redist_region	*redist_regions;
58 	struct rdists		rdists;
59 	struct irq_domain	*domain;
60 	u64			redist_stride;
61 	u32			nr_redist_regions;
62 	u64			flags;
63 	bool			has_rss;
64 	unsigned int		ppi_nr;
65 	struct partition_desc	**ppi_descs;
66 };
67 
68 #define T241_CHIPS_MAX		4
69 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
70 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
71 
72 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
73 
74 static struct gic_chip_data gic_data __read_mostly;
75 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
76 
77 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
78 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
79 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
80 
81 /*
82  * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
83  * are potentially stolen by the secure side. Some code, especially code dealing
84  * with hwirq IDs, is simplified by accounting for all 16.
85  */
86 #define SGI_NR		16
87 
88 /*
89  * The behaviours of RPR and PMR registers differ depending on the value of
90  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
91  * distributor and redistributors depends on whether security is enabled in the
92  * GIC.
93  *
94  * When security is enabled, non-secure priority values from the (re)distributor
95  * are presented to the GIC CPUIF as follow:
96  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
97  *
98  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
99  * EL1 are subject to a similar operation thus matching the priorities presented
100  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
101  * these values are unchanged by the GIC.
102  *
103  * see GICv3/GICv4 Architecture Specification (IHI0069D):
104  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
105  *   priorities.
106  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
107  *   interrupt.
108  */
109 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
110 
111 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
112 EXPORT_SYMBOL(gic_nonsecure_priorities);
113 
114 /*
115  * When the Non-secure world has access to group 0 interrupts (as a
116  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
117  * return the Distributor's view of the interrupt priority.
118  *
119  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
120  * written by software is moved to the Non-secure range by the Distributor.
121  *
122  * If both are true (which is when gic_nonsecure_priorities gets enabled),
123  * we need to shift down the priority programmed by software to match it
124  * against the value returned by ICC_RPR_EL1.
125  */
126 #define GICD_INT_RPR_PRI(priority)					\
127 	({								\
128 		u32 __priority = (priority);				\
129 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
130 			__priority = 0x80 | (__priority >> 1);		\
131 									\
132 		__priority;						\
133 	})
134 
135 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
136 static refcount_t *rdist_nmi_refs;
137 
138 static struct gic_kvm_info gic_v3_kvm_info __initdata;
139 static DEFINE_PER_CPU(bool, has_rss);
140 
141 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
142 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
143 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
144 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
145 
146 /* Our default, arbitrary priority value. Linux only uses one anyway. */
147 #define DEFAULT_PMR_VALUE	0xf0
148 
149 enum gic_intid_range {
150 	SGI_RANGE,
151 	PPI_RANGE,
152 	SPI_RANGE,
153 	EPPI_RANGE,
154 	ESPI_RANGE,
155 	LPI_RANGE,
156 	__INVALID_RANGE__
157 };
158 
159 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
160 {
161 	switch (hwirq) {
162 	case 0 ... 15:
163 		return SGI_RANGE;
164 	case 16 ... 31:
165 		return PPI_RANGE;
166 	case 32 ... 1019:
167 		return SPI_RANGE;
168 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
169 		return EPPI_RANGE;
170 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
171 		return ESPI_RANGE;
172 	case 8192 ... GENMASK(23, 0):
173 		return LPI_RANGE;
174 	default:
175 		return __INVALID_RANGE__;
176 	}
177 }
178 
179 static enum gic_intid_range get_intid_range(struct irq_data *d)
180 {
181 	return __get_intid_range(d->hwirq);
182 }
183 
184 static inline bool gic_irq_in_rdist(struct irq_data *d)
185 {
186 	switch (get_intid_range(d)) {
187 	case SGI_RANGE:
188 	case PPI_RANGE:
189 	case EPPI_RANGE:
190 		return true;
191 	default:
192 		return false;
193 	}
194 }
195 
196 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
197 {
198 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
199 		irq_hw_number_t hwirq = irqd_to_hwirq(d);
200 		u32 chip;
201 
202 		/*
203 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
204 		 * registers are directed to the chip that owns the SPI. The
205 		 * the alias region can also be used for writes to the
206 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
207 		 * for 320 {E}SPIs. Mappings for all 4 chips:
208 		 *    Chip0 = 32-351
209 		 *    Chip1 = 352-671
210 		 *    Chip2 = 672-991
211 		 *    Chip3 = 4096-4415
212 		 */
213 		switch (__get_intid_range(hwirq)) {
214 		case SPI_RANGE:
215 			chip = (hwirq - 32) / 320;
216 			break;
217 		case ESPI_RANGE:
218 			chip = 3;
219 			break;
220 		default:
221 			unreachable();
222 		}
223 		return t241_dist_base_alias[chip];
224 	}
225 
226 	return gic_data.dist_base;
227 }
228 
229 static inline void __iomem *gic_dist_base(struct irq_data *d)
230 {
231 	switch (get_intid_range(d)) {
232 	case SGI_RANGE:
233 	case PPI_RANGE:
234 	case EPPI_RANGE:
235 		/* SGI+PPI -> SGI_base for this CPU */
236 		return gic_data_rdist_sgi_base();
237 
238 	case SPI_RANGE:
239 	case ESPI_RANGE:
240 		/* SPI -> dist_base */
241 		return gic_data.dist_base;
242 
243 	default:
244 		return NULL;
245 	}
246 }
247 
248 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
249 {
250 	u32 val;
251 	int ret;
252 
253 	ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit),
254 						1, USEC_PER_SEC);
255 	if (ret == -ETIMEDOUT)
256 		pr_err_ratelimited("RWP timeout, gone fishing\n");
257 }
258 
259 /* Wait for completion of a distributor change */
260 static void gic_dist_wait_for_rwp(void)
261 {
262 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
263 }
264 
265 /* Wait for completion of a redistributor change */
266 static void gic_redist_wait_for_rwp(void)
267 {
268 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
269 }
270 
271 static void gic_enable_redist(bool enable)
272 {
273 	void __iomem *rbase;
274 	u32 val;
275 	int ret;
276 
277 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
278 		return;
279 
280 	rbase = gic_data_rdist_rd_base();
281 
282 	val = readl_relaxed(rbase + GICR_WAKER);
283 	if (enable)
284 		/* Wake up this CPU redistributor */
285 		val &= ~GICR_WAKER_ProcessorSleep;
286 	else
287 		val |= GICR_WAKER_ProcessorSleep;
288 	writel_relaxed(val, rbase + GICR_WAKER);
289 
290 	if (!enable) {		/* Check that GICR_WAKER is writeable */
291 		val = readl_relaxed(rbase + GICR_WAKER);
292 		if (!(val & GICR_WAKER_ProcessorSleep))
293 			return;	/* No PM support in this redistributor */
294 	}
295 
296 	ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val,
297 						enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep),
298 						1, USEC_PER_SEC);
299 	if (ret == -ETIMEDOUT) {
300 		pr_err_ratelimited("redistributor failed to %s...\n",
301 				   enable ? "wakeup" : "sleep");
302 	}
303 }
304 
305 /*
306  * Routines to disable, enable, EOI and route interrupts
307  */
308 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
309 {
310 	switch (get_intid_range(d)) {
311 	case SGI_RANGE:
312 	case PPI_RANGE:
313 	case SPI_RANGE:
314 		*index = d->hwirq;
315 		return offset;
316 	case EPPI_RANGE:
317 		/*
318 		 * Contrary to the ESPI range, the EPPI range is contiguous
319 		 * to the PPI range in the registers, so let's adjust the
320 		 * displacement accordingly. Consistency is overrated.
321 		 */
322 		*index = d->hwirq - EPPI_BASE_INTID + 32;
323 		return offset;
324 	case ESPI_RANGE:
325 		*index = d->hwirq - ESPI_BASE_INTID;
326 		switch (offset) {
327 		case GICD_ISENABLER:
328 			return GICD_ISENABLERnE;
329 		case GICD_ICENABLER:
330 			return GICD_ICENABLERnE;
331 		case GICD_ISPENDR:
332 			return GICD_ISPENDRnE;
333 		case GICD_ICPENDR:
334 			return GICD_ICPENDRnE;
335 		case GICD_ISACTIVER:
336 			return GICD_ISACTIVERnE;
337 		case GICD_ICACTIVER:
338 			return GICD_ICACTIVERnE;
339 		case GICD_IPRIORITYR:
340 			return GICD_IPRIORITYRnE;
341 		case GICD_ICFGR:
342 			return GICD_ICFGRnE;
343 		case GICD_IROUTER:
344 			return GICD_IROUTERnE;
345 		default:
346 			break;
347 		}
348 		break;
349 	default:
350 		break;
351 	}
352 
353 	WARN_ON(1);
354 	*index = d->hwirq;
355 	return offset;
356 }
357 
358 static int gic_peek_irq(struct irq_data *d, u32 offset)
359 {
360 	void __iomem *base;
361 	u32 index, mask;
362 
363 	offset = convert_offset_index(d, offset, &index);
364 	mask = 1 << (index % 32);
365 
366 	if (gic_irq_in_rdist(d))
367 		base = gic_data_rdist_sgi_base();
368 	else
369 		base = gic_dist_base_alias(d);
370 
371 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
372 }
373 
374 static void gic_poke_irq(struct irq_data *d, u32 offset)
375 {
376 	void __iomem *base;
377 	u32 index, mask;
378 
379 	offset = convert_offset_index(d, offset, &index);
380 	mask = 1 << (index % 32);
381 
382 	if (gic_irq_in_rdist(d))
383 		base = gic_data_rdist_sgi_base();
384 	else
385 		base = gic_data.dist_base;
386 
387 	writel_relaxed(mask, base + offset + (index / 32) * 4);
388 }
389 
390 static void gic_mask_irq(struct irq_data *d)
391 {
392 	gic_poke_irq(d, GICD_ICENABLER);
393 	if (gic_irq_in_rdist(d))
394 		gic_redist_wait_for_rwp();
395 	else
396 		gic_dist_wait_for_rwp();
397 }
398 
399 static void gic_eoimode1_mask_irq(struct irq_data *d)
400 {
401 	gic_mask_irq(d);
402 	/*
403 	 * When masking a forwarded interrupt, make sure it is
404 	 * deactivated as well.
