1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #define pr_fmt(fmt) "GICv3: " fmt 8 9 #include <linux/acpi.h> 10 #include <linux/cpu.h> 11 #include <linux/cpu_pm.h> 12 #include <linux/delay.h> 13 #include <linux/interrupt.h> 14 #include <linux/irqdomain.h> 15 #include <linux/kernel.h> 16 #include <linux/kstrtox.h> 17 #include <linux/of.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <linux/percpu.h> 21 #include <linux/refcount.h> 22 #include <linux/slab.h> 23 #include <linux/iopoll.h> 24 25 #include <linux/irqchip.h> 26 #include <linux/irqchip/arm-gic-common.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/irqchip/arm-gic-v3-prio.h> 29 #include <linux/irqchip/irq-partition-percpu.h> 30 #include <linux/bitfield.h> 31 #include <linux/bits.h> 32 #include <linux/arm-smccc.h> 33 34 #include <asm/cputype.h> 35 #include <asm/exception.h> 36 #include <asm/smp_plat.h> 37 #include <asm/virt.h> 38 39 #include "irq-gic-common.h" 40 41 static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ; 42 static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI; 43 44 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0) 45 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1) 46 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001 (1ULL << 2) 47 48 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1) 49 50 static struct cpumask broken_rdists __read_mostly __maybe_unused; 51 52 struct redist_region { 53 void __iomem *redist_base; 54 phys_addr_t phys_base; 55 bool single_redist; 56 }; 57 58 struct gic_chip_data { 59 struct fwnode_handle *fwnode; 60 phys_addr_t dist_phys_base; 61 void __iomem *dist_base; 62 struct redist_region *redist_regions; 63 struct rdists rdists; 64 struct irq_domain *domain; 65 u64 redist_stride; 66 u32 nr_redist_regions; 67 u64 flags; 68 bool has_rss; 69 unsigned int ppi_nr; 70 struct partition_desc **ppi_descs; 71 }; 72 73 #define T241_CHIPS_MAX 4 74 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly; 75 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum); 76 77 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum); 78 79 static struct gic_chip_data gic_data __read_mostly; 80 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); 81 82 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer)) 83 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U) 84 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer) 85 86 /* 87 * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs 88 * are potentially stolen by the secure side. Some code, especially code dealing 89 * with hwirq IDs, is simplified by accounting for all 16. 90 */ 91 #define SGI_NR 16 92 93 /* 94 * The behaviours of RPR and PMR registers differ depending on the value of 95 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the 96 * distributor and redistributors depends on whether security is enabled in the 97 * GIC. 98 * 99 * When security is enabled, non-secure priority values from the (re)distributor 100 * are presented to the GIC CPUIF as follow: 101 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80; 102 * 103 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure 104 * EL1 are subject to a similar operation thus matching the priorities presented 105 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0, 106 * these values are unchanged by the GIC. 107 * 108 * see GICv3/GICv4 Architecture Specification (IHI0069D): 109 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt 110 * priorities. 111 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1 112 * interrupt. 113 */ 114 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis); 115 116 static u32 gic_get_pribits(void) 117 { 118 u32 pribits; 119 120 pribits = gic_read_ctlr(); 121 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK; 122 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT; 123 pribits++; 124 125 return pribits; 126 } 127 128 static bool gic_has_group0(void) 129 { 130 u32 val; 131 u32 old_pmr; 132 133 old_pmr = gic_read_pmr(); 134 135 /* 136 * Let's find out if Group0 is under control of EL3 or not by 137 * setting the highest possible, non-zero priority in PMR. 138 * 139 * If SCR_EL3.FIQ is set, the priority gets shifted down in 140 * order for the CPU interface to set bit 7, and keep the 141 * actual priority in the non-secure range. In the process, it 142 * looses the least significant bit and the actual priority 143 * becomes 0x80. Reading it back returns 0, indicating that 144 * we're don't have access to Group0. 145 */ 146 gic_write_pmr(BIT(8 - gic_get_pribits())); 147 val = gic_read_pmr(); 148 149 gic_write_pmr(old_pmr); 150 151 return val != 0; 152 } 153 154 static inline bool gic_dist_security_disabled(void) 155 { 156 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; 157 } 158 159 static bool cpus_have_security_disabled __ro_after_init; 160 static bool cpus_have_group0 __ro_after_init; 161 162 static void __init gic_prio_init(void) 163 { 164 cpus_have_security_disabled = gic_dist_security_disabled(); 165 cpus_have_group0 = gic_has_group0(); 166 167 /* 168 * How priority values are used by the GIC depends on two things: 169 * the security state of the GIC (controlled by the GICD_CTRL.DS bit) 170 * and if Group 0 interrupts can be delivered to Linux in the non-secure 171 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the 172 * way priorities are presented in ICC_PMR_EL1 and in the distributor: 173 * 174 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor 175 * ------------------------------------------------------- 176 * 1 | - | unchanged | unchanged 177 * ------------------------------------------------------- 178 * 0 | 1 | non-secure | non-secure 179 * ------------------------------------------------------- 180 * 0 | 0 | unchanged | non-secure 181 * 182 * In the non-secure view reads and writes are modified: 183 * 184 * - A value written is right-shifted by one and the MSB is set, 185 * forcing the priority into the non-secure range. 186 * 187 * - A value read is left-shifted by one. 188 * 189 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority 190 * are both either modified or unchanged, we can use the same set of 191 * priorities. 192 * 193 * In the last case, where only the interrupt priorities are modified to 194 * be in the non-secure range, we program the non-secure values into 195 * the distributor to match the PMR values we want. 196 */ 197 if (cpus_have_group0 & !cpus_have_security_disabled) { 198 dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq); 199 dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi); 200 } 201 202 pr_info("GICD_CTRL.DS=%d, SCR_EL3.FIQ=%d\n", 203 cpus_have_security_disabled, 204 !cpus_have_group0); 205 } 206 207 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */ 208 static refcount_t *rdist_nmi_refs; 209 210 static struct gic_kvm_info gic_v3_kvm_info __initdata; 211 static DEFINE_PER_CPU(bool, has_rss); 212 213 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4) 214 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist)) 215 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 216 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K) 217 218 /* Our default, arbitrary priority value. Linux only uses one anyway. */ 219 #define DEFAULT_PMR_VALUE 0xf0 220 221 enum gic_intid_range { 222 SGI_RANGE, 223 PPI_RANGE, 224 SPI_RANGE, 225 EPPI_RANGE, 226 ESPI_RANGE, 227 LPI_RANGE, 228 __INVALID_RANGE__ 229 }; 230 231 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq) 232 { 233 switch (hwirq) { 234 case 0 ... 15: 235 return SGI_RANGE; 236 case 16 ... 31: 237 return PPI_RANGE; 238 case 32 ... 1019: 239 return SPI_RANGE; 240 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63): 241 return EPPI_RANGE; 242 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023): 243 return ESPI_RANGE; 244 case 8192 ... GENMASK(23, 0): 245 return LPI_RANGE; 246 default: 247 return __INVALID_RANGE__; 248 } 249 } 250 251 static enum gic_intid_range get_intid_range(struct irq_data *d) 252 { 253 return __get_intid_range(d->hwirq); 254 } 255 256 static inline bool gic_irq_in_rdist(struct irq_data *d) 257 { 258 switch (get_intid_range(d)) { 259 case SGI_RANGE: 260 case PPI_RANGE: 261 case EPPI_RANGE: 262 return true; 263 default: 264 return false; 265 } 266 } 267 268 static inline void __iomem *gic_dist_base_alias(struct irq_data *d) 269 { 270 if (static_branch_unlikely(&gic_nvidia_t241_erratum)) { 271 irq_hw_number_t hwirq = irqd_to_hwirq(d); 272 u32 chip; 273 274 /* 275 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E} 276 * registers are directed to the chip that owns the SPI. The 277 * the alias region can also be used for writes to the 278 * GICD_In{E} except GICD_ICENABLERn. Each chip has support 279 * for 320 {E}SPIs. Mappings for all 4 chips: 280 * Chip0 = 32-351 281 * Chip1 = 352-671 282 * Chip2 = 672-991 283 * Chip3 = 4096-4415 284 */ 285 switch (__get_intid_range(hwirq)) { 286 case SPI_RANGE: 287 chip = (hwirq - 32) / 320; 288 break; 289 case ESPI_RANGE: 290 chip = 3; 291 break; 292 default: 293 unreachable(); 294 } 295 return t241_dist_base_alias[chip]; 296 } 297 298 return gic_data.dist_base; 299 } 300 301 static inline void __iomem *gic_dist_base(struct irq_data *d) 302 { 303 switch (get_intid_range(d)) { 304 case SGI_RANGE: 305 case PPI_RANGE: 306 case EPPI_RANGE: 307 /* SGI+PPI -> SGI_base for this CPU */ 308 return gic_data_rdist_sgi_base(); 309 310 case SPI_RANGE: 311 case ESPI_RANGE: 312 /* SPI -> dist_base */ 313 return gic_data.dist_base; 314 315 default: 316 return NULL; 317 } 318 } 319 320 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit) 321 { 322 u32 val; 323 int ret; 324 325 ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit), 326 1, USEC_PER_SEC); 327 if (ret == -ETIMEDOUT) 328 pr_err_ratelimited("RWP timeout, gone fishing\n"); 329 } 330 331 /* Wait for completion of a distributor change */ 332 static void gic_dist_wait_for_rwp(void) 333 { 334 gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP); 335 } 336 337 /* Wait for completion of a redistributor change */ 338 static void gic_redist_wait_for_rwp(void) 339 { 340 gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP); 341 } 342 343 static void gic_enable_redist(bool enable) 344 { 345 void __iomem *rbase; 346 u32 val; 347 int ret; 348 349 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996) 350 return; 351 352 rbase = gic_data_rdist_rd_base(); 353 354 val = readl_relaxed(rbase + GICR_WAKER); 355 if (enable) 356 /* Wake up this CPU redistributor */ 357 val &= ~GICR_WAKER_ProcessorSleep; 358 else 359 val |= GICR_WAKER_ProcessorSleep; 360 writel_relaxed(val, rbase + GICR_WAKER); 361 362 if (!enable) { /* Check that GICR_WAKER is writeable */ 363 val = readl_relaxed(rbase + GICR_WAKER); 364 if (!