1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/acpi_iort.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cpu.h> 12 #include <linux/crash_dump.h> 13 #include <linux/delay.h> 14 #include <linux/efi.h> 15 #include <linux/genalloc.h> 16 #include <linux/interrupt.h> 17 #include <linux/iommu.h> 18 #include <linux/iopoll.h> 19 #include <linux/irqdomain.h> 20 #include <linux/list.h> 21 #include <linux/log2.h> 22 #include <linux/mem_encrypt.h> 23 #include <linux/memblock.h> 24 #include <linux/mm.h> 25 #include <linux/msi.h> 26 #include <linux/of.h> 27 #include <linux/of_address.h> 28 #include <linux/of_irq.h> 29 #include <linux/of_pci.h> 30 #include <linux/of_platform.h> 31 #include <linux/percpu.h> 32 #include <linux/set_memory.h> 33 #include <linux/slab.h> 34 #include <linux/syscore_ops.h> 35 36 #include <linux/irqchip.h> 37 #include <linux/irqchip/arm-gic-v3.h> 38 #include <linux/irqchip/arm-gic-v4.h> 39 40 #include <asm/cputype.h> 41 #include <asm/exception.h> 42 43 #include "irq-gic-common.h" 44 #include "irq-msi-lib.h" 45 46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 49 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3) 50 51 #define RD_LOCAL_LPI_ENABLED BIT(0) 52 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1) 53 #define RD_LOCAL_MEMRESERVE_DONE BIT(2) 54 55 static u32 lpi_id_bits; 56 57 /* 58 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to 59 * deal with (one configuration byte per interrupt). PENDBASE has to 60 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 61 */ 62 #define LPI_NRBITS lpi_id_bits 63 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) 64 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) 65 66 static u8 __ro_after_init lpi_prop_prio; 67 68 /* 69 * Collection structure - just an ID, and a redistributor address to 70 * ping. We use one per CPU as a bag of interrupts assigned to this 71 * CPU. 72 */ 73 struct its_collection { 74 u64 target_address; 75 u16 col_id; 76 }; 77 78 /* 79 * The ITS_BASER structure - contains memory information, cached 80 * value of BASER register configuration and ITS page size. 81 */ 82 struct its_baser { 83 void *base; 84 u64 val; 85 u32 order; 86 u32 psz; 87 }; 88 89 struct its_device; 90 91 /* 92 * The ITS structure - contains most of the infrastructure, with the 93 * top-level MSI domain, the command queue, the collections, and the 94 * list of devices writing to it. 95 * 96 * dev_alloc_lock has to be taken for device allocations, while the 97 * spinlock must be taken to parse data structures such as the device 98 * list. 99 */ 100 struct its_node { 101 raw_spinlock_t lock; 102 struct mutex dev_alloc_lock; 103 struct list_head entry; 104 void __iomem *base; 105 void __iomem *sgir_base; 106 phys_addr_t phys_base; 107 struct its_cmd_block *cmd_base; 108 struct its_cmd_block *cmd_write; 109 struct its_baser tables[GITS_BASER_NR_REGS]; 110 struct its_collection *collections; 111 struct fwnode_handle *fwnode_handle; 112 u64 (*get_msi_base)(struct its_device *its_dev); 113 u64 typer; 114 u64 cbaser_save; 115 u32 ctlr_save; 116 u32 mpidr; 117 struct list_head its_device_list; 118 u64 flags; 119 unsigned long list_nr; 120 int numa_node; 121 unsigned int msi_domain_flags; 122 u32 pre_its_base; /* for Socionext Synquacer */ 123 int vlpi_redist_offset; 124 }; 125 126 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) 127 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) 128 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) 129 130 #define ITS_ITT_ALIGN SZ_256 131 132 /* The maximum number of VPEID bits supported by VLPI commands */ 133 #define ITS_MAX_VPEID_BITS \ 134 ({ \ 135 int nvpeid = 16; \ 136 if (gic_rdists->has_rvpeid && \ 137 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ 138 nvpeid = 1 + (gic_rdists->gicd_typer2 & \ 139 GICD_TYPER2_VID); \ 140 \ 141 nvpeid; \ 142 }) 143 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) 144 145 /* Convert page order to size in bytes */ 146 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 147 148 struct event_lpi_map { 149 unsigned long *lpi_map; 150 u16 *col_map; 151 irq_hw_number_t lpi_base; 152 int nr_lpis; 153 raw_spinlock_t vlpi_lock; 154 struct its_vm *vm; 155 struct its_vlpi_map *vlpi_maps; 156 int nr_vlpis; 157 }; 158 159 /* 160 * The ITS view of a device - belongs to an ITS, owns an interrupt 161 * translation table, and a list of interrupts. If it some of its 162 * LPIs are injected into a guest (GICv4), the event_map.vm field 163 * indicates which one. 164 */ 165 struct its_device { 166 struct list_head entry; 167 struct its_node *its; 168 struct event_lpi_map event_map; 169 void *itt; 170 u32 itt_sz; 171 u32 nr_ites; 172 u32 device_id; 173 bool shared; 174 }; 175 176 static struct { 177 raw_spinlock_t lock; 178 struct its_device *dev; 179 struct its_vpe **vpes; 180 int next_victim; 181 } vpe_proxy; 182 183 struct cpu_lpi_count { 184 atomic_t managed; 185 atomic_t unmanaged; 186 }; 187 188 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); 189 190 static LIST_HEAD(its_nodes); 191 static DEFINE_RAW_SPINLOCK(its_lock); 192 static struct rdists *gic_rdists; 193 static struct irq_domain *its_parent; 194 195 static unsigned long its_list_map; 196 static u16 vmovp_seq_num; 197 static DEFINE_RAW_SPINLOCK(vmovp_lock); 198 199 static DEFINE_IDA(its_vpeid_ida); 200 201 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 202 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) 203 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 204 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) 205 206 static struct page *its_alloc_pages_node(int node, gfp_t gfp, 207 unsigned int order) 208 { 209 struct page *page; 210 int ret = 0; 211 212 page = alloc_pages_node(node, gfp, order); 213 214 if (!page) 215 return NULL; 216 217 ret = set_memory_decrypted((unsigned long)page_address(page), 218 1 << order); 219 /* 220 * If set_memory_decrypted() fails then we don't know what state the 221 * page is in, so we can't free it. Instead we leak it. 222 * set_memory_decrypted() will already have WARNed. 223 */ 224 if (ret) 225 return NULL; 226 227 return page; 228 } 229 230 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order) 231 { 232 return its_alloc_pages_node(NUMA_NO_NODE, gfp, order); 233 } 234 235 static void its_free_pages(void *addr, unsigned int order) 236 { 237 /* 238 * If the memory cannot be encrypted again then we must leak the pages. 239 * set_memory_encrypted() will already have WARNed. 240 */ 241 if (set_memory_encrypted((unsigned long)addr, 1 << order)) 242 return; 243 free_pages((unsigned long)addr, order); 244 } 245 246 static struct gen_pool *itt_pool; 247 248 static void *itt_alloc_pool(int node, int size) 249 { 250 unsigned long addr; 251 struct page *page; 252 253 if (size >= PAGE_SIZE) { 254 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size)); 255 256 return page ? page_address(page) : NULL; 257 } 258 259 do { 260 addr = gen_pool_alloc(itt_pool, size); 261 if (addr) 262 break; 263 264 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 265 if (!page) 266 break; 267 268 gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node); 269 } while (!addr); 270 271 return (void *)addr; 272 } 273 274 static void itt_free_pool(void *addr, int size) 275 { 276 if (!addr) 277 return; 278 279 if (size >= PAGE_SIZE) { 280 its_free_pages(addr, get_order(size)); 281 return; 282 } 283 284 gen_pool_free(itt_pool, (unsigned long)addr, size); 285 } 286 287 /* 288 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we 289 * always have vSGIs mapped. 290 */ 291 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) 292 { 293 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); 294 } 295 296 static bool rdists_support_shareable(void) 297 { 298 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE); 299 } 300 301 static u16 get_its_list(struct its_vm *vm) 302 { 303 struct its_node *its; 304 unsigned long its_list = 0; 305 306 list_for_each_entry(its, &its_nodes, entry) { 307 if (!is_v4(its)) 308 continue; 309 310 if (require_its_list_vmovp(vm, its)) 311 __set_bit(its->list_nr, &its_list); 312 } 313 314 return (u16)its_list; 315 } 316 317 static inline u32 its_get_event_id(struct irq_data *d) 318 { 319 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 320 return d->hwirq - its_dev->event_map.lpi_base; 321 } 322 323 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 324 u32 event) 325 { 326 struct its_node *its = its_dev->its; 327 328 return its->collections + its_dev->event_map.col_map[event]; 329 } 330 331 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, 332 u32 event) 333 { 334 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) 335 return NULL; 336 337 return &its_dev->event_map.vlpi_maps[event]; 338 } 339 340 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) 341 { 342 if (irqd_is_forwarded_to_vcpu(d)) { 343 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 344 u32 event = its_get_event_id(d); 345 346 return dev_event_to_vlpi_map(its_dev, event); 347 } 348 349 return NULL; 350 } 351 352 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) 353 { 354 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); 355 return vpe->col_idx; 356 } 357 358 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) 359 { 360 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 361 } 362 363 static struct irq_chip its_vpe_irq_chip; 364 365 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) 366 { 367 struct its_vpe *vpe = NULL; 368 int cpu; 369 370 if (d->chip == &its_vpe_irq_chip) { 371 vpe = irq_data_get_irq_chip_data(d); 372 } else { 373 struct its_vlpi_map *map = get_vlpi_map(d); 374 if (map) 375 vpe = map->vpe; 376 } 377 378 if (vpe) { 379 cpu = vpe_to_cpuid_lock(vpe, flags); 380 } else { 381 /* Physical LPIs are already locked via the irq_desc lock */ 382 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 383 cpu = its_dev->event_map.col_map[its_get_event_id(d)]; 384 /* Keep GCC quiet... */ 385 *flags = 0; 386 } 387 388 return cpu; 389 } 390 391 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) 392 { 393 struct its_vpe *vpe = NULL; 394 395 if (d->chip == &its_vpe_irq_chip) { 396 vpe = irq_data_get_irq_chip_data(d); 397 } else { 398 struct its_vlpi_map *map = get_vlpi_map(d); 399 if (map) 400 vpe = map->vpe; 401 } 402 403 if (vpe) 404 vpe_to_cpuid_unlock(vpe, flags); 405 } 406 407 static struct its_collection *valid_col(struct its_collection *col) 408 { 409 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) 410 return NULL; 411 412 return col; 413 } 414 415 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) 416 { 417 if (valid_col(its->collections + vpe->col_idx)) 418 return vpe; 419 420 return NULL; 421 } 422 423 /* 424 * ITS command descriptors - parameters to be encoded in a command 425 * block. 