xref: /linux/drivers/irqchip/irq-gic-v3.c (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/kstrtox.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/percpu.h>
20 #include <linux/refcount.h>
21 #include <linux/slab.h>
22 
23 #include <linux/irqchip.h>
24 #include <linux/irqchip/arm-gic-common.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26 #include <linux/irqchip/irq-partition-percpu.h>
27 #include <linux/bitfield.h>
28 #include <linux/bits.h>
29 #include <linux/arm-smccc.h>
30 
31 #include <asm/cputype.h>
32 #include <asm/exception.h>
33 #include <asm/smp_plat.h>
34 #include <asm/virt.h>
35 
36 #include "irq-gic-common.h"
37 
38 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
39 
40 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
41 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
42 #define FLAGS_WORKAROUND_MTK_GICR_SAVE		(1ULL << 2)
43 #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001	(1ULL << 3)
44 
45 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
46 
47 struct redist_region {
48 	void __iomem		*redist_base;
49 	phys_addr_t		phys_base;
50 	bool			single_redist;
51 };
52 
53 struct gic_chip_data {
54 	struct fwnode_handle	*fwnode;
55 	phys_addr_t		dist_phys_base;
56 	void __iomem		*dist_base;
57 	struct redist_region	*redist_regions;
58 	struct rdists		rdists;
59 	struct irq_domain	*domain;
60 	u64			redist_stride;
61 	u32			nr_redist_regions;
62 	u64			flags;
63 	bool			has_rss;
64 	unsigned int		ppi_nr;
65 	struct partition_desc	**ppi_descs;
66 };
67 
68 #define T241_CHIPS_MAX		4
69 static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
70 static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
71 
72 static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
73 
74 static struct gic_chip_data gic_data __read_mostly;
75 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
76 
77 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
78 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
79 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
80 
81 /*
82  * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
83  * are potentially stolen by the secure side. Some code, especially code dealing
84  * with hwirq IDs, is simplified by accounting for all 16.
85  */
86 #define SGI_NR		16
87 
88 /*
89  * The behaviours of RPR and PMR registers differ depending on the value of
90  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
91  * distributor and redistributors depends on whether security is enabled in the
92  * GIC.
93  *
94  * When security is enabled, non-secure priority values from the (re)distributor
95  * are presented to the GIC CPUIF as follow:
96  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
97  *
98  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
99  * EL1 are subject to a similar operation thus matching the priorities presented
100  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
101  * these values are unchanged by the GIC.
102  *
103  * see GICv3/GICv4 Architecture Specification (IHI0069D):
104  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
105  *   priorities.
106  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
107  *   interrupt.
108  */
109 DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
110 
111 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
112 EXPORT_SYMBOL(gic_nonsecure_priorities);
113 
114 /*
115  * When the Non-secure world has access to group 0 interrupts (as a
116  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
117  * return the Distributor's view of the interrupt priority.
118  *
119  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
120  * written by software is moved to the Non-secure range by the Distributor.
121  *
122  * If both are true (which is when gic_nonsecure_priorities gets enabled),
123  * we need to shift down the priority programmed by software to match it
124  * against the value returned by ICC_RPR_EL1.
125  */
126 #define GICD_INT_RPR_PRI(priority)					\
127 	({								\
128 		u32 __priority = (priority);				\
129 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
130 			__priority = 0x80 | (__priority >> 1);		\
131 									\
132 		__priority;						\
133 	})
134 
135 /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
136 static refcount_t *rdist_nmi_refs;
137 
138 static struct gic_kvm_info gic_v3_kvm_info __initdata;
139 static DEFINE_PER_CPU(bool, has_rss);
140 
141 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
142 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
143 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
144 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
145 
146 /* Our default, arbitrary priority value. Linux only uses one anyway. */
147 #define DEFAULT_PMR_VALUE	0xf0
148 
149 enum gic_intid_range {
150 	SGI_RANGE,
151 	PPI_RANGE,
152 	SPI_RANGE,
153 	EPPI_RANGE,
154 	ESPI_RANGE,
155 	LPI_RANGE,
156 	__INVALID_RANGE__
157 };
158 
159 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
160 {
161 	switch (hwirq) {
162 	case 0 ... 15:
163 		return SGI_RANGE;
164 	case 16 ... 31:
165 		return PPI_RANGE;
166 	case 32 ... 1019:
167 		return SPI_RANGE;
168 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
169 		return EPPI_RANGE;
170 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
171 		return ESPI_RANGE;
172 	case 8192 ... GENMASK(23, 0):
173 		return LPI_RANGE;
174 	default:
175 		return __INVALID_RANGE__;
176 	}
177 }
178 
179 static enum gic_intid_range get_intid_range(struct irq_data *d)
180 {
181 	return __get_intid_range(d->hwirq);
182 }
183 
184 static inline unsigned int gic_irq(struct irq_data *d)
185 {
186 	return d->hwirq;
187 }
188 
189 static inline bool gic_irq_in_rdist(struct irq_data *d)
190 {
191 	switch (get_intid_range(d)) {
192 	case SGI_RANGE:
193 	case PPI_RANGE:
194 	case EPPI_RANGE:
195 		return true;
196 	default:
197 		return false;
198 	}
199 }
200 
201 static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
202 {
203 	if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
204 		irq_hw_number_t hwirq = irqd_to_hwirq(d);
205 		u32 chip;
206 
207 		/*
208 		 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
209 		 * registers are directed to the chip that owns the SPI. The
210 		 * the alias region can also be used for writes to the
211 		 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
212 		 * for 320 {E}SPIs. Mappings for all 4 chips:
213 		 *    Chip0 = 32-351
214 		 *    Chip1 = 352-671
215 		 *    Chip2 = 672-991
216 		 *    Chip3 = 4096-4415
217 		 */
218 		switch (__get_intid_range(hwirq)) {
219 		case SPI_RANGE:
220 			chip = (hwirq - 32) / 320;
221 			break;
222 		case ESPI_RANGE:
223 			chip = 3;
224 			break;
225 		default:
226 			unreachable();
227 		}
228 		return t241_dist_base_alias[chip];
229 	}
230 
231 	return gic_data.dist_base;
232 }
233 
234 static inline void __iomem *gic_dist_base(struct irq_data *d)
235 {
236 	switch (get_intid_range(d)) {
237 	case SGI_RANGE:
238 	case PPI_RANGE:
239 	case EPPI_RANGE:
240 		/* SGI+PPI -> SGI_base for this CPU */
241 		return gic_data_rdist_sgi_base();
242 
243 	case SPI_RANGE:
244 	case ESPI_RANGE:
245 		/* SPI -> dist_base */
246 		return gic_data.dist_base;
247 
248 	default:
249 		return NULL;
250 	}
251 }
252 
253 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
254 {
255 	u32 count = 1000000;	/* 1s! */
256 
257 	while (readl_relaxed(base + GICD_CTLR) & bit) {
258 		count--;
259 		if (!count) {
260 			pr_err_ratelimited("RWP timeout, gone fishing\n");
261 			return;
262 		}
263 		cpu_relax();
264 		udelay(1);
265 	}
266 }
267 
268 /* Wait for completion of a distributor change */
269 static void gic_dist_wait_for_rwp(void)
270 {
271 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
272 }
273 
274 /* Wait for completion of a redistributor change */
275 static void gic_redist_wait_for_rwp(void)
276 {
277 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
278 }
279 
280 static void gic_enable_redist(bool enable)
281 {
282 	void __iomem *rbase;
283 	u32 count = 1000000;	/* 1s! */
284 	u32 val;
285 
286 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
287 		return;
288 
289 	rbase = gic_data_rdist_rd_base();
290 
291 	val = readl_relaxed(rbase + GICR_WAKER);
292 	if (enable)
293 		/* Wake up this CPU redistributor */
294 		val &= ~GICR_WAKER_ProcessorSleep;
295 	else
296 		val |= GICR_WAKER_ProcessorSleep;
297 	writel_relaxed(val, rbase + GICR_WAKER);
298 
299 	if (!enable) {		/* Check that GICR_WAKER is writeable */
300 		val = readl_relaxed(rbase + GICR_WAKER);
301 		if (!(val & GICR_WAKER_ProcessorSleep))
302 			return;	/* No PM support in this redistributor */
303 	}
304 
305 	while (--count) {
306 		val = readl_relaxed(rbase + GICR_WAKER);
307 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
308 			break;
309 		cpu_relax();
310 		udelay(1);
311 	}
312 	if (!count)
313 		pr_err_ratelimited("redistributor failed to %s...\n",
314 				   enable ? "wakeup" : "sleep");
315 }
316 
317 /*
318  * Routines to disable, enable, EOI and route interrupts
319  */
320 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
321 {
322 	switch (get_intid_range(d)) {
323 	case SGI_RANGE:
324 	case PPI_RANGE:
325 	case SPI_RANGE:
326 		*index = d->hwirq;
327 		return offset;
328 	case EPPI_RANGE:
329 		/*
330 		 * Contrary to the ESPI range, the EPPI range is contiguous
331 		 * to the PPI range in the registers, so let's adjust the
332 		 * displacement accordingly. Consistency is overrated.