(val & GICR_WAKER_ProcessorSleep)) 365 return; /* No PM support in this redistributor */ 366 } 367 368 ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val, 369 enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep), 370 1, USEC_PER_SEC); 371 if (ret == -ETIMEDOUT) { 372 pr_err_ratelimited("redistributor failed to %s...\n", 373 enable ? "wakeup" : "sleep"); 374 } 375 } 376 377 /* 378 * Routines to disable, enable, EOI and route interrupts 379 */ 380 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index) 381 { 382 switch (get_intid_range(d)) { 383 case SGI_RANGE: 384 case PPI_RANGE: 385 case SPI_RANGE: 386 *index = d->hwirq; 387 return offset; 388 case EPPI_RANGE: 389 /* 390 * Contrary to the ESPI range, the EPPI range is contiguous 391 * to the PPI range in the registers, so let's adjust the 392 * displacement accordingly. Consistency is overrated. 393 */ 394 *index = d->hwirq - EPPI_BASE_INTID + 32; 395 return offset; 396 case ESPI_RANGE: 397 *index = d->hwirq - ESPI_BASE_INTID; 398 switch (offset) { 399 case GICD_ISENABLER: 400 return GICD_ISENABLERnE; 401 case GICD_ICENABLER: 402 return GICD_ICENABLERnE; 403 case GICD_ISPENDR: 404 return GICD_ISPENDRnE; 405 case GICD_ICPENDR: 406 return GICD_ICPENDRnE; 407 case GICD_ISACTIVER: 408 return GICD_ISACTIVERnE; 409 case GICD_ICACTIVER: 410 return GICD_ICACTIVERnE; 411 case GICD_IPRIORITYR: 412 return GICD_IPRIORITYRnE; 413 case GICD_ICFGR: 414 return GICD_ICFGRnE; 415 case GICD_IROUTER: 416 return GICD_IROUTERnE; 417 default: 418 break; 419 } 420 break; 421 default: 422 break; 423 } 424 425 WARN_ON(1); 426 *index = d->hwirq; 427 return offset; 428 } 429 430 static int gic_peek_irq(struct irq_data *d, u32 offset) 431 { 432 void __iomem *base; 433 u32 index, mask; 434 435 offset = convert_offset_index(d, offset, &index); 436 mask = 1 << (index % 32); 437 438 if (gic_irq_in_rdist(d)) 439 base = gic_data_rdist_sgi_base(); 440 else 441 base = gic_dist_base_alias(d); 442 443 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask); 444 } 445 446 static void gic_poke_irq(struct irq_data *d, u32 offset) 447 { 448 void __iomem *base; 449 u32 index, mask; 450 451 offset = convert_offset_index(d, offset, &index); 452 mask = 1 << (index % 32); 453 454 if (gic_irq_in_rdist(d)) 455 base = gic_data_rdist_sgi_base(); 456 else 457 base = gic_data.dist_base; 458 459 writel_relaxed(mask, base + offset + (index / 32) * 4); 460 } 461 462 static void gic_mask_irq(struct irq_data *d) 463 { 464 gic_poke_irq(d, GICD_ICENABLER); 465 if (gic_irq_in_rdist(d)) 466 gic_redist_wait_for_rwp(); 467 else 468 gic_dist_wait_for_rwp(); 469 } 470 471 static void gic_eoimode1_mask_irq(struct irq_data *d) 472 { 473 gic_mask_irq(d); 474 /* 475 * When masking a forwarded interrupt, make sure it is 476 * deactivated as well. 477 * 478 * This ensures that an interrupt that is getting 479 * disabled/masked will not get "stuck", because there is 480 * noone to deactivate it (guest is being terminated). 481 */ 482 if (irqd_is_forwarded_to_vcpu(d)) 483 gic_poke_irq(d, GICD_ICACTIVER); 484 } 485 486 static void gic_unmask_irq(struct irq_data *d) 487 { 488 gic_poke_irq(d, GICD_ISENABLER); 489 } 490 491 static inline bool gic_supports_nmi(void) 492 { 493 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && 494 static_branch_likely(&supports_pseudo_nmis); 495 } 496 497 static int gic_irq_set_irqchip_state(struct irq_data *d, 498 enum irqchip_irq_state which, bool val) 499 { 500 u32 reg; 501 502 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */ 503 return -EINVAL; 504 505 switch (which) { 506 case IRQCHIP_STATE_PENDING: 507 reg = val ? GICD_ISPENDR : GICD_ICPENDR; 508 break; 509 510 case IRQCHIP_STATE_ACTIVE: 511 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; 512 break; 513 514 case IRQCHIP_STATE_MASKED: 515 if (val) { 516 gic_mask_irq(d); 517 return 0; 518 } 519 reg = GICD_ISENABLER; 520 break; 521 522 default: 523 return -EINVAL; 524 } 525 526 gic_poke_irq(d, reg); 527 return 0; 528 } 529 530 static int gic_irq_get_irqchip_state(struct irq_data *d, 531 enum irqchip_irq_state which, bool *val) 532 { 533 if (d->hwirq >= 8192) /* PPI/SPI only */ 534 return -EINVAL; 535 536 switch (which) { 537 case IRQCHIP_STATE_PENDING: 538 *val = gic_peek_irq(d, GICD_ISPENDR); 539 break; 540 541 case IRQCHIP_STATE_ACTIVE: 542 *val = gic_peek_irq(d, GICD_ISACTIVER); 543 break; 544 545 case IRQCHIP_STATE_MASKED: 546 *val = !gic_peek_irq(d, GICD_ISENABLER); 547 break; 548 549 default: 550 return -EINVAL; 551 } 552 553 return 0; 554 } 555 556 static void gic_irq_set_prio(struct irq_data *d, u8 prio) 557 { 558 void __iomem *base = gic_dist_base(d); 559 u32 offset, index; 560 561 offset = convert_offset_index(d, GICD_IPRIORITYR, &index); 562 563 writeb_relaxed(prio, base + offset + index); 564 } 565 566 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq) 567 { 568 switch (__get_intid_range(hwirq)) { 569 case PPI_RANGE: 570 return hwirq - 16; 571 case EPPI_RANGE: 572 return hwirq - EPPI_BASE_INTID + 16; 573 default: 574 unreachable(); 575 } 576 } 577 578 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq) 579 { 580 switch (__get_intid_range(hwirq)) { 581 case SGI_RANGE: 582 case PPI_RANGE: 583 return hwirq; 584 case EPPI_RANGE: 585 return hwirq - EPPI_BASE_INTID + 32; 586 default: 587 unreachable(); 588 } 589 } 590 591 static u32 gic_get_rdist_index(struct irq_data *d) 592 { 593 return __gic_get_rdist_index(d->hwirq); 594 } 595 596 static int gic_irq_nmi_setup(struct irq_data *d) 597 { 598 struct irq_desc *desc = irq_to_desc(d->irq); 599 600 if (!gic_supports_nmi()) 601 return -EINVAL; 602 603 if (gic_peek_irq(d, GICD_ISENABLER)) { 604 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 605 return -EINVAL; 606 } 607 608 /* 609 * A secondary irq_chip should be in charge of LPI request, 610 * it should not be possible to get there 611 */ 612 if (WARN_ON(irqd_to_hwirq(d) >= 8192)) 613 return -EINVAL; 614 615 /* desc lock should already be held */ 616 if (gic_irq_in_rdist(d)) { 617 u32 idx = gic_get_rdist_index(d); 618 619 /* 620 * Setting up a percpu interrupt as NMI, only switch handler 621 * for first NMI 622 */ 623 if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) { 624 refcount_set(&rdist_nmi_refs[idx], 1); 625 desc->handle_irq = handle_percpu_devid_fasteoi_nmi; 626 } 627 } else { 628 desc->handle_irq = handle_fasteoi_nmi; 629 } 630 631 gic_irq_set_prio(d, dist_prio_nmi); 632 633 return 0; 634 } 635 636 static void gic_irq_nmi_teardown(struct irq_data *d) 637 { 638 struct irq_desc *desc = irq_to_desc(d->irq); 639 640 if (WARN_ON(!gic_supports_nmi())) 641 return; 642 643 if (gic_peek_irq(d, GICD_ISENABLER)) { 644 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); 645 return; 646 } 647 648 /* 649 * A secondary irq_chip should be in charge of LPI request, 650 * it should not be possible to get there 651 */ 652 if (WARN_ON(irqd_to_hwirq(d) >= 8192)) 653 return; 654 655 /* desc lock should already be held */ 656 if (gic_irq_in_rdist(d)) { 657 u32 idx = gic_get_rdist_index(d); 658 659 /* Tearing down NMI, only switch handler for last NMI */ 660 if (refcount_dec_and_test(&rdist_nmi_refs[idx])) 661 desc->handle_irq = handle_percpu_devid_irq; 662 } else { 663 desc->handle_irq = handle_fasteoi_irq; 664 } 665 666 gic_irq_set_prio(d, dist_prio_irq); 667 } 668 669 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d) 670 { 671 enum gic_intid_range range; 672 673 if (!static_branch_unlikely(&gic_arm64_2941627_erratum)) 674 return false; 675 676 range = get_intid_range(d); 677 678 /* 679 * The workaround is needed if the IRQ is an SPI and 680 * the target cpu is different from the one we are 681 * executing on. 682 */ 683 return (range == SPI_RANGE || range == ESPI_RANGE) && 684 !cpumask_test_cpu(raw_smp_processor_id(), 685 irq_data_get_effective_affinity_mask(d)); 686 } 687 688 static void gic_eoi_irq(struct irq_data *d) 689 { 690 write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1); 691 isb(); 692 693 if (gic_arm64_erratum_2941627_needed(d)) { 694 /* 695 * Make sure the GIC stream deactivate packet 696 * issued by ICC_EOIR1_EL1 has completed before 697 * deactivating through GICD_IACTIVER. 