426 */ 427 struct its_cmd_desc { 428 union { 429 struct { 430 struct its_device *dev; 431 u32 event_id; 432 } its_inv_cmd; 433 434 struct { 435 struct its_device *dev; 436 u32 event_id; 437 } its_clear_cmd; 438 439 struct { 440 struct its_device *dev; 441 u32 event_id; 442 } its_int_cmd; 443 444 struct { 445 struct its_device *dev; 446 int valid; 447 } its_mapd_cmd; 448 449 struct { 450 struct its_collection *col; 451 int valid; 452 } its_mapc_cmd; 453 454 struct { 455 struct its_device *dev; 456 u32 phys_id; 457 u32 event_id; 458 } its_mapti_cmd; 459 460 struct { 461 struct its_device *dev; 462 struct its_collection *col; 463 u32 event_id; 464 } its_movi_cmd; 465 466 struct { 467 struct its_device *dev; 468 u32 event_id; 469 } its_discard_cmd; 470 471 struct { 472 struct its_collection *col; 473 } its_invall_cmd; 474 475 struct { 476 struct its_vpe *vpe; 477 } its_vinvall_cmd; 478 479 struct { 480 struct its_vpe *vpe; 481 struct its_collection *col; 482 bool valid; 483 } its_vmapp_cmd; 484 485 struct { 486 struct its_vpe *vpe; 487 struct its_device *dev; 488 u32 virt_id; 489 u32 event_id; 490 bool db_enabled; 491 } its_vmapti_cmd; 492 493 struct { 494 struct its_vpe *vpe; 495 struct its_device *dev; 496 u32 event_id; 497 bool db_enabled; 498 } its_vmovi_cmd; 499 500 struct { 501 struct its_vpe *vpe; 502 struct its_collection *col; 503 u16 seq_num; 504 u16 its_list; 505 } its_vmovp_cmd; 506 507 struct { 508 struct its_vpe *vpe; 509 } its_invdb_cmd; 510 511 struct { 512 struct its_vpe *vpe; 513 u8 sgi; 514 u8 priority; 515 bool enable; 516 bool group; 517 bool clear; 518 } its_vsgi_cmd; 519 }; 520 }; 521 522 /* 523 * The ITS command block, which is what the ITS actually parses. 524 */ 525 struct its_cmd_block { 526 union { 527 u64 raw_cmd[4]; 528 __le64 raw_cmd_le[4]; 529 }; 530 }; 531 532 #define ITS_CMD_QUEUE_SZ SZ_64K 533 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 534 535 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, 536 struct its_cmd_block *, 537 struct its_cmd_desc *); 538 539 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, 540 struct its_cmd_block *, 541 struct its_cmd_desc *); 542 543 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) 544 { 545 u64 mask = GENMASK_ULL(h, l); 546 *raw_cmd &= ~mask; 547 *raw_cmd |= (val << l) & mask; 548 } 549 550 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 551 { 552 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); 553 } 554 555 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 556 { 557 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); 558 } 559 560 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 561 { 562 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); 563 } 564 565 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 566 { 567 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); 568 } 569 570 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 571 { 572 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); 573 } 574 575 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 576 { 577 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); 578 } 579 580 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 581 { 582 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); 583 } 584 585 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 586 { 587 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); 588 } 589 590 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 591 { 592 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); 593 } 594 595 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) 596 { 597 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); 598 } 599 600 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) 601 { 602 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); 603 } 604 605 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) 606 { 607 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); 608 } 609 610 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) 611 { 612 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); 613 } 614 615 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) 616 { 617 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); 618 } 619 620 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) 621 { 622 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); 623 } 624 625 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) 626 { 627 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); 628 } 629 630 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) 631 { 632 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); 633 } 634 635 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) 636 { 637 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); 638 } 639 640 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) 641 { 642 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); 643 } 644 645 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) 646 { 647 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); 648 } 649 650 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, 651 u32 vpe_db_lpi) 652 { 653 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); 654 } 655 656 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, 657 u32 vpe_db_lpi) 658 { 659 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); 660 } 661 662 static void its_encode_db(struct its_cmd_block *cmd, bool db) 663 { 664 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); 665 } 666 667 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) 668 { 669 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); 670 } 671 672 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) 673 { 674 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); 675 } 676 677 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) 678 { 679 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); 680 } 681 682 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) 683 { 684 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); 685 } 686 687 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) 688 { 689 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); 690 } 691 692 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 693 { 694 /* Let's fixup BE commands */ 695 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); 696 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); 697 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); 698 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); 699 } 700 701 static struct its_collection *its_build_mapd_cmd(struct its_node *its, 702 struct its_cmd_block *cmd, 703 struct its_cmd_desc *desc) 704 { 705 unsigned long itt_addr; 706 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 707 708 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 709 710 its_encode_cmd(cmd, GITS_CMD_MAPD); 711 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 712 its_encode_size(cmd, size - 1); 713 its_encode_itt(cmd, itt_addr); 714 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 715 716 its_fixup_cmd(cmd); 717 718 return NULL; 719 } 720 721 static struct its_collection *its_build_mapc_cmd(struct its_node *its, 722 struct its_cmd_block *cmd, 723 struct its_cmd_desc *desc) 724 { 725 its_encode_cmd(cmd, GITS_CMD_MAPC); 726 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 727 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 728 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 729 730 its_fixup_cmd(cmd); 731 732 return desc->its_mapc_cmd.col; 733 } 734 735 static struct its_collection *its_build_mapti_cmd(struct its_node *its, 736 struct its_cmd_block *cmd, 737 struct its_cmd_desc *desc) 738 { 739 struct its_collection *col; 740 741 col = dev_event_to_col(desc->its_mapti_cmd.dev, 742 desc->its_mapti_cmd.event_id); 743 744 its_encode_cmd(cmd, GITS_CMD_MAPTI); 745 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); 746 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); 747 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); 748 its_encode_collection(cmd, col->col_id); 749 750 its_fixup_cmd(cmd); 751 752 return valid_col(col); 753 } 754 755 static struct its_collection *its_build_movi_cmd(struct its_node *its, 756 struct its_cmd_block *cmd, 757 struct its_cmd_desc *desc) 758 { 759 struct its_collection *col; 760 761 col = dev_event_to_col(desc->its_movi_cmd.dev, 762 desc->its_movi_cmd.event_id); 763 764 its_encode_cmd(cmd, GITS_CMD_MOVI); 765 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 766 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 767 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 768 769 its_fixup_cmd(cmd); 770 771 return valid_col(col); 772 } 773 774 static struct its_collection *its_build_discard_cmd(struct its_node *its, 775 struct its_cmd_block *cmd, 776 struct its_cmd_desc *desc) 777 { 778 struct its_collection *col; 779 780 col = dev_event_to_col(desc->its_discard_cmd.dev, 781 desc->its_discard_cmd.event_id); 782 783 its_encode_cmd(cmd, GITS_CMD_DISCARD); 784 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 785 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 786 787 its_fixup_cmd(cmd); 788 789 return valid_col(col); 790 } 791 792 static struct its_collection *its_build_inv_cmd(struct its_node *its, 793 struct its_cmd_block *cmd, 794 struct its_cmd_desc *desc) 795 { 796 struct its_collection *col; 797 798 col = dev_event_to_col(desc->its_inv_cmd.dev, 799 desc->its_inv_cmd.event_id); 800 801 its_encode_cmd(cmd, GITS_CMD_INV); 802 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 803 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 804 805 its_fixup_cmd(cmd); 806 807 return valid_col(col); 808 } 809 810 static struct its_collection *its_build_int_cmd(struct its_node *its, 811 struct its_cmd_block *cmd, 812 struct its_cmd_desc *desc) 813 { 814 struct its_collection *col; 815 816 col = dev_event_to_col(desc->its_int_cmd.dev, 817 desc->its_int_cmd.event_id); 818 819 its_encode_cmd(cmd, GITS_CMD_INT); 820 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 821 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 822 823 its_fixup_cmd(cmd); 824 825 return valid_col(col); 826 } 827 828 static struct its_collection *its_build_clear_cmd(struct its_node *its, 829 struct its_cmd_block *cmd, 830 struct its_cmd_desc *desc) 831 { 832 struct its_collection *col; 833 834 col = dev_event_to_col(desc->its_clear_cmd.dev, 835 desc->its_clear_cmd.event_id); 836 837 its_encode_cmd(cmd, GITS_CMD_CLEAR); 838 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 839 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 840 841 its_fixup_cmd(cmd); 842 843 return valid_col(col); 844 } 845 846 static struct its_collection *its_build_invall_cmd(struct its_node *its, 847 struct its_cmd_block *cmd, 848 struct its_cmd_desc *desc) 849 { 850 its_encode_cmd(cmd, GITS_CMD_INVALL); 851 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); 852 853 its_fixup_cmd(cmd); 854 855 return desc->its_invall_cmd.col; 856 } 857 858 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, 859 struct its_cmd_block *cmd, 860 struct its_cmd_desc *desc) 861 { 862 its_encode_cmd(cmd, GITS_CMD_VINVALL); 863 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); 864 865 its_fixup_cmd(cmd); 866 867 return valid_vpe(its, desc->its_vinvall_cmd.vpe); 868 } 869 870 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, 871 struct its_cmd_block *cmd, 872 struct its_cmd_desc *desc) 873 { 874 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe); 875 unsigned long vpt_addr, vconf_addr; 876 u64 target; 877 bool alloc; 878 879 its_encode_cmd(cmd, GITS_CMD_VMAPP); 880 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); 881 its_encode_valid(cmd, desc->its_vmapp_cmd.valid); 882 883 if (!desc->its_vmapp_cmd.valid) { 884 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); 885 if (is_v4_1(its)) { 886 its_encode_alloc(cmd, alloc); 887 /* 888 * Unmapping a VPE is self-synchronizing on GICv4.1, 889 * no need to issue a VSYNC. 