333 		 */
334 		*index = d->hwirq - EPPI_BASE_INTID + 32;
335 		return offset;
336 	case ESPI_RANGE:
337 		*index = d->hwirq - ESPI_BASE_INTID;
338 		switch (offset) {
339 		case GICD_ISENABLER:
340 			return GICD_ISENABLERnE;
341 		case GICD_ICENABLER:
342 			return GICD_ICENABLERnE;
343 		case GICD_ISPENDR:
344 			return GICD_ISPENDRnE;
345 		case GICD_ICPENDR:
346 			return GICD_ICPENDRnE;
347 		case GICD_ISACTIVER:
348 			return GICD_ISACTIVERnE;
349 		case GICD_ICACTIVER:
350 			return GICD_ICACTIVERnE;
351 		case GICD_IPRIORITYR:
352 			return GICD_IPRIORITYRnE;
353 		case GICD_ICFGR:
354 			return GICD_ICFGRnE;
355 		case GICD_IROUTER:
356 			return GICD_IROUTERnE;
357 		default:
358 			break;
359 		}
360 		break;
361 	default:
362 		break;
363 	}
364 
365 	WARN_ON(1);
366 	*index = d->hwirq;
367 	return offset;
368 }
369 
370 static int gic_peek_irq(struct irq_data *d, u32 offset)
371 {
372 	void __iomem *base;
373 	u32 index, mask;
374 
375 	offset = convert_offset_index(d, offset, &index);
376 	mask = 1 << (index % 32);
377 
378 	if (gic_irq_in_rdist(d))
379 		base = gic_data_rdist_sgi_base();
380 	else
381 		base = gic_dist_base_alias(d);
382 
383 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
384 }
385 
386 static void gic_poke_irq(struct irq_data *d, u32 offset)
387 {
388 	void __iomem *base;
389 	u32 index, mask;
390 
391 	offset = convert_offset_index(d, offset, &index);
392 	mask = 1 << (index % 32);
393 
394 	if (gic_irq_in_rdist(d))
395 		base = gic_data_rdist_sgi_base();
396 	else
397 		base = gic_data.dist_base;
398 
399 	writel_relaxed(mask, base + offset + (index / 32) * 4);
400 }
401 
402 static void gic_mask_irq(struct irq_data *d)
403 {
404 	gic_poke_irq(d, GICD_ICENABLER);
405 	if (gic_irq_in_rdist(d))
406 		gic_redist_wait_for_rwp();
407 	else
408 		gic_dist_wait_for_rwp();
409 }
410 
411 static void gic_eoimode1_mask_irq(struct irq_data *d)
412 {
413 	gic_mask_irq(d);
414 	/*
415 	 * When masking a forwarded interrupt, make sure it is
416 	 * deactivated as well.
417 	 *
418 	 * This ensures that an interrupt that is getting
419 	 * disabled/masked will not get "stuck", because there is
420 	 * noone to deactivate it (guest is being terminated).
421 	 */
422 	if (irqd_is_forwarded_to_vcpu(d))
423 		gic_poke_irq(d, GICD_ICACTIVER);
424 }
425 
426 static void gic_unmask_irq(struct irq_data *d)
427 {
428 	gic_poke_irq(d, GICD_ISENABLER);
429 }
430 
431 static inline bool gic_supports_nmi(void)
432 {
433 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
434 	       static_branch_likely(&supports_pseudo_nmis);
435 }
436 
437 static int gic_irq_set_irqchip_state(struct irq_data *d,
438 				     enum irqchip_irq_state which, bool val)
439 {
440 	u32 reg;
441 
442 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
443 		return -EINVAL;
444 
445 	switch (which) {
446 	case IRQCHIP_STATE_PENDING:
447 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
448 		break;
449 
450 	case IRQCHIP_STATE_ACTIVE:
451 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
452 		break;
453 
454 	case IRQCHIP_STATE_MASKED:
455 		if (val) {
456 			gic_mask_irq(d);
457 			return 0;
458 		}
459 		reg = GICD_ISENABLER;
460 		break;
461 
462 	default:
463 		return -EINVAL;
464 	}
465 
466 	gic_poke_irq(d, reg);
467 	return 0;
468 }
469 
470 static int gic_irq_get_irqchip_state(struct irq_data *d,
471 				     enum irqchip_irq_state which, bool *val)
472 {
473 	if (d->hwirq >= 8192) /* PPI/SPI only */
474 		return -EINVAL;
475 
476 	switch (which) {
477 	case IRQCHIP_STATE_PENDING:
478 		*val = gic_peek_irq(d, GICD_ISPENDR);
479 		break;
480 
481 	case IRQCHIP_STATE_ACTIVE:
482 		*val = gic_peek_irq(d, GICD_ISACTIVER);
483 		break;
484 
485 	case IRQCHIP_STATE_MASKED:
486 		*val = !gic_peek_irq(d, GICD_ISENABLER);
487 		break;
488 
489 	default:
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495 
496 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
497 {
498 	void __iomem *base = gic_dist_base(d);
499 	u32 offset, index;
500 
501 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
502 
503 	writeb_relaxed(prio, base + offset + index);
504 }
505 
506 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
507 {
508 	switch (__get_intid_range(hwirq)) {
509 	case PPI_RANGE:
510 		return hwirq - 16;
511 	case EPPI_RANGE:
512 		return hwirq - EPPI_BASE_INTID + 16;
513 	default:
514 		unreachable();
515 	}
516 }
517 
518 static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
519 {
520 	switch (__get_intid_range(hwirq)) {
521 	case SGI_RANGE:
522 	case PPI_RANGE:
523 		return hwirq;
524 	case EPPI_RANGE:
525 		return hwirq - EPPI_BASE_INTID + 32;
526 	default:
527 		unreachable();
528 	}
529 }
530 
531 static u32 gic_get_rdist_index(struct irq_data *d)
532 {
533 	return __gic_get_rdist_index(d->hwirq);
534 }
535 
536 static int gic_irq_nmi_setup(struct irq_data *d)
537 {
538 	struct irq_desc *desc = irq_to_desc(d->irq);
539 
540 	if (!gic_supports_nmi())
541 		return -EINVAL;
542 
543 	if (gic_peek_irq(d, GICD_ISENABLER)) {
544 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
545 		return -EINVAL;
546 	}
547 
548 	/*
549 	 * A secondary irq_chip should be in charge of LPI request,
550 	 * it should not be possible to get there
551 	 */
552 	if (WARN_ON(gic_irq(d) >= 8192))
553 		return -EINVAL;
554 
555 	/* desc lock should already be held */
556 	if (gic_irq_in_rdist(d)) {
557 		u32 idx = gic_get_rdist_index(d);
558 
559 		/*
560 		 * Setting up a percpu interrupt as NMI, only switch handler
561 		 * for first NMI
562 		 */
563 		if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
564 			refcount_set(&rdist_nmi_refs[idx], 1);
565 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
566 		}
567 	} else {
568 		desc->handle_irq = handle_fasteoi_nmi;
569 	}
570 
571 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
572 
573 	return 0;
574 }
575 
576 static void gic_irq_nmi_teardown(struct irq_data *d)
577 {
578 	struct irq_desc *desc = irq_to_desc(d->irq);
579 
580 	if (WARN_ON(!gic_supports_nmi()))
581 		return;
582 
583 	if (gic_peek_irq(d, GICD_ISENABLER)) {
584 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
585 		return;
586 	}
587 
588 	/*
589 	 * A secondary irq_chip should be in charge of LPI request,
590 	 * it should not be possible to get there
591 	 */
592 	if (WARN_ON(gic_irq(d) >= 8192))
593 		return;
594 
595 	/* desc lock should already be held */
596 	if (gic_irq_in_rdist(d)) {
597 		u32 idx = gic_get_rdist_index(d);
598 
599 		/* Tearing down NMI, only switch handler for last NMI */
600 		if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
601 			desc->handle_irq = handle_percpu_devid_irq;
602 	} else {
603 		desc->handle_irq = handle_fasteoi_irq;
604 	}
605 
606 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
607 }
608 
609 static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
610 {
611 	enum gic_intid_range range;
612 
613 	if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
614 		return false;
615 
616 	range = get_intid_range(d);
617 
618 	/*
619 	 * The workaround is needed if the IRQ is an SPI and
620 	 * the target cpu is different from the one we are
621 	 * executing on.
622 	 */
623 	return (range == SPI_RANGE || range == ESPI_RANGE) &&
624 		!cpumask_test_cpu(raw_smp_processor_id(),
625 				  irq_data_get_effective_affinity_mask(d));
626 }
627 
628 static void gic_eoi_irq(struct irq_data *d)
629 {
630 	write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
631 	isb();
632 
633 	if (gic_arm64_erratum_2941627_needed(d)) {
634 		/*
635 		 * Make sure the GIC stream deactivate packet
636 		 * issued by ICC_EOIR1_EL1 has completed before
637 		 * deactivating through GICD_IACTIVER.
638 		 */
639 		dsb(sy);
640 		gic_poke_irq(d, GICD_ICACTIVER);
641 	}
642 }
643 
644 static void gic_eoimode1_eoi_irq(struct irq_data *d)
645 {
646 	/*
647 	 * No need to deactivate an LPI, or an interrupt that
648 	 * is is getting forwarded to a vcpu.
649 	 */
650 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
651 		return;
652 
653 	if (!gic_arm64_erratum_2941627_needed(d))
654 		gic_write_dir(gic_irq(d));
655 	else
656 		gic_poke_irq(d, GICD_ICACTIVER);
657 }
658 
659 static int gic_set_type(struct irq_data *d, unsigned int type)
660 {
661 	enum gic_intid_range range;
662 	unsigned int irq = gic_irq(d);
663 	void __iomem *base;
664 	u32 offset, index;
665 	int ret;
666 
667 	range = get_intid_range(d);
668 
669 	/* Interrupt configuration for SGIs can't be changed */
670 	if (range == SGI_RANGE)
671 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
672 
673 	/* SPIs have restrictions on the supported types */
674 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
675 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
676 		return -EINVAL;
677 
678 	if (gic_irq_in_rdist(d))
679 		base = gic_data_rdist_sgi_base();
680 	else
681 		base = gic_dist_base_alias(d);
682 
683 	offset = convert_offset_index(d, GICD_ICFGR, &index);
684 
685 	ret = gic_configure_irq(index, type, base + offset, NULL);
686 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
687 		/* Misconfigured PPIs are usually not fatal */
688 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
689 		ret = 0;
690 	}
691 
692 	return ret;
693 }
694 
695 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
696 {
697 	if (get_intid_range(d) == SGI_RANGE)
698 		return -EINVAL;
699 
700 	if (vcpu)
701 		irqd_set_forwarded_to_vcpu(d);
702 	else
703 		irqd_clr_forwarded_to_vcpu(d);
704 	return 0;
705 }
706 
707 static u64 gic_cpu_to_affinity(int cpu)
708 {
709 	u64 mpidr = cpu_logical_map(cpu);
710 	u64 aff;
711 
712 	/* ASR8601 needs to have its affinities shifted down... */
713 	if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
714 		mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1)	|
715 			 (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
716 
717 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
718 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
719 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
720 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
721 
722 	return aff;
723 }
724 
725 static void gic_deactivate_unhandled(u32 irqnr)
726 {
727 	if (static_branch_likely(&supports_deactivate_key)) {
728 		if (irqnr < 8192)
729 			gic_write_dir(irqnr);
730 	} else {
731 		write_gicreg(irqnr, ICC_EOIR1_EL1);
732 		isb();
733 	}
734 }
735 
736 /*
737  * Follow a read of the IAR with any HW maintenance that needs to happen prior
738  * to invoking the relevant IRQ handler. We must do two things:
739  *
740  * (1) Ensure instruction ordering between a read of IAR and subsequent
741  *     instructions in the IRQ handler using an ISB.