405 	 *
406 	 * This ensures that an interrupt that is getting
407 	 * disabled/masked will not get "stuck", because there is
408 	 * noone to deactivate it (guest is being terminated).
409 	 */
410 	if (irqd_is_forwarded_to_vcpu(d))
411 		gic_poke_irq(d, GICD_ICACTIVER);
412 }
413 
414 static void gic_unmask_irq(struct irq_data *d)
415 {
416 	gic_poke_irq(d, GICD_ISENABLER);
417 }
418 
419 static inline bool gic_supports_nmi(void)
420 {
421 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
422 	       static_branch_likely(&supports_pseudo_nmis);
423 }
424 
425 static int gic_irq_set_irqchip_state(struct irq_data *d,
426 				     enum irqchip_irq_state which, bool val)
427 {
428 	u32 reg;
429 
430 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
431 		return -EINVAL;
432 
433 	switch (which) {
434 	case IRQCHIP_STATE_PENDING:
435 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
436 		break;
437 
438 	case IRQCHIP_STATE_ACTIVE:
439 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
440 		break;
441 
442 	case IRQCHIP_STATE_MASKED:
443 		if (val) {
444 			gic_mask_irq(d);
445 			return 0;
446 		}
447 		reg = GICD_ISENABLER;
448 		break;
449 
450 	default:
451 		return -EINVAL;
452 	}
453 
454 	gic_poke_irq(d, reg);
455 	return 0;
456 }
457 
458 static int gic_irq_get_irqchip_state(struct irq_data *d,
459 				     enum irqchip_irq_state which, bool *val)
460 {
461 	if (d->hwirq >= 8192) /* PPI/SPI only */
462 		return -EINVAL;
463 
464 	switch (which) {
465 	case IRQCHIP_STATE_PENDING:
466 		*val = gic_peek_irq(d, GICD_ISPENDR);
467 		break;
468 
469 	case IRQCHIP_STATE_ACTIVE:
470 		*val = gic_peek_irq(d, GICD_ISACTIVER);
471 		break;
472 
473 	case IRQCHIP_STATE_MASKED:
474 		*val = !gic_peek_irq(d, GICD_ISENABLER);
475 		break;
476 
477 	default:
478 		return -EINVAL;
479 	}
480 
481 	return 0;
482 }
483 
484 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
485 {
486 	void __iomem *base = gic_dist_base(d);
487 	u32 offset, index;
488 
489 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
490 
491 	writeb_relaxed(prio, base + offset + index);
492 }
493 
494 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
495 {
496 	switch (__get_intid_range(hwirq)) {
497 	case PPI_RANGE:
498 		return hwirq - 16;
499 	case EPPI_RANGE:
500 		return hwirq - EPPI_BASE_INTID + 16;
501 	default:
502 		unreachable();
503 	}
504 }
505 
506 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
507 {
508 	switch (__get_intid_range(hwirq)) {
509 	case SGI_RANGE:
510 	case PPI_RANGE:
511 		return hwirq;
512 	case EPPI_RANGE:
513 		return hwirq - EPPI_BASE_INTID + 32;
514 	default:
515 		unreachable();
516 	}
517 }
518 
519 static u32 gic_get_rdist_index(struct irq_data *d)
520 {
521 	return __gic_get_rdist_index(d->hwirq);
522 }
523 
524 static int gic_irq_nmi_setup(struct irq_data *d)
525 {
526 	struct irq_desc *desc = irq_to_desc(d->irq);
527 
528 	if (!gic_supports_nmi())
529 		return -EINVAL;
530 
531 	if (gic_peek_irq(d, GICD_ISENABLER)) {
532 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
533 		return -EINVAL;
534 	}
535 
536 	/*
537 	 * A secondary irq_chip should be in charge of LPI request,
538 	 * it should not be possible to get there
539 	 */
540 	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
541 		return -EINVAL;
542 
543 	/* desc lock should already be held */
544 	if (gic_irq_in_rdist(d)) {
545 		u32 idx = gic_get_rdist_index(d);
546 
547 		/*
548 		 * Setting up a percpu interrupt as NMI, only switch handler
549 		 * for first NMI
550 		 */
551 		if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
552 			refcount_set(&rdist_nmi_refs[idx], 1);
553 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
554 		}
555 	} else {
556 		desc->handle_irq = handle_fasteoi_nmi;
557 	}
558 
559 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
560 
561 	return 0;
562 }
563 
564 static void gic_irq_nmi_teardown(struct irq_data *d)
565 {
566 	struct irq_desc *desc = irq_to_desc(d->irq);
567 
568 	if (WARN_ON(!gic_supports_nmi()))
569 		return;
570 
571 	if (gic_peek_irq(d, GICD_ISENABLER)) {
572 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
573 		return;
574 	}
575 
576 	/*
577 	 * A secondary irq_chip should be in charge of LPI request,
578 	 * it should not be possible to get there
579 	 */
580 	if (WARN_ON(irqd_to_hwirq(d) >= 8192))
581 		return;
582 
583 	/* desc lock should already be held */
584 	if (gic_irq_in_rdist(d)) {
585 		u32 idx = gic_get_rdist_index(d);
586 
587 		/* Tearing down NMI, only switch handler for last NMI */
588 		if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
589 			desc->handle_irq = handle_percpu_devid_irq;
590 	} else {
591 		desc->handle_irq = handle_fasteoi_irq;
592 	}
593 
594 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
595 }
596 
597 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
598 {
599 	enum gic_intid_range range;
600 
601 	if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
602 		return false;
603 
604 	range = get_intid_range(d);
605 
606 	/*
607 	 * The workaround is needed if the IRQ is an SPI and
608 	 * the target cpu is different from the one we are
609 	 * executing on.
610 	 */
611 	return (range == SPI_RANGE || range == ESPI_RANGE) &&
612 		!cpumask_test_cpu(raw_smp_processor_id(),
613 				  irq_data_get_effective_affinity_mask(d));
614 }
615 
616 static void gic_eoi_irq(struct irq_data *d)
617 {
618 	write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1);
619 	isb();
620 
621 	if (gic_arm64_erratum_2941627_needed(d)) {
622 		/*
623 		 * Make sure the GIC stream deactivate packet
624 		 * issued by ICC_EOIR1_EL1 has completed before
625 		 * deactivating through GICD_IACTIVER.
626 		 */
627 		dsb(sy);
628 		gic_poke_irq(d, GICD_ICACTIVER);
629 	}
630 }
631 
632 static void gic_eoimode1_eoi_irq(struct irq_data *d)
633 {
634 	/*
635 	 * No need to deactivate an LPI, or an interrupt that
636 	 * is is getting forwarded to a vcpu.
637 	 */
638 	if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
639 		return;
640 
641 	if (!gic_arm64_erratum_2941627_needed(d))
642 		gic_write_dir(irqd_to_hwirq(d));
643 	else
644 		gic_poke_irq(d, GICD_ICACTIVER);
645 }
646 
647 static int gic_set_type(struct irq_data *d, unsigned int type)
648 {
649 	irq_hw_number_t irq = irqd_to_hwirq(d);
650 	enum gic_intid_range range;
651 	void __iomem *base;
652 	u32 offset, index;
653 	int ret;
654 
655 	range = get_intid_range(d);
656 
657 	/* Interrupt configuration for SGIs can't be changed */
658 	if (range == SGI_RANGE)
659 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
660 
661 	/* SPIs have restrictions on the supported types */
662 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
663 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
664 		return -EINVAL;
665 
666 	if (gic_irq_in_rdist(d))
667 		base = gic_data_rdist_sgi_base();
668 	else
669 		base = gic_dist_base_alias(d);
670 
671 	offset = convert_offset_index(d, GICD_ICFGR, &index);
672 
673 	ret = gic_configure_irq(index, type, base + offset, NULL);
674 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
675 		/* Misconfigured PPIs are usually not fatal */
676 		pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq);
677 		ret = 0;
678 	}
679 
680 	return ret;
681 }
682 
683 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
684 {
685 	if (get_intid_range(d) == SGI_RANGE)
686 		return -EINVAL;
687 
688 	if (vcpu)
689 		irqd_set_forwarded_to_vcpu(d);
690 	else
691 		irqd_clr_forwarded_to_vcpu(d);
692 	return 0;
693 }
694 
695 static u64 gic_cpu_to_affinity(int cpu)
696 {
697 	u64 mpidr = cpu_logical_map(cpu);
698 	u64 aff;
699 
700 	/* ASR8601 needs to have its affinities shifted down... */
701 	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
702 		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	|
703 			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
704 
705 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
706 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
707 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
708 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
709 
710 	return aff;
711 }
712 
713 static void gic_deactivate_unhandled(u32 irqnr)
714 {
715 	if (static_branch_likely(&supports_deactivate_key)) {
716 		if (irqnr < 8192)
717 			gic_write_dir(irqnr);
718 	} else {
719 		write_gicreg(irqnr, ICC_EOIR1_EL1);
720 		isb();
721 	}
722 }
723 
724 /*
725  * Follow a read of the IAR with any HW maintenance that needs to happen prior
726  * to invoking the relevant IRQ handler. We must do two things:
727  *
728  * (1) Ensure instruction ordering between a read of IAR and subsequent
729  *     instructions in the IRQ handler using an ISB.