890 */ 891 vpe = NULL; 892 } 893 894 goto out; 895 } 896 897 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); 898 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; 899 900 its_encode_target(cmd, target); 901 its_encode_vpt_addr(cmd, vpt_addr); 902 its_encode_vpt_size(cmd, LPI_NRBITS - 1); 903 904 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); 905 906 if (!is_v4_1(its)) 907 goto out; 908 909 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); 910 911 its_encode_alloc(cmd, alloc); 912 913 /* 914 * GICv4.1 provides a way to get the VLPI state, which needs the vPE 915 * to be unmapped first, and in this case, we may remap the vPE 916 * back while the VPT is not empty. So we can't assume that the 917 * VPT is empty on map. This is why we never advertise PTZ. 918 */ 919 its_encode_ptz(cmd, false); 920 its_encode_vconf_addr(cmd, vconf_addr); 921 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); 922 923 out: 924 its_fixup_cmd(cmd); 925 926 return vpe; 927 } 928 929 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, 930 struct its_cmd_block *cmd, 931 struct its_cmd_desc *desc) 932 { 933 u32 db; 934 935 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) 936 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; 937 else 938 db = 1023; 939 940 its_encode_cmd(cmd, GITS_CMD_VMAPTI); 941 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); 942 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); 943 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); 944 its_encode_db_phys_id(cmd, db); 945 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); 946 947 its_fixup_cmd(cmd); 948 949 return valid_vpe(its, desc->its_vmapti_cmd.vpe); 950 } 951 952 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, 953 struct its_cmd_block *cmd, 954 struct its_cmd_desc *desc) 955 { 956 u32 db; 957 958 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) 959 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; 960 else 961 db = 1023; 962 963 its_encode_cmd(cmd, GITS_CMD_VMOVI); 964 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); 965 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); 966 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); 967 its_encode_db_phys_id(cmd, db); 968 its_encode_db_valid(cmd, true); 969 970 its_fixup_cmd(cmd); 971 972 return valid_vpe(its, desc->its_vmovi_cmd.vpe); 973 } 974 975 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, 976 struct its_cmd_block *cmd, 977 struct its_cmd_desc *desc) 978 { 979 u64 target; 980 981 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; 982 its_encode_cmd(cmd, GITS_CMD_VMOVP); 983 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); 984 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); 985 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); 986 its_encode_target(cmd, target); 987 988 if (is_v4_1(its)) { 989 its_encode_db(cmd, true); 990 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); 991 } 992 993 its_fixup_cmd(cmd); 994 995 return valid_vpe(its, desc->its_vmovp_cmd.vpe); 996 } 997 998 static struct its_vpe *its_build_vinv_cmd(struct its_node *its, 999 struct its_cmd_block *cmd, 1000 struct its_cmd_desc *desc) 1001 { 1002 struct its_vlpi_map *map; 1003 1004 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, 1005 desc->its_inv_cmd.event_id); 1006 1007 its_encode_cmd(cmd, GITS_CMD_INV); 1008 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 1009 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 1010 1011 its_fixup_cmd(cmd); 1012 1013 return valid_vpe(its, map->vpe); 1014 } 1015 1016 static struct its_vpe *its_build_vint_cmd(struct its_node *its, 1017 struct its_cmd_block *cmd, 1018 struct its_cmd_desc *desc) 1019 { 1020 struct its_vlpi_map *map; 1021 1022 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, 1023 desc->its_int_cmd.event_id); 1024 1025 its_encode_cmd(cmd, GITS_CMD_INT); 1026 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); 1027 its_encode_event_id(cmd, desc->its_int_cmd.event_id); 1028 1029 its_fixup_cmd(cmd); 1030 1031 return valid_vpe(its, map->vpe); 1032 } 1033 1034 static struct its_vpe *its_build_vclear_cmd(struct its_node *its, 1035 struct its_cmd_block *cmd, 1036 struct its_cmd_desc *desc) 1037 { 1038 struct its_vlpi_map *map; 1039 1040 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, 1041 desc->its_clear_cmd.event_id); 1042 1043 its_encode_cmd(cmd, GITS_CMD_CLEAR); 1044 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); 1045 its_encode_event_id(cmd, desc->its_clear_cmd.event_id); 1046 1047 its_fixup_cmd(cmd); 1048 1049 return valid_vpe(its, map->vpe); 1050 } 1051 1052 static struct its_vpe *its_build_invdb_cmd(struct its_node *its, 1053 struct its_cmd_block *cmd, 1054 struct its_cmd_desc *desc) 1055 { 1056 if (WARN_ON(!is_v4_1(its))) 1057 return NULL; 1058 1059 its_encode_cmd(cmd, GITS_CMD_INVDB); 1060 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); 1061 1062 its_fixup_cmd(cmd); 1063 1064 return valid_vpe(its, desc->its_invdb_cmd.vpe); 1065 } 1066 1067 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, 1068 struct its_cmd_block *cmd, 1069 struct its_cmd_desc *desc) 1070 { 1071 if (WARN_ON(!is_v4_1(its))) 1072 return NULL; 1073 1074 its_encode_cmd(cmd, GITS_CMD_VSGI); 1075 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); 1076 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); 1077 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); 1078 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); 1079 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); 1080 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); 1081 1082 its_fixup_cmd(cmd); 1083 1084 return valid_vpe(its, desc->its_vsgi_cmd.vpe); 1085 } 1086 1087 static u64 its_cmd_ptr_to_offset(struct its_node *its, 1088 struct its_cmd_block *ptr) 1089 { 1090 return (ptr - its->cmd_base) * sizeof(*ptr); 1091 } 1092 1093 static int its_queue_full(struct its_node *its) 1094 { 1095 int widx; 1096 int ridx; 1097 1098 widx = its->cmd_write - its->cmd_base; 1099 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 1100 1101 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 1102 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 1103 return 1; 1104 1105 return 0; 1106 } 1107 1108 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 1109 { 1110 struct its_cmd_block *cmd; 1111 u32 count = 1000000; /* 1s! */ 1112 1113 while (its_queue_full(its)) { 1114 count--; 1115 if (!count) { 1116 pr_err_ratelimited("ITS queue not draining\n"); 1117 return NULL; 1118 } 1119 cpu_relax(); 1120 udelay(1); 1121 } 1122 1123 cmd = its->cmd_write++; 1124 1125 /* Handle queue wrapping */ 1126 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 1127 its->cmd_write = its->cmd_base; 1128 1129 /* Clear command */ 1130 cmd->raw_cmd[0] = 0; 1131 cmd->raw_cmd[1] = 0; 1132 cmd->raw_cmd[2] = 0; 1133 cmd->raw_cmd[3] = 0; 1134 1135 return cmd; 1136 } 1137 1138 static struct its_cmd_block *its_post_commands(struct its_node *its) 1139 { 1140 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 1141 1142 writel_relaxed(wr, its->base + GITS_CWRITER); 1143 1144 return its->cmd_write; 1145 } 1146 1147 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 1148 { 1149 /* 1150 * Make sure the commands written to memory are observable by 1151 * the ITS. 1152 */ 1153 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 1154 gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); 1155 else 1156 dsb(ishst); 1157 } 1158 1159 static int its_wait_for_range_completion(struct its_node *its, 1160 u64 prev_idx, 1161 struct its_cmd_block *to) 1162 { 1163 u64 rd_idx, to_idx, linear_idx; 1164 u32 count = 1000000; /* 1s! */ 1165 1166 /* Linearize to_idx if the command set has wrapped around */ 1167 to_idx = its_cmd_ptr_to_offset(its, to); 1168 if (to_idx < prev_idx) 1169 to_idx += ITS_CMD_QUEUE_SZ; 1170 1171 linear_idx = prev_idx; 1172 1173 while (1) { 1174 s64 delta; 1175 1176 rd_idx = readl_relaxed(its->base + GITS_CREADR); 1177 1178 /* 1179 * Compute the read pointer progress, taking the 1180 * potential wrap-around into account. 