742  *
743  *     It is possible for the IAR to report an IRQ which was signalled *after*
744  *     the CPU took an IRQ exception as multiple interrupts can race to be
745  *     recognized by the GIC, earlier interrupts could be withdrawn, and/or
746  *     later interrupts could be prioritized by the GIC.
747  *
748  *     For devices which are tightly coupled to the CPU, such as PMUs, a
749  *     context synchronization event is necessary to ensure that system
750  *     register state is not stale, as these may have been indirectly written
751  *     *after* exception entry.
752  *
753  * (2) Deactivate the interrupt when EOI mode 1 is in use.
754  */
755 static inline void gic_complete_ack(u32 irqnr)
756 {
757 	if (static_branch_likely(&supports_deactivate_key))
758 		write_gicreg(irqnr, ICC_EOIR1_EL1);
759 
760 	isb();
761 }
762 
763 static bool gic_rpr_is_nmi_prio(void)
764 {
765 	if (!gic_supports_nmi())
766 		return false;
767 
768 	return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
769 }
770 
771 static bool gic_irqnr_is_special(u32 irqnr)
772 {
773 	return irqnr >= 1020 && irqnr <= 1023;
774 }
775 
776 static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
777 {
778 	if (gic_irqnr_is_special(irqnr))
779 		return;
780 
781 	gic_complete_ack(irqnr);
782 
783 	if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
784 		WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
785 		gic_deactivate_unhandled(irqnr);
786 	}
787 }
788 
789 static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
790 {
791 	if (gic_irqnr_is_special(irqnr))
792 		return;
793 
794 	gic_complete_ack(irqnr);
795 
796 	if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
797 		WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
798 		gic_deactivate_unhandled(irqnr);
799 	}
800 }
801 
802 /*
803  * An exception has been taken from a context with IRQs enabled, and this could
804  * be an IRQ or an NMI.
805  *
806  * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
807  * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
808  * after handling any NMI but before handling any IRQ.
809  *
810  * The entry code has performed IRQ entry, and if an NMI is detected we must
811  * perform NMI entry/exit around invoking the handler.
812  */
813 static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
814 {
815 	bool is_nmi;
816 	u32 irqnr;
817 
818 	irqnr = gic_read_iar();
819 
820 	is_nmi = gic_rpr_is_nmi_prio();
821 
822 	if (is_nmi) {
823 		nmi_enter();
824 		__gic_handle_nmi(irqnr, regs);
825 		nmi_exit();
826 	}
827 
828 	if (gic_prio_masking_enabled()) {
829 		gic_pmr_mask_irqs();
830 		gic_arch_enable_irqs();
831 	}
832 
833 	if (!is_nmi)
834 		__gic_handle_irq(irqnr, regs);
835 }
836 
837 /*
838  * An exception has been taken from a context with IRQs disabled, which can only
839  * be an NMI.
840  *
841  * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
842  * DAIF.IF (and ICC_PMR_EL1) unchanged.
843  *
844  * The entry code has performed NMI entry.
845  */
846 static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
847 {
848 	u64 pmr;
849 	u32 irqnr;
850 
851 	/*
852 	 * We were in a context with IRQs disabled. However, the
853 	 * entry code has set PMR to a value that allows any
854 	 * interrupt to be acknowledged, and not just NMIs. This can
855 	 * lead to surprising effects if the NMI has been retired in
856 	 * the meantime, and that there is an IRQ pending. The IRQ
857 	 * would then be taken in NMI context, something that nobody
858 	 * wants to debug twice.
859 	 *
860 	 * Until we sort this, drop PMR again to a level that will
861 	 * actually only allow NMIs before reading IAR, and then
862 	 * restore it to what it was.
863 	 */
864 	pmr = gic_read_pmr();
865 	gic_pmr_mask_irqs();
866 	isb();
867 	irqnr = gic_read_iar();
868 	gic_write_pmr(pmr);
869 
870 	__gic_handle_nmi(irqnr, regs);
871 }
872 
873 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
874 {
875 	if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
876 		__gic_handle_irq_from_irqsoff(regs);
877 	else
878 		__gic_handle_irq_from_irqson(regs);
879 }
880 
881 static u32 gic_get_pribits(void)
882 {
883 	u32 pribits;
884 
885 	pribits = gic_read_ctlr();
886 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
887 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
888 	pribits++;
889 
890 	return pribits;
891 }
892 
893 static bool gic_has_group0(void)
894 {
895 	u32 val;
896 	u32 old_pmr;
897 
898 	old_pmr = gic_read_pmr();
899 
900 	/*
901 	 * Let's find out if Group0 is under control of EL3 or not by
902 	 * setting the highest possible, non-zero priority in PMR.
903 	 *
904 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
905 	 * order for the CPU interface to set bit 7, and keep the
906 	 * actual priority in the non-secure range. In the process, it
907 	 * looses the least significant bit and the actual priority
908 	 * becomes 0x80. Reading it back returns 0, indicating that
909 	 * we're don't have access to Group0.
910 	 */
911 	gic_write_pmr(BIT(8 - gic_get_pribits()));
912 	val = gic_read_pmr();
913 
914 	gic_write_pmr(old_pmr);
915 
916 	return val != 0;
917 }
918 
919 static void __init gic_dist_init(void)
920 {
921 	unsigned int i;
922 	u64 affinity;
923 	void __iomem *base = gic_data.dist_base;
924 	u32 val;
925 
926 	/* Disable the distributor */
927 	writel_relaxed(0, base + GICD_CTLR);
928 	gic_dist_wait_for_rwp();
929 
930 	/*
931 	 * Configure SPIs as non-secure Group-1. This will only matter
932 	 * if the GIC only has a single security state. This will not
933 	 * do the right thing if the kernel is running in secure mode,
934 	 * but that's not the intended use case anyway.
935 	 */
936 	for (i = 32; i < GIC_LINE_NR; i += 32)
937 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
938 
939 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
940 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
941 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
942 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
943 	}
944 
945 	for (i = 0; i < GIC_ESPI_NR; i += 32)
946 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
947 
948 	for (i = 0; i < GIC_ESPI_NR; i += 16)
949 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
950 
951 	for (i = 0; i < GIC_ESPI_NR; i += 4)
952 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
953 
954 	/* Now do the common stuff */
955 	gic_dist_config(base, GIC_LINE_NR, NULL);
956 
957 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
958 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
959 		pr_info("Enabling SGIs without active state\n");
960 		val |= GICD_CTLR_nASSGIreq;
961 	}
962 
963 	/* Enable distributor with ARE, Group1, and wait for it to drain */
964 	writel_relaxed(val, base + GICD_CTLR);
965 	gic_dist_wait_for_rwp();
966 
967 	/*
968 	 * Set all global interrupts to the boot CPU only. ARE must be
969 	 * enabled.
970 	 */
971 	affinity = gic_cpu_to_affinity(smp_processor_id());
972 	for (i = 32; i < GIC_LINE_NR; i++)
973 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
974 
975 	for (i = 0; i < GIC_ESPI_NR; i++)
976 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
977 }
978 
979 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
980 {
981 	int ret = -ENODEV;
982 	int i;
983 
984 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
985 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
986 		u64 typer;
987 		u32 reg;
988 
989 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
990 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
991 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
992 			pr_warn("No redistributor present @%p\n", ptr);
993 			break;
994 		}
995 
996 		do {
997 			typer = gic_read_typer(ptr + GICR_TYPER);
998 			ret = fn(gic_data.redist_regions + i, ptr);
999 			if (!ret)
1000 				return 0;
1001 
1002 			if (gic_data.redist_regions[i].single_redist)
1003 				break;
1004 
1005 			if (gic_data.redist_stride) {
1006 				ptr += gic_data.redist_stride;
1007 			} else {
1008 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
1009 				if (typer & GICR_TYPER_VLPIS)
1010 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
1011 			}
1012 		} while (!(typer & GICR_TYPER_LAST));
1013 	}
1014 
1015 	return ret ? -ENODEV : 0;
1016 }
1017 
1018 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
1019 {
1020 	unsigned long mpidr;
1021 	u64 typer;
1022 	u32 aff;
1023 
1024 	/*
1025 	 * Convert affinity to a 32bit value that can be matched to
1026 	 * GICR_TYPER bits [63:32].