698 */ 699 dsb(sy); 700 gic_poke_irq(d, GICD_ICACTIVER); 701 } 702 } 703 704 static void gic_eoimode1_eoi_irq(struct irq_data *d) 705 { 706 /* 707 * No need to deactivate an LPI, or an interrupt that 708 * is is getting forwarded to a vcpu. 709 */ 710 if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) 711 return; 712 713 if (!gic_arm64_erratum_2941627_needed(d)) 714 gic_write_dir(irqd_to_hwirq(d)); 715 else 716 gic_poke_irq(d, GICD_ICACTIVER); 717 } 718 719 static int gic_set_type(struct irq_data *d, unsigned int type) 720 { 721 irq_hw_number_t irq = irqd_to_hwirq(d); 722 enum gic_intid_range range; 723 void __iomem *base; 724 u32 offset, index; 725 int ret; 726 727 range = get_intid_range(d); 728 729 /* Interrupt configuration for SGIs can't be changed */ 730 if (range == SGI_RANGE) 731 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; 732 733 /* SPIs have restrictions on the supported types */ 734 if ((range == SPI_RANGE || range == ESPI_RANGE) && 735 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) 736 return -EINVAL; 737 738 if (gic_irq_in_rdist(d)) 739 base = gic_data_rdist_sgi_base(); 740 else 741 base = gic_dist_base_alias(d); 742 743 offset = convert_offset_index(d, GICD_ICFGR, &index); 744 745 ret = gic_configure_irq(index, type, base + offset); 746 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) { 747 /* Misconfigured PPIs are usually not fatal */ 748 pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq); 749 ret = 0; 750 } 751 752 return ret; 753 } 754 755 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) 756 { 757 if (get_intid_range(d) == SGI_RANGE) 758 return -EINVAL; 759 760 if (vcpu) 761 irqd_set_forwarded_to_vcpu(d); 762 else 763 irqd_clr_forwarded_to_vcpu(d); 764 return 0; 765 } 766 767 static u64 gic_cpu_to_affinity(int cpu) 768 { 769 u64 mpidr = cpu_logical_map(cpu); 770 u64 aff; 771 772 /* ASR8601 needs to have its affinities shifted down... */ 773 if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001)) 774 mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) | 775 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8)); 776 777 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | 778 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 779 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 780 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 781 782 return aff; 783 } 784 785 static void gic_deactivate_unhandled(u32 irqnr) 786 { 787 if (static_branch_likely(&supports_deactivate_key)) { 788 if (irqnr < 8192) 789 gic_write_dir(irqnr); 790 } else { 791 write_gicreg(irqnr, ICC_EOIR1_EL1); 792 isb(); 793 } 794 } 795 796 /* 797 * Follow a read of the IAR with any HW maintenance that needs to happen prior 798 * to invoking the relevant IRQ handler. We must do two things: 799 * 800 * (1) Ensure instruction ordering between a read of IAR and subsequent 801 * instructions in the IRQ handler using an ISB. 802 * 803 * It is possible for the IAR to report an IRQ which was signalled *after* 804 * the CPU took an IRQ exception as multiple interrupts can race to be 805 * recognized by the GIC, earlier interrupts could be withdrawn, and/or 806 * later interrupts could be prioritized by the GIC. 807 * 808 * For devices which are tightly coupled to the CPU, such as PMUs, a 809 * context synchronization event is necessary to ensure that system 810 * register state is not stale, as these may have been indirectly written 811 * *after* exception entry. 812 * 813 * (2) Deactivate the interrupt when EOI mode 1 is in use. 814 */ 815 static inline void gic_complete_ack(u32 irqnr) 816 { 817 if (static_branch_likely(&supports_deactivate_key)) 818 write_gicreg(irqnr, ICC_EOIR1_EL1); 819 820 isb(); 821 } 822 823 static bool gic_rpr_is_nmi_prio(void) 824 { 825 if (!gic_supports_nmi()) 826 return false; 827 828 return unlikely(gic_read_rpr() == GICV3_PRIO_NMI); 829 } 830 831 static bool gic_irqnr_is_special(u32 irqnr) 832 { 833 return irqnr >= 1020 && irqnr <= 1023; 834 } 835 836 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs) 837 { 838 if (gic_irqnr_is_special(irqnr)) 839 return; 840 841 gic_complete_ack(irqnr); 842 843 if (generic_handle_domain_irq(gic_data.domain, irqnr)) { 844 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr); 845 gic_deactivate_unhandled(irqnr); 846 } 847 } 848 849 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs) 850 { 851 if (gic_irqnr_is_special(irqnr)) 852 return; 853 854 gic_complete_ack(irqnr); 855 856 if (generic_handle_domain_nmi(gic_data.domain, irqnr)) { 857 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr); 858 gic_deactivate_unhandled(irqnr); 859 } 860 } 861 862 /* 863 * An exception has been taken from a context with IRQs enabled, and this could 864 * be an IRQ or an NMI. 865 * 866 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear 867 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning, 868 * after handling any NMI but before handling any IRQ. 869 * 870 * The entry code has performed IRQ entry, and if an NMI is detected we must 871 * perform NMI entry/exit around invoking the handler. 872 */ 873 static void __gic_handle_irq_from_irqson(struct pt_regs *regs) 874 { 875 bool is_nmi; 876 u32 irqnr; 877 878 irqnr = gic_read_iar(); 879 880 is_nmi = gic_rpr_is_nmi_prio(); 881 882 if (is_nmi) { 883 nmi_enter(); 884 __gic_handle_nmi(irqnr, regs); 885 nmi_exit(); 886 } 887 888 if (gic_prio_masking_enabled()) { 889 gic_pmr_mask_irqs(); 890 gic_arch_enable_irqs(); 891 } 892 893 if (!is_nmi) 894 __gic_handle_irq(irqnr, regs); 895 } 896 897 /* 898 * An exception has been taken from a context with IRQs disabled, which can only 899 * be an NMI. 900 * 901 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave 902 * DAIF.IF (and ICC_PMR_EL1) unchanged. 903 * 904 * The entry code has performed NMI entry. 905 */ 906 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs) 907 { 908 u64 pmr; 909 u32 irqnr; 910 911 /* 912 * We were in a context with IRQs disabled. However, the 913 * entry code has set PMR to a value that allows any 914 * interrupt to be acknowledged, and not just NMIs. This can 915 * lead to surprising effects if the NMI has been retired in 916 * the meantime, and that there is an IRQ pending. The IRQ 917 * would then be taken in NMI context, something that nobody 918 * wants to debug twice. 919 * 920 * Until we sort this, drop PMR again to a level that will 921 * actually only allow NMIs before reading IAR, and then 922 * restore it to what it was. 923 */ 924 pmr = gic_read_pmr(); 925 gic_pmr_mask_irqs(); 926 isb(); 927 irqnr = gic_read_iar(); 928 gic_write_pmr(pmr); 929 930 __gic_handle_nmi(irqnr, regs); 931 } 932 933 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) 934 { 935 if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs))) 936 __gic_handle_irq_from_irqsoff(regs); 937 else 938 __gic_handle_irq_from_irqson(regs); 939 } 940 941 static void __init gic_dist_init(void) 942 { 943 unsigned int i; 944 u64 affinity; 945 void __iomem *base = gic_data.dist_base; 946 u32 val; 947 948 /* Disable the distributor */ 949 writel_relaxed(0, base + GICD_CTLR); 950 gic_dist_wait_for_rwp(); 951 952 /* 953 * Configure SPIs as non-secure Group-1. This will only matter 954 * if the GIC only has a single security state. This will not 955 * do the right thing if the kernel is running in secure mode, 956 * but that's not the intended use case anyway. 957 */ 958 for (i = 32; i < GIC_LINE_NR; i += 32) 959 writel_relaxed(~0, base + GICD_IGROUPR + i / 8); 960 961 /* Extended SPI range, not handled by the GICv2/GICv3 common code */ 962 for (i = 0; i < GIC_ESPI_NR; i += 32) { 963 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8); 964 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8); 965 } 966 967 for (i = 0; i < GIC_ESPI_NR; i += 32) 968 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8); 969 970 for (i = 0; i < GIC_ESPI_NR; i += 16) 971 writel_relaxed(0, base + GICD_ICFGRnE + i / 4); 972 973 for (i = 0; i < GIC_ESPI_NR; i += 4) 974 writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq), 975 base + GICD_IPRIORITYRnE + i); 976 977 /* Now do the common stuff */ 978 gic_dist_config(base, GIC_LINE_NR, dist_prio_irq); 979 980 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1; 981 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) { 982 pr_info("Enabling SGIs without active state\n"); 983 val |= GICD_CTLR_nASSGIreq; 984 } 985 986 /* Enable distributor with ARE, Group1, and wait for it to drain */ 987 writel_relaxed(val, base + GICD_CTLR); 988 gic_dist_wait_for_rwp(); 989 990 /* 991 * Set all global interrupts to the boot CPU only. ARE must be 992 * enabled. 993 */ 994 affinity = gic_cpu_to_affinity(smp_processor_id()); 995 for (i = 32; i < GIC_LINE_NR; i++) 996 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); 997 998 for (i = 0; i < GIC_ESPI_NR; i++) 999 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8); 1000 } 1001 1002 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *)) 1003 { 1004 int ret = -ENODEV; 1005 int i; 1006 1007 for (i = 0; i < gic_data.nr_redist_regions; i++) { 1008 void __iomem *ptr = gic_data.redist_regions[i].redist_base; 1009 u64 typer; 1010 u32 reg; 1011 1012 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; 1013 if (reg != GIC_PIDR2_ARCH_GICv3 && 1014 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ 1015 pr_warn("No redistributor present @%p\n", ptr); 1016 break; 1017 } 1018 1019 do { 1020 typer = gic_read_typer(ptr + GICR_TYPER); 1021 ret = fn(gic_data.redist_regions + i, ptr); 1022 if (!ret) 1023 return 0; 1024 1025 if (gic_data.redist_regions[i].single_redist) 1026 break; 1027 1028 if (gic_data.redist_stride) { 1029 ptr += gic_data.redist_stride; 1030 } else { 1031 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ 1032 if (typer & GICR_TYPER_VLPIS) 1033 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ 1034 } 1035 } while (!