730  *
731  *     It is possible for the IAR to report an IRQ which was signalled *after*
732  *     the CPU took an IRQ exception as multiple interrupts can race to be
733  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
734  *     later interrupts could be prioritized by the GIC.
735  *
736  *     For devices which are tightly coupled to the CPU, such as PMUs, a
737  *     context synchronization event is necessary to ensure that system
738  *     register state is not stale, as these may have been indirectly written
739  *     *after* exception entry.
740  *
741  * (2) Deactivate the interrupt when EOI mode 1 is in use.
742  */
743 static inline void gic_complete_ack(u32 irqnr)
744 {
745 	if (static_branch_likely(&supports_deactivate_key))
746 		write_gicreg(irqnr, ICC_EOIR1_EL1);
747 
748 	isb();
749 }
750 
751 static bool gic_rpr_is_nmi_prio(void)
752 {
753 	if (!gic_supports_nmi())
754 		return false;
755 
756 	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
757 }
758 
759 static bool gic_irqnr_is_special(u32 irqnr)
760 {
761 	return irqnr >= 1020 && irqnr <= 1023;
762 }
763 
764 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
765 {
766 	if (gic_irqnr_is_special(irqnr))
767 		return;
768 
769 	gic_complete_ack(irqnr);
770 
771 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
772 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
773 		gic_deactivate_unhandled(irqnr);
774 	}
775 }
776 
777 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
778 {
779 	if (gic_irqnr_is_special(irqnr))
780 		return;
781 
782 	gic_complete_ack(irqnr);
783 
784 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
785 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
786 		gic_deactivate_unhandled(irqnr);
787 	}
788 }
789 
790 /*
791  * An exception has been taken from a context with IRQs enabled, and this could
792  * be an IRQ or an NMI.
793  *
794  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
795  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
796  * after handling any NMI but before handling any IRQ.
797  *
798  * The entry code has performed IRQ entry, and if an NMI is detected we must
799  * perform NMI entry/exit around invoking the handler.
800  */
801 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
802 {
803 	bool is_nmi;
804 	u32 irqnr;
805 
806 	irqnr = gic_read_iar();
807 
808 	is_nmi = gic_rpr_is_nmi_prio();
809 
810 	if (is_nmi) {
811 		nmi_enter();
812 		__gic_handle_nmi(irqnr, regs);
813 		nmi_exit();
814 	}
815 
816 	if (gic_prio_masking_enabled()) {
817 		gic_pmr_mask_irqs();
818 		gic_arch_enable_irqs();
819 	}
820 
821 	if (!is_nmi)
822 		__gic_handle_irq(irqnr, regs);
823 }
824 
825 /*
826  * An exception has been taken from a context with IRQs disabled, which can only
827  * be an NMI.
828  *
829  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
830  * DAIF.IF (and ICC_PMR_EL1) unchanged.
831  *
832  * The entry code has performed NMI entry.
833  */
834 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
835 {
836 	u64 pmr;
837 	u32 irqnr;
838 
839 	/*
840 	 * We were in a context with IRQs disabled. However, the
841 	 * entry code has set PMR to a value that allows any
842 	 * interrupt to be acknowledged, and not just NMIs. This can
843 	 * lead to surprising effects if the NMI has been retired in
844 	 * the meantime, and that there is an IRQ pending. The IRQ
845 	 * would then be taken in NMI context, something that nobody
846 	 * wants to debug twice.
847 	 *
848 	 * Until we sort this, drop PMR again to a level that will
849 	 * actually only allow NMIs before reading IAR, and then
850 	 * restore it to what it was.
851 	 */
852 	pmr = gic_read_pmr();
853 	gic_pmr_mask_irqs();
854 	isb();
855 	irqnr = gic_read_iar();
856 	gic_write_pmr(pmr);
857 
858 	__gic_handle_nmi(irqnr, regs);
859 }
860 
861 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
862 {
863 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
864 		__gic_handle_irq_from_irqsoff(regs);
865 	else
866 		__gic_handle_irq_from_irqson(regs);
867 }
868 
869 static u32 gic_get_pribits(void)
870 {
871 	u32 pribits;
872 
873 	pribits = gic_read_ctlr();
874 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
875 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
876 	pribits++;
877 
878 	return pribits;
879 }
880 
881 static bool gic_has_group0(void)
882 {
883 	u32 val;
884 	u32 old_pmr;
885 
886 	old_pmr = gic_read_pmr();
887 
888 	/*
889 	 * Let's find out if Group0 is under control of EL3 or not by
890 	 * setting the highest possible, non-zero priority in PMR.
891 	 *
892 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
893 	 * order for the CPU interface to set bit 7, and keep the
894 	 * actual priority in the non-secure range. In the process, it
895 	 * looses the least significant bit and the actual priority
896 	 * becomes 0x80. Reading it back returns 0, indicating that
897 	 * we're don't have access to Group0.
898 	 */
899 	gic_write_pmr(BIT(8 - gic_get_pribits()));
900 	val = gic_read_pmr();
901 
902 	gic_write_pmr(old_pmr);
903 
904 	return val != 0;
905 }
906 
907 static void __init gic_dist_init(void)
908 {
909 	unsigned int i;
910 	u64 affinity;
911 	void __iomem *base = gic_data.dist_base;
912 	u32 val;
913 
914 	/* Disable the distributor */
915 	writel_relaxed(0, base + GICD_CTLR);
916 	gic_dist_wait_for_rwp();
917 
918 	/*
919 	 * Configure SPIs as non-secure Group-1. This will only matter
920 	 * if the GIC only has a single security state. This will not
921 	 * do the right thing if the kernel is running in secure mode,
922 	 * but that's not the intended use case anyway.
923 	 */
924 	for (i = 32; i < GIC_LINE_NR; i += 32)
925 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
926 
927 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
928 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
929 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
930 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
931 	}
932 
933 	for (i = 0; i < GIC_ESPI_NR; i += 32)
934 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
935 
936 	for (i = 0; i < GIC_ESPI_NR; i += 16)
937 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
938 
939 	for (i = 0; i < GIC_ESPI_NR; i += 4)
940 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
941 
942 	/* Now do the common stuff */
943 	gic_dist_config(base, GIC_LINE_NR, NULL);
944 
945 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
946 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
947 		pr_info("Enabling SGIs without active state\n");
948 		val |= GICD_CTLR_nASSGIreq;
949 	}
950 
951 	/* Enable distributor with ARE, Group1, and wait for it to drain */
952 	writel_relaxed(val, base + GICD_CTLR);
953 	gic_dist_wait_for_rwp();
954 
955 	/*
956 	 * Set all global interrupts to the boot CPU only. ARE must be
957 	 * enabled.
958 	 */
959 	affinity = gic_cpu_to_affinity(smp_processor_id());
960 	for (i = 32; i < GIC_LINE_NR; i++)
961 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
962 
963 	for (i = 0; i < GIC_ESPI_NR; i++)
964 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
965 }
966 
967 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
968 {
969 	int ret = -ENODEV;
970 	int i;
971 
972 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
973 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
974 		u64 typer;
975 		u32 reg;
976 
977 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
978 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
979 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
980 			pr_warn("No redistributor present @%p\n", ptr);
981 			break;
982 		}
983 
984 		do {
985 			typer = gic_read_typer(ptr + GICR_TYPER);
986 			ret = fn(gic_data.redist_regions + i, ptr);
987 			if (!ret)
988 				return 0;
989 
990 			if (gic_data.redist_regions[i].single_redist)
991 				break;
992 
993 			if (gic_data.redist_stride) {
994 				ptr += gic_data.redist_stride;
995 			} else {
996 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
997 				if (typer & GICR_TYPER_VLPIS)
998 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
999 			}
1000 		} while (!(typer & GICR_TYPER_LAST));
1001 	}
1002 
1003 	return ret ? -ENODEV : 0;
1004 }
1005 
1006 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1007 {
1008 	unsigned long mpidr;
1009 	u64 typer;
1010 	u32 aff;
1011 
1012 	/*
1013 	 * Convert affinity to a 32bit value that can be matched to
1014 	 * GICR_TYPER bits [63:32].
1015 	 */
1016 	mpidr = gic_cpu_to_affinity(smp_processor_id());
1017 
1018 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1019 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1020 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1021 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
1022 
1023 	typer = gic_read_typer(ptr + GICR_TYPER);
1024 	if ((typer >> 32) == aff) {
1025 		u64 offset = ptr - region->redist_base;
1026 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1027 		gic_data_rdist_rd_base() = ptr;
1028 		gic_data_rdist()->phys_base = region->phys_base + offset;
1029 
1030 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1031 			smp_processor_id(), mpidr,
1032 			(int)(region - gic_data.redist_regions),
1033 			&gic_data_rdist()->phys_base);
1034 		return 0;
1035 	}
1036 
1037 	/* Try next one */
1038 	return 1;
1039 }
1040 
1041 static int gic_populate_rdist(void)
1042 {
1043 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1044 		return 0;
1045 
1046 	/* We couldn't even deal with ourselves... */
1047 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1048 	     smp_processor_id(),
1049 	     (unsigned long)cpu_logical_map(smp_processor_id()));
1050 	return -ENODEV;
1051 }
1052 
1053 static int __gic_update_rdist_properties(struct redist_region *region,
1054 					 void __iomem *ptr)
1055 {
1056 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1057 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1058 
1059 	/* Boot-time cleanup */
1060 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1061 		u64 val;
1062 
1063 		/* Deactivate any present vPE */
1064 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1065 		if (val & GICR_VPENDBASER_Valid)
1066 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1067 					      ptr + SZ_128K + GICR_VPENDBASER);
1068 
1069 		/* Mark the VPE table as invalid */
1070 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1071 		val &= ~GICR_VPROPBASER_4_1_VALID;
1072 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1073 	}
1074 
1075 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1076 
1077 	/*
1078 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1079 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1080 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1081 	 *
1082 	 * These are 3 different ways to express the same thing, depending
1083 	 * on the revision of the architecture and its relaxations over
1084 	 * time. Just group them under the 'direct_lpi' banner.