1027 	 */
1028 	mpidr = gic_cpu_to_affinity(smp_processor_id());
1029 
1030 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
1031 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
1032 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
1033 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
1034 
1035 	typer = gic_read_typer(ptr + GICR_TYPER);
1036 	if ((typer >> 32) == aff) {
1037 		u64 offset = ptr - region->redist_base;
1038 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
1039 		gic_data_rdist_rd_base() = ptr;
1040 		gic_data_rdist()->phys_base = region->phys_base + offset;
1041 
1042 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
1043 			smp_processor_id(), mpidr,
1044 			(int)(region - gic_data.redist_regions),
1045 			&gic_data_rdist()->phys_base);
1046 		return 0;
1047 	}
1048 
1049 	/* Try next one */
1050 	return 1;
1051 }
1052 
1053 static int gic_populate_rdist(void)
1054 {
1055 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
1056 		return 0;
1057 
1058 	/* We couldn't even deal with ourselves... */
1059 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1060 	     smp_processor_id(),
1061 	     (unsigned long)cpu_logical_map(smp_processor_id()));
1062 	return -ENODEV;
1063 }
1064 
1065 static int __gic_update_rdist_properties(struct redist_region *region,
1066 					 void __iomem *ptr)
1067 {
1068 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
1069 	u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1070 
1071 	/* Boot-time cleanup */
1072 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1073 		u64 val;
1074 
1075 		/* Deactivate any present vPE */
1076 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1077 		if (val & GICR_VPENDBASER_Valid)
1078 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1079 					      ptr + SZ_128K + GICR_VPENDBASER);
1080 
1081 		/* Mark the VPE table as invalid */
1082 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1083 		val &= ~GICR_VPROPBASER_4_1_VALID;
1084 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1085 	}
1086 
1087 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1088 
1089 	/*
1090 	 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1091 	 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1092 	 * that the ITS driver can make use of for LPIs (and not VLPIs).
1093 	 *
1094 	 * These are 3 different ways to express the same thing, depending
1095 	 * on the revision of the architecture and its relaxations over
1096 	 * time. Just group them under the 'direct_lpi' banner.
1097 	 */
1098 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1099 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1100 					   !!(ctlr & GICR_CTLR_IR) |
1101 					   gic_data.rdists.has_rvpeid);
1102 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1103 
1104 	/* Detect non-sensical configurations */
1105 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1106 		gic_data.rdists.has_direct_lpi = false;
1107 		gic_data.rdists.has_vlpis = false;
1108 		gic_data.rdists.has_rvpeid = false;
1109 	}
1110 
1111 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1112 
1113 	return 1;
1114 }
1115 
1116 static void gic_update_rdist_properties(void)
1117 {
1118 	gic_data.ppi_nr = UINT_MAX;
1119 	gic_iterate_rdists(__gic_update_rdist_properties);
1120 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1121 		gic_data.ppi_nr = 0;
1122 	pr_info("GICv3 features: %d PPIs%s%s\n",
1123 		gic_data.ppi_nr,
1124 		gic_data.has_rss ? ", RSS" : "",
1125 		gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1126 
1127 	if (gic_data.rdists.has_vlpis)
1128 		pr_info("GICv4 features: %s%s%s\n",
1129 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1130 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1131 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1132 }
1133 
1134 /* Check whether it's single security state view */
1135 static inline bool gic_dist_security_disabled(void)
1136 {
1137 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1138 }
1139 
1140 static void gic_cpu_sys_reg_init(void)
1141 {
1142 	int i, cpu = smp_processor_id();
1143 	u64 mpidr = gic_cpu_to_affinity(cpu);
1144 	u64 need_rss = MPIDR_RS(mpidr);
1145 	bool group0;
1146 	u32 pribits;
1147 
1148 	/*
1149 	 * Need to check that the SRE bit has actually been set. If
1150 	 * not, it means that SRE is disabled at EL2. We're going to
1151 	 * die painfully, and there is nothing we can do about it.
1152 	 *
1153 	 * Kindly inform the luser.
1154 	 */
1155 	if (!gic_enable_sre())
1156 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1157 
1158 	pribits = gic_get_pribits();
1159 
1160 	group0 = gic_has_group0();
1161 
1162 	/* Set priority mask register */
1163 	if (!gic_prio_masking_enabled()) {
1164 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1165 	} else if (gic_supports_nmi()) {
1166 		/*
1167 		 * Mismatch configuration with boot CPU, the system is likely
1168 		 * to die as interrupt masking will not work properly on all
1169 		 * CPUs
1170 		 *
1171 		 * The boot CPU calls this function before enabling NMI support,
1172 		 * and as a result we'll never see this warning in the boot path
1173 		 * for that CPU.
1174 		 */
1175 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1176 			WARN_ON(!group0 || gic_dist_security_disabled());
1177 		else
1178 			WARN_ON(group0 && !gic_dist_security_disabled());
1179 	}
1180 
1181 	/*
1182 	 * Some firmwares hand over to the kernel with the BPR changed from
1183 	 * its reset value (and with a value large enough to prevent
1184 	 * any pre-emptive interrupts from working at all). Writing a zero
1185 	 * to BPR restores is reset value.
1186 	 */
1187 	gic_write_bpr1(0);
1188 
1189 	if (static_branch_likely(&supports_deactivate_key)) {
1190 		/* EOI drops priority only (mode 1) */
1191 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1192 	} else {
1193 		/* EOI deactivates interrupt too (mode 0) */
1194 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1195 	}
1196 
1197 	/* Always whack Group0 before Group1 */
1198 	if (group0) {
1199 		switch(pribits) {
1200 		case 8:
1201 		case 7:
1202 			write_gicreg(0, ICC_AP0R3_EL1);
1203 			write_gicreg(0, ICC_AP0R2_EL1);
1204 			fallthrough;
1205 		case 6:
1206 			write_gicreg(0, ICC_AP0R1_EL1);
1207 			fallthrough;
1208 		case 5:
1209 		case 4:
1210 			write_gicreg(0, ICC_AP0R0_EL1);
1211 		}
1212 
1213 		isb();
1214 	}
1215 
1216 	switch(pribits) {
1217 	case 8:
1218 	case 7:
1219 		write_gicreg(0, ICC_AP1R3_EL1);
1220 		write_gicreg(0, ICC_AP1R2_EL1);
1221 		fallthrough;
1222 	case 6:
1223 		write_gicreg(0, ICC_AP1R1_EL1);
1224 		fallthrough;
1225 	case 5:
1226 	case 4:
1227 		write_gicreg(0, ICC_AP1R0_EL1);
1228 	}
1229 
1230 	isb();
1231 
1232 	/* ... and let's hit the road... */
1233 	gic_write_grpen1(1);
1234 
1235 	/* Keep the RSS capability status in per_cpu variable */
1236 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1237 
1238 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1239 	for_each_online_cpu(i) {
1240 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1241 
1242 		need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
1243 		if (need_rss && (!have_rss))
1244 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1245 				cpu, (unsigned long)mpidr,
1246 				i, (unsigned long)gic_cpu_to_affinity(i));
1247 	}
1248 
1249 	/**
1250 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1251 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1252 	 * UNPREDICTABLE choice of :
1253 	 *   - The write is ignored.
1254 	 *   - The RS field is treated as 0.
1255 	 */
1256 	if (need_rss && (!gic_data.has_rss))
1257 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1258 }
1259 
1260 static bool gicv3_nolpi;
1261 
1262 static int __init gicv3_nolpi_cfg(char *buf)
1263 {
1264 	return kstrtobool(buf, &gicv3_nolpi);
1265 }
1266 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1267 
1268 static int gic_dist_supports_lpis(void)
1269 {
1270 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1271 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1272 		!gicv3_nolpi);
1273 }
1274 
1275 static void gic_cpu_init(void)
1276 {
1277 	void __iomem *rbase;
1278 	int i;
1279 
1280 	/* Register ourselves with the rest of the world */
1281 	if (gic_populate_rdist())
1282 		return;
1283 
1284 	gic_enable_redist(true);
1285 
1286 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1287 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1288 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1289 	     smp_processor_id());
1290 
1291 	rbase = gic_data_rdist_sgi_base();
1292 
1293 	/* Configure SGIs/PPIs as non-secure Group-1 */
1294 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
1295 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1296 
1297 	gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, gic_redist_wait_for_rwp);
1298 
1299 	/* initialise system registers */
1300 	gic_cpu_sys_reg_init();
1301 }
1302 
1303 #ifdef CONFIG_SMP
1304 
1305 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1306 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1307 
1308 static int gic_starting_cpu(unsigned int cpu)
1309 {
1310 	gic_cpu_init();
1311 
1312 	if (gic_dist_supports_lpis())
1313 		its_cpu_init();
1314 
1315 	return 0;
1316 }
1317 
1318 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1319 				   unsigned long cluster_id)
1320 {
1321 	int next_cpu, cpu = *base_cpu;
1322 	unsigned long mpidr;
1323 	u16 tlist = 0;
1324 
1325 	mpidr = gic_cpu_to_affinity(cpu);
1326 
1327 	while (cpu < nr_cpu_ids) {
1328 		tlist |= 1 << (mpidr & 0xf);
1329 
1330 		next_cpu = cpumask_next(cpu, mask);
1331 		if (next_cpu >= nr_cpu_ids)
1332 			goto out;
1333 		cpu = next_cpu;
1334 
1335 		mpidr = gic_cpu_to_affinity(cpu);
1336 
1337 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1338 			cpu--;
1339 			goto out;
1340 		}
1341 	}
1342 out:
1343 	*base_cpu = cpu;
1344 	return tlist;
1345 }
1346 
1347 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1348 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1349 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1350 
1351 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1352 {
1353 	u64 val;
1354 
1355 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1356 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1357 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1358 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1359 	       MPIDR_TO_SGI_RS(cluster_id)		|
1360 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1361 
1362 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1363 	gic_write_sgi1r(val);
1364 }
1365 
1366 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1367 {
1368 	int cpu;
1369 
1370 	if (WARN_ON(d->hwirq >= 16))
1371 		return;
1372 
1373 	/*
1374 	 * Ensure that stores to Normal memory are visible to the
1375 	 * other CPUs before issuing the IPI.