1181 */ 1182 delta = rd_idx - prev_idx; 1183 if (rd_idx < prev_idx) 1184 delta += ITS_CMD_QUEUE_SZ; 1185 1186 linear_idx += delta; 1187 if (linear_idx >= to_idx) 1188 break; 1189 1190 count--; 1191 if (!count) { 1192 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", 1193 to_idx, linear_idx); 1194 return -1; 1195 } 1196 prev_idx = rd_idx; 1197 cpu_relax(); 1198 udelay(1); 1199 } 1200 1201 return 0; 1202 } 1203 1204 /* Warning, macro hell follows */ 1205 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ 1206 void name(struct its_node *its, \ 1207 buildtype builder, \ 1208 struct its_cmd_desc *desc) \ 1209 { \ 1210 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ 1211 synctype *sync_obj; \ 1212 unsigned long flags; \ 1213 u64 rd_idx; \ 1214 \ 1215 raw_spin_lock_irqsave(&its->lock, flags); \ 1216 \ 1217 cmd = its_allocate_entry(its); \ 1218 if (!cmd) { /* We're soooooo screewed... */ \ 1219 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1220 return; \ 1221 } \ 1222 sync_obj = builder(its, cmd, desc); \ 1223 its_flush_cmd(its, cmd); \ 1224 \ 1225 if (sync_obj) { \ 1226 sync_cmd = its_allocate_entry(its); \ 1227 if (!sync_cmd) \ 1228 goto post; \ 1229 \ 1230 buildfn(its, sync_cmd, sync_obj); \ 1231 its_flush_cmd(its, sync_cmd); \ 1232 } \ 1233 \ 1234 post: \ 1235 rd_idx = readl_relaxed(its->base + GITS_CREADR); \ 1236 next_cmd = its_post_commands(its); \ 1237 raw_spin_unlock_irqrestore(&its->lock, flags); \ 1238 \ 1239 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ 1240 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ 1241 } 1242 1243 static void its_build_sync_cmd(struct its_node *its, 1244 struct its_cmd_block *sync_cmd, 1245 struct its_collection *sync_col) 1246 { 1247 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 1248 its_encode_target(sync_cmd, sync_col->target_address); 1249 1250 its_fixup_cmd(sync_cmd); 1251 } 1252 1253 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, 1254 struct its_collection, its_build_sync_cmd) 1255 1256 static void its_build_vsync_cmd(struct its_node *its, 1257 struct its_cmd_block *sync_cmd, 1258 struct its_vpe *sync_vpe) 1259 { 1260 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); 1261 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); 1262 1263 its_fixup_cmd(sync_cmd); 1264 } 1265 1266 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, 1267 struct its_vpe, its_build_vsync_cmd) 1268 1269 static void its_send_int(struct its_device *dev, u32 event_id) 1270 { 1271 struct its_cmd_desc desc; 1272 1273 desc.its_int_cmd.dev = dev; 1274 desc.its_int_cmd.event_id = event_id; 1275 1276 its_send_single_command(dev->its, its_build_int_cmd, &desc); 1277 } 1278 1279 static void its_send_clear(struct its_device *dev, u32 event_id) 1280 { 1281 struct its_cmd_desc desc; 1282 1283 desc.its_clear_cmd.dev = dev; 1284 desc.its_clear_cmd.event_id = event_id; 1285 1286 its_send_single_command(dev->its, its_build_clear_cmd, &desc); 1287 } 1288 1289 static void its_send_inv(struct its_device *dev, u32 event_id) 1290 { 1291 struct its_cmd_desc desc; 1292 1293 desc.its_inv_cmd.dev = dev; 1294 desc.its_inv_cmd.event_id = event_id; 1295 1296 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 1297 } 1298 1299 static void its_send_mapd(struct its_device *dev, int valid) 1300 { 1301 struct its_cmd_desc desc; 1302 1303 desc.its_mapd_cmd.dev = dev; 1304 desc.its_mapd_cmd.valid = !!valid; 1305 1306 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 1307 } 1308 1309 static void its_send_mapc(struct its_node *its, struct its_collection *col, 1310 int valid) 1311 { 1312 struct its_cmd_desc desc; 1313 1314 desc.its_mapc_cmd.col = col; 1315 desc.its_mapc_cmd.valid = !!valid; 1316 1317 its_send_single_command(its, its_build_mapc_cmd, &desc); 1318 } 1319 1320 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) 1321 { 1322 struct its_cmd_desc desc; 1323 1324 desc.its_mapti_cmd.dev = dev; 1325 desc.its_mapti_cmd.phys_id = irq_id; 1326 desc.its_mapti_cmd.event_id = id; 1327 1328 its_send_single_command(dev->its, its_build_mapti_cmd, &desc); 1329 } 1330 1331 static void its_send_movi(struct its_device *dev, 1332 struct its_collection *col, u32 id) 1333 { 1334 struct its_cmd_desc desc; 1335 1336 desc.its_movi_cmd.dev = dev; 1337 desc.its_movi_cmd.col = col; 1338 desc.its_movi_cmd.event_id = id; 1339 1340 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 1341 } 1342 1343 static void its_send_discard(struct its_device *dev, u32 id) 1344 { 1345 struct its_cmd_desc desc; 1346 1347 desc.its_discard_cmd.dev = dev; 1348 desc.its_discard_cmd.event_id = id; 1349 1350 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 1351 } 1352 1353 static void its_send_invall(struct its_node *its, struct its_collection *col) 1354 { 1355 struct its_cmd_desc desc; 1356 1357 desc.its_invall_cmd.col = col; 1358 1359 its_send_single_command(its, its_build_invall_cmd, &desc); 1360 } 1361 1362 static void its_send_vmapti(struct its_device *dev, u32 id) 1363 { 1364 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1365 struct its_cmd_desc desc; 1366 1367 desc.its_vmapti_cmd.vpe = map->vpe; 1368 desc.its_vmapti_cmd.dev = dev; 1369 desc.its_vmapti_cmd.virt_id = map->vintid; 1370 desc.its_vmapti_cmd.event_id = id; 1371 desc.its_vmapti_cmd.db_enabled = map->db_enabled; 1372 1373 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); 1374 } 1375 1376 static void its_send_vmovi(struct its_device *dev, u32 id) 1377 { 1378 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); 1379 struct its_cmd_desc desc; 1380 1381 desc.its_vmovi_cmd.vpe = map->vpe; 1382 desc.its_vmovi_cmd.dev = dev; 1383 desc.its_vmovi_cmd.event_id = id; 1384 desc.its_vmovi_cmd.db_enabled = map->db_enabled; 1385 1386 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); 1387 } 1388 1389 static void its_send_vmapp(struct its_node *its, 1390 struct its_vpe *vpe, bool valid) 1391 { 1392 struct its_cmd_desc desc; 1393 1394 desc.its_vmapp_cmd.vpe = vpe; 1395 desc.its_vmapp_cmd.valid = valid; 1396 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; 1397 1398 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); 1399 } 1400 1401 static void its_send_vmovp(struct its_vpe *vpe) 1402 { 1403 struct its_cmd_desc desc = {}; 1404 struct its_node *its; 1405 int col_id = vpe->col_idx; 1406 1407 desc.its_vmovp_cmd.vpe = vpe; 1408 1409 if (!its_list_map) { 1410 its = list_first_entry(&its_nodes, struct its_node, entry); 1411 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1412 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1413 return; 1414 } 1415 1416 /* 1417 * Yet another marvel of the architecture. If using the 1418 * its_list "feature", we need to make sure that all ITSs 1419 * receive all VMOVP commands in the same order. The only way 1420 * to guarantee this is to make vmovp a serialization point. 1421 * 1422 * Wall <-- Head. 1423 */ 1424 guard(raw_spinlock)(&vmovp_lock); 1425 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; 1426 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); 1427 1428 /* Emit VMOVPs */ 1429 list_for_each_entry(its, &its_nodes, entry) { 1430 if (!is_v4(its)) 1431 continue; 1432 1433 if (!require_its_list_vmovp(vpe->its_vm, its)) 1434 continue; 1435 1436 desc.its_vmovp_cmd.col = &its->collections[col_id]; 1437 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); 1438 } 1439 } 1440 1441 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) 1442 { 1443 struct its_cmd_desc desc; 1444 1445 desc.its_vinvall_cmd.vpe = vpe; 1446 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); 1447 } 1448 1449 static void its_send_vinv(struct its_device *dev, u32 event_id) 1450 { 1451 struct its_cmd_desc desc; 1452 1453 /* 1454 * There is no real VINV command. This is just a normal INV, 1455 * with a VSYNC instead of a SYNC. 1456 */ 1457 desc.its_inv_cmd.dev = dev; 1458 desc.its_inv_cmd.event_id = event_id; 1459 1460 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); 1461 } 1462 1463 static void its_send_vint(struct its_device *dev, u32 event_id) 1464 { 1465 struct its_cmd_desc desc; 1466 1467 /* 1468 * There is no real VINT command. This is just a normal INT, 1469 * with a VSYNC instead of a SYNC. 1470 */ 1471 desc.its_int_cmd.dev = dev; 1472 desc.its_int_cmd.event_id = event_id; 1473 1474 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); 1475 } 1476 1477 static void its_send_vclear(struct its_device *dev, u32 event_id) 1478 { 1479 struct its_cmd_desc desc; 1480 1481 /* 1482 * There is no real VCLEAR command. This is just a normal CLEAR, 1483 * with a VSYNC instead of a SYNC. 1484 */ 1485 desc.its_clear_cmd.dev = dev; 1486 desc.its_clear_cmd.event_id = event_id; 1487 1488 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); 1489 } 1490 1491 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) 1492 { 1493 struct its_cmd_desc desc; 1494 1495 desc.its_invdb_cmd.vpe = vpe; 1496 its_send_single_vcommand(its, its_build_invdb_cmd, &desc); 1497 } 1498 1499 /* 1500 * irqchip functions - assumes MSI, mostly. 1501 */ 1502 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) 1503 { 1504 struct its_vlpi_map *map = get_vlpi_map(d); 1505 irq_hw_number_t hwirq; 1506 void *va; 1507 u8 *cfg; 1508 1509 if (map) { 1510 va = page_address(map->vm->vprop_page); 1511 hwirq = map->vintid; 1512 1513 /* Remember the updated property */ 1514 map->properties &= ~clr; 1515 map->properties |= set | LPI_PROP_GROUP1; 1516 } else { 1517 va = gic_rdists->prop_table_va; 1518 hwirq = d->hwirq; 1519 } 1520 1521 cfg = va + hwirq - 8192; 1522 *cfg &= ~clr; 1523 *cfg |= set | LPI_PROP_GROUP1; 1524 1525 /* 1526 * Make the above write visible to the redistributors. 1527 * And yes, we're flushing exactly: One. Single. Byte. 1528 * Humpf... 1529 */ 1530 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 1531 gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); 1532 else 1533 dsb(ishst); 1534 } 1535 1536 static void wait_for_syncr(void __iomem *rdbase) 1537 { 1538 while (readl_relaxed(rdbase + GICR_SYNCR) & 1) 1539 cpu_relax(); 1540 } 1541 1542 static void __direct_lpi_inv(struct irq_data *d, u64 val) 1543 { 1544 void __iomem *rdbase; 1545 unsigned long flags; 1546 int cpu; 1547 1548 /* Target the redistributor this LPI is currently routed to */ 1549 cpu = irq_to_cpuid_lock(d, &flags); 1550 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 1551 1552 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 1553 gic_write_lpir(val, rdbase + GICR_INVLPIR); 1554 wait_for_syncr(rdbase); 1555 1556 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 1557 irq_to_cpuid_unlock(d, flags); 1558 } 1559 1560 static void direct_lpi_inv(struct irq_data *d) 1561 { 1562 struct its_vlpi_map *map = get_vlpi_map(d); 1563 u64 val; 1564 1565 if (map) { 1566 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1567 1568 WARN_ON(!is_v4_1(its_dev->its)); 1569 1570 val = GICR_INVLPIR_V; 1571 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); 1572 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); 1573 } else { 1574 val = d->hwirq; 1575 } 1576 1577 __direct_lpi_inv(d, val); 1578 } 1579 1580 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) 1581 { 1582 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1583 1584 lpi_write_config(d, clr, set); 1585 if (gic_rdists->has_direct_lpi && 1586 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) 1587 direct_lpi_inv(d); 1588 else if (!irqd_is_forwarded_to_vcpu(d)) 1589 its_send_inv(its_dev, its_get_event_id(d)); 1590 else 1591 its_send_vinv(its_dev, its_get_event_id(d)); 1592 } 1593 1594 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) 1595 { 1596 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1597 u32 event = its_get_event_id(d); 1598 struct its_vlpi_map *map; 1599 1600 /* 1601 * GICv4.1 does away with the per-LPI nonsense, nothing to do 1602 * here. 1603 */ 1604 if (is_v4_1(its_dev->its)) 1605 return; 1606 1607 map = dev_event_to_vlpi_map(its_dev, event); 1608 1609 if (map->db_enabled == enable) 1610 return; 1611 1612 map->db_enabled = enable; 1613 1614 /* 1615 * More fun with the architecture: 1616 * 1617 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI 1618 * value or to 1023, depending on the enable bit. But that 1619 * would be issuing a mapping for an /existing/ DevID+EventID 1620 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI 1621 * to the /same/ vPE, using this opportunity to adjust the 1622 * doorbell. Mouahahahaha. We loves it, Precious. 