1085 	 */
1086 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1087 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1088 					   !!(ctlr & GICR_CTLR_IR) |
1089 					   gic_data.rdists.has_rvpeid);
1090 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1091 
1092 	/* Detect non-sensical configurations */
1093 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1094 		gic_data.rdists.has_direct_lpi = false;
1095 		gic_data.rdists.has_vlpis = false;
1096 		gic_data.rdists.has_rvpeid = false;
1097 	}
1098 
1099 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1100 
1101 	return 1;
1102 }
1103 
1104 static void gic_update_rdist_properties(void)
1105 {
1106 	gic_data.ppi_nr = UINT_MAX;
1107 	gic_iterate_rdists(__gic_update_rdist_properties);
1108 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1109 		gic_data.ppi_nr = 0;
1110 	pr_info("GICv3 features: %d PPIs%s%s\n",
1111 		gic_data.ppi_nr,
1112 		gic_data.has_rss ? ", RSS" : "",
1113 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1114 
1115 	if (gic_data.rdists.has_vlpis)
1116 		pr_info("GICv4 features: %s%s%s\n",
1117 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1118 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1119 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1120 }
1121 
1122 /* Check whether it's single security state view */
1123 static inline bool gic_dist_security_disabled(void)
1124 {
1125 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1126 }
1127 
1128 static void gic_cpu_sys_reg_init(void)
1129 {
1130 	int i, cpu = smp_processor_id();
1131 	u64 mpidr = gic_cpu_to_affinity(cpu);
1132 	u64 need_rss = MPIDR_RS(mpidr);
1133 	bool group0;
1134 	u32 pribits;
1135 
1136 	/*
1137 	 * Need to check that the SRE bit has actually been set. If
1138 	 * not, it means that SRE is disabled at EL2. We're going to
1139 	 * die painfully, and there is nothing we can do about it.
1140 	 *
1141 	 * Kindly inform the luser.
1142 	 */
1143 	if (!gic_enable_sre())
1144 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1145 
1146 	pribits = gic_get_pribits();
1147 
1148 	group0 = gic_has_group0();
1149 
1150 	/* Set priority mask register */
1151 	if (!gic_prio_masking_enabled()) {
1152 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1153 	} else if (gic_supports_nmi()) {
1154 		/*
1155 		 * Mismatch configuration with boot CPU, the system is likely
1156 		 * to die as interrupt masking will not work properly on all
1157 		 * CPUs
1158 		 *
1159 		 * The boot CPU calls this function before enabling NMI support,
1160 		 * and as a result we'll never see this warning in the boot path
1161 		 * for that CPU.
1162 		 */
1163 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1164 			WARN_ON(!group0 || gic_dist_security_disabled());
1165 		else
1166 			WARN_ON(group0 && !gic_dist_security_disabled());
1167 	}
1168 
1169 	/*
1170 	 * Some firmwares hand over to the kernel with the BPR changed from
1171 	 * its reset value (and with a value large enough to prevent
1172 	 * any pre-emptive interrupts from working at all). Writing a zero
1173 	 * to BPR restores is reset value.
1174 	 */
1175 	gic_write_bpr1(0);
1176 
1177 	if (static_branch_likely(&supports_deactivate_key)) {
1178 		/* EOI drops priority only (mode 1) */
1179 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1180 	} else {
1181 		/* EOI deactivates interrupt too (mode 0) */
1182 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1183 	}
1184 
1185 	/* Always whack Group0 before Group1 */
1186 	if (group0) {
1187 		switch(pribits) {
1188 		case 8:
1189 		case 7:
1190 			write_gicreg(0, ICC_AP0R3_EL1);
1191 			write_gicreg(0, ICC_AP0R2_EL1);
1192 			fallthrough;
1193 		case 6:
1194 			write_gicreg(0, ICC_AP0R1_EL1);
1195 			fallthrough;
1196 		case 5:
1197 		case 4:
1198 			write_gicreg(0, ICC_AP0R0_EL1);
1199 		}
1200 
1201 		isb();
1202 	}
1203 
1204 	switch(pribits) {
1205 	case 8:
1206 	case 7:
1207 		write_gicreg(0, ICC_AP1R3_EL1);
1208 		write_gicreg(0, ICC_AP1R2_EL1);
1209 		fallthrough;
1210 	case 6:
1211 		write_gicreg(0, ICC_AP1R1_EL1);
1212 		fallthrough;
1213 	case 5:
1214 	case 4:
1215 		write_gicreg(0, ICC_AP1R0_EL1);
1216 	}
1217 
1218 	isb();
1219 
1220 	/* ... and let's hit the road... */
1221 	gic_write_grpen1(1);
1222 
1223 	/* Keep the RSS capability status in per_cpu variable */
1224 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1225 
1226 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1227 	for_each_online_cpu(i) {
1228 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1229 
1230 		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1231 		if (need_rss && (!have_rss))
1232 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1233 				cpu, (unsigned long)mpidr,
1234 				i, (unsigned long)gic_cpu_to_affinity(i));
1235 	}
1236 
1237 	/**
1238 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1239 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1240 	 * UNPREDICTABLE choice of :
1241 	 *   - The write is ignored.
1242 	 *   - The RS field is treated as 0.
1243 	 */
1244 	if (need_rss && (!gic_data.has_rss))
1245 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1246 }
1247 
1248 static bool gicv3_nolpi;
1249 
1250 static int __init gicv3_nolpi_cfg(char *buf)
1251 {
1252 	return kstrtobool(buf, &gicv3_nolpi);
1253 }
1254 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1255 
1256 static int gic_dist_supports_lpis(void)
1257 {
1258 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1259 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1260 		!gicv3_nolpi);
1261 }
1262 
1263 static void gic_cpu_init(void)
1264 {
1265 	void __iomem *rbase;
1266 	int i;
1267 
1268 	/* Register ourselves with the rest of the world */
1269 	if (gic_populate_rdist())
1270 		return;
1271 
1272 	gic_enable_redist(true);
1273 
1274 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1275 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1276 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1277 	     smp_processor_id());
1278 
1279 	rbase = gic_data_rdist_sgi_base();
1280 
1281 	/* Configure SGIs/PPIs as non-secure Group-1 */
1282 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1283 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1284 
1285 	gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, gic_redist_wait_for_rwp);
1286 
1287 	/* initialise system registers */
1288 	gic_cpu_sys_reg_init();
1289 }
1290 
1291 #ifdef CONFIG_SMP
1292 
1293 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1294 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1295 
1296 static int gic_starting_cpu(unsigned int cpu)
1297 {
1298 	gic_cpu_init();
1299 
1300 	if (gic_dist_supports_lpis())
1301 		its_cpu_init();
1302 
1303 	return 0;
1304 }
1305 
1306 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1307 				   unsigned long cluster_id)
1308 {
1309 	int next_cpu, cpu = *base_cpu;
1310 	unsigned long mpidr;
1311 	u16 tlist = 0;
1312 
1313 	mpidr = gic_cpu_to_affinity(cpu);
1314 
1315 	while (cpu < nr_cpu_ids) {
1316 		tlist |= 1 << (mpidr & 0xf);
1317 
1318 		next_cpu = cpumask_next(cpu, mask);
1319 		if (next_cpu >= nr_cpu_ids)
1320 			goto out;
1321 		cpu = next_cpu;
1322 
1323 		mpidr = gic_cpu_to_affinity(cpu);
1324 
1325 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1326 			cpu--;
1327 			goto out;
1328 		}
1329 	}
1330 out:
1331 	*base_cpu = cpu;
1332 	return tlist;
1333 }
1334 
1335 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1336 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1337 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1338 
1339 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1340 {
1341 	u64 val;
1342 
1343 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1344 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1345 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1346 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1347 	       MPIDR_TO_SGI_RS(cluster_id)		|
1348 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1349 
1350 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1351 	gic_write_sgi1r(val);
1352 }
1353 
1354 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1355 {
1356 	int cpu;
1357 
1358 	if (WARN_ON(d->hwirq >= 16))
1359 		return;
1360 
1361 	/*
1362 	 * Ensure that stores to Normal memory are visible to the
1363 	 * other CPUs before issuing the IPI.