1376 	 */
1377 	dsb(ishst);
1378 
1379 	for_each_cpu(cpu, mask) {
1380 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
1381 		u16 tlist;
1382 
1383 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1384 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1385 	}
1386 
1387 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1388 	isb();
1389 }
1390 
1391 static void __init gic_smp_init(void)
1392 {
1393 	struct irq_fwspec sgi_fwspec = {
1394 		.fwnode		= gic_data.fwnode,
1395 		.param_count	= 1,
1396 	};
1397 	int base_sgi;
1398 
1399 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1400 				  "irqchip/arm/gicv3:starting",
1401 				  gic_starting_cpu, NULL);
1402 
1403 	/* Register all 8 non-secure SGIs */
1404 	base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1405 	if (WARN_ON(base_sgi <= 0))
1406 		return;
1407 
1408 	set_smp_ipi_range(base_sgi, 8);
1409 }
1410 
1411 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1412 			    bool force)
1413 {
1414 	unsigned int cpu;
1415 	u32 offset, index;
1416 	void __iomem *reg;
1417 	int enabled;
1418 	u64 val;
1419 
1420 	if (force)
1421 		cpu = cpumask_first(mask_val);
1422 	else
1423 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1424 
1425 	if (cpu >= nr_cpu_ids)
1426 		return -EINVAL;
1427 
1428 	if (gic_irq_in_rdist(d))
1429 		return -EINVAL;
1430 
1431 	/* If interrupt was enabled, disable it first */
1432 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1433 	if (enabled)
1434 		gic_mask_irq(d);
1435 
1436 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1437 	reg = gic_dist_base(d) + offset + (index * 8);
1438 	val = gic_cpu_to_affinity(cpu);
1439 
1440 	gic_write_irouter(val, reg);
1441 
1442 	/*
1443 	 * If the interrupt was enabled, enabled it again. Otherwise,
1444 	 * just wait for the distributor to have digested our changes.
1445 	 */
1446 	if (enabled)
1447 		gic_unmask_irq(d);
1448 
1449 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1450 
1451 	return IRQ_SET_MASK_OK_DONE;
1452 }
1453 #else
1454 #define gic_set_affinity	NULL
1455 #define gic_ipi_send_mask	NULL
1456 #define gic_smp_init()		do { } while(0)
1457 #endif
1458 
1459 static int gic_retrigger(struct irq_data *data)
1460 {
1461 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1462 }
1463 
1464 #ifdef CONFIG_CPU_PM
1465 static int gic_cpu_pm_notifier(struct notifier_block *self,
1466 			       unsigned long cmd, void *v)
1467 {
1468 	if (cmd == CPU_PM_EXIT) {
1469 		if (gic_dist_security_disabled())
1470 			gic_enable_redist(true);
1471 		gic_cpu_sys_reg_init();
1472 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1473 		gic_write_grpen1(0);
1474 		gic_enable_redist(false);
1475 	}
1476 	return NOTIFY_OK;
1477 }
1478 
1479 static struct notifier_block gic_cpu_pm_notifier_block = {
1480 	.notifier_call = gic_cpu_pm_notifier,
1481 };
1482 
1483 static void gic_cpu_pm_init(void)
1484 {
1485 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1486 }
1487 
1488 #else
1489 static inline void gic_cpu_pm_init(void) { }
1490 #endif /* CONFIG_CPU_PM */
1491 
1492 static struct irq_chip gic_chip = {
1493 	.name			= "GICv3",
1494 	.irq_mask		= gic_mask_irq,
1495 	.irq_unmask		= gic_unmask_irq,
1496 	.irq_eoi		= gic_eoi_irq,
1497 	.irq_set_type		= gic_set_type,
1498 	.irq_set_affinity	= gic_set_affinity,
1499 	.irq_retrigger          = gic_retrigger,
1500 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1501 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1502 	.irq_nmi_setup		= gic_irq_nmi_setup,
1503 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1504 	.ipi_send_mask		= gic_ipi_send_mask,
1505 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1506 				  IRQCHIP_SKIP_SET_WAKE |
1507 				  IRQCHIP_MASK_ON_SUSPEND,
1508 };
1509 
1510 static struct irq_chip gic_eoimode1_chip = {
1511 	.name			= "GICv3",
1512 	.irq_mask		= gic_eoimode1_mask_irq,
1513 	.irq_unmask		= gic_unmask_irq,
1514 	.irq_eoi		= gic_eoimode1_eoi_irq,
1515 	.irq_set_type		= gic_set_type,
1516 	.irq_set_affinity	= gic_set_affinity,
1517 	.irq_retrigger          = gic_retrigger,
1518 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1519 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1520 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1521 	.irq_nmi_setup		= gic_irq_nmi_setup,
1522 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1523 	.ipi_send_mask		= gic_ipi_send_mask,
1524 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1525 				  IRQCHIP_SKIP_SET_WAKE |
1526 				  IRQCHIP_MASK_ON_SUSPEND,
1527 };
1528 
1529 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1530 			      irq_hw_number_t hw)
1531 {
1532 	struct irq_chip *chip = &gic_chip;
1533 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1534 
1535 	if (static_branch_likely(&supports_deactivate_key))
1536 		chip = &gic_eoimode1_chip;
1537 
1538 	switch (__get_intid_range(hw)) {
1539 	case SGI_RANGE:
1540 	case PPI_RANGE:
1541 	case EPPI_RANGE:
1542 		irq_set_percpu_devid(irq);
1543 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1544 				    handle_percpu_devid_irq, NULL, NULL);
1545 		break;
1546 
1547 	case SPI_RANGE:
1548 	case ESPI_RANGE:
1549 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1550 				    handle_fasteoi_irq, NULL, NULL);
1551 		irq_set_probe(irq);
1552 		irqd_set_single_target(irqd);
1553 		break;
1554 
1555 	case LPI_RANGE:
1556 		if (!gic_dist_supports_lpis())
1557 			return -EPERM;
1558 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1559 				    handle_fasteoi_irq, NULL, NULL);
1560 		break;
1561 
1562 	default:
1563 		return -EPERM;
1564 	}
1565 
1566 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1567 	irqd_set_handle_enforce_irqctx(irqd);
1568 	return 0;
1569 }
1570 
1571 static int gic_irq_domain_translate(struct irq_domain *d,
1572 				    struct irq_fwspec *fwspec,
1573 				    unsigned long *hwirq,
1574 				    unsigned int *type)
1575 {
1576 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1577 		*hwirq = fwspec->param[0];
1578 		*type = IRQ_TYPE_EDGE_RISING;
1579 		return 0;
1580 	}
1581 
1582 	if (is_of_node(fwspec->fwnode)) {
1583 		if (fwspec->param_count < 3)
1584 			return -EINVAL;
1585 
1586 		switch (fwspec->param[0]) {
1587 		case 0:			/* SPI */
1588 			*hwirq = fwspec->param[1] + 32;
1589 			break;
1590 		case 1:			/* PPI */
1591 			*hwirq = fwspec->param[1] + 16;
1592 			break;
1593 		case 2:			/* ESPI */
1594 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1595 			break;
1596 		case 3:			/* EPPI */
1597 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1598 			break;
1599 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1600 			*hwirq = fwspec->param[1];
1601 			break;
1602 		case GIC_IRQ_TYPE_PARTITION:
1603 			*hwirq = fwspec->param[1];
1604 			if (fwspec->param[1] >= 16)
1605 				*hwirq += EPPI_BASE_INTID - 16;
1606 			else
1607 				*hwirq += 16;
1608 			break;
1609 		default:
1610 			return -EINVAL;
1611 		}
1612 
1613 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1614 
1615 		/*
1616 		 * Make it clear that broken DTs are... broken.
1617 		 * Partitioned PPIs are an unfortunate exception.
1618 		 */
1619 		WARN_ON(*type == IRQ_TYPE_NONE &&
1620 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1621 		return 0;
1622 	}
1623 
1624 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1625 		if(fwspec->param_count != 2)
1626 			return -EINVAL;
1627 
1628 		if (fwspec->param[0] < 16) {
1629 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1630 			       fwspec->param[0]);
1631 			return -EINVAL;
1632 		}
1633 
1634 		*hwirq = fwspec->param[0];
1635 		*type = fwspec->param[1];
1636 
1637 		WARN_ON(*type == IRQ_TYPE_NONE);
1638 		return 0;
1639 	}
1640 
1641 	return -EINVAL;
1642 }
1643 
1644 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1645 				unsigned int nr_irqs, void *arg)
1646 {
1647 	int i, ret;
1648 	irq_hw_number_t hwirq;
1649 	unsigned int type = IRQ_TYPE_NONE;
1650 	struct irq_fwspec *fwspec = arg;
1651 
1652 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1653 	if (ret)
1654 		return ret;
1655 
1656 	for (i = 0; i < nr_irqs; i++) {
1657 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1658 		if (ret)
1659 			return ret;
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1666 				unsigned int nr_irqs)
1667 {
1668 	int i;
1669 
1670 	for (i = 0; i < nr_irqs; i++) {
1671 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1672 		irq_set_handler(virq + i, NULL);
1673 		irq_domain_reset_irq_data(d);
1674 	}
1675 }
1676 
1677 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1678 				      irq_hw_number_t hwirq)
1679 {
1680 	enum gic_intid_range range;
1681 
1682 	if (!gic_data.ppi_descs)
1683 		return false;
1684 
1685 	if (!is_of_node(fwspec->fwnode))
1686 		return false;
1687 
1688 	if (fwspec->param_count < 4 || !fwspec->param[3])
1689 		return false;
1690 
1691 	range = __get_intid_range(hwirq);
1692 	if (range != PPI_RANGE && range != EPPI_RANGE)
1693 		return false;
1694 
1695 	return true;
1696 }
1697 
1698 static int gic_irq_domain_select(struct irq_domain *d,
1699 				 struct irq_fwspec *fwspec,
1700 				 enum irq_domain_bus_token bus_token)
1701 {
1702 	unsigned int type, ret, ppi_idx;
1703 	irq_hw_number_t hwirq;
1704 
1705 	/* Not for us */
1706         if (fwspec->fwnode != d->fwnode)
1707 		return 0;
1708 
1709 	/* If this is not DT, then we have a single domain */
1710 	if (!is_of_node(fwspec->fwnode))
1711 		return 1;
1712 
1713 	ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1714 	if (WARN_ON_ONCE(ret))
1715 		return 0;
1716 
1717 	if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1718 		return d == gic_data.domain;
1719 
1720 	/*
1721 	 * If this is a PPI and we have a 4th (non-null) parameter,
1722 	 * then we need to match the partition domain.