1623 */ 1624 its_send_vmovi(its_dev, event); 1625 } 1626 1627 static void its_mask_irq(struct irq_data *d) 1628 { 1629 if (irqd_is_forwarded_to_vcpu(d)) 1630 its_vlpi_set_doorbell(d, false); 1631 1632 lpi_update_config(d, LPI_PROP_ENABLED, 0); 1633 } 1634 1635 static void its_unmask_irq(struct irq_data *d) 1636 { 1637 if (irqd_is_forwarded_to_vcpu(d)) 1638 its_vlpi_set_doorbell(d, true); 1639 1640 lpi_update_config(d, 0, LPI_PROP_ENABLED); 1641 } 1642 1643 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) 1644 { 1645 if (irqd_affinity_is_managed(d)) 1646 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1647 1648 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1649 } 1650 1651 static void its_inc_lpi_count(struct irq_data *d, int cpu) 1652 { 1653 if (irqd_affinity_is_managed(d)) 1654 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1655 else 1656 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1657 } 1658 1659 static void its_dec_lpi_count(struct irq_data *d, int cpu) 1660 { 1661 if (irqd_affinity_is_managed(d)) 1662 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); 1663 else 1664 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); 1665 } 1666 1667 static unsigned int cpumask_pick_least_loaded(struct irq_data *d, 1668 const struct cpumask *cpu_mask) 1669 { 1670 unsigned int cpu = nr_cpu_ids, tmp; 1671 int count = S32_MAX; 1672 1673 for_each_cpu(tmp, cpu_mask) { 1674 int this_count = its_read_lpi_count(d, tmp); 1675 if (this_count < count) { 1676 cpu = tmp; 1677 count = this_count; 1678 } 1679 } 1680 1681 return cpu; 1682 } 1683 1684 /* 1685 * As suggested by Thomas Gleixner in: 1686 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de 1687 */ 1688 static int its_select_cpu(struct irq_data *d, 1689 const struct cpumask *aff_mask) 1690 { 1691 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1692 static DEFINE_RAW_SPINLOCK(tmpmask_lock); 1693 static struct cpumask __tmpmask; 1694 struct cpumask *tmpmask; 1695 unsigned long flags; 1696 int cpu, node; 1697 node = its_dev->its->numa_node; 1698 tmpmask = &__tmpmask; 1699 1700 raw_spin_lock_irqsave(&tmpmask_lock, flags); 1701 1702 if (!irqd_affinity_is_managed(d)) { 1703 /* First try the NUMA node */ 1704 if (node != NUMA_NO_NODE) { 1705 /* 1706 * Try the intersection of the affinity mask and the 1707 * node mask (and the online mask, just to be safe). 1708 */ 1709 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); 1710 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 1711 1712 /* 1713 * Ideally, we would check if the mask is empty, and 1714 * try again on the full node here. 1715 * 1716 * But it turns out that the way ACPI describes the 1717 * affinity for ITSs only deals about memory, and 1718 * not target CPUs, so it cannot describe a single 1719 * ITS placed next to two NUMA nodes. 1720 * 1721 * Instead, just fallback on the online mask. This 1722 * diverges from Thomas' suggestion above. 1723 */ 1724 cpu = cpumask_pick_least_loaded(d, tmpmask); 1725 if (cpu < nr_cpu_ids) 1726 goto out; 1727 1728 /* If we can't cross sockets, give up */ 1729 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) 1730 goto out; 1731 1732 /* If the above failed, expand the search */ 1733 } 1734 1735 /* Try the intersection of the affinity and online masks */ 1736 cpumask_and(tmpmask, aff_mask, cpu_online_mask); 1737 1738 /* If that doesn't fly, the online mask is the last resort */ 1739 if (cpumask_empty(tmpmask)) 1740 cpumask_copy(tmpmask, cpu_online_mask); 1741 1742 cpu = cpumask_pick_least_loaded(d, tmpmask); 1743 } else { 1744 cpumask_copy(tmpmask, aff_mask); 1745 1746 /* If we cannot cross sockets, limit the search to that node */ 1747 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && 1748 node != NUMA_NO_NODE) 1749 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); 1750 1751 cpu = cpumask_pick_least_loaded(d, tmpmask); 1752 } 1753 out: 1754 raw_spin_unlock_irqrestore(&tmpmask_lock, flags); 1755 1756 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); 1757 return cpu; 1758 } 1759 1760 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 1761 bool force) 1762 { 1763 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1764 struct its_collection *target_col; 1765 u32 id = its_get_event_id(d); 1766 int cpu, prev_cpu; 1767 1768 /* A forwarded interrupt should use irq_set_vcpu_affinity */ 1769 if (irqd_is_forwarded_to_vcpu(d)) 1770 return -EINVAL; 1771 1772 prev_cpu = its_dev->event_map.col_map[id]; 1773 its_dec_lpi_count(d, prev_cpu); 1774 1775 if (!force) 1776 cpu = its_select_cpu(d, mask_val); 1777 else 1778 cpu = cpumask_pick_least_loaded(d, mask_val); 1779 1780 if (cpu < 0 || cpu >= nr_cpu_ids) 1781 goto err; 1782 1783 /* don't set the affinity when the target cpu is same as current one */ 1784 if (cpu != prev_cpu) { 1785 target_col = &its_dev->its->collections[cpu]; 1786 its_send_movi(its_dev, target_col, id); 1787 its_dev->event_map.col_map[id] = cpu; 1788 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 1789 } 1790 1791 its_inc_lpi_count(d, cpu); 1792 1793 return IRQ_SET_MASK_OK_DONE; 1794 1795 err: 1796 its_inc_lpi_count(d, prev_cpu); 1797 return -EINVAL; 1798 } 1799 1800 static u64 its_irq_get_msi_base(struct its_device *its_dev) 1801 { 1802 struct its_node *its = its_dev->its; 1803 1804 return its->phys_base + GITS_TRANSLATER; 1805 } 1806 1807 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 1808 { 1809 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1810 struct its_node *its; 1811 u64 addr; 1812 1813 its = its_dev->its; 1814 addr = its->get_msi_base(its_dev); 1815 1816 msg->address_lo = lower_32_bits(addr); 1817 msg->address_hi = upper_32_bits(addr); 1818 msg->data = its_get_event_id(d); 1819 1820 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); 1821 } 1822 1823 static int its_irq_set_irqchip_state(struct irq_data *d, 1824 enum irqchip_irq_state which, 1825 bool state) 1826 { 1827 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1828 u32 event = its_get_event_id(d); 1829 1830 if (which != IRQCHIP_STATE_PENDING) 1831 return -EINVAL; 1832 1833 if (irqd_is_forwarded_to_vcpu(d)) { 1834 if (state) 1835 its_send_vint(its_dev, event); 1836 else 1837 its_send_vclear(its_dev, event); 1838 } else { 1839 if (state) 1840 its_send_int(its_dev, event); 1841 else 1842 its_send_clear(its_dev, event); 1843 } 1844 1845 return 0; 1846 } 1847 1848 static int its_irq_retrigger(struct irq_data *d) 1849 { 1850 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 1851 } 1852 1853 /* 1854 * Two favourable cases: 1855 * 1856 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times 1857 * for vSGI delivery 1858 * 1859 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough 1860 * and we're better off mapping all VPEs always 1861 * 1862 * If neither (a) nor (b) is true, then we map vPEs on demand. 1863 * 1864 */ 1865 static bool gic_requires_eager_mapping(void) 1866 { 1867 if (!its_list_map || gic_rdists->has_rvpeid) 1868 return true; 1869 1870 return false; 1871 } 1872 1873 static void its_map_vm(struct its_node *its, struct its_vm *vm) 1874 { 1875 if (gic_requires_eager_mapping()) 1876 return; 1877 1878 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1879 1880 /* 1881 * If the VM wasn't mapped yet, iterate over the vpes and get 1882 * them mapped now. 1883 */ 1884 vm->vlpi_count[its->list_nr]++; 1885 1886 if (vm->vlpi_count[its->list_nr] == 1) { 1887 int i; 1888 1889 for (i = 0; i < vm->nr_vpes; i++) { 1890 struct its_vpe *vpe = vm->vpes[i]; 1891 1892 scoped_guard(raw_spinlock, &vpe->vpe_lock) 1893 its_send_vmapp(its, vpe, true); 1894 1895 its_send_vinvall(its, vpe); 1896 } 1897 } 1898 } 1899 1900 static void its_unmap_vm(struct its_node *its, struct its_vm *vm) 1901 { 1902 /* Not using the ITS list? Everything is always mapped. */ 1903 if (gic_requires_eager_mapping()) 1904 return; 1905 1906 guard(raw_spinlock_irqsave)(&vm->vmapp_lock); 1907 1908 if (!--vm->vlpi_count[its->list_nr]) { 1909 int i; 1910 1911 for (i = 0; i < vm->nr_vpes; i++) { 1912 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock); 1913 its_send_vmapp(its, vm->vpes[i], false); 1914 } 1915 } 1916 } 1917 1918 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) 1919 { 1920 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1921 u32 event = its_get_event_id(d); 1922 1923 if (!info->map) 1924 return -EINVAL; 1925 1926 if (!its_dev->event_map.vm) { 1927 struct its_vlpi_map *maps; 1928 1929 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), 1930 GFP_ATOMIC); 1931 if (!maps) 1932 return -ENOMEM; 1933 1934 its_dev->event_map.vm = info->map->vm; 1935 its_dev->event_map.vlpi_maps = maps; 1936 } else if (its_dev->event_map.vm != info->map->vm) { 1937 return -EINVAL; 1938 } 1939 1940 /* Get our private copy of the mapping information */ 1941 its_dev->event_map.vlpi_maps[event] = *info->map; 1942 1943 if (irqd_is_forwarded_to_vcpu(d)) { 1944 /* Already mapped, move it around */ 1945 its_send_vmovi(its_dev, event); 1946 } else { 1947 /* Ensure all the VPEs are mapped on this ITS */ 1948 its_map_vm(its_dev->its, info->map->vm); 1949 1950 /* 1951 * Flag the interrupt as forwarded so that we can 1952 * start poking the virtual property table. 