(typer & GICR_TYPER_LAST)); 1036 } 1037 1038 return ret ? -ENODEV : 0; 1039 } 1040 1041 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr) 1042 { 1043 unsigned long mpidr; 1044 u64 typer; 1045 u32 aff; 1046 1047 /* 1048 * Convert affinity to a 32bit value that can be matched to 1049 * GICR_TYPER bits [63:32]. 1050 */ 1051 mpidr = gic_cpu_to_affinity(smp_processor_id()); 1052 1053 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | 1054 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | 1055 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | 1056 MPIDR_AFFINITY_LEVEL(mpidr, 0)); 1057 1058 typer = gic_read_typer(ptr + GICR_TYPER); 1059 if ((typer >> 32) == aff) { 1060 u64 offset = ptr - region->redist_base; 1061 raw_spin_lock_init(&gic_data_rdist()->rd_lock); 1062 gic_data_rdist_rd_base() = ptr; 1063 gic_data_rdist()->phys_base = region->phys_base + offset; 1064 1065 pr_info("CPU%d: found redistributor %lx region %d:%pa\n", 1066 smp_processor_id(), mpidr, 1067 (int)(region - gic_data.redist_regions), 1068 &gic_data_rdist()->phys_base); 1069 return 0; 1070 } 1071 1072 /* Try next one */ 1073 return 1; 1074 } 1075 1076 static int gic_populate_rdist(void) 1077 { 1078 if (gic_iterate_rdists(__gic_populate_rdist) == 0) 1079 return 0; 1080 1081 /* We couldn't even deal with ourselves... */ 1082 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n", 1083 smp_processor_id(), 1084 (unsigned long)cpu_logical_map(smp_processor_id())); 1085 return -ENODEV; 1086 } 1087 1088 static int __gic_update_rdist_properties(struct redist_region *region, 1089 void __iomem *ptr) 1090 { 1091 u64 typer = gic_read_typer(ptr + GICR_TYPER); 1092 u32 ctlr = readl_relaxed(ptr + GICR_CTLR); 1093 1094 /* Boot-time cleanup */ 1095 if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) { 1096 u64 val; 1097 1098 /* Deactivate any present vPE */ 1099 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER); 1100 if (val & GICR_VPENDBASER_Valid) 1101 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 1102 ptr + SZ_128K + GICR_VPENDBASER); 1103 1104 /* Mark the VPE table as invalid */ 1105 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER); 1106 val &= ~GICR_VPROPBASER_4_1_VALID; 1107 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER); 1108 } 1109 1110 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS); 1111 1112 /* 1113 * TYPER.RVPEID implies some form of DirectLPI, no matter what the 1114 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI 1115 * that the ITS driver can make use of for LPIs (and not VLPIs). 1116 * 1117 * These are 3 different ways to express the same thing, depending 1118 * on the revision of the architecture and its relaxations over 1119 * time. Just group them under the 'direct_lpi' banner. 1120 */ 1121 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID); 1122 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) | 1123 !!(ctlr & GICR_CTLR_IR) | 1124 gic_data.rdists.has_rvpeid); 1125 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY); 1126 1127 /* Detect non-sensical configurations */ 1128 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) { 1129 gic_data.rdists.has_direct_lpi = false; 1130 gic_data.rdists.has_vlpis = false; 1131 gic_data.rdists.has_rvpeid = false; 1132 } 1133 1134 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr); 1135 1136 return 1; 1137 } 1138 1139 static void gic_update_rdist_properties(void) 1140 { 1141 gic_data.ppi_nr = UINT_MAX; 1142 gic_iterate_rdists(__gic_update_rdist_properties); 1143 if (WARN_ON(gic_data.ppi_nr == UINT_MAX)) 1144 gic_data.ppi_nr = 0; 1145 pr_info("GICv3 features: %d PPIs%s%s\n", 1146 gic_data.ppi_nr, 1147 gic_data.has_rss ? ", RSS" : "", 1148 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : ""); 1149 1150 if (gic_data.rdists.has_vlpis) 1151 pr_info("GICv4 features: %s%s%s\n", 1152 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "", 1153 gic_data.rdists.has_rvpeid ? "RVPEID " : "", 1154 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : ""); 1155 } 1156 1157 static void gic_cpu_sys_reg_enable(void) 1158 { 1159 /* 1160 * Need to check that the SRE bit has actually been set. If 1161 * not, it means that SRE is disabled at EL2. We're going to 1162 * die painfully, and there is nothing we can do about it. 1163 * 1164 * Kindly inform the luser. 1165 */ 1166 if (!gic_enable_sre()) 1167 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n"); 1168 1169 } 1170 1171 static void gic_cpu_sys_reg_init(void) 1172 { 1173 int i, cpu = smp_processor_id(); 1174 u64 mpidr = gic_cpu_to_affinity(cpu); 1175 u64 need_rss = MPIDR_RS(mpidr); 1176 bool group0; 1177 u32 pribits; 1178 1179 pribits = gic_get_pribits(); 1180 1181 group0 = gic_has_group0(); 1182 1183 /* Set priority mask register */ 1184 if (!gic_prio_masking_enabled()) { 1185 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1); 1186 } else if (gic_supports_nmi()) { 1187 /* 1188 * Check that all CPUs use the same priority space. 1189 * 1190 * If there's a mismatch with the boot CPU, the system is 1191 * likely to die as interrupt masking will not work properly on 1192 * all CPUs. 1193 */ 1194 WARN_ON(group0 != cpus_have_group0); 1195 WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled); 1196 } 1197 1198 /* 1199 * Some firmwares hand over to the kernel with the BPR changed from 1200 * its reset value (and with a value large enough to prevent 1201 * any pre-emptive interrupts from working at all). Writing a zero 1202 * to BPR restores is reset value. 1203 */ 1204 gic_write_bpr1(0); 1205 1206 if (static_branch_likely(&supports_deactivate_key)) { 1207 /* EOI drops priority only (mode 1) */ 1208 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); 1209 } else { 1210 /* EOI deactivates interrupt too (mode 0) */ 1211 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); 1212 } 1213 1214 /* Always whack Group0 before Group1 */ 1215 if (group0) { 1216 switch(pribits) { 1217 case 8: 1218 case 7: 1219 write_gicreg(0, ICC_AP0R3_EL1); 1220 write_gicreg(0, ICC_AP0R2_EL1); 1221 fallthrough; 1222 case 6: 1223 write_gicreg(0, ICC_AP0R1_EL1); 1224 fallthrough; 1225 case 5: 1226 case 4: 1227 write_gicreg(0, ICC_AP0R0_EL1); 1228 } 1229 1230 isb(); 1231 } 1232 1233 switch(pribits) { 1234 case 8: 1235 case 7: 1236 write_gicreg(0, ICC_AP1R3_EL1); 1237 write_gicreg(0, ICC_AP1R2_EL1); 1238 fallthrough; 1239 case 6: 1240 write_gicreg(0, ICC_AP1R1_EL1); 1241 fallthrough; 1242 case 5: 1243 case 4: 1244 write_gicreg(0, ICC_AP1R0_EL1); 1245 } 1246 1247 isb(); 1248 1249 /* ... and let's hit the road... */ 1250 gic_write_grpen1(1); 1251 1252 /* Keep the RSS capability status in per_cpu variable */ 1253 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS); 1254 1255 /* Check all the CPUs have capable of sending SGIs to other CPUs */ 1256 for_each_online_cpu(i) { 1257 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu); 1258 1259 need_rss |= MPIDR_RS(gic_cpu_to_affinity(i)); 1260 if (need_rss && (!have_rss)) 1261 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n", 1262 cpu, (unsigned long)mpidr, 1263 i, (unsigned long)gic_cpu_to_affinity(i)); 1264 } 1265 1266 /** 1267 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, 1268 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED 1269 * UNPREDICTABLE choice of : 1270 * - The write is ignored. 1271 * - The RS field is treated as 0. 1272 */ 1273 if (need_rss && (!gic_data.has_rss)) 1274 pr_crit_once("RSS is required but GICD doesn't support it\n"); 1275 } 1276 1277 static bool gicv3_nolpi; 1278 1279 static int __init gicv3_nolpi_cfg(char *buf) 1280 { 1281 return kstrtobool(buf, &gicv3_nolpi); 1282 } 1283 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg); 1284 1285 static int gic_dist_supports_lpis(void) 1286 { 1287 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && 1288 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) && 1289 !gicv3_nolpi); 1290 } 1291 1292 static void gic_cpu_init(void) 1293 { 1294 void __iomem *rbase; 1295 int i; 1296 1297 /* Register ourselves with the rest of the world */ 1298 if (gic_populate_rdist()) 1299 return; 1300 1301 gic_enable_redist(true); 1302 1303 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) && 1304 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange), 1305 "Distributor has extended ranges, but CPU%d doesn't\n", 1306 smp_processor_id()); 1307 1308 rbase = gic_data_rdist_sgi_base(); 1309 1310 /* Configure SGIs/PPIs as non-secure Group-1 */ 1311 for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32) 1312 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8); 1313 1314 gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq); 1315 gic_redist_wait_for_rwp(); 1316 1317 /* initialise system registers */ 1318 gic_cpu_sys_reg_init(); 1319 } 1320 1321 #ifdef CONFIG_SMP 1322 1323 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT) 1324 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL) 1325 1326 /* 1327 * gic_starting_cpu() is called after the last point where cpuhp is allowed 1328 * to fail. So pre check for problems earlier. 