1364 	 */
1365 	dsb(ishst);
1366 
1367 	for_each_cpu(cpu, mask) {
1368 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1369 		u16 tlist;
1370 
1371 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1372 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1373 	}
1374 
1375 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1376 	isb();
1377 }
1378 
1379 static void __init gic_smp_init(void)
1380 {
1381 	struct irq_fwspec sgi_fwspec = {
1382 		.fwnode		= gic_data.fwnode,
1383 		.param_count	= 1,
1384 	};
1385 	int base_sgi;
1386 
1387 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1388 				  "irqchip/arm/gicv3:starting",
1389 				  gic_starting_cpu, NULL);
1390 
1391 	/* Register all 8 non-secure SGIs */
1392 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1393 	if (WARN_ON(base_sgi <= 0))
1394 		return;
1395 
1396 	set_smp_ipi_range(base_sgi, 8);
1397 }
1398 
1399 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1400 			    bool force)
1401 {
1402 	unsigned int cpu;
1403 	u32 offset, index;
1404 	void __iomem *reg;
1405 	int enabled;
1406 	u64 val;
1407 
1408 	if (force)
1409 		cpu = cpumask_first(mask_val);
1410 	else
1411 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1412 
1413 	if (cpu >= nr_cpu_ids)
1414 		return -EINVAL;
1415 
1416 	if (gic_irq_in_rdist(d))
1417 		return -EINVAL;
1418 
1419 	/* If interrupt was enabled, disable it first */
1420 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1421 	if (enabled)
1422 		gic_mask_irq(d);
1423 
1424 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1425 	reg = gic_dist_base(d) + offset + (index * 8);
1426 	val = gic_cpu_to_affinity(cpu);
1427 
1428 	gic_write_irouter(val, reg);
1429 
1430 	/*
1431 	 * If the interrupt was enabled, enabled it again. Otherwise,
1432 	 * just wait for the distributor to have digested our changes.
1433 	 */
1434 	if (enabled)
1435 		gic_unmask_irq(d);
1436 
1437 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1438 
1439 	return IRQ_SET_MASK_OK_DONE;
1440 }
1441 #else
1442 #define gic_set_affinity	NULL
1443 #define gic_ipi_send_mask	NULL
1444 #define gic_smp_init()		do { } while(0)
1445 #endif
1446 
1447 static int gic_retrigger(struct irq_data *data)
1448 {
1449 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1450 }
1451 
1452 #ifdef CONFIG_CPU_PM
1453 static int gic_cpu_pm_notifier(struct notifier_block *self,
1454 			       unsigned long cmd, void *v)
1455 {
1456 	if (cmd == CPU_PM_EXIT) {
1457 		if (gic_dist_security_disabled())
1458 			gic_enable_redist(true);
1459 		gic_cpu_sys_reg_init();
1460 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1461 		gic_write_grpen1(0);
1462 		gic_enable_redist(false);
1463 	}
1464 	return NOTIFY_OK;
1465 }
1466 
1467 static struct notifier_block gic_cpu_pm_notifier_block = {
1468 	.notifier_call = gic_cpu_pm_notifier,
1469 };
1470 
1471 static void gic_cpu_pm_init(void)
1472 {
1473 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1474 }
1475 
1476 #else
1477 static inline void gic_cpu_pm_init(void) { }
1478 #endif /* CONFIG_CPU_PM */
1479 
1480 static struct irq_chip gic_chip = {
1481 	.name			= "GICv3",
1482 	.irq_mask		= gic_mask_irq,
1483 	.irq_unmask		= gic_unmask_irq,
1484 	.irq_eoi		= gic_eoi_irq,
1485 	.irq_set_type		= gic_set_type,
1486 	.irq_set_affinity	= gic_set_affinity,
1487 	.irq_retrigger          = gic_retrigger,
1488 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1489 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1490 	.irq_nmi_setup		= gic_irq_nmi_setup,
1491 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1492 	.ipi_send_mask		= gic_ipi_send_mask,
1493 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1494 				  IRQCHIP_SKIP_SET_WAKE |
1495 				  IRQCHIP_MASK_ON_SUSPEND,
1496 };
1497 
1498 static struct irq_chip gic_eoimode1_chip = {
1499 	.name			= "GICv3",
1500 	.irq_mask		= gic_eoimode1_mask_irq,
1501 	.irq_unmask		= gic_unmask_irq,
1502 	.irq_eoi		= gic_eoimode1_eoi_irq,
1503 	.irq_set_type		= gic_set_type,
1504 	.irq_set_affinity	= gic_set_affinity,
1505 	.irq_retrigger          = gic_retrigger,
1506 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1507 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1508 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1509 	.irq_nmi_setup		= gic_irq_nmi_setup,
1510 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1511 	.ipi_send_mask		= gic_ipi_send_mask,
1512 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1513 				  IRQCHIP_SKIP_SET_WAKE |
1514 				  IRQCHIP_MASK_ON_SUSPEND,
1515 };
1516 
1517 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1518 			      irq_hw_number_t hw)
1519 {
1520 	struct irq_chip *chip = &gic_chip;
1521 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1522 
1523 	if (static_branch_likely(&supports_deactivate_key))
1524 		chip = &gic_eoimode1_chip;
1525 
1526 	switch (__get_intid_range(hw)) {
1527 	case SGI_RANGE:
1528 	case PPI_RANGE:
1529 	case EPPI_RANGE:
1530 		irq_set_percpu_devid(irq);
1531 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1532 				    handle_percpu_devid_irq, NULL, NULL);
1533 		break;
1534 
1535 	case SPI_RANGE:
1536 	case ESPI_RANGE:
1537 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1538 				    handle_fasteoi_irq, NULL, NULL);
1539 		irq_set_probe(irq);
1540 		irqd_set_single_target(irqd);
1541 		break;
1542 
1543 	case LPI_RANGE:
1544 		if (!gic_dist_supports_lpis())
1545 			return -EPERM;
1546 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1547 				    handle_fasteoi_irq, NULL, NULL);
1548 		break;
1549 
1550 	default:
1551 		return -EPERM;
1552 	}
1553 
1554 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1555 	irqd_set_handle_enforce_irqctx(irqd);
1556 	return 0;
1557 }
1558 
1559 static int gic_irq_domain_translate(struct irq_domain *d,
1560 				    struct irq_fwspec *fwspec,
1561 				    unsigned long *hwirq,
1562 				    unsigned int *type)
1563 {
1564 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1565 		*hwirq = fwspec->param[0];
1566 		*type = IRQ_TYPE_EDGE_RISING;
1567 		return 0;
1568 	}
1569 
1570 	if (is_of_node(fwspec->fwnode)) {
1571 		if (fwspec->param_count < 3)
1572 			return -EINVAL;
1573 
1574 		switch (fwspec->param[0]) {
1575 		case 0:			/* SPI */
1576 			*hwirq = fwspec->param[1] + 32;
1577 			break;
1578 		case 1:			/* PPI */
1579 			*hwirq = fwspec->param[1] + 16;
1580 			break;
1581 		case 2:			/* ESPI */
1582 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1583 			break;
1584 		case 3:			/* EPPI */
1585 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1586 			break;
1587 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1588 			*hwirq = fwspec->param[1];
1589 			break;
1590 		case GIC_IRQ_TYPE_PARTITION:
1591 			*hwirq = fwspec->param[1];
1592 			if (fwspec->param[1] >= 16)
1593 				*hwirq += EPPI_BASE_INTID - 16;
1594 			else
1595 				*hwirq += 16;
1596 			break;
1597 		default:
1598 			return -EINVAL;
1599 		}
1600 
1601 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1602 
1603 		/*
1604 		 * Make it clear that broken DTs are... broken.
1605 		 * Partitioned PPIs are an unfortunate exception.
1606 		 */
1607 		WARN_ON(*type == IRQ_TYPE_NONE &&
1608 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1609 		return 0;
1610 	}
1611 
1612 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1613 		if(fwspec->param_count != 2)
1614 			return -EINVAL;
1615 
1616 		if (fwspec->param[0] < 16) {
1617 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1618 			       fwspec->param[0]);
1619 			return -EINVAL;
1620 		}
1621 
1622 		*hwirq = fwspec->param[0];
1623 		*type = fwspec->param[1];
1624 
1625 		WARN_ON(*type == IRQ_TYPE_NONE);
1626 		return 0;
1627 	}
1628 
1629 	return -EINVAL;
1630 }
1631 
1632 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1633 				unsigned int nr_irqs, void *arg)
1634 {
1635 	int i, ret;
1636 	irq_hw_number_t hwirq;
1637 	unsigned int type = IRQ_TYPE_NONE;
1638 	struct irq_fwspec *fwspec = arg;
1639 
1640 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1641 	if (ret)
1642 		return ret;
1643 
1644 	for (i = 0; i < nr_irqs; i++) {
1645 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1646 		if (ret)
1647 			return ret;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1654 				unsigned int nr_irqs)
1655 {
1656 	int i;
1657 
1658 	for (i = 0; i < nr_irqs; i++) {
1659 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1660 		irq_set_handler(virq + i, NULL);
1661 		irq_domain_reset_irq_data(d);
1662 	}
1663 }
1664 
1665 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1666 				      irq_hw_number_t hwirq)
1667 {
1668 	enum gic_intid_range range;
1669 
1670 	if (!gic_data.ppi_descs)
1671 		return false;
1672 
1673 	if (!is_of_node(fwspec->fwnode))
1674 		return false;
1675 
1676 	if (fwspec->param_count < 4 || !fwspec->param[3])
1677 		return false;
1678 
1679 	range = __get_intid_range(hwirq);
1680 	if (range != PPI_RANGE && range != EPPI_RANGE)
1681 		return false;
1682 
1683 	return true;
1684 }
1685 
1686 static int gic_irq_domain_select(struct irq_domain *d,
1687 				 struct irq_fwspec *fwspec,
1688 				 enum irq_domain_bus_token bus_token)
1689 {
1690 	unsigned int type, ret, ppi_idx;
1691 	irq_hw_number_t hwirq;
1692 
1693 	/* Not for us */
1694 	if (fwspec->fwnode != d->fwnode)
1695 		return 0;
1696 
1697 	/* Handle pure domain searches */
1698 	if (!fwspec->param_count)
1699 		return d->bus_token == bus_token;
1700 
1701 	/* If this is not DT, then we have a single domain */
1702 	if (!is_of_node(fwspec->fwnode))
1703 		return 1;
1704 
1705 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1706 	if (WARN_ON_ONCE(ret))
1707 		return 0;
1708 
1709 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1710 		return d == gic_data.domain;
1711 
1712 	/*
1713 	 * If this is a PPI and we have a 4th (non-null) parameter,
1714 	 * then we need to match the partition domain.