1953 */ 1954 irqd_set_forwarded_to_vcpu(d); 1955 1956 /* Write out the property to the prop table */ 1957 lpi_write_config(d, 0xff, info->map->properties); 1958 1959 /* Drop the physical mapping */ 1960 its_send_discard(its_dev, event); 1961 1962 /* and install the virtual one */ 1963 its_send_vmapti(its_dev, event); 1964 1965 /* Increment the number of VLPIs */ 1966 its_dev->event_map.nr_vlpis++; 1967 } 1968 1969 return 0; 1970 } 1971 1972 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) 1973 { 1974 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1975 struct its_vlpi_map *map; 1976 1977 map = get_vlpi_map(d); 1978 1979 if (!its_dev->event_map.vm || !map) 1980 return -EINVAL; 1981 1982 /* Copy our mapping information to the incoming request */ 1983 *info->map = *map; 1984 1985 return 0; 1986 } 1987 1988 static int its_vlpi_unmap(struct irq_data *d) 1989 { 1990 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1991 u32 event = its_get_event_id(d); 1992 1993 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 1994 return -EINVAL; 1995 1996 /* Drop the virtual mapping */ 1997 its_send_discard(its_dev, event); 1998 1999 /* and restore the physical one */ 2000 irqd_clr_forwarded_to_vcpu(d); 2001 its_send_mapti(its_dev, d->hwirq, event); 2002 lpi_update_config(d, 0xff, (lpi_prop_prio | 2003 LPI_PROP_ENABLED | 2004 LPI_PROP_GROUP1)); 2005 2006 /* Potentially unmap the VM from this ITS */ 2007 its_unmap_vm(its_dev->its, its_dev->event_map.vm); 2008 2009 /* 2010 * Drop the refcount and make the device available again if 2011 * this was the last VLPI. 2012 */ 2013 if (!--its_dev->event_map.nr_vlpis) { 2014 its_dev->event_map.vm = NULL; 2015 kfree(its_dev->event_map.vlpi_maps); 2016 } 2017 2018 return 0; 2019 } 2020 2021 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) 2022 { 2023 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2024 2025 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) 2026 return -EINVAL; 2027 2028 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) 2029 lpi_update_config(d, 0xff, info->config); 2030 else 2031 lpi_write_config(d, 0xff, info->config); 2032 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); 2033 2034 return 0; 2035 } 2036 2037 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 2038 { 2039 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 2040 struct its_cmd_info *info = vcpu_info; 2041 2042 /* Need a v4 ITS */ 2043 if (!is_v4(its_dev->its)) 2044 return -EINVAL; 2045 2046 guard(raw_spinlock_irq)(&its_dev->event_map.vlpi_lock); 2047 2048 /* Unmap request? */ 2049 if (!info) 2050 return its_vlpi_unmap(d); 2051 2052 switch (info->cmd_type) { 2053 case MAP_VLPI: 2054 return its_vlpi_map(d, info); 2055 2056 case GET_VLPI: 2057 return its_vlpi_get(d, info); 2058 2059 case PROP_UPDATE_VLPI: 2060 case PROP_UPDATE_AND_INV_VLPI: 2061 return its_vlpi_prop_update(d, info); 2062 2063 default: 2064 return -EINVAL; 2065 } 2066 } 2067 2068 static struct irq_chip its_irq_chip = { 2069 .name = "ITS", 2070 .irq_mask = its_mask_irq, 2071 .irq_unmask = its_unmask_irq, 2072 .irq_eoi = irq_chip_eoi_parent, 2073 .irq_set_affinity = its_set_affinity, 2074 .irq_compose_msi_msg = its_irq_compose_msi_msg, 2075 .irq_set_irqchip_state = its_irq_set_irqchip_state, 2076 .irq_retrigger = its_irq_retrigger, 2077 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, 2078 }; 2079 2080 2081 /* 2082 * How we allocate LPIs: 2083 * 2084 * lpi_range_list contains ranges of LPIs that are to available to 2085 * allocate from. To allocate LPIs, just pick the first range that 2086 * fits the required allocation, and reduce it by the required 2087 * amount. Once empty, remove the range from the list. 2088 * 2089 * To free a range of LPIs, add a free range to the list, sort it and 2090 * merge the result if the new range happens to be adjacent to an 2091 * already free block. 2092 * 2093 * The consequence of the above is that allocation is cost is low, but 2094 * freeing is expensive. We assumes that freeing rarely occurs. 2095 */ 2096 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ 2097 2098 static DEFINE_MUTEX(lpi_range_lock); 2099 static LIST_HEAD(lpi_range_list); 2100 2101 struct lpi_range { 2102 struct list_head entry; 2103 u32 base_id; 2104 u32 span; 2105 }; 2106 2107 static struct lpi_range *mk_lpi_range(u32 base, u32 span) 2108 { 2109 struct lpi_range *range; 2110 2111 range = kmalloc(sizeof(*range), GFP_KERNEL); 2112 if (range) { 2113 range->base_id = base; 2114 range->span = span; 2115 } 2116 2117 return range; 2118 } 2119 2120 static int alloc_lpi_range(u32 nr_lpis, u32 *base) 2121 { 2122 struct lpi_range *range, *tmp; 2123 int err = -ENOSPC; 2124 2125 mutex_lock(&lpi_range_lock); 2126 2127 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { 2128 if (range->span >= nr_lpis) { 2129 *base = range->base_id; 2130 range->base_id += nr_lpis; 2131 range->span -= nr_lpis; 2132 2133 if (range->span == 0) { 2134 list_del(&range->entry); 2135 kfree(range); 2136 } 2137 2138 err = 0; 2139 break; 2140 } 2141 } 2142 2143 mutex_unlock(&lpi_range_lock); 2144 2145 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); 2146 return err; 2147 } 2148 2149 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) 2150 { 2151 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) 2152 return; 2153 if (a->base_id + a->span != b->base_id) 2154 return; 2155 b->base_id = a->base_id; 2156 b->span += a->span; 2157 list_del(&a->entry); 2158 kfree(a); 2159 } 2160 2161 static int free_lpi_range(u32 base, u32 nr_lpis) 2162 { 2163 struct lpi_range *new, *old; 2164 2165 new = mk_lpi_range(base, nr_lpis); 2166 if (!new) 2167 return -ENOMEM; 2168 2169 mutex_lock(&lpi_range_lock); 2170 2171 list_for_each_entry_reverse(old, &lpi_range_list, entry) { 2172 if (old->base_id < base) 2173 break; 2174 } 2175 /* 2176 * old is the last element with ->base_id smaller than base, 2177 * so new goes right after it. If there are no elements with 2178 * ->base_id smaller than base, &old->entry ends up pointing 2179 * at the head of the list, and inserting new it the start of 2180 * the list is the right thing to do in that case as well. 2181 */ 2182 list_add(&new->entry, &old->entry); 2183 /* 2184 * Now check if we can merge with the preceding and/or 2185 * following ranges. 2186 */ 2187 merge_lpi_ranges(old, new); 2188 merge_lpi_ranges(new, list_next_entry(new, entry)); 2189 2190 mutex_unlock(&lpi_range_lock); 2191 return 0; 2192 } 2193 2194 static int __init its_lpi_init(u32 id_bits) 2195 { 2196 u32 lpis = (1UL << id_bits) - 8192; 2197 u32 numlpis; 2198 int err; 2199 2200 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); 2201 2202 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { 2203 lpis = numlpis; 2204 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", 2205 lpis); 2206 } 2207 2208 /* 2209 * Initializing the allocator is just the same as freeing the 2210 * full range of LPIs. 2211 */ 2212 err = free_lpi_range(8192, lpis); 2213 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); 2214 return err; 2215 } 2216 2217 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) 2218 { 2219 unsigned long *bitmap = NULL; 2220 int err = 0; 2221 2222 do { 2223 err = alloc_lpi_range(nr_irqs, base); 2224 if (!err) 2225 break; 2226 2227 nr_irqs /= 2; 2228 } while (nr_irqs > 0); 2229 2230 if (!nr_irqs) 2231 err = -ENOSPC; 2232 2233 if (err) 2234 goto out; 2235 2236 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); 2237 if (!bitmap) 2238 goto out; 2239 2240 *nr_ids = nr_irqs; 2241 2242 out: 2243 if (!bitmap) 2244 *base = *nr_ids = 0; 2245 2246 return bitmap; 2247 } 2248 2249 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) 2250 { 2251 WARN_ON(free_lpi_range(base, nr_ids)); 2252 bitmap_free(bitmap); 2253 } 2254 2255 static void gic_reset_prop_table(void *va) 2256 { 2257 /* Regular IRQ priority, Group-1, disabled */ 2258 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); 2259 2260 /* Make sure the GIC will observe the written configuration */ 2261 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); 2262 } 2263 2264 static struct page *its_allocate_prop_table(gfp_t gfp_flags) 2265 { 2266 struct page *prop_page; 2267 2268 prop_page = its_alloc_pages(gfp_flags, 2269 get_order(LPI_PROPBASE_SZ)); 2270 if (!prop_page) 2271 return NULL; 2272 2273 gic_reset_prop_table(page_address(prop_page)); 2274 2275 return prop_page; 2276 } 2277 2278 static void its_free_prop_table(struct page *prop_page) 2279 { 2280 its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ)); 2281 } 2282 2283 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) 2284 { 2285 phys_addr_t start, end, addr_end; 2286 u64 i; 2287 2288 /* 2289 * We don't bother checking for a kdump kernel as by 2290 * construction, the LPI tables are out of this kernel's 2291 * memory map. 2292 */ 2293 if (is_kdump_kernel()) 2294 return true; 2295 2296 addr_end = addr + size - 1; 2297 2298 for_each_reserved_mem_range(i, &start, &end) { 2299 if (addr >= start && addr_end <= end) 2300 return true; 2301 } 2302 2303 /* Not found, not a good sign... */ 2304 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", 2305 &addr, &addr_end); 2306 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 2307 return false; 2308 } 2309 2310 static int gic_reserve_range(phys_addr_t addr, unsigned long size) 2311 { 2312 if (efi_enabled(EFI_CONFIG_TABLES)) 2313 return efi_mem_reserve_persistent(addr, size); 2314 2315 return 0; 2316 } 2317 2318 static int __init its_setup_lpi_prop_table(void) 2319 { 2320 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { 2321 u64 val; 2322 2323 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 2324 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; 2325 2326 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); 2327 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, 2328 LPI_PROPBASE_SZ, 2329 MEMREMAP_WB); 2330 gic_reset_prop_table(gic_rdists->prop_table_va); 2331 } else { 2332 struct page *page; 2333 2334 lpi_id_bits = min_t(u32, 2335 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), 2336 ITS_MAX_LPI_NRBITS); 2337 page = its_allocate_prop_table(GFP_NOWAIT); 2338 if (!page) { 2339 pr_err("Failed to allocate PROPBASE\n"); 2340 return -ENOMEM; 2341 } 2342 2343 gic_rdists->prop_table_pa = page_to_phys(page); 2344 gic_rdists->prop_table_va = page_address(page); 2345 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, 2346 LPI_PROPBASE_SZ)); 2347 } 2348 2349 pr_info("GICv3: using LPI property table @%pa\n", 2350 &gic_rdists->prop_table_pa); 2351 2352 return its_lpi_init(lpi_id_bits); 2353 } 2354 2355 static const char *its_base_type_string[] = { 2356 [GITS_BASER_TYPE_DEVICE] = "Devices", 2357 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 2358 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", 2359 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 2360 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 2361 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 2362 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 2363 }; 2364 2365 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 2366 { 2367 u32 idx = baser - its->tables; 2368 2369 return gits_read_baser(its->base + GITS_BASER + (idx << 3)); 2370 } 2371 2372 static void its_write_baser(struct its_node *its, struct its_baser *baser, 2373 u64 val) 2374 { 2375 u32 idx = baser - its->tables; 2376 2377 gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); 2378 