1329 */ 1330 static int gic_check_rdist(unsigned int cpu) 1331 { 1332 if (cpumask_test_cpu(cpu, &broken_rdists)) 1333 return -EINVAL; 1334 1335 return 0; 1336 } 1337 1338 static int gic_starting_cpu(unsigned int cpu) 1339 { 1340 gic_cpu_sys_reg_enable(); 1341 gic_cpu_init(); 1342 1343 if (gic_dist_supports_lpis()) 1344 its_cpu_init(); 1345 1346 return 0; 1347 } 1348 1349 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, 1350 unsigned long cluster_id) 1351 { 1352 int next_cpu, cpu = *base_cpu; 1353 unsigned long mpidr; 1354 u16 tlist = 0; 1355 1356 mpidr = gic_cpu_to_affinity(cpu); 1357 1358 while (cpu < nr_cpu_ids) { 1359 tlist |= 1 << (mpidr & 0xf); 1360 1361 next_cpu = cpumask_next(cpu, mask); 1362 if (next_cpu >= nr_cpu_ids) 1363 goto out; 1364 cpu = next_cpu; 1365 1366 mpidr = gic_cpu_to_affinity(cpu); 1367 1368 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) { 1369 cpu--; 1370 goto out; 1371 } 1372 } 1373 out: 1374 *base_cpu = cpu; 1375 return tlist; 1376 } 1377 1378 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ 1379 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ 1380 << ICC_SGI1R_AFFINITY_## level ##_SHIFT) 1381 1382 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) 1383 { 1384 u64 val; 1385 1386 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | 1387 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | 1388 irq << ICC_SGI1R_SGI_ID_SHIFT | 1389 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | 1390 MPIDR_TO_SGI_RS(cluster_id) | 1391 tlist << ICC_SGI1R_TARGET_LIST_SHIFT); 1392 1393 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); 1394 gic_write_sgi1r(val); 1395 } 1396 1397 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) 1398 { 1399 int cpu; 1400 1401 if (WARN_ON(d->hwirq >= 16)) 1402 return; 1403 1404 /* 1405 * Ensure that stores to Normal memory are visible to the 1406 * other CPUs before issuing the IPI. 1407 */ 1408 dsb(ishst); 1409 1410 for_each_cpu(cpu, mask) { 1411 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu)); 1412 u16 tlist; 1413 1414 tlist = gic_compute_target_list(&cpu, mask, cluster_id); 1415 gic_send_sgi(cluster_id, tlist, d->hwirq); 1416 } 1417 1418 /* Force the above writes to ICC_SGI1R_EL1 to be executed */ 1419 isb(); 1420 } 1421 1422 static void __init gic_smp_init(void) 1423 { 1424 struct irq_fwspec sgi_fwspec = { 1425 .fwnode = gic_data.fwnode, 1426 .param_count = 1, 1427 }; 1428 int base_sgi; 1429 1430 cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, 1431 "irqchip/arm/gicv3:checkrdist", 1432 gic_check_rdist, NULL); 1433 1434 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, 1435 "irqchip/arm/gicv3:starting", 1436 gic_starting_cpu, NULL); 1437 1438 /* Register all 8 non-secure SGIs */ 1439 base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec); 1440 if (WARN_ON(base_sgi <= 0)) 1441 return; 1442 1443 set_smp_ipi_range(base_sgi, 8); 1444 } 1445 1446 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1447 bool force) 1448 { 1449 unsigned int cpu; 1450 u32 offset, index; 1451 void __iomem *reg; 1452 int enabled; 1453 u64 val; 1454 1455 if (force) 1456 cpu = cpumask_first(mask_val); 1457 else 1458 cpu = cpumask_any_and(mask_val, cpu_online_mask); 1459 1460 if (cpu >= nr_cpu_ids) 1461 return -EINVAL; 1462 1463 if (gic_irq_in_rdist(d)) 1464 return -EINVAL; 1465 1466 /* If interrupt was enabled, disable it first */ 1467 enabled = gic_peek_irq(d, GICD_ISENABLER); 1468 if (enabled) 1469 gic_mask_irq(d); 1470 1471 offset = convert_offset_index(d, GICD_IROUTER, &index); 1472 reg = gic_dist_base(d) + offset + (index * 8); 1473 val = gic_cpu_to_affinity(cpu); 1474 1475 gic_write_irouter(val, reg); 1476 1477 /* 1478 * If the interrupt was enabled, enabled it again. Otherwise, 1479 * just wait for the distributor to have digested our changes. 1480 */ 1481 if (enabled) 1482 gic_unmask_irq(d); 1483 1484 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1485 1486 return IRQ_SET_MASK_OK_DONE; 1487 } 1488 #else 1489 #define gic_set_affinity NULL 1490 #define gic_ipi_send_mask NULL 1491 #define gic_smp_init() do { } while(0) 1492 #endif 1493 1494 static int gic_retrigger(struct irq_data *data) 1495 { 1496 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); 1497 } 1498 1499 #ifdef CONFIG_CPU_PM 1500 static int gic_cpu_pm_notifier(struct notifier_block *self, 1501 unsigned long cmd, void *v) 1502 { 1503 if (cmd == CPU_PM_EXIT) { 1504 if (gic_dist_security_disabled()) 1505 gic_enable_redist(true); 1506 gic_cpu_sys_reg_enable(); 1507 gic_cpu_sys_reg_init(); 1508 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { 1509 gic_write_grpen1(0); 1510 gic_enable_redist(false); 1511 } 1512 return NOTIFY_OK; 1513 } 1514 1515 static struct notifier_block gic_cpu_pm_notifier_block = { 1516 .notifier_call = gic_cpu_pm_notifier, 1517 }; 1518 1519 static void gic_cpu_pm_init(void) 1520 { 1521 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); 1522 } 1523 1524 #else 1525 static inline void gic_cpu_pm_init(void) { } 1526 #endif /* CONFIG_CPU_PM */ 1527 1528 static struct irq_chip gic_chip = { 1529 .name = "GICv3", 1530 .irq_mask = gic_mask_irq, 1531 .irq_unmask = gic_unmask_irq, 1532 .irq_eoi = gic_eoi_irq, 1533 .irq_set_type = gic_set_type, 1534 .irq_set_affinity = gic_set_affinity, 1535 .irq_retrigger = gic_retrigger, 1536 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1537 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1538 .irq_nmi_setup = gic_irq_nmi_setup, 1539 .irq_nmi_teardown = gic_irq_nmi_teardown, 1540 .ipi_send_mask = gic_ipi_send_mask, 1541 .flags = IRQCHIP_SET_TYPE_MASKED | 1542 IRQCHIP_SKIP_SET_WAKE | 1543 IRQCHIP_MASK_ON_SUSPEND, 1544 }; 1545 1546 static struct irq_chip gic_eoimode1_chip = { 1547 .name = "GICv3", 1548 .irq_mask = gic_eoimode1_mask_irq, 1549 .irq_unmask = gic_unmask_irq, 1550 .irq_eoi = gic_eoimode1_eoi_irq, 1551 .irq_set_type = gic_set_type, 1552 .irq_set_affinity = gic_set_affinity, 1553 .irq_retrigger = gic_retrigger, 1554 .irq_get_irqchip_state = gic_irq_get_irqchip_state, 1555 .irq_set_irqchip_state = gic_irq_set_irqchip_state, 1556 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, 1557 .irq_nmi_setup = gic_irq_nmi_setup, 1558 .irq_nmi_teardown = gic_irq_nmi_teardown, 1559 .ipi_send_mask = gic_ipi_send_mask, 1560 .flags = IRQCHIP_SET_TYPE_MASKED | 1561 IRQCHIP_SKIP_SET_WAKE | 1562 IRQCHIP_MASK_ON_SUSPEND, 1563 }; 1564 1565 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, 1566 irq_hw_number_t hw) 1567 { 1568 struct irq_chip *chip = &gic_chip; 1569 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); 1570 1571 if (static_branch_likely(&supports_deactivate_key)) 1572 chip = &gic_eoimode1_chip; 1573 1574 switch (__get_intid_range(hw)) { 1575 case SGI_RANGE: 1576 case PPI_RANGE: 1577 case EPPI_RANGE: 1578 irq_set_percpu_devid(irq); 1579 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1580 handle_percpu_devid_irq, NULL, NULL); 1581 break; 1582 1583 case SPI_RANGE: 1584 case ESPI_RANGE: 1585 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1586 handle_fasteoi_irq, NULL, NULL); 1587 irq_set_probe(irq); 1588 irqd_set_single_target(irqd); 1589 break; 1590 1591 case LPI_RANGE: 1592 if (!gic_dist_supports_lpis()) 1593 return -EPERM; 1594 irq_domain_set_info(d, irq, hw, chip, d->host_data, 1595 handle_fasteoi_irq, NULL, NULL); 1596 break; 1597 1598 default: 1599 return -EPERM; 1600 } 1601 1602 /* Prevents SW retriggers which mess up the ACK/EOI ordering */ 1603 irqd_set_handle_enforce_irqctx(irqd); 1604 return 0; 1605 } 1606 1607 static int gic_irq_domain_translate(struct irq_domain *d, 1608 struct irq_fwspec *fwspec, 1609 unsigned long *hwirq, 1610 unsigned int *type) 1611 { 1612 if (fwspec->param_count == 1 && fwspec->param[0] < 16) { 1613 *hwirq = fwspec->param[0]; 1614 *type = IRQ_TYPE_EDGE_RISING; 1615 return 0; 1616 } 1617 1618 if (is_of_node(fwspec->fwnode)) { 1619 if (fwspec->param_count < 3) 1620 return -EINVAL; 1621 1622 switch (fwspec->param[0]) { 1623 case 0: /* SPI */ 1624 *hwirq = fwspec->param[1] + 32; 1625 break; 1626 case 1: /* PPI */ 1627 *hwirq = fwspec->param[1] + 16; 1628 break; 1629 case 2: /* ESPI */ 1630 *hwirq = fwspec->param[1] + ESPI_BASE_INTID; 1631 break; 1632 case 3: /* EPPI */ 1633 *hwirq = fwspec->param[1] + EPPI_BASE_INTID; 1634 break; 1635 case GIC_IRQ_TYPE_LPI: /* LPI */ 1636 *hwirq = fwspec->param[1]; 1637 break; 1638 case GIC_IRQ_TYPE_PARTITION: 1639 *hwirq = fwspec->param[1]; 1640 if (fwspec->param[1] >= 16) 1641 *hwirq += EPPI_BASE_INTID - 16; 1642 else 1643 *hwirq += 16; 1644 break; 1645 default: 1646 return -EINVAL; 1647 } 1648 1649 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1650 1651 /* 1652 * Make it clear that broken DTs are... broken. 1653 * Partitioned PPIs are an unfortunate exception. 