1723 	 */
1724 	ppi_idx = __gic_get_ppi_index(hwirq);
1725 	return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1726 }
1727 
1728 static const struct irq_domain_ops gic_irq_domain_ops = {
1729 	.translate = gic_irq_domain_translate,
1730 	.alloc = gic_irq_domain_alloc,
1731 	.free = gic_irq_domain_free,
1732 	.select = gic_irq_domain_select,
1733 };
1734 
1735 static int partition_domain_translate(struct irq_domain *d,
1736 				      struct irq_fwspec *fwspec,
1737 				      unsigned long *hwirq,
1738 				      unsigned int *type)
1739 {
1740 	unsigned long ppi_intid;
1741 	struct device_node *np;
1742 	unsigned int ppi_idx;
1743 	int ret;
1744 
1745 	if (!gic_data.ppi_descs)
1746 		return -ENOMEM;
1747 
1748 	np = of_find_node_by_phandle(fwspec->param[3]);
1749 	if (WARN_ON(!np))
1750 		return -EINVAL;
1751 
1752 	ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1753 	if (WARN_ON_ONCE(ret))
1754 		return 0;
1755 
1756 	ppi_idx = __gic_get_ppi_index(ppi_intid);
1757 	ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1758 				     of_node_to_fwnode(np));
1759 	if (ret < 0)
1760 		return ret;
1761 
1762 	*hwirq = ret;
1763 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1764 
1765 	return 0;
1766 }
1767 
1768 static const struct irq_domain_ops partition_domain_ops = {
1769 	.translate = partition_domain_translate,
1770 	.select = gic_irq_domain_select,
1771 };
1772 
1773 static bool gic_enable_quirk_msm8996(void *data)
1774 {
1775 	struct gic_chip_data *d = data;
1776 
1777 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1778 
1779 	return true;
1780 }
1781 
1782 static bool gic_enable_quirk_mtk_gicr(void *data)
1783 {
1784 	struct gic_chip_data *d = data;
1785 
1786 	d->flags |= FLAGS_WORKAROUND_MTK_GICR_SAVE;
1787 
1788 	return true;
1789 }
1790 
1791 static bool gic_enable_quirk_cavium_38539(void *data)
1792 {
1793 	struct gic_chip_data *d = data;
1794 
1795 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1796 
1797 	return true;
1798 }
1799 
1800 static bool gic_enable_quirk_hip06_07(void *data)
1801 {
1802 	struct gic_chip_data *d = data;
1803 
1804 	/*
1805 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1806 	 * not being an actual ARM implementation). The saving grace is
1807 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1808 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1809 	 * have ESPI. In both cases, put them right.
1810 	 */
1811 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1812 		/* Zero both ESPI and the RES0 field next to it... */
1813 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1814 		return true;
1815 	}
1816 
1817 	return false;
1818 }
1819 
1820 #define T241_CHIPN_MASK		GENMASK_ULL(45, 44)
1821 #define T241_CHIP_GICDA_OFFSET	0x1580000
1822 #define SMCCC_SOC_ID_T241	0x036b0241
1823 
1824 static bool gic_enable_quirk_nvidia_t241(void *data)
1825 {
1826 	s32 soc_id = arm_smccc_get_soc_id_version();
1827 	unsigned long chip_bmask = 0;
1828 	phys_addr_t phys;
1829 	u32 i;
1830 
1831 	/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1832 	if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1833 		return false;
1834 
1835 	/* Find the chips based on GICR regions PHYS addr */
1836 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
1837 		chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1838 				  (u64)gic_data.redist_regions[i].phys_base));
1839 	}
1840 
1841 	if (hweight32(chip_bmask) < 3)
1842 		return false;
1843 
1844 	/* Setup GICD alias regions */
1845 	for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1846 		if (chip_bmask & BIT(i)) {
1847 			phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1848 			phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1849 			t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1850 			WARN_ON_ONCE(!t241_dist_base_alias[i]);
1851 		}
1852 	}
1853 	static_branch_enable(&gic_nvidia_t241_erratum);
1854 	return true;
1855 }
1856 
1857 static bool gic_enable_quirk_asr8601(void *data)
1858 {
1859 	struct gic_chip_data *d = data;
1860 
1861 	d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
1862 
1863 	return true;
1864 }
1865 
1866 static bool gic_enable_quirk_arm64_2941627(void *data)
1867 {
1868 	static_branch_enable(&gic_arm64_2941627_erratum);
1869 	return true;
1870 }
1871 
1872 static bool rd_set_non_coherent(void *data)
1873 {
1874 	struct gic_chip_data *d = data;
1875 
1876 	d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
1877 	return true;
1878 }
1879 
1880 static const struct gic_quirk gic_quirks[] = {
1881 	{
1882 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1883 		.compatible = "qcom,msm8996-gic-v3",
1884 		.init	= gic_enable_quirk_msm8996,
1885 	},
1886 	{
1887 		.desc	= "GICv3: ASR erratum 8601001",
1888 		.compatible = "asr,asr8601-gic-v3",
1889 		.init	= gic_enable_quirk_asr8601,
1890 	},
1891 	{
1892 		.desc	= "GICv3: Mediatek Chromebook GICR save problem",
1893 		.property = "mediatek,broken-save-restore-fw",
1894 		.init	= gic_enable_quirk_mtk_gicr,
1895 	},
1896 	{
1897 		.desc	= "GICv3: HIP06 erratum 161010803",
1898 		.iidr	= 0x0204043b,
1899 		.mask	= 0xffffffff,
1900 		.init	= gic_enable_quirk_hip06_07,
1901 	},
1902 	{
1903 		.desc	= "GICv3: HIP07 erratum 161010803",
1904 		.iidr	= 0x00000000,
1905 		.mask	= 0xffffffff,
1906 		.init	= gic_enable_quirk_hip06_07,
1907 	},
1908 	{
1909 		/*
1910 		 * Reserved register accesses generate a Synchronous
1911 		 * External Abort. This erratum applies to:
1912 		 * - ThunderX: CN88xx
1913 		 * - OCTEON TX: CN83xx, CN81xx
1914 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1915 		 */
1916 		.desc	= "GICv3: Cavium erratum 38539",
1917 		.iidr	= 0xa000034c,
1918 		.mask	= 0xe8f00fff,
1919 		.init	= gic_enable_quirk_cavium_38539,
1920 	},
1921 	{
1922 		.desc	= "GICv3: NVIDIA erratum T241-FABRIC-4",
1923 		.iidr	= 0x0402043b,
1924 		.mask	= 0xffffffff,
1925 		.init	= gic_enable_quirk_nvidia_t241,
1926 	},
1927 	{
1928 		/*
1929 		 * GIC-700: 2941627 workaround - IP variant [0,1]
1930 		 *
1931 		 */
1932 		.desc	= "GICv3: ARM64 erratum 2941627",
1933 		.iidr	= 0x0400043b,
1934 		.mask	= 0xff0e0fff,
1935 		.init	= gic_enable_quirk_arm64_2941627,
1936 	},
1937 	{
1938 		/*
1939 		 * GIC-700: 2941627 workaround - IP variant [2]
1940 		 */
1941 		.desc	= "GICv3: ARM64 erratum 2941627",
1942 		.iidr	= 0x0402043b,
1943 		.mask	= 0xff0f0fff,
1944 		.init	= gic_enable_quirk_arm64_2941627,
1945 	},
1946 	{
1947 		.desc   = "GICv3: non-coherent attribute",
1948 		.property = "dma-noncoherent",
1949 		.init   = rd_set_non_coherent,
1950 	},
1951 	{
1952 	}
1953 };
1954 
1955 static void gic_enable_nmi_support(void)
1956 {
1957 	int i;
1958 
1959 	if (!gic_prio_masking_enabled())
1960 		return;
1961 
1962 	if (gic_data.flags & FLAGS_WORKAROUND_MTK_GICR_SAVE) {
1963 		pr_warn("Skipping NMI enable due to firmware issues\n");
1964 		return;
1965 	}
1966 
1967 	rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
1968 				 sizeof(*rdist_nmi_refs), GFP_KERNEL);
1969 	if (!rdist_nmi_refs)
1970 		return;
1971 
1972 	for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
1973 		refcount_set(&rdist_nmi_refs[i], 0);
1974 
1975 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1976 		gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1977 
1978 	/*
1979 	 * How priority values are used by the GIC depends on two things:
1980 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1981 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1982 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1983 	 * ICC_PMR_EL1 register and the priority that software assigns to
1984 	 * interrupts:
1985 	 *
1986 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1987 	 * -----------------------------------------------------------
1988 	 *      1       |      -      |  unchanged  |    unchanged
1989 	 * -----------------------------------------------------------
1990 	 *      0       |      1      |  non-secure |    non-secure
1991 	 * -----------------------------------------------------------
1992 	 *      0       |      0      |  unchanged  |    non-secure
1993 	 *
1994 	 * where non-secure means that the value is right-shifted by one and the
1995 	 * MSB bit set, to make it fit in the non-secure priority range.
1996 	 *
1997 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1998 	 * are both either modified or unchanged, we can use the same set of
1999 	 * priorities.
2000 	 *
2001 	 * In the last case, where only the interrupt priorities are modified to
2002 	 * be in the non-secure range, we use a different PMR value to mask IRQs
2003 	 * and the rest of the values that we use remain unchanged.