1715 	 */
1716 	ppi_idx = __gic_get_ppi_index(hwirq);
1717 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1718 }
1719 
1720 static const struct irq_domain_ops gic_irq_domain_ops = {
1721 	.translate = gic_irq_domain_translate,
1722 	.alloc = gic_irq_domain_alloc,
1723 	.free = gic_irq_domain_free,
1724 	.select = gic_irq_domain_select,
1725 };
1726 
1727 static int partition_domain_translate(struct irq_domain *d,
1728 				      struct irq_fwspec *fwspec,
1729 				      unsigned long *hwirq,
1730 				      unsigned int *type)
1731 {
1732 	unsigned long ppi_intid;
1733 	struct device_node *np;
1734 	unsigned int ppi_idx;
1735 	int ret;
1736 
1737 	if (!gic_data.ppi_descs)
1738 		return -ENOMEM;
1739 
1740 	np = of_find_node_by_phandle(fwspec->param[3]);
1741 	if (WARN_ON(!np))
1742 		return -EINVAL;
1743 
1744 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1745 	if (WARN_ON_ONCE(ret))
1746 		return 0;
1747 
1748 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1749 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1750 				     of_node_to_fwnode(np));
1751 	if (ret < 0)
1752 		return ret;
1753 
1754 	*hwirq = ret;
1755 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1756 
1757 	return 0;
1758 }
1759 
1760 static const struct irq_domain_ops partition_domain_ops = {
1761 	.translate = partition_domain_translate,
1762 	.select = gic_irq_domain_select,
1763 };
1764 
1765 static bool gic_enable_quirk_msm8996(void *data)
1766 {
1767 	struct gic_chip_data *d = data;
1768 
1769 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1770 
1771 	return true;
1772 }
1773 
1774 static bool gic_enable_quirk_cavium_38539(void *data)
1775 {
1776 	struct gic_chip_data *d = data;
1777 
1778 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1779 
1780 	return true;
1781 }
1782 
1783 static bool gic_enable_quirk_hip06_07(void *data)
1784 {
1785 	struct gic_chip_data *d = data;
1786 
1787 	/*
1788 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1789 	 * not being an actual ARM implementation). The saving grace is
1790 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1791 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1792 	 * have ESPI. In both cases, put them right.
1793 	 */
1794 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1795 		/* Zero both ESPI and the RES0 field next to it... */
1796 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1797 		return true;
1798 	}
1799 
1800 	return false;
1801 }
1802 
1803 #define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1804 #define T241_CHIP_GICDA_OFFSET	0x1580000
1805 #define SMCCC_SOC_ID_T241	0x036b0241
1806 
1807 static bool gic_enable_quirk_nvidia_t241(void *data)
1808 {
1809 	s32 soc_id = arm_smccc_get_soc_id_version();
1810 	unsigned long chip_bmask = 0;
1811 	phys_addr_t phys;
1812 	u32 i;
1813 
1814 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1815 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1816 		return false;
1817 
1818 	/* Find the chips based on GICR regions PHYS addr */
1819 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1820 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1821 				  (u64)gic_data.redist_regions[i].phys_base));
1822 	}
1823 
1824 	if (hweight32(chip_bmask) < 3)
1825 		return false;
1826 
1827 	/* Setup GICD alias regions */
1828 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1829 		if (chip_bmask & BIT(i)) {
1830 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1831 			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1832 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1833 			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1834 		}
1835 	}
1836 	static_branch_enable(&gic_nvidia_t241_erratum);
1837 	return true;
1838 }
1839 
1840 static bool gic_enable_quirk_asr8601(void *data)
1841 {
1842 	struct gic_chip_data *d = data;
1843 
1844 	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1845 
1846 	return true;
1847 }
1848 
1849 static bool gic_enable_quirk_arm64_2941627(void *data)
1850 {
1851 	static_branch_enable(&gic_arm64_2941627_erratum);
1852 	return true;
1853 }
1854 
1855 static bool rd_set_non_coherent(void *data)
1856 {
1857 	struct gic_chip_data *d = data;
1858 
1859 	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1860 	return true;
1861 }
1862 
1863 static const struct gic_quirk gic_quirks[] = {
1864 	{
1865 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1866 		.compatible = "qcom,msm8996-gic-v3",
1867 		.init	= gic_enable_quirk_msm8996,
1868 	},
1869 	{
1870 		.desc	= "GICv3: ASR erratum 8601001",
1871 		.compatible = "asr,asr8601-gic-v3",
1872 		.init	= gic_enable_quirk_asr8601,
1873 	},
1874 	{
1875 		.desc	= "GICv3: HIP06 erratum 161010803",
1876 		.iidr	= 0x0204043b,
1877 		.mask	= 0xffffffff,
1878 		.init	= gic_enable_quirk_hip06_07,
1879 	},
1880 	{
1881 		.desc	= "GICv3: HIP07 erratum 161010803",
1882 		.iidr	= 0x00000000,
1883 		.mask	= 0xffffffff,
1884 		.init	= gic_enable_quirk_hip06_07,
1885 	},
1886 	{
1887 		/*
1888 		 * Reserved register accesses generate a Synchronous
1889 		 * External Abort. This erratum applies to:
1890 		 * - ThunderX: CN88xx
1891 		 * - OCTEON TX: CN83xx, CN81xx
1892 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1893 		 */
1894 		.desc	= "GICv3: Cavium erratum 38539",
1895 		.iidr	= 0xa000034c,
1896 		.mask	= 0xe8f00fff,
1897 		.init	= gic_enable_quirk_cavium_38539,
1898 	},
1899 	{
1900 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1901 		.iidr	= 0x0402043b,
1902 		.mask	= 0xffffffff,
1903 		.init	= gic_enable_quirk_nvidia_t241,
1904 	},
1905 	{
1906 		/*
1907 		 * GIC-700: 2941627 workaround - IP variant [0,1]
1908 		 *
1909 		 */
1910 		.desc	= "GICv3: ARM64 erratum 2941627",
1911 		.iidr	= 0x0400043b,
1912 		.mask	= 0xff0e0fff,
1913 		.init	= gic_enable_quirk_arm64_2941627,
1914 	},
1915 	{
1916 		/*
1917 		 * GIC-700: 2941627 workaround - IP variant [2]
1918 		 */
1919 		.desc	= "GICv3: ARM64 erratum 2941627",
1920 		.iidr	= 0x0402043b,
1921 		.mask	= 0xff0f0fff,
1922 		.init	= gic_enable_quirk_arm64_2941627,
1923 	},
1924 	{
1925 		.desc   = "GICv3: non-coherent attribute",
1926 		.property = "dma-noncoherent",
1927 		.init   = rd_set_non_coherent,
1928 	},
1929 	{
1930 	}
1931 };
1932 
1933 static void gic_enable_nmi_support(void)
1934 {
1935 	int i;
1936 
1937 	if (!gic_prio_masking_enabled())
1938 		return;
1939 
1940 	rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
1941 				 sizeof(*rdist_nmi_refs), GFP_KERNEL);
1942 	if (!rdist_nmi_refs)
1943 		return;
1944 
1945 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
1946 		refcount_set(&rdist_nmi_refs[i], 0);
1947 
1948 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1949 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1950 
1951 	/*
1952 	 * How priority values are used by the GIC depends on two things:
1953 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1954 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1955 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1956 	 * ICC_PMR_EL1 register and the priority that software assigns to
1957 	 * interrupts:
1958 	 *
1959 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1960 	 * -----------------------------------------------------------
1961 	 *      1       |      -      |  unchanged  |    unchanged
1962 	 * -----------------------------------------------------------
1963 	 *      0       |      1      |  non-secure |    non-secure
1964 	 * -----------------------------------------------------------
1965 	 *      0       |      0      |  unchanged  |    non-secure
1966 	 *
1967 	 * where non-secure means that the value is right-shifted by one and the
1968 	 * MSB bit set, to make it fit in the non-secure priority range.
1969 	 *
1970 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1971 	 * are both either modified or unchanged, we can use the same set of
1972 	 * priorities.
1973 	 *
1974 	 * In the last case, where only the interrupt priorities are modified to
1975 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1976 	 * and the rest of the values that we use remain unchanged.