1654 */ 1655 WARN_ON(*type == IRQ_TYPE_NONE && 1656 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION); 1657 return 0; 1658 } 1659 1660 if (is_fwnode_irqchip(fwspec->fwnode)) { 1661 if(fwspec->param_count != 2) 1662 return -EINVAL; 1663 1664 if (fwspec->param[0] < 16) { 1665 pr_err(FW_BUG "Illegal GSI%d translation request\n", 1666 fwspec->param[0]); 1667 return -EINVAL; 1668 } 1669 1670 *hwirq = fwspec->param[0]; 1671 *type = fwspec->param[1]; 1672 1673 WARN_ON(*type == IRQ_TYPE_NONE); 1674 return 0; 1675 } 1676 1677 return -EINVAL; 1678 } 1679 1680 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1681 unsigned int nr_irqs, void *arg) 1682 { 1683 int i, ret; 1684 irq_hw_number_t hwirq; 1685 unsigned int type = IRQ_TYPE_NONE; 1686 struct irq_fwspec *fwspec = arg; 1687 1688 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); 1689 if (ret) 1690 return ret; 1691 1692 for (i = 0; i < nr_irqs; i++) { 1693 ret = gic_irq_domain_map(domain, virq + i, hwirq + i); 1694 if (ret) 1695 return ret; 1696 } 1697 1698 return 0; 1699 } 1700 1701 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1702 unsigned int nr_irqs) 1703 { 1704 int i; 1705 1706 for (i = 0; i < nr_irqs; i++) { 1707 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); 1708 irq_set_handler(virq + i, NULL); 1709 irq_domain_reset_irq_data(d); 1710 } 1711 } 1712 1713 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec, 1714 irq_hw_number_t hwirq) 1715 { 1716 enum gic_intid_range range; 1717 1718 if (!gic_data.ppi_descs) 1719 return false; 1720 1721 if (!is_of_node(fwspec->fwnode)) 1722 return false; 1723 1724 if (fwspec->param_count < 4 || !fwspec->param[3]) 1725 return false; 1726 1727 range = __get_intid_range(hwirq); 1728 if (range != PPI_RANGE && range != EPPI_RANGE) 1729 return false; 1730 1731 return true; 1732 } 1733 1734 static int gic_irq_domain_select(struct irq_domain *d, 1735 struct irq_fwspec *fwspec, 1736 enum irq_domain_bus_token bus_token) 1737 { 1738 unsigned int type, ret, ppi_idx; 1739 irq_hw_number_t hwirq; 1740 1741 /* Not for us */ 1742 if (fwspec->fwnode != d->fwnode) 1743 return 0; 1744 1745 /* Handle pure domain searches */ 1746 if (!fwspec->param_count) 1747 return d->bus_token == bus_token; 1748 1749 /* If this is not DT, then we have a single domain */ 1750 if (!is_of_node(fwspec->fwnode)) 1751 return 1; 1752 1753 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type); 1754 if (WARN_ON_ONCE(ret)) 1755 return 0; 1756 1757 if (!fwspec_is_partitioned_ppi(fwspec, hwirq)) 1758 return d == gic_data.domain; 1759 1760 /* 1761 * If this is a PPI and we have a 4th (non-null) parameter, 1762 * then we need to match the partition domain. 1763 */ 1764 ppi_idx = __gic_get_ppi_index(hwirq); 1765 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]); 1766 } 1767 1768 static const struct irq_domain_ops gic_irq_domain_ops = { 1769 .translate = gic_irq_domain_translate, 1770 .alloc = gic_irq_domain_alloc, 1771 .free = gic_irq_domain_free, 1772 .select = gic_irq_domain_select, 1773 }; 1774 1775 static int partition_domain_translate(struct irq_domain *d, 1776 struct irq_fwspec *fwspec, 1777 unsigned long *hwirq, 1778 unsigned int *type) 1779 { 1780 unsigned long ppi_intid; 1781 struct device_node *np; 1782 unsigned int ppi_idx; 1783 int ret; 1784 1785 if (!gic_data.ppi_descs) 1786 return -ENOMEM; 1787 1788 np = of_find_node_by_phandle(fwspec->param[3]); 1789 if (WARN_ON(!np)) 1790 return -EINVAL; 1791 1792 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type); 1793 if (WARN_ON_ONCE(ret)) 1794 return 0; 1795 1796 ppi_idx = __gic_get_ppi_index(ppi_intid); 1797 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx], 1798 of_node_to_fwnode(np)); 1799 if (ret < 0) 1800 return ret; 1801 1802 *hwirq = ret; 1803 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; 1804 1805 return 0; 1806 } 1807 1808 static const struct irq_domain_ops partition_domain_ops = { 1809 .translate = partition_domain_translate, 1810 .select = gic_irq_domain_select, 1811 }; 1812 1813 static bool gic_enable_quirk_msm8996(void *data) 1814 { 1815 struct gic_chip_data *d = data; 1816 1817 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996; 1818 1819 return true; 1820 } 1821 1822 static bool gic_enable_quirk_cavium_38539(void *data) 1823 { 1824 struct gic_chip_data *d = data; 1825 1826 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539; 1827 1828 return true; 1829 } 1830 1831 static bool gic_enable_quirk_hip06_07(void *data) 1832 { 1833 struct gic_chip_data *d = data; 1834 1835 /* 1836 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite 1837 * not being an actual ARM implementation). The saving grace is 1838 * that GIC-600 doesn't have ESPI, so nothing to do in that case. 1839 * HIP07 doesn't even have a proper IIDR, and still pretends to 1840 * have ESPI. In both cases, put them right. 1841 */ 1842 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) { 1843 /* Zero both ESPI and the RES0 field next to it... */ 1844 d->rdists.gicd_typer &= ~GENMASK(9, 8); 1845 return true; 1846 } 1847 1848 return false; 1849 } 1850 1851 #define T241_CHIPN_MASK GENMASK_ULL(45, 44) 1852 #define T241_CHIP_GICDA_OFFSET 0x1580000 1853 #define SMCCC_SOC_ID_T241 0x036b0241 1854 1855 static bool gic_enable_quirk_nvidia_t241(void *data) 1856 { 1857 s32 soc_id = arm_smccc_get_soc_id_version(); 1858 unsigned long chip_bmask = 0; 1859 phys_addr_t phys; 1860 u32 i; 1861 1862 /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */ 1863 if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241)) 1864 return false; 1865 1866 /* Find the chips based on GICR regions PHYS addr */ 1867 for (i = 0; i < gic_data.nr_redist_regions; i++) { 1868 chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK, 1869 (u64)gic_data.redist_regions[i].phys_base)); 1870 } 1871 1872 if (hweight32(chip_bmask) < 3) 1873 return false; 1874 1875 /* Setup GICD alias regions */ 1876 for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) { 1877 if (chip_bmask & BIT(i)) { 1878 phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET; 1879 phys |= FIELD_PREP(T241_CHIPN_MASK, i); 1880 t241_dist_base_alias[i] = ioremap(phys, SZ_64K); 1881 WARN_ON_ONCE(!t241_dist_base_alias[i]); 1882 } 1883 } 1884 static_branch_enable(&gic_nvidia_t241_erratum); 1885 return true; 1886 } 1887 1888 static bool gic_enable_quirk_asr8601(void *data) 1889 { 1890 struct gic_chip_data *d = data; 1891 1892 d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001; 1893 1894 return true; 1895 } 1896 1897 static bool gic_enable_quirk_arm64_2941627(void *data) 1898 { 1899 static_branch_enable(&gic_arm64_2941627_erratum); 1900 return true; 1901 } 1902 1903 static bool rd_set_non_coherent(void *data) 1904 { 1905 struct gic_chip_data *d = data; 1906 1907 d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 1908 return true; 1909 } 1910 1911 static const struct gic_quirk gic_quirks[] = { 1912 { 1913 .desc = "GICv3: Qualcomm MSM8996 broken firmware", 1914 .compatible = "qcom,msm8996-gic-v3", 1915 .init = gic_enable_quirk_msm8996, 1916 }, 1917 { 1918 .desc = "GICv3: ASR erratum 8601001", 1919 .compatible = "asr,asr8601-gic-v3", 1920 .init = gic_enable_quirk_asr8601, 1921 }, 1922 { 1923 .desc = "GICv3: HIP06 erratum 161010803", 1924 .iidr = 0x0204043b, 1925 .mask = 0xffffffff, 1926 .init = gic_enable_quirk_hip06_07, 1927 }, 1928 { 1929 .desc = "GICv3: HIP07 erratum 161010803", 1930 .iidr = 0x00000000, 1931 .mask = 0xffffffff, 1932 .init = gic_enable_quirk_hip06_07, 1933 }, 1934 { 1935 /* 1936 * Reserved register accesses generate a Synchronous 1937 * External Abort. This erratum applies to: 1938 * - ThunderX: CN88xx 1939 * - OCTEON TX: CN83xx, CN81xx 1940 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx* 1941 */ 1942 .desc = "GICv3: Cavium erratum 38539", 1943 .iidr = 0xa000034c, 1944 .mask = 0xe8f00fff, 1945 .init = gic_enable_quirk_cavium_38539, 1946 }, 1947 { 1948 .desc = "GICv3: NVIDIA erratum T241-FABRIC-4", 1949 .iidr = 0x0402043b, 1950 .mask = 0xffffffff, 1951 .init = gic_enable_quirk_nvidia_t241, 1952 }, 1953 { 1954 /* 1955 * GIC-700: 2941627 workaround - IP variant [0,1] 1956 * 1957 */ 1958 .desc = "GICv3: ARM64 erratum 2941627", 1959 .iidr = 0x0400043b, 1960 .mask = 0xff0e0fff, 1961 .init = gic_enable_quirk_arm64_2941627, 1962 }, 1963 { 1964 /* 1965 * GIC-700: 2941627 workaround - IP variant [2] 1966 */ 1967 .desc = "GICv3: ARM64 erratum 2941627", 1968 .iidr = 0x0402043b, 1969 .mask = 0xff0f0fff, 1970 .init = gic_enable_quirk_arm64_2941627, 1971 }, 1972 { 1973 .desc = "GICv3: non-coherent attribute", 1974 .property = "dma-noncoherent", 1975 .init = rd_set_non_coherent, 1976 }, 1977 { 1978 } 1979 }; 1980 1981 static void gic_enable_nmi_support(void) 1982 { 1983 int i; 1984 1985 if (!gic_prio_masking_enabled()) 1986 return; 1987 1988 rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR, 1989 sizeof(*rdist_nmi_refs), GFP_KERNEL); 1990 if (!rdist_nmi_refs) 1991 return; 1992 1993 for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++) 1994 refcount_set(&rdist_nmi_refs[i], 0); 1995 1996 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n", 1997 gic_has_relaxed_pmr_sync() ? "relaxed" : "forced"); 1998 1999 static_branch_enable(&supports_pseudo_nmis); 2000 2001 if (static_branch_likely(&supports_deactivate_key)) 2002 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI; 2003 else 2004 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI; 2005 } 2006 2007 static int __init gic_init_bases(phys_addr_t dist_phys_base, 2008 void __iomem *dist_base, 2009 struct redist_region *rdist_regs, 2010 u32 nr_redist_regions, 2011 u64 redist_stride, 2012 struct fwnode_handle *handle) 2013 { 2014 u32 typer; 2015 int err; 2016 2017 if (!is_hyp_mode_available()) 2018 static_branch_disable(&supports_deactivate_key); 2019 2020 if (static_branch_likely(&supports_deactivate_key)) 2021 pr_info("GIC: Using split EOI/Deactivate mode\n"); 2022 2023 gic_data.fwnode = handle; 2024 gic_data.dist_phys_base = dist_phys_base; 2025 gic_data.dist_base = dist_base; 2026 gic_data.redist_regions = rdist_regs; 2027 gic_data.nr_redist_regions = nr_redist_regions; 2028 gic_data.redist_stride = redist_stride; 2029 2030 /* 2031 * Find out how many interrupts are supported. 