baser->val = its_read_baser(its, baser); 2379 } 2380 2381 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 2382 u64 cache, u64 shr, u32 order, bool indirect) 2383 { 2384 u64 val = its_read_baser(its, baser); 2385 u64 esz = GITS_BASER_ENTRY_SIZE(val); 2386 u64 type = GITS_BASER_TYPE(val); 2387 u64 baser_phys, tmp; 2388 u32 alloc_pages, psz; 2389 struct page *page; 2390 void *base; 2391 2392 psz = baser->psz; 2393 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 2394 if (alloc_pages > GITS_BASER_PAGES_MAX) { 2395 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 2396 &its->phys_base, its_base_type_string[type], 2397 alloc_pages, GITS_BASER_PAGES_MAX); 2398 alloc_pages = GITS_BASER_PAGES_MAX; 2399 order = get_order(GITS_BASER_PAGES_MAX * psz); 2400 } 2401 2402 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); 2403 if (!page) 2404 return -ENOMEM; 2405 2406 base = (void *)page_address(page); 2407 baser_phys = virt_to_phys(base); 2408 2409 /* Check if the physical address of the memory is above 48bits */ 2410 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { 2411 2412 /* 52bit PA is supported only when PageSize=64K */ 2413 if (psz != SZ_64K) { 2414 pr_err("ITS: no 52bit PA support when psz=%d\n", psz); 2415 its_free_pages(base, order); 2416 return -ENXIO; 2417 } 2418 2419 /* Convert 52bit PA to 48bit field */ 2420 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); 2421 } 2422 2423 retry_baser: 2424 val = (baser_phys | 2425 (type << GITS_BASER_TYPE_SHIFT) | 2426 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 2427 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 2428 cache | 2429 shr | 2430 GITS_BASER_VALID); 2431 2432 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 2433 2434 switch (psz) { 2435 case SZ_4K: 2436 val |= GITS_BASER_PAGE_SIZE_4K; 2437 break; 2438 case SZ_16K: 2439 val |= GITS_BASER_PAGE_SIZE_16K; 2440 break; 2441 case SZ_64K: 2442 val |= GITS_BASER_PAGE_SIZE_64K; 2443 break; 2444 } 2445 2446 if (!shr) 2447 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); 2448 2449 its_write_baser(its, baser, val); 2450 tmp = baser->val; 2451 2452 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 2453 /* 2454 * Shareability didn't stick. Just use 2455 * whatever the read reported, which is likely 2456 * to be the only thing this redistributor 2457 * supports. If that's zero, make it 2458 * non-cacheable as well. 2459 */ 2460 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 2461 if (!shr) 2462 cache = GITS_BASER_nC; 2463 2464 goto retry_baser; 2465 } 2466 2467 if (val != tmp) { 2468 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", 2469 &its->phys_base, its_base_type_string[type], 2470 val, tmp); 2471 its_free_pages(base, order); 2472 return -ENXIO; 2473 } 2474 2475 baser->order = order; 2476 baser->base = base; 2477 baser->psz = psz; 2478 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 2479 2480 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 2481 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), 2482 its_base_type_string[type], 2483 (unsigned long)virt_to_phys(base), 2484 indirect ? "indirect" : "flat", (int)esz, 2485 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 2486 2487 return 0; 2488 } 2489 2490 static bool its_parse_indirect_baser(struct its_node *its, 2491 struct its_baser *baser, 2492 u32 *order, u32 ids) 2493 { 2494 u64 tmp = its_read_baser(its, baser); 2495 u64 type = GITS_BASER_TYPE(tmp); 2496 u64 esz = GITS_BASER_ENTRY_SIZE(tmp); 2497 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; 2498 u32 new_order = *order; 2499 u32 psz = baser->psz; 2500 bool indirect = false; 2501 2502 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 2503 if ((esz << ids) > (psz * 2)) { 2504 /* 2505 * Find out whether hw supports a single or two-level table by 2506 * table by reading bit at offset '62' after writing '1' to it. 2507 */ 2508 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 2509 indirect = !!(baser->val & GITS_BASER_INDIRECT); 2510 2511 if (indirect) { 2512 /* 2513 * The size of the lvl2 table is equal to ITS page size 2514 * which is 'psz'. For computing lvl1 table size, 2515 * subtract ID bits that sparse lvl2 table from 'ids' 2516 * which is reported by ITS hardware times lvl1 table 2517 * entry size. 2518 */ 2519 ids -= ilog2(psz / (int)esz); 2520 esz = GITS_LVL1_ENTRY_SIZE; 2521 } 2522 } 2523 2524 /* 2525 * Allocate as many entries as required to fit the 2526 * range of device IDs that the ITS can grok... The ID 2527 * space being incredibly sparse, this results in a 2528 * massive waste of memory if two-level device table 2529 * feature is not supported by hardware. 2530 */ 2531 new_order = max_t(u32, get_order(esz << ids), new_order); 2532 if (new_order > MAX_PAGE_ORDER) { 2533 new_order = MAX_PAGE_ORDER; 2534 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); 2535 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", 2536 &its->phys_base, its_base_type_string[type], 2537 device_ids(its), ids); 2538 } 2539 2540 *order = new_order; 2541 2542 return indirect; 2543 } 2544 2545 static u32 compute_common_aff(u64 val) 2546 { 2547 u32 aff, clpiaff; 2548 2549 aff = FIELD_GET(GICR_TYPER_AFFINITY, val); 2550 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); 2551 2552 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); 2553 } 2554 2555 static u32 compute_its_aff(struct its_node *its) 2556 { 2557 u64 val; 2558 u32 svpet; 2559 2560 /* 2561 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute 2562 * the resulting affinity. We then use that to see if this match 2563 * our own affinity. 2564 */ 2565 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 2566 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); 2567 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); 2568 return compute_common_aff(val); 2569 } 2570 2571 static struct its_node *find_sibling_its(struct its_node *cur_its) 2572 { 2573 struct its_node *its; 2574 u32 aff; 2575 2576 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) 2577 return NULL; 2578 2579 aff = compute_its_aff(cur_its); 2580 2581 list_for_each_entry(its, &its_nodes, entry) { 2582 u64 baser; 2583 2584 if (!is_v4_1(its) || its == cur_its) 2585 continue; 2586 2587 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2588 continue; 2589 2590 if (aff != compute_its_aff(its)) 2591 continue; 2592 2593 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2594 baser = its->tables[2].val; 2595 if (!(baser & GITS_BASER_VALID)) 2596 continue; 2597 2598 return its; 2599 } 2600 2601 return NULL; 2602 } 2603 2604 static void its_free_tables(struct its_node *its) 2605 { 2606 int i; 2607 2608 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2609 if (its->tables[i].base) { 2610 its_free_pages(its->tables[i].base, its->tables[i].order); 2611 its->tables[i].base = NULL; 2612 } 2613 } 2614 } 2615 2616 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) 2617 { 2618 u64 psz = SZ_64K; 2619 2620 while (psz) { 2621 u64 val, gpsz; 2622 2623 val = its_read_baser(its, baser); 2624 val &= ~GITS_BASER_PAGE_SIZE_MASK; 2625 2626 switch (psz) { 2627 case SZ_64K: 2628 gpsz = GITS_BASER_PAGE_SIZE_64K; 2629 break; 2630 case SZ_16K: 2631 gpsz = GITS_BASER_PAGE_SIZE_16K; 2632 break; 2633 case SZ_4K: 2634 default: 2635 gpsz = GITS_BASER_PAGE_SIZE_4K; 2636 break; 2637 } 2638 2639 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; 2640 2641 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); 2642 its_write_baser(its, baser, val); 2643 2644 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) 2645 break; 2646 2647 switch (psz) { 2648 case SZ_64K: 2649 psz = SZ_16K; 2650 break; 2651 case SZ_16K: 2652 psz = SZ_4K; 2653 break; 2654 case SZ_4K: 2655 default: 2656 return -1; 2657 } 2658 } 2659 2660 baser->psz = psz; 2661 return 0; 2662 } 2663 2664 static int its_alloc_tables(struct its_node *its) 2665 { 2666 u64 shr = GITS_BASER_InnerShareable; 2667 u64 cache = GITS_BASER_RaWaWb; 2668 int err, i; 2669 2670 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) 2671 /* erratum 24313: ignore memory access type */ 2672 cache = GITS_BASER_nCnB; 2673 2674 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) { 2675 cache = GITS_BASER_nC; 2676 shr = 0; 2677 } 2678 2679 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 2680 struct its_baser *baser = its->tables + i; 2681 u64 val = its_read_baser(its, baser); 2682 u64 type = GITS_BASER_TYPE(val); 2683 bool indirect = false; 2684 u32 order; 2685 2686 if (type == GITS_BASER_TYPE_NONE) 2687 continue; 2688 2689 if (its_probe_baser_psz(its, baser)) { 2690 its_free_tables(its); 2691 return -ENXIO; 2692 } 2693 2694 order = get_order(baser->psz); 2695 2696 switch (type) { 2697 case GITS_BASER_TYPE_DEVICE: 2698 indirect = its_parse_indirect_baser(its, baser, &order, 2699 device_ids(its)); 2700 break; 2701 2702 case GITS_BASER_TYPE_VCPU: 2703 if (is_v4_1(its)) { 2704 struct its_node *sibling; 2705 2706 WARN_ON(i != 2); 2707 if ((sibling = find_sibling_its(its))) { 2708 *baser = sibling->tables[2]; 2709 its_write_baser(its, baser, baser->val); 2710 continue; 2711 } 2712 } 2713 2714 indirect = its_parse_indirect_baser(its, baser, &order, 2715 ITS_MAX_VPEID_BITS); 2716 break; 2717 } 2718 2719 err = its_setup_baser(its, baser, cache, shr, order, indirect); 2720 if (err < 0) { 2721 its_free_tables(its); 2722 return err; 2723 } 2724 2725 /* Update settings which will be used for next BASERn */ 2726 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 2727 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 2728 } 2729 2730 return 0; 2731 } 2732 2733 static u64 inherit_vpe_l1_table_from_its(void) 2734 { 2735 struct its_node *its; 2736 u64 val; 2737 u32 aff; 2738 2739 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2740 aff = compute_common_aff(val); 2741 2742 list_for_each_entry(its, &its_nodes, entry) { 2743 u64 baser, addr; 2744 2745 if (!is_v4_1(its)) 2746 continue; 2747 2748 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) 2749 continue; 2750 2751 if (aff != compute_its_aff(its)) 2752 continue; 2753 2754 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ 2755 baser = its->tables[2].val; 2756 if (!