1977 	 */
1978 	if (gic_has_group0() && !gic_dist_security_disabled())
1979 		static_branch_enable(&gic_nonsecure_priorities);
1980 
1981 	static_branch_enable(&supports_pseudo_nmis);
1982 
1983 	if (static_branch_likely(&supports_deactivate_key))
1984 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1985 	else
1986 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1987 }
1988 
1989 static int __init gic_init_bases(phys_addr_t dist_phys_base,
1990 				 void __iomem *dist_base,
1991 				 struct redist_region *rdist_regs,
1992 				 u32 nr_redist_regions,
1993 				 u64 redist_stride,
1994 				 struct fwnode_handle *handle)
1995 {
1996 	u32 typer;
1997 	int err;
1998 
1999 	if (!is_hyp_mode_available())
2000 		static_branch_disable(&supports_deactivate_key);
2001 
2002 	if (static_branch_likely(&supports_deactivate_key))
2003 		pr_info("GIC: Using split EOI/Deactivate mode\n");
2004 
2005 	gic_data.fwnode = handle;
2006 	gic_data.dist_phys_base = dist_phys_base;
2007 	gic_data.dist_base = dist_base;
2008 	gic_data.redist_regions = rdist_regs;
2009 	gic_data.nr_redist_regions = nr_redist_regions;
2010 	gic_data.redist_stride = redist_stride;
2011 
2012 	/*
2013 	 * Find out how many interrupts are supported.
2014 	 */
2015 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2016 	gic_data.rdists.gicd_typer = typer;
2017 
2018 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2019 			  gic_quirks, &gic_data);
2020 
2021 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2022 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2023 
2024 	/*
2025 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2026 	 * architecture spec (which says that reserved registers are RES0).
2027 	 */
2028 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2029 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2030 
2031 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2032 						 &gic_data);
2033 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2034 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2035 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2036 		gic_data.rdists.has_rvpeid = true;
2037 		gic_data.rdists.has_vlpis = true;
2038 		gic_data.rdists.has_direct_lpi = true;
2039 		gic_data.rdists.has_vpend_valid_dirty = true;
2040 	}
2041 
2042 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2043 		err = -ENOMEM;
2044 		goto out_free;
2045 	}
2046 
2047 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2048 
2049 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2050 
2051 	if (typer & GICD_TYPER_MBIS) {
2052 		err = mbi_init(handle, gic_data.domain);
2053 		if (err)
2054 			pr_err("Failed to initialize MBIs\n");
2055 	}
2056 
2057 	set_handle_irq(gic_handle_irq);
2058 
2059 	gic_update_rdist_properties();
2060 
2061 	gic_dist_init();
2062 	gic_cpu_init();
2063 	gic_enable_nmi_support();
2064 	gic_smp_init();
2065 	gic_cpu_pm_init();
2066 
2067 	if (gic_dist_supports_lpis()) {
2068 		its_init(handle, &gic_data.rdists, gic_data.domain);
2069 		its_cpu_init();
2070 		its_lpi_memreserve_init();
2071 	} else {
2072 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2073 			gicv2m_init(handle, gic_data.domain);
2074 	}
2075 
2076 	return 0;
2077 
2078 out_free:
2079 	if (gic_data.domain)
2080 		irq_domain_remove(gic_data.domain);
2081 	free_percpu(gic_data.rdists.rdist);
2082 	return err;
2083 }
2084 
2085 static int __init gic_validate_dist_version(void __iomem *dist_base)
2086 {
2087 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2088 
2089 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2090 		return -ENODEV;
2091 
2092 	return 0;
2093 }
2094 
2095 /* Create all possible partitions at boot time */
2096 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2097 {
2098 	struct device_node *parts_node, *child_part;
2099 	int part_idx = 0, i;
2100 	int nr_parts;
2101 	struct partition_affinity *parts;
2102 
2103 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2104 	if (!parts_node)
2105 		return;
2106 
2107 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2108 	if (!gic_data.ppi_descs)
2109 		goto out_put_node;
2110 
2111 	nr_parts = of_get_child_count(parts_node);
2112 
2113 	if (!nr_parts)
2114 		goto out_put_node;
2115 
2116 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2117 	if (WARN_ON(!parts))
2118 		goto out_put_node;
2119 
2120 	for_each_child_of_node(parts_node, child_part) {
2121 		struct partition_affinity *part;
2122 		int n;
2123 
2124 		part = &parts[part_idx];
2125 
2126 		part->partition_id = of_node_to_fwnode(child_part);
2127 
2128 		pr_info("GIC: PPI partition %pOFn[%d] { ",
2129 			child_part, part_idx);
2130 
2131 		n = of_property_count_elems_of_size(child_part, "affinity",
2132 						    sizeof(u32));
2133 		WARN_ON(n <= 0);
2134 
2135 		for (i = 0; i < n; i++) {
2136 			int err, cpu;
2137 			u32 cpu_phandle;
2138 			struct device_node *cpu_node;
2139 
2140 			err = of_property_read_u32_index(child_part, "affinity",
2141 							 i, &cpu_phandle);
2142 			if (WARN_ON(err))
2143 				continue;
2144 
2145 			cpu_node = of_find_node_by_phandle(cpu_phandle);
2146 			if (WARN_ON(!cpu_node))
2147 				continue;
2148 
2149 			cpu = of_cpu_node_to_id(cpu_node);
2150 			if (WARN_ON(cpu < 0)) {
2151 				of_node_put(cpu_node);
2152 				continue;
2153 			}
2154 
2155 			pr_cont("%pOF[%d] ", cpu_node, cpu);
2156 
2157 			cpumask_set_cpu(cpu, &part->mask);
2158 			of_node_put(cpu_node);
2159 		}
2160 
2161 		pr_cont("}\n");
2162 		part_idx++;
2163 	}
2164 
2165 	for (i = 0; i < gic_data.ppi_nr; i++) {
2166 		unsigned int irq;
2167 		struct partition_desc *desc;
2168 		struct irq_fwspec ppi_fwspec = {
2169 			.fwnode		= gic_data.fwnode,
2170 			.param_count	= 3,
2171 			.param		= {
2172 				[0]	= GIC_IRQ_TYPE_PARTITION,
2173 				[1]	= i,
2174 				[2]	= IRQ_TYPE_NONE,
2175 			},
2176 		};
2177 
2178 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2179 		if (WARN_ON(!irq))
2180 			continue;
2181 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2182 					     irq, &partition_domain_ops);
2183 		if (WARN_ON(!desc))
2184 			continue;
2185 
2186 		gic_data.ppi_descs[i] = desc;
2187 	}
2188 
2189 out_put_node:
2190 	of_node_put(parts_node);
2191 }
2192 
2193 static void __init gic_of_setup_kvm_info(struct device_node *node)
2194 {
2195 	int ret;
2196 	struct resource r;
2197 	u32 gicv_idx;
2198 
2199 	gic_v3_kvm_info.type = GIC_V3;
2200 
2201 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2202 	if (!gic_v3_kvm_info.maint_irq)
2203 		return;
2204 
2205 	if (of_property_read_u32(node, "#redistributor-regions",
2206 				 &gicv_idx))
2207 		gicv_idx = 1;
2208 
2209 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2210 	ret = of_address_to_resource(node, gicv_idx, &r);
2211 	if (!ret)
2212 		gic_v3_kvm_info.vcpu = r;
2213 
2214 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2215 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2216 	vgic_set_kvm_info(&gic_v3_kvm_info);
2217 }
2218 
2219 static void gic_request_region(resource_size_t base, resource_size_t size,
2220 			       const char *name)
2221 {
2222 	if (!request_mem_region(base, size, name))
2223 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2224 			     name, &base);
2225 }
2226 
2227 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2228 				  const char *name, struct resource *res)
2229 {
2230 	void __iomem *base;
2231 	int ret;
2232 
2233 	ret = of_address_to_resource(node, idx, res);
2234 	if (ret)
2235 		return IOMEM_ERR_PTR(ret);
2236 
2237 	gic_request_region(res->start, resource_size(res), name);
2238 	base = of_iomap(node, idx);
2239 
2240 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2241 }
2242 
2243 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2244 {
2245 	phys_addr_t dist_phys_base;
2246 	void __iomem *dist_base;
2247 	struct redist_region *rdist_regs;
2248 	struct resource res;
2249 	u64 redist_stride;
2250 	u32 nr_redist_regions;
2251 	int err, i;
2252 
2253 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2254 	if (IS_ERR(dist_base)) {
2255 		pr_err("%pOF: unable to map gic dist registers\n", node);
2256 		return PTR_ERR(dist_base);
2257 	}
2258 
2259 	dist_phys_base = res.start;
2260 
2261 	err = gic_validate_dist_version(dist_base);
2262 	if (err) {
2263 		pr_err("%pOF: no distributor detected, giving up\n", node);
2264 		goto out_unmap_dist;
2265 	}
2266 
2267 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2268 		nr_redist_regions = 1;
2269 
2270 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2271 			     GFP_KERNEL);
2272 	if (!rdist_regs) {
2273 		err = -ENOMEM;
2274 		goto out_unmap_dist;
2275 	}
2276 
2277 	for (i = 0; i < nr_redist_regions; i++) {
2278 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2279 		if (IS_ERR(rdist_regs[i].redist_base)) {
2280 			pr_err("%pOF: couldn't map region %d\n", node, i);
2281 			err = -ENODEV;
2282 			goto out_unmap_rdist;
2283 		}
2284 		rdist_regs[i].phys_base = res.start;
2285 	}
2286 
2287 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2288 		redist_stride = 0;
2289 
2290 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2291 
2292 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2293 			     nr_redist_regions, redist_stride, &node->fwnode);
2294 	if (err)
2295 		goto out_unmap_rdist;
2296 
2297 	gic_populate_ppi_partitions(node);
2298 
2299 	if (static_branch_likely(&supports_deactivate_key))
2300 		gic_of_setup_kvm_info(node);
2301 	return 0;
2302 
2303 out_unmap_rdist:
2304 	for (i = 0; i < nr_redist_regions; i++)
2305 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2306 			iounmap(rdist_regs[i].redist_base);
2307 	kfree(rdist_regs);
2308 out_unmap_dist:
2309 	iounmap(dist_base);
2310 	return err;
2311 }
2312 
2313 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2314 