2032 */ 2033 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); 2034 gic_data.rdists.gicd_typer = typer; 2035 2036 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR), 2037 gic_quirks, &gic_data); 2038 2039 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32); 2040 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR); 2041 2042 /* 2043 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the 2044 * architecture spec (which says that reserved registers are RES0). 2045 */ 2046 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539)) 2047 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2); 2048 2049 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, 2050 &gic_data); 2051 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); 2052 if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) { 2053 /* Disable GICv4.x features for the erratum T241-FABRIC-4 */ 2054 gic_data.rdists.has_rvpeid = true; 2055 gic_data.rdists.has_vlpis = true; 2056 gic_data.rdists.has_direct_lpi = true; 2057 gic_data.rdists.has_vpend_valid_dirty = true; 2058 } 2059 2060 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { 2061 err = -ENOMEM; 2062 goto out_free; 2063 } 2064 2065 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED); 2066 2067 gic_data.has_rss = !!(typer & GICD_TYPER_RSS); 2068 2069 if (typer & GICD_TYPER_MBIS) { 2070 err = mbi_init(handle, gic_data.domain); 2071 if (err) 2072 pr_err("Failed to initialize MBIs\n"); 2073 } 2074 2075 set_handle_irq(gic_handle_irq); 2076 2077 gic_update_rdist_properties(); 2078 2079 gic_cpu_sys_reg_enable(); 2080 gic_prio_init(); 2081 gic_dist_init(); 2082 gic_cpu_init(); 2083 gic_enable_nmi_support(); 2084 gic_smp_init(); 2085 gic_cpu_pm_init(); 2086 2087 if (gic_dist_supports_lpis()) { 2088 its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq); 2089 its_cpu_init(); 2090 its_lpi_memreserve_init(); 2091 } else { 2092 if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) 2093 gicv2m_init(handle, gic_data.domain); 2094 } 2095 2096 return 0; 2097 2098 out_free: 2099 if (gic_data.domain) 2100 irq_domain_remove(gic_data.domain); 2101 free_percpu(gic_data.rdists.rdist); 2102 return err; 2103 } 2104 2105 static int __init gic_validate_dist_version(void __iomem *dist_base) 2106 { 2107 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 2108 2109 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) 2110 return -ENODEV; 2111 2112 return 0; 2113 } 2114 2115 /* Create all possible partitions at boot time */ 2116 static void __init gic_populate_ppi_partitions(struct device_node *gic_node) 2117 { 2118 struct device_node *parts_node, *child_part; 2119 int part_idx = 0, i; 2120 int nr_parts; 2121 struct partition_affinity *parts; 2122 2123 parts_node = of_get_child_by_name(gic_node, "ppi-partitions"); 2124 if (!parts_node) 2125 return; 2126 2127 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL); 2128 if (!gic_data.ppi_descs) 2129 goto out_put_node; 2130 2131 nr_parts = of_get_child_count(parts_node); 2132 2133 if (!nr_parts) 2134 goto out_put_node; 2135 2136 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); 2137 if (WARN_ON(!parts)) 2138 goto out_put_node; 2139 2140 for_each_child_of_node(parts_node, child_part) { 2141 struct partition_affinity *part; 2142 int n; 2143 2144 part = &parts[part_idx]; 2145 2146 part->partition_id = of_node_to_fwnode(child_part); 2147 2148 pr_info("GIC: PPI partition %pOFn[%d] { ", 2149 child_part, part_idx); 2150 2151 n = of_property_count_elems_of_size(child_part, "affinity", 2152 sizeof(u32)); 2153 WARN_ON(n <= 0); 2154 2155 for (i = 0; i < n; i++) { 2156 int err, cpu; 2157 u32 cpu_phandle; 2158 struct device_node *cpu_node; 2159 2160 err = of_property_read_u32_index(child_part, "affinity", 2161 i, &cpu_phandle); 2162 if (WARN_ON(err)) 2163 continue; 2164 2165 cpu_node = of_find_node_by_phandle(cpu_phandle); 2166 if (WARN_ON(!cpu_node)) 2167 continue; 2168 2169 cpu = of_cpu_node_to_id(cpu_node); 2170 if (WARN_ON(cpu < 0)) { 2171 of_node_put(cpu_node); 2172 continue; 2173 } 2174 2175 pr_cont("%pOF[%d] ", cpu_node, cpu); 2176 2177 cpumask_set_cpu(cpu, &part->mask); 2178 of_node_put(cpu_node); 2179 } 2180 2181 pr_cont("}\n"); 2182 part_idx++; 2183 } 2184 2185 for (i = 0; i < gic_data.ppi_nr; i++) { 2186 unsigned int irq; 2187 struct partition_desc *desc; 2188 struct irq_fwspec ppi_fwspec = { 2189 .fwnode = gic_data.fwnode, 2190 .param_count = 3, 2191 .param = { 2192 [0] = GIC_IRQ_TYPE_PARTITION, 2193 [1] = i, 2194 [2] = IRQ_TYPE_NONE, 2195 }, 2196 }; 2197 2198 irq = irq_create_fwspec_mapping(&ppi_fwspec); 2199 if (WARN_ON(!irq)) 2200 continue; 2201 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts, 2202 irq, &partition_domain_ops); 2203 if (WARN_ON(!desc)) 2204 continue; 2205 2206 gic_data.ppi_descs[i] = desc; 2207 } 2208 2209 out_put_node: 2210 of_node_put(parts_node); 2211 } 2212 2213 static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions) 2214 { 2215 int ret; 2216 struct resource r; 2217 2218 gic_v3_kvm_info.type = GIC_V3; 2219 2220 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); 2221 if (!gic_v3_kvm_info.maint_irq) 2222 return; 2223 2224 /* Also skip GICD, GICC, GICH */ 2225 ret = of_address_to_resource(node, nr_redist_regions + 3, &r); 2226 if (!ret) 2227 gic_v3_kvm_info.vcpu = r; 2228 2229 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2230 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2231 vgic_set_kvm_info(&gic_v3_kvm_info); 2232 } 2233 2234 static void gic_request_region(resource_size_t base, resource_size_t size, 2235 const char *name) 2236 { 2237 if (!request_mem_region(base, size, name)) 2238 pr_warn_once(FW_BUG "%s region %pa has overlapping address\n", 2239 name, &base); 2240 } 2241 2242 static void __iomem *gic_of_iomap(struct device_node *node, int idx, 2243 const char *name, struct resource *res) 2244 { 2245 void __iomem *base; 2246 int ret; 2247 2248 ret = of_address_to_resource(node, idx, res); 2249 if (ret) 2250 return IOMEM_ERR_PTR(ret); 2251 2252 gic_request_region(res->start, resource_size(res), name); 2253 base = of_iomap(node, idx); 2254 2255 return base ?: IOMEM_ERR_PTR(-ENOMEM); 2256 } 2257 2258 static int __init gic_of_init(struct device_node *node, struct device_node *parent) 2259 { 2260 phys_addr_t dist_phys_base; 2261 void __iomem *dist_base; 2262 struct redist_region *rdist_regs; 2263 struct resource res; 2264 u64 redist_stride; 2265 u32 nr_redist_regions; 2266 int err, i; 2267 2268 dist_base = gic_of_iomap(node, 0, "GICD", &res); 2269 if (IS_ERR(dist_base)) { 2270 pr_err("%pOF: unable to map gic dist registers\n", node); 2271 return PTR_ERR(dist_base); 2272 } 2273 2274 dist_phys_base = res.start; 2275 2276 err = gic_validate_dist_version(dist_base); 2277 if (err) { 2278 pr_err("%pOF: no distributor detected, giving up\n", node); 2279 goto out_unmap_dist; 2280 } 2281 2282 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) 2283 nr_redist_regions = 1; 2284 2285 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), 2286 GFP_KERNEL); 2287 if (!rdist_regs) { 2288 err = -ENOMEM; 2289 goto out_unmap_dist; 2290 } 2291 2292 for (i = 0; i < nr_redist_regions; i++) { 2293 rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res); 2294 if (IS_ERR(rdist_regs[i].redist_base)) { 2295 pr_err("%pOF: couldn't map region %d\n", node, i); 2296 err = -ENODEV; 2297 goto out_unmap_rdist; 2298 } 2299 rdist_regs[i].phys_base = res.start; 2300 } 2301 2302 if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) 2303 redist_stride = 0; 2304 2305 gic_enable_of_quirks(node, gic_quirks, &gic_data); 2306 2307 err = gic_init_bases(dist_phys_base, dist_base, rdist_regs, 2308 nr_redist_regions, redist_stride, &node->fwnode); 2309 if (err) 2310 goto out_unmap_rdist; 2311 2312 gic_populate_ppi_partitions(node); 2313 2314 if (static_branch_likely(&supports_deactivate_key)) 2315 gic_of_setup_kvm_info(node, nr_redist_regions); 2316 return 0; 2317 2318 out_unmap_rdist: 2319 for (i = 0; i < nr_redist_regions; i++) 2320 if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base)) 2321 iounmap(rdist_regs[i].redist_base); 2322 kfree(rdist_regs); 2323 out_unmap_dist: 2324 iounmap(dist_base); 2325 return err; 2326 } 2327 2328 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init); 2329 2330 #ifdef CONFIG_ACPI 2331 static struct 2332 { 2333 void __iomem *dist_base; 2334 struct redist_region *redist_regs; 2335 u32 nr_redist_regions; 2336 bool single_redist; 2337 int enabled_rdists; 2338 u32 maint_irq; 2339 int maint_irq_mode; 2340 phys_addr_t vcpu_base; 2341 } acpi_data __initdata; 2342 2343 static void __init 2344 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) 2345 { 2346 static int count = 0; 2347 2348 acpi_data.redist_regs[count].phys_base = phys_base; 2349 acpi_data.redist_regs[count].redist_base = redist_base; 2350 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; 2351 count++; 2352 } 2353 2354 static int __init 2355 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header, 2356 const unsigned long end) 2357 { 2358 struct acpi_madt_generic_redistributor *redist = 2359 (struct acpi_madt_generic_redistributor *)header; 2360 void __iomem *redist_base; 2361 2362 redist_base = ioremap(redist->base_address, redist->length); 2363 if (!redist_base) { 2364 pr_err("Couldn't map GICR region @%llx\n", redist->base_address); 2365 return -ENOMEM; 2366 } 2367 2368 if (acpi_get_madt_revision() >= 7 && 2369 (redist->flags & ACPI_MADT_GICR_NON_COHERENT)) 2370 gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 2371 2372 gic_request_region(redist->base_address, redist->length, "GICR"); 2373 2374 gic_acpi_register_redist(redist->base_address, redist_base); 2375 return 0; 2376 } 2377 2378 static int __init 2379 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header, 2380 const unsigned long end) 2381 { 2382 struct acpi_madt_generic_interrupt *gicc = 2383 (struct acpi_madt_generic_interrupt *)header; 2384 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; 2385 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; 2386 void __iomem *redist_base; 2387 2388 /* Neither enabled or online capable means it doesn't exist, skip it */ 2389 if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) 2390 return 0; 2391 2392 /* 2393 * Capable but disabled CPUs can be brought online later. What about 2394 * the redistributor? ACPI doesn't want to say! 2395 * Virtual hotplug systems can use the MADT's "always-on" GICR entries. 