2004 	 */
2005 	if (gic_has_group0() && !gic_dist_security_disabled())
2006 		static_branch_enable(&gic_nonsecure_priorities);
2007 
2008 	static_branch_enable(&supports_pseudo_nmis);
2009 
2010 	if (static_branch_likely(&supports_deactivate_key))
2011 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2012 	else
2013 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
2014 }
2015 
2016 static int __init gic_init_bases(phys_addr_t dist_phys_base,
2017 				 void __iomem *dist_base,
2018 				 struct redist_region *rdist_regs,
2019 				 u32 nr_redist_regions,
2020 				 u64 redist_stride,
2021 				 struct fwnode_handle *handle)
2022 {
2023 	u32 typer;
2024 	int err;
2025 
2026 	if (!is_hyp_mode_available())
2027 		static_branch_disable(&supports_deactivate_key);
2028 
2029 	if (static_branch_likely(&supports_deactivate_key))
2030 		pr_info("GIC: Using split EOI/Deactivate mode\n");
2031 
2032 	gic_data.fwnode = handle;
2033 	gic_data.dist_phys_base = dist_phys_base;
2034 	gic_data.dist_base = dist_base;
2035 	gic_data.redist_regions = rdist_regs;
2036 	gic_data.nr_redist_regions = nr_redist_regions;
2037 	gic_data.redist_stride = redist_stride;
2038 
2039 	/*
2040 	 * Find out how many interrupts are supported.
2041 	 */
2042 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
2043 	gic_data.rdists.gicd_typer = typer;
2044 
2045 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
2046 			  gic_quirks, &gic_data);
2047 
2048 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
2049 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
2050 
2051 	/*
2052 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
2053 	 * architecture spec (which says that reserved registers are RES0).
2054 	 */
2055 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
2056 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
2057 
2058 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
2059 						 &gic_data);
2060 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
2061 	if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
2062 		/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
2063 		gic_data.rdists.has_rvpeid = true;
2064 		gic_data.rdists.has_vlpis = true;
2065 		gic_data.rdists.has_direct_lpi = true;
2066 		gic_data.rdists.has_vpend_valid_dirty = true;
2067 	}
2068 
2069 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
2070 		err = -ENOMEM;
2071 		goto out_free;
2072 	}
2073 
2074 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
2075 
2076 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
2077 
2078 	if (typer & GICD_TYPER_MBIS) {
2079 		err = mbi_init(handle, gic_data.domain);
2080 		if (err)
2081 			pr_err("Failed to initialize MBIs\n");
2082 	}
2083 
2084 	set_handle_irq(gic_handle_irq);
2085 
2086 	gic_update_rdist_properties();
2087 
2088 	gic_dist_init();
2089 	gic_cpu_init();
2090 	gic_enable_nmi_support();
2091 	gic_smp_init();
2092 	gic_cpu_pm_init();
2093 
2094 	if (gic_dist_supports_lpis()) {
2095 		its_init(handle, &gic_data.rdists, gic_data.domain);
2096 		its_cpu_init();
2097 		its_lpi_memreserve_init();
2098 	} else {
2099 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
2100 			gicv2m_init(handle, gic_data.domain);
2101 	}
2102 
2103 	return 0;
2104 
2105 out_free:
2106 	if (gic_data.domain)
2107 		irq_domain_remove(gic_data.domain);
2108 	free_percpu(gic_data.rdists.rdist);
2109 	return err;
2110 }
2111 
2112 static int __init gic_validate_dist_version(void __iomem *dist_base)
2113 {
2114 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2115 
2116 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
2117 		return -ENODEV;
2118 
2119 	return 0;
2120 }
2121 
2122 /* Create all possible partitions at boot time */
2123 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
2124 {
2125 	struct device_node *parts_node, *child_part;
2126 	int part_idx = 0, i;
2127 	int nr_parts;
2128 	struct partition_affinity *parts;
2129 
2130 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
2131 	if (!parts_node)
2132 		return;
2133 
2134 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2135 	if (!gic_data.ppi_descs)
2136 		goto out_put_node;
2137 
2138 	nr_parts = of_get_child_count(parts_node);
2139 
2140 	if (!nr_parts)
2141 		goto out_put_node;
2142 
2143 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
2144 	if (WARN_ON(!parts))
2145 		goto out_put_node;
2146 
2147 	for_each_child_of_node(parts_node, child_part) {
2148 		struct partition_affinity *part;
2149 		int n;
2150 
2151 		part = &parts[part_idx];
2152 
2153 		part->partition_id = of_node_to_fwnode(child_part);
2154 
2155 		pr_info("GIC: PPI partition %pOFn[%d] { ",
2156 			child_part, part_idx);
2157 
2158 		n = of_property_count_elems_of_size(child_part, "affinity",
2159 						    sizeof(u32));
2160 		WARN_ON(n <= 0);
2161 
2162 		for (i = 0; i < n; i++) {
2163 			int err, cpu;
2164 			u32 cpu_phandle;
2165 			struct device_node *cpu_node;
2166 
2167 			err = of_property_read_u32_index(child_part, "affinity",
2168 							 i, &cpu_phandle);
2169 			if (WARN_ON(err))
2170 				continue;
2171 
2172 			cpu_node = of_find_node_by_phandle(cpu_phandle);
2173 			if (WARN_ON(!cpu_node))
2174 				continue;
2175 
2176 			cpu = of_cpu_node_to_id(cpu_node);
2177 			if (WARN_ON(cpu < 0)) {
2178 				of_node_put(cpu_node);
2179 				continue;
2180 			}
2181 
2182 			pr_cont("%pOF[%d] ", cpu_node, cpu);
2183 
2184 			cpumask_set_cpu(cpu, &part->mask);
2185 			of_node_put(cpu_node);
2186 		}
2187 
2188 		pr_cont("}\n");
2189 		part_idx++;
2190 	}
2191 
2192 	for (i = 0; i < gic_data.ppi_nr; i++) {
2193 		unsigned int irq;
2194 		struct partition_desc *desc;
2195 		struct irq_fwspec ppi_fwspec = {
2196 			.fwnode		= gic_data.fwnode,
2197 			.param_count	= 3,
2198 			.param		= {
2199 				[0]	= GIC_IRQ_TYPE_PARTITION,
2200 				[1]	= i,
2201 				[2]	= IRQ_TYPE_NONE,
2202 			},
2203 		};
2204 
2205 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
2206 		if (WARN_ON(!irq))
2207 			continue;
2208 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
2209 					     irq, &partition_domain_ops);
2210 		if (WARN_ON(!desc))
2211 			continue;
2212 
2213 		gic_data.ppi_descs[i] = desc;
2214 	}
2215 
2216 out_put_node:
2217 	of_node_put(parts_node);
2218 }
2219 
2220 static void __init gic_of_setup_kvm_info(struct device_node *node)
2221 {
2222 	int ret;
2223 	struct resource r;
2224 	u32 gicv_idx;
2225 
2226 	gic_v3_kvm_info.type = GIC_V3;
2227 
2228 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
2229 	if (!gic_v3_kvm_info.maint_irq)
2230 		return;
2231 
2232 	if (of_property_read_u32(node, "#redistributor-regions",
2233 				 &gicv_idx))
2234 		gicv_idx = 1;
2235 
2236 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
2237 	ret = of_address_to_resource(node, gicv_idx, &r);
2238 	if (!ret)
2239 		gic_v3_kvm_info.vcpu = r;
2240 
2241 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2242 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2243 	vgic_set_kvm_info(&gic_v3_kvm_info);
2244 }
2245 
2246 static void gic_request_region(resource_size_t base, resource_size_t size,
2247 			       const char *name)
2248 {
2249 	if (!request_mem_region(base, size, name))
2250 		pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2251 			     name, &base);
2252 }
2253 
2254 static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2255 				  const char *name, struct resource *res)
2256 {
2257 	void __iomem *base;
2258 	int ret;
2259 
2260 	ret = of_address_to_resource(node, idx, res);
2261 	if (ret)
2262 		return IOMEM_ERR_PTR(ret);
2263 
2264 	gic_request_region(res->start, resource_size(res), name);
2265 	base = of_iomap(node, idx);
2266 
2267 	return base ?: IOMEM_ERR_PTR(-ENOMEM);
2268 }
2269 
2270 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2271 {
2272 	phys_addr_t dist_phys_base;
2273 	void __iomem *dist_base;
2274 	struct redist_region *rdist_regs;
2275 	struct resource res;
2276 	u64 redist_stride;
2277 	u32 nr_redist_regions;
2278 	int err, i;
2279 
2280 	dist_base = gic_of_iomap(node, 0, "GICD", &res);
2281 	if (IS_ERR(dist_base)) {
2282 		pr_err("%pOF: unable to map gic dist registers\n", node);
2283 		return PTR_ERR(dist_base);
2284 	}
2285 
2286 	dist_phys_base = res.start;
2287 
2288 	err = gic_validate_dist_version(dist_base);
2289 	if (err) {
2290 		pr_err("%pOF: no distributor detected, giving up\n", node);
2291 		goto out_unmap_dist;
2292 	}
2293 
2294 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
2295 		nr_redist_regions = 1;
2296 
2297 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
2298 			     GFP_KERNEL);
2299 	if (!rdist_regs) {
2300 		err = -ENOMEM;
2301 		goto out_unmap_dist;
2302 	}
2303 
2304 	for (i = 0; i < nr_redist_regions; i++) {
2305 		rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
2306 		if (IS_ERR(rdist_regs[i].redist_base)) {
2307 			pr_err("%pOF: couldn't map region %d\n", node, i);
2308 			err = -ENODEV;
2309 			goto out_unmap_rdist;
2310 		}
2311 		rdist_regs[i].phys_base = res.start;
2312 	}
2313 
2314 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2315 		redist_stride = 0;
2316 
2317 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2318 
2319 	err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2320 			     nr_redist_regions, redist_stride, &node->fwnode);
2321 	if (err)
2322 		goto out_unmap_rdist;
2323 
2324 	gic_populate_ppi_partitions(node);
2325 
2326 	if (static_branch_likely(&supports_deactivate_key))
2327 		gic_of_setup_kvm_info(node);
2328 	return 0;
2329 
2330 out_unmap_rdist:
2331 	for (i = 0; i < nr_redist_regions; i++)
2332 		if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
2333 			iounmap(rdist_regs[i].redist_base);
2334 	kfree(rdist_regs);
2335 out_unmap_dist:
2336 	iounmap(dist_base);
2337 	return err;
2338 }
2339 
2340 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2341 