2315 #ifdef CONFIG_ACPI
2316 static struct
2317 {
2318 	void __iomem *dist_base;
2319 	struct redist_region *redist_regs;
2320 	u32 nr_redist_regions;
2321 	bool single_redist;
2322 	int enabled_rdists;
2323 	u32 maint_irq;
2324 	int maint_irq_mode;
2325 	phys_addr_t vcpu_base;
2326 } acpi_data __initdata;
2327 
2328 static void __init
2329 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2330 {
2331 	static int count = 0;
2332 
2333 	acpi_data.redist_regs[count].phys_base = phys_base;
2334 	acpi_data.redist_regs[count].redist_base = redist_base;
2335 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2336 	count++;
2337 }
2338 
2339 static int __init
2340 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2341 			   const unsigned long end)
2342 {
2343 	struct acpi_madt_generic_redistributor *redist =
2344 			(struct acpi_madt_generic_redistributor *)header;
2345 	void __iomem *redist_base;
2346 
2347 	redist_base = ioremap(redist->base_address, redist->length);
2348 	if (!redist_base) {
2349 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2350 		return -ENOMEM;
2351 	}
2352 	gic_request_region(redist->base_address, redist->length, "GICR");
2353 
2354 	gic_acpi_register_redist(redist->base_address, redist_base);
2355 	return 0;
2356 }
2357 
2358 static int __init
2359 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2360 			 const unsigned long end)
2361 {
2362 	struct acpi_madt_generic_interrupt *gicc =
2363 				(struct acpi_madt_generic_interrupt *)header;
2364 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2365 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2366 	void __iomem *redist_base;
2367 
2368 	if (!acpi_gicc_is_usable(gicc))
2369 		return 0;
2370 
2371 	redist_base = ioremap(gicc->gicr_base_address, size);
2372 	if (!redist_base)
2373 		return -ENOMEM;
2374 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2375 
2376 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2377 	return 0;
2378 }
2379 
2380 static int __init gic_acpi_collect_gicr_base(void)
2381 {
2382 	acpi_tbl_entry_handler redist_parser;
2383 	enum acpi_madt_type type;
2384 
2385 	if (acpi_data.single_redist) {
2386 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2387 		redist_parser = gic_acpi_parse_madt_gicc;
2388 	} else {
2389 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2390 		redist_parser = gic_acpi_parse_madt_redist;
2391 	}
2392 
2393 	/* Collect redistributor base addresses in GICR entries */
2394 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2395 		return 0;
2396 
2397 	pr_info("No valid GICR entries exist\n");
2398 	return -ENODEV;
2399 }
2400 
2401 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2402 				  const unsigned long end)
2403 {
2404 	/* Subtable presence means that redist exists, that's it */
2405 	return 0;
2406 }
2407 
2408 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2409 				      const unsigned long end)
2410 {
2411 	struct acpi_madt_generic_interrupt *gicc =
2412 				(struct acpi_madt_generic_interrupt *)header;
2413 
2414 	/*
2415 	 * If GICC is enabled and has valid gicr base address, then it means
2416 	 * GICR base is presented via GICC
2417 	 */
2418 	if (acpi_gicc_is_usable(gicc) && gicc->gicr_base_address) {
2419 		acpi_data.enabled_rdists++;
2420 		return 0;
2421 	}
2422 
2423 	/*
2424 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2425 	 * should not treat as errors, skip the entry instead of probe fail.
2426 	 */
2427 	if (!acpi_gicc_is_usable(gicc))
2428 		return 0;
2429 
2430 	return -ENODEV;
2431 }
2432 
2433 static int __init gic_acpi_count_gicr_regions(void)
2434 {
2435 	int count;
2436 
2437 	/*
2438 	 * Count how many redistributor regions we have. It is not allowed
2439 	 * to mix redistributor description, GICR and GICC subtables have to be
2440 	 * mutually exclusive.
2441 	 */
2442 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2443 				      gic_acpi_match_gicr, 0);
2444 	if (count > 0) {
2445 		acpi_data.single_redist = false;
2446 		return count;
2447 	}
2448 
2449 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2450 				      gic_acpi_match_gicc, 0);
2451 	if (count > 0) {
2452 		acpi_data.single_redist = true;
2453 		count = acpi_data.enabled_rdists;
2454 	}
2455 
2456 	return count;
2457 }
2458 
2459 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2460 					   struct acpi_probe_entry *ape)
2461 {
2462 	struct acpi_madt_generic_distributor *dist;
2463 	int count;
2464 
2465 	dist = (struct acpi_madt_generic_distributor *)header;
2466 	if (dist->version != ape->driver_data)
2467 		return false;
2468 
2469 	/* We need to do that exercise anyway, the sooner the better */
2470 	count = gic_acpi_count_gicr_regions();
2471 	if (count <= 0)
2472 		return false;
2473 
2474 	acpi_data.nr_redist_regions = count;
2475 	return true;
2476 }
2477 
2478 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2479 						const unsigned long end)
2480 {
2481 	struct acpi_madt_generic_interrupt *gicc =
2482 		(struct acpi_madt_generic_interrupt *)header;
2483 	int maint_irq_mode;
2484 	static int first_madt = true;
2485 
2486 	if (!acpi_gicc_is_usable(gicc))
2487 		return 0;
2488 
2489 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2490 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2491 
2492 	if (first_madt) {
2493 		first_madt = false;
2494 
2495 		acpi_data.maint_irq = gicc->vgic_interrupt;
2496 		acpi_data.maint_irq_mode = maint_irq_mode;
2497 		acpi_data.vcpu_base = gicc->gicv_base_address;
2498 
2499 		return 0;
2500 	}
2501 
2502 	/*
2503 	 * The maintenance interrupt and GICV should be the same for every CPU
2504 	 */
2505 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2506 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2507 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2508 		return -EINVAL;
2509 
2510 	return 0;
2511 }
2512 
2513 static bool __init gic_acpi_collect_virt_info(void)
2514 {
2515 	int count;
2516 
2517 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2518 				      gic_acpi_parse_virt_madt_gicc, 0);
2519 
2520 	return (count > 0);
2521 }
2522 
2523 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2524 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2525 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2526 
2527 static void __init gic_acpi_setup_kvm_info(void)
2528 {
2529 	int irq;
2530 
2531 	if (!gic_acpi_collect_virt_info()) {
2532 		pr_warn("Unable to get hardware information used for virtualization\n");
2533 		return;
2534 	}
2535 
2536 	gic_v3_kvm_info.type = GIC_V3;
2537 
2538 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2539 				acpi_data.maint_irq_mode,
2540 				ACPI_ACTIVE_HIGH);
2541 	if (irq <= 0)
2542 		return;
2543 
2544 	gic_v3_kvm_info.maint_irq = irq;
2545 
2546 	if (acpi_data.vcpu_base) {
2547 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2548 
2549 		vcpu->flags = IORESOURCE_MEM;
2550 		vcpu->start = acpi_data.vcpu_base;
2551 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2552 	}
2553 
2554 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2555 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2556 	vgic_set_kvm_info(&gic_v3_kvm_info);
2557 }
2558 
2559 static struct fwnode_handle *gsi_domain_handle;
2560 
2561 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2562 {
2563 	return gsi_domain_handle;
2564 }
2565 
2566 static int __init
2567 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2568 {
2569 	struct acpi_madt_generic_distributor *dist;
2570 	size_t size;
2571 	int i, err;
2572 
2573 	/* Get distributor base address */
2574 	dist = (struct acpi_madt_generic_distributor *)header;
2575 	acpi_data.dist_base = ioremap(dist->base_address,
2576 				      ACPI_GICV3_DIST_MEM_SIZE);
2577 	if (!acpi_data.dist_base) {
2578 		pr_err("Unable to map GICD registers\n");
2579 		return -ENOMEM;
2580 	}
2581 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2582 
2583 	err = gic_validate_dist_version(acpi_data.dist_base);
2584 	if (err) {
2585 		pr_err("No distributor detected at @%p, giving up\n",
2586 		       acpi_data.dist_base);
2587 		goto out_dist_unmap;
2588 	}
2589 
2590 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2591 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2592 	if (!acpi_data.redist_regs) {
2593 		err = -ENOMEM;
2594 		goto out_dist_unmap;
2595 	}
2596 
2597 	err = gic_acpi_collect_gicr_base();
2598 	if (err)
2599 		goto out_redist_unmap;
2600 
2601 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2602 	if (!gsi_domain_handle) {
2603 		err = -ENOMEM;
2604 		goto out_redist_unmap;
2605 	}
2606 
2607 	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2608 			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2609 			     0, gsi_domain_handle);
2610 	if (err)
2611 		goto out_fwhandle_free;
2612 
2613 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2614 
2615 	if (static_branch_likely(&supports_deactivate_key))
2616 		gic_acpi_setup_kvm_info();
2617 
2618 	return 0;
2619 
2620 out_fwhandle_free:
2621 	irq_domain_free_fwnode(gsi_domain_handle);
2622 out_redist_unmap:
2623 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2624 		if (acpi_data.redist_regs[i].redist_base)
2625 			iounmap(acpi_data.redist_regs[i].redist_base);
2626 	kfree(acpi_data.redist_regs);
2627 out_dist_unmap:
2628 	iounmap(acpi_data.dist_base);
2629 	return err;
2630 }
2631 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2632 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2633 		     gic_acpi_init);
2634 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2635 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2636 		     gic_acpi_init);
2637 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2638 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2639 		     gic_acpi_init);
2640 #endif
2641