2396 * Otherwise, prevent such CPUs from being brought online. 2397 */ 2398 if (!(gicc->flags & ACPI_MADT_ENABLED)) { 2399 int cpu = get_cpu_for_acpi_id(gicc->uid); 2400 2401 pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu); 2402 if (cpu >= 0) 2403 cpumask_set_cpu(cpu, &broken_rdists); 2404 return 0; 2405 } 2406 2407 redist_base = ioremap(gicc->gicr_base_address, size); 2408 if (!redist_base) 2409 return -ENOMEM; 2410 gic_request_region(gicc->gicr_base_address, size, "GICR"); 2411 2412 if (acpi_get_madt_revision() >= 7 && 2413 (gicc->flags & ACPI_MADT_GICC_NON_COHERENT)) 2414 gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 2415 2416 gic_acpi_register_redist(gicc->gicr_base_address, redist_base); 2417 return 0; 2418 } 2419 2420 static int __init gic_acpi_collect_gicr_base(void) 2421 { 2422 acpi_tbl_entry_handler redist_parser; 2423 enum acpi_madt_type type; 2424 2425 if (acpi_data.single_redist) { 2426 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; 2427 redist_parser = gic_acpi_parse_madt_gicc; 2428 } else { 2429 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; 2430 redist_parser = gic_acpi_parse_madt_redist; 2431 } 2432 2433 /* Collect redistributor base addresses in GICR entries */ 2434 if (acpi_table_parse_madt(type, redist_parser, 0) > 0) 2435 return 0; 2436 2437 pr_info("No valid GICR entries exist\n"); 2438 return -ENODEV; 2439 } 2440 2441 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header, 2442 const unsigned long end) 2443 { 2444 /* Subtable presence means that redist exists, that's it */ 2445 return 0; 2446 } 2447 2448 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header, 2449 const unsigned long end) 2450 { 2451 struct acpi_madt_generic_interrupt *gicc = 2452 (struct acpi_madt_generic_interrupt *)header; 2453 2454 /* 2455 * If GICC is enabled and has valid gicr base address, then it means 2456 * GICR base is presented via GICC. The redistributor is only known to 2457 * be accessible if the GICC is marked as enabled. If this bit is not 2458 * set, we'd need to add the redistributor at runtime, which isn't 2459 * supported. 2460 */ 2461 if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address) 2462 acpi_data.enabled_rdists++; 2463 2464 return 0; 2465 } 2466 2467 static int __init gic_acpi_count_gicr_regions(void) 2468 { 2469 int count; 2470 2471 /* 2472 * Count how many redistributor regions we have. It is not allowed 2473 * to mix redistributor description, GICR and GICC subtables have to be 2474 * mutually exclusive. 2475 */ 2476 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, 2477 gic_acpi_match_gicr, 0); 2478 if (count > 0) { 2479 acpi_data.single_redist = false; 2480 return count; 2481 } 2482 2483 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2484 gic_acpi_match_gicc, 0); 2485 if (count > 0) { 2486 acpi_data.single_redist = true; 2487 count = acpi_data.enabled_rdists; 2488 } 2489 2490 return count; 2491 } 2492 2493 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header, 2494 struct acpi_probe_entry *ape) 2495 { 2496 struct acpi_madt_generic_distributor *dist; 2497 int count; 2498 2499 dist = (struct acpi_madt_generic_distributor *)header; 2500 if (dist->version != ape->driver_data) 2501 return false; 2502 2503 /* We need to do that exercise anyway, the sooner the better */ 2504 count = gic_acpi_count_gicr_regions(); 2505 if (count <= 0) 2506 return false; 2507 2508 acpi_data.nr_redist_regions = count; 2509 return true; 2510 } 2511 2512 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header, 2513 const unsigned long end) 2514 { 2515 struct acpi_madt_generic_interrupt *gicc = 2516 (struct acpi_madt_generic_interrupt *)header; 2517 int maint_irq_mode; 2518 static int first_madt = true; 2519 2520 if (!(gicc->flags & 2521 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) 2522 return 0; 2523 2524 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? 2525 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; 2526 2527 if (first_madt) { 2528 first_madt = false; 2529 2530 acpi_data.maint_irq = gicc->vgic_interrupt; 2531 acpi_data.maint_irq_mode = maint_irq_mode; 2532 acpi_data.vcpu_base = gicc->gicv_base_address; 2533 2534 return 0; 2535 } 2536 2537 /* 2538 * The maintenance interrupt and GICV should be the same for every CPU 2539 */ 2540 if ((acpi_data.maint_irq != gicc->vgic_interrupt) || 2541 (acpi_data.maint_irq_mode != maint_irq_mode) || 2542 (acpi_data.vcpu_base != gicc->gicv_base_address)) 2543 return -EINVAL; 2544 2545 return 0; 2546 } 2547 2548 static bool __init gic_acpi_collect_virt_info(void) 2549 { 2550 int count; 2551 2552 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 2553 gic_acpi_parse_virt_madt_gicc, 0); 2554 2555 return (count > 0); 2556 } 2557 2558 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) 2559 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) 2560 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) 2561 2562 static void __init gic_acpi_setup_kvm_info(void) 2563 { 2564 int irq; 2565 2566 if (!gic_acpi_collect_virt_info()) { 2567 pr_warn("Unable to get hardware information used for virtualization\n"); 2568 return; 2569 } 2570 2571 gic_v3_kvm_info.type = GIC_V3; 2572 2573 irq = acpi_register_gsi(NULL, acpi_data.maint_irq, 2574 acpi_data.maint_irq_mode, 2575 ACPI_ACTIVE_HIGH); 2576 if (irq <= 0) 2577 return; 2578 2579 gic_v3_kvm_info.maint_irq = irq; 2580 2581 if (acpi_data.vcpu_base) { 2582 struct resource *vcpu = &gic_v3_kvm_info.vcpu; 2583 2584 vcpu->flags = IORESOURCE_MEM; 2585 vcpu->start = acpi_data.vcpu_base; 2586 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; 2587 } 2588 2589 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; 2590 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; 2591 vgic_set_kvm_info(&gic_v3_kvm_info); 2592 } 2593 2594 static struct fwnode_handle *gsi_domain_handle; 2595 2596 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi) 2597 { 2598 return gsi_domain_handle; 2599 } 2600 2601 static int __init 2602 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end) 2603 { 2604 struct acpi_madt_generic_distributor *dist; 2605 size_t size; 2606 int i, err; 2607 2608 /* Get distributor base address */ 2609 dist = (struct acpi_madt_generic_distributor *)header; 2610 acpi_data.dist_base = ioremap(dist->base_address, 2611 ACPI_GICV3_DIST_MEM_SIZE); 2612 if (!acpi_data.dist_base) { 2613 pr_err("Unable to map GICD registers\n"); 2614 return -ENOMEM; 2615 } 2616 gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD"); 2617 2618 err = gic_validate_dist_version(acpi_data.dist_base); 2619 if (err) { 2620 pr_err("No distributor detected at @%p, giving up\n", 2621 acpi_data.dist_base); 2622 goto out_dist_unmap; 2623 } 2624 2625 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; 2626 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); 2627 if (!acpi_data.redist_regs) { 2628 err = -ENOMEM; 2629 goto out_dist_unmap; 2630 } 2631 2632 err = gic_acpi_collect_gicr_base(); 2633 if (err) 2634 goto out_redist_unmap; 2635 2636 gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address); 2637 if (!gsi_domain_handle) { 2638 err = -ENOMEM; 2639 goto out_redist_unmap; 2640 } 2641 2642 err = gic_init_bases(dist->base_address, acpi_data.dist_base, 2643 acpi_data.redist_regs, acpi_data.nr_redist_regions, 2644 0, gsi_domain_handle); 2645 if (err) 2646 goto out_fwhandle_free; 2647 2648 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id); 2649 2650 if (static_branch_likely(&supports_deactivate_key)) 2651 gic_acpi_setup_kvm_info(); 2652 2653 return 0; 2654 2655 out_fwhandle_free: 2656 irq_domain_free_fwnode(gsi_domain_handle); 2657 out_redist_unmap: 2658 for (i = 0; i < acpi_data.nr_redist_regions; i++) 2659 if (acpi_data.redist_regs[i].redist_base) 2660 iounmap(acpi_data.redist_regs[i].redist_base); 2661 kfree(acpi_data.redist_regs); 2662 out_dist_unmap: 2663 iounmap(acpi_data.dist_base); 2664 return err; 2665 } 2666 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2667 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, 2668 gic_acpi_init); 2669 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2670 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, 2671 gic_acpi_init); 2672 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, 2673 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, 2674 gic_acpi_init); 2675 #endif 2676