2342 #ifdef CONFIG_ACPI
2343 static struct
2344 {
2345 	void __iomem *dist_base;
2346 	struct redist_region *redist_regs;
2347 	u32 nr_redist_regions;
2348 	bool single_redist;
2349 	int enabled_rdists;
2350 	u32 maint_irq;
2351 	int maint_irq_mode;
2352 	phys_addr_t vcpu_base;
2353 } acpi_data __initdata;
2354 
2355 static void __init
2356 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2357 {
2358 	static int count = 0;
2359 
2360 	acpi_data.redist_regs[count].phys_base = phys_base;
2361 	acpi_data.redist_regs[count].redist_base = redist_base;
2362 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2363 	count++;
2364 }
2365 
2366 static int __init
2367 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2368 			   const unsigned long end)
2369 {
2370 	struct acpi_madt_generic_redistributor *redist =
2371 			(struct acpi_madt_generic_redistributor *)header;
2372 	void __iomem *redist_base;
2373 
2374 	redist_base = ioremap(redist->base_address, redist->length);
2375 	if (!redist_base) {
2376 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2377 		return -ENOMEM;
2378 	}
2379 	gic_request_region(redist->base_address, redist->length, "GICR");
2380 
2381 	gic_acpi_register_redist(redist->base_address, redist_base);
2382 	return 0;
2383 }
2384 
2385 static int __init
2386 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2387 			 const unsigned long end)
2388 {
2389 	struct acpi_madt_generic_interrupt *gicc =
2390 				(struct acpi_madt_generic_interrupt *)header;
2391 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2392 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2393 	void __iomem *redist_base;
2394 
2395 	if (!acpi_gicc_is_usable(gicc))
2396 		return 0;
2397 
2398 	redist_base = ioremap(gicc->gicr_base_address, size);
2399 	if (!redist_base)
2400 		return -ENOMEM;
2401 	gic_request_region(gicc->gicr_base_address, size, "GICR");
2402 
2403 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2404 	return 0;
2405 }
2406 
2407 static int __init gic_acpi_collect_gicr_base(void)
2408 {
2409 	acpi_tbl_entry_handler redist_parser;
2410 	enum acpi_madt_type type;
2411 
2412 	if (acpi_data.single_redist) {
2413 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2414 		redist_parser = gic_acpi_parse_madt_gicc;
2415 	} else {
2416 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2417 		redist_parser = gic_acpi_parse_madt_redist;
2418 	}
2419 
2420 	/* Collect redistributor base addresses in GICR entries */
2421 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2422 		return 0;
2423 
2424 	pr_info("No valid GICR entries exist\n");
2425 	return -ENODEV;
2426 }
2427 
2428 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2429 				  const unsigned long end)
2430 {
2431 	/* Subtable presence means that redist exists, that's it */
2432 	return 0;
2433 }
2434 
2435 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2436 				      const unsigned long end)
2437 {
2438 	struct acpi_madt_generic_interrupt *gicc =
2439 				(struct acpi_madt_generic_interrupt *)header;
2440 
2441 	/*
2442 	 * If GICC is enabled and has valid gicr base address, then it means
2443 	 * GICR base is presented via GICC
2444 	 */
2445 	if (acpi_gicc_is_usable(gicc) && gicc->gicr_base_address) {
2446 		acpi_data.enabled_rdists++;
2447 		return 0;
2448 	}
2449 
2450 	/*
2451 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2452 	 * should not treat as errors, skip the entry instead of probe fail.
2453 	 */
2454 	if (!acpi_gicc_is_usable(gicc))
2455 		return 0;
2456 
2457 	return -ENODEV;
2458 }
2459 
2460 static int __init gic_acpi_count_gicr_regions(void)
2461 {
2462 	int count;
2463 
2464 	/*
2465 	 * Count how many redistributor regions we have. It is not allowed
2466 	 * to mix redistributor description, GICR and GICC subtables have to be
2467 	 * mutually exclusive.
2468 	 */
2469 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2470 				      gic_acpi_match_gicr, 0);
2471 	if (count > 0) {
2472 		acpi_data.single_redist = false;
2473 		return count;
2474 	}
2475 
2476 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2477 				      gic_acpi_match_gicc, 0);
2478 	if (count > 0) {
2479 		acpi_data.single_redist = true;
2480 		count = acpi_data.enabled_rdists;
2481 	}
2482 
2483 	return count;
2484 }
2485 
2486 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2487 					   struct acpi_probe_entry *ape)
2488 {
2489 	struct acpi_madt_generic_distributor *dist;
2490 	int count;
2491 
2492 	dist = (struct acpi_madt_generic_distributor *)header;
2493 	if (dist->version != ape->driver_data)
2494 		return false;
2495 
2496 	/* We need to do that exercise anyway, the sooner the better */
2497 	count = gic_acpi_count_gicr_regions();
2498 	if (count <= 0)
2499 		return false;
2500 
2501 	acpi_data.nr_redist_regions = count;
2502 	return true;
2503 }
2504 
2505 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2506 						const unsigned long end)
2507 {
2508 	struct acpi_madt_generic_interrupt *gicc =
2509 		(struct acpi_madt_generic_interrupt *)header;
2510 	int maint_irq_mode;
2511 	static int first_madt = true;
2512 
2513 	if (!acpi_gicc_is_usable(gicc))
2514 		return 0;
2515 
2516 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2517 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2518 
2519 	if (first_madt) {
2520 		first_madt = false;
2521 
2522 		acpi_data.maint_irq = gicc->vgic_interrupt;
2523 		acpi_data.maint_irq_mode = maint_irq_mode;
2524 		acpi_data.vcpu_base = gicc->gicv_base_address;
2525 
2526 		return 0;
2527 	}
2528 
2529 	/*
2530 	 * The maintenance interrupt and GICV should be the same for every CPU
2531 	 */
2532 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2533 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2534 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2535 		return -EINVAL;
2536 
2537 	return 0;
2538 }
2539 
2540 static bool __init gic_acpi_collect_virt_info(void)
2541 {
2542 	int count;
2543 
2544 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2545 				      gic_acpi_parse_virt_madt_gicc, 0);
2546 
2547 	return (count > 0);
2548 }
2549 
2550 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2551 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2552 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2553 
2554 static void __init gic_acpi_setup_kvm_info(void)
2555 {
2556 	int irq;
2557 
2558 	if (!gic_acpi_collect_virt_info()) {
2559 		pr_warn("Unable to get hardware information used for virtualization\n");
2560 		return;
2561 	}
2562 
2563 	gic_v3_kvm_info.type = GIC_V3;
2564 
2565 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2566 				acpi_data.maint_irq_mode,
2567 				ACPI_ACTIVE_HIGH);
2568 	if (irq <= 0)
2569 		return;
2570 
2571 	gic_v3_kvm_info.maint_irq = irq;
2572 
2573 	if (acpi_data.vcpu_base) {
2574 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2575 
2576 		vcpu->flags = IORESOURCE_MEM;
2577 		vcpu->start = acpi_data.vcpu_base;
2578 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2579 	}
2580 
2581 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2582 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2583 	vgic_set_kvm_info(&gic_v3_kvm_info);
2584 }
2585 
2586 static struct fwnode_handle *gsi_domain_handle;
2587 
2588 static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2589 {
2590 	return gsi_domain_handle;
2591 }
2592 
2593 static int __init
2594 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2595 {
2596 	struct acpi_madt_generic_distributor *dist;
2597 	size_t size;
2598 	int i, err;
2599 
2600 	/* Get distributor base address */
2601 	dist = (struct acpi_madt_generic_distributor *)header;
2602 	acpi_data.dist_base = ioremap(dist->base_address,
2603 				      ACPI_GICV3_DIST_MEM_SIZE);
2604 	if (!acpi_data.dist_base) {
2605 		pr_err("Unable to map GICD registers\n");
2606 		return -ENOMEM;
2607 	}
2608 	gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2609 
2610 	err = gic_validate_dist_version(acpi_data.dist_base);
2611 	if (err) {
2612 		pr_err("No distributor detected at @%p, giving up\n",
2613 		       acpi_data.dist_base);
2614 		goto out_dist_unmap;
2615 	}
2616 
2617 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2618 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2619 	if (!acpi_data.redist_regs) {
2620 		err = -ENOMEM;
2621 		goto out_dist_unmap;
2622 	}
2623 
2624 	err = gic_acpi_collect_gicr_base();
2625 	if (err)
2626 		goto out_redist_unmap;
2627 
2628 	gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2629 	if (!gsi_domain_handle) {
2630 		err = -ENOMEM;
2631 		goto out_redist_unmap;
2632 	}
2633 
2634 	err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2635 			     acpi_data.redist_regs, acpi_data.nr_redist_regions,
2636 			     0, gsi_domain_handle);
2637 	if (err)
2638 		goto out_fwhandle_free;
2639 
2640 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2641 
2642 	if (static_branch_likely(&supports_deactivate_key))
2643 		gic_acpi_setup_kvm_info();
2644 
2645 	return 0;
2646 
2647 out_fwhandle_free:
2648 	irq_domain_free_fwnode(gsi_domain_handle);
2649 out_redist_unmap:
2650 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2651 		if (acpi_data.redist_regs[i].redist_base)
2652 			iounmap(acpi_data.redist_regs[i].redist_base);
2653 	kfree(acpi_data.redist_regs);
2654 out_dist_unmap:
2655 	iounmap(acpi_data.dist_base);
2656 	return err;
2657 }
2658 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2659 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2660 		     gic_acpi_init);
2661 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2662 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2663 		     gic_acpi_init);
2664 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2665 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2666 		     gic_acpi_init);
2667 #endif
2668