(baser & GITS_BASER_VALID)) 2757 continue; 2758 2759 /* We have a winner! */ 2760 gic_data_rdist()->vpe_l1_base = its->tables[2].base; 2761 2762 val = GICR_VPROPBASER_4_1_VALID; 2763 if (baser & GITS_BASER_INDIRECT) 2764 val |= GICR_VPROPBASER_4_1_INDIRECT; 2765 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, 2766 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); 2767 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { 2768 case GIC_PAGE_SIZE_64K: 2769 addr = GITS_BASER_ADDR_48_to_52(baser); 2770 break; 2771 default: 2772 addr = baser & GENMASK_ULL(47, 12); 2773 break; 2774 } 2775 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); 2776 if (rdists_support_shareable()) { 2777 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, 2778 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); 2779 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, 2780 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); 2781 } 2782 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); 2783 2784 return val; 2785 } 2786 2787 return 0; 2788 } 2789 2790 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) 2791 { 2792 u32 aff; 2793 u64 val; 2794 int cpu; 2795 2796 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 2797 aff = compute_common_aff(val); 2798 2799 for_each_possible_cpu(cpu) { 2800 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2801 2802 if (!base || cpu == smp_processor_id()) 2803 continue; 2804 2805 val = gic_read_typer(base + GICR_TYPER); 2806 if (aff != compute_common_aff(val)) 2807 continue; 2808 2809 /* 2810 * At this point, we have a victim. This particular CPU 2811 * has already booted, and has an affinity that matches 2812 * ours wrt CommonLPIAff. Let's use its own VPROPBASER. 2813 * Make sure we don't write the Z bit in that case. 2814 */ 2815 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2816 val &= ~GICR_VPROPBASER_4_1_Z; 2817 2818 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2819 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; 2820 2821 return val; 2822 } 2823 2824 return 0; 2825 } 2826 2827 static bool allocate_vpe_l2_table(int cpu, u32 id) 2828 { 2829 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; 2830 unsigned int psz, esz, idx, npg, gpsz; 2831 u64 val; 2832 struct page *page; 2833 __le64 *table; 2834 2835 if (!gic_rdists->has_rvpeid) 2836 return true; 2837 2838 /* Skip non-present CPUs */ 2839 if (!base) 2840 return true; 2841 2842 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); 2843 2844 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; 2845 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2846 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; 2847 2848 switch (gpsz) { 2849 default: 2850 WARN_ON(1); 2851 fallthrough; 2852 case GIC_PAGE_SIZE_4K: 2853 psz = SZ_4K; 2854 break; 2855 case GIC_PAGE_SIZE_16K: 2856 psz = SZ_16K; 2857 break; 2858 case GIC_PAGE_SIZE_64K: 2859 psz = SZ_64K; 2860 break; 2861 } 2862 2863 /* Don't allow vpe_id that exceeds single, flat table limit */ 2864 if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) 2865 return (id < (npg * psz / (esz * SZ_8))); 2866 2867 /* Compute 1st level table index & check if that exceeds table limit */ 2868 idx = id >> ilog2(psz / (esz * SZ_8)); 2869 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) 2870 return false; 2871 2872 table = gic_data_rdist_cpu(cpu)->vpe_l1_base; 2873 2874 /* Allocate memory for 2nd level table */ 2875 if (!table[idx]) { 2876 page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); 2877 if (!page) 2878 return false; 2879 2880 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 2881 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2882 gic_flush_dcache_to_poc(page_address(page), psz); 2883 2884 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 2885 2886 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 2887 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) 2888 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 2889 2890 /* Ensure updated table contents are visible to RD hardware */ 2891 dsb(sy); 2892 } 2893 2894 return true; 2895 } 2896 2897 static int allocate_vpe_l1_table(void) 2898 { 2899 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 2900 u64 val, gpsz, npg, pa; 2901 unsigned int psz = SZ_64K; 2902 unsigned int np, epp, esz; 2903 struct page *page; 2904 2905 if (!gic_rdists->has_rvpeid) 2906 return 0; 2907 2908 /* 2909 * if VPENDBASER.Valid is set, disable any previously programmed 2910 * VPE by setting PendingLast while clearing Valid. This has the 2911 * effect of making sure no doorbell will be generated and we can 2912 * then safely clear VPROPBASER.Valid. 2913 */ 2914 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) 2915 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, 2916 vlpi_base + GICR_VPENDBASER); 2917 2918 /* 2919 * If we can inherit the configuration from another RD, let's do 2920 * so. Otherwise, we have to go through the allocation process. We 2921 * assume that all RDs have the exact same requirements, as 2922 * nothing will work otherwise. 2923 */ 2924 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); 2925 if (val & GICR_VPROPBASER_4_1_VALID) 2926 goto out; 2927 2928 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); 2929 if (!gic_data_rdist()->vpe_table_mask) 2930 return -ENOMEM; 2931 2932 val = inherit_vpe_l1_table_from_its(); 2933 if (val & GICR_VPROPBASER_4_1_VALID) 2934 goto out; 2935 2936 /* First probe the page size */ 2937 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); 2938 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 2939 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); 2940 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); 2941 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); 2942 2943 switch (gpsz) { 2944 default: 2945 gpsz = GIC_PAGE_SIZE_4K; 2946 fallthrough; 2947 case GIC_PAGE_SIZE_4K: 2948 psz = SZ_4K; 2949 break; 2950 case GIC_PAGE_SIZE_16K: 2951 psz = SZ_16K; 2952 break; 2953 case GIC_PAGE_SIZE_64K: 2954 psz = SZ_64K; 2955 break; 2956 } 2957 2958 /* 2959 * Start populating the register from scratch, including RO fields 2960 * (which we want to print in debug cases...) 2961 */ 2962 val = 0; 2963 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); 2964 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); 2965 2966 /* How many entries per GIC page? */ 2967 esz++; 2968 epp = psz / (esz * SZ_8); 2969 2970 /* 2971 * If we need more than just a single L1 page, flag the table 2972 * as indirect and compute the number of required L1 pages. 2973 */ 2974 if (epp < ITS_MAX_VPEID) { 2975 int nl2; 2976 2977 val |= GICR_VPROPBASER_4_1_INDIRECT; 2978 2979 /* Number of L2 pages required to cover the VPEID space */ 2980 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); 2981 2982 /* Number of L1 pages to point to the L2 pages */ 2983 npg = DIV_ROUND_UP(nl2 * SZ_8, psz); 2984 } else { 2985 npg = 1; 2986 } 2987 2988 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); 2989 2990 /* Right, that's the number of CPU pages we need for L1 */ 2991 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); 2992 2993 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", 2994 np, npg, psz, epp, esz); 2995 page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); 2996 if (!page) 2997 return -ENOMEM; 2998 2999 gic_data_rdist()->vpe_l1_base = page_address(page); 3000 pa = virt_to_phys(page_address(page)); 3001 WARN_ON(!IS_ALIGNED(pa, psz)); 3002 3003 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); 3004 if (rdists_support_shareable()) { 3005 val |= GICR_VPROPBASER_RaWb; 3006 val |= GICR_VPROPBASER_InnerShareable; 3007 } 3008 val |= GICR_VPROPBASER_4_1_Z; 3009 val |= GICR_VPROPBASER_4_1_VALID; 3010 3011 out: 3012 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3013 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); 3014 3015 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", 3016 smp_processor_id(), val, 3017 cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); 3018 3019 return 0; 3020 } 3021 3022 static int its_alloc_collections(struct its_node *its) 3023 { 3024 int i; 3025 3026 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), 3027 GFP_KERNEL); 3028 if (!its->collections) 3029 return -ENOMEM; 3030 3031 for (i = 0; i < nr_cpu_ids; i++) 3032 its->collections[i].target_address = ~0ULL; 3033 3034 return 0; 3035 } 3036 3037 static struct page *its_allocate_pending_table(gfp_t gfp_flags) 3038 { 3039 struct page *pend_page; 3040 3041 pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ)); 3042 if (!pend_page) 3043 return NULL; 3044 3045 /* Make sure the GIC will observe the zero-ed page */ 3046 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); 3047 3048 return pend_page; 3049 } 3050 3051 static void its_free_pending_table(struct page *pt) 3052 { 3053 its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ)); 3054 } 3055 3056 /* 3057 * Booting with kdump and LPIs enabled is generally fine. Any other 3058 * case is wrong in the absence of firmware/EFI support. 3059 */ 3060 static bool enabled_lpis_allowed(void) 3061 { 3062 phys_addr_t addr; 3063 u64 val; 3064 3065 /* Check whether the property table is in a reserved region */ 3066 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); 3067 addr = val & GENMASK_ULL(51, 12); 3068 3069 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); 3070 } 3071 3072 static int __init allocate_lpi_tables(void) 3073 { 3074 u64 val; 3075 int err, cpu; 3076 3077 /* 3078 * If LPIs are enabled while we run this from the boot CPU, 3079 * flag the RD tables as pre-allocated if the stars do align. 3080 */ 3081 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); 3082 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { 3083 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | 3084 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); 3085 pr_info("GICv3: Using preallocated redistributor tables\n"); 3086 } 3087 3088 err = its_setup_lpi_prop_table(); 3089 if (err) 3090 return err; 3091 3092 /* 3093 * We allocate all the pending tables anyway, as we may have a 3094 * mix of RDs that have had LPIs enabled, and some that 3095 * don't. We'll free the unused ones as each CPU comes online. 3096 */ 3097 for_each_possible_cpu(cpu) { 3098 struct page *pend_page; 3099 3100 pend_page = its_allocate_pending_table(GFP_NOWAIT); 3101 if (!pend_page) { 3102 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); 3103 return -ENOMEM; 3104 } 3105 3106 gic_data_rdist_cpu(cpu)->pend_page = pend_page; 3107 } 3108 3109 return 0; 3110 } 3111 3112 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) 3113 { 3114 u32 count = 1000000; /* 1s! */ 3115 bool clean; 3116 u64 val; 3117 3118 do { 3119 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); 3120 clean = !(val & GICR_VPENDBASER_Dirty); 3121 if (!clean) { 3122 count--; 3123 cpu_relax(); 3124 udelay(1); 3125 } 3126 } while (!clean && count); 3127 3128 if (unlikely(!clean)) 3129 pr_err_ratelimited("ITS virtual pending table not cleaning\n"); 3130 3131 return val; 3132 } 3133 3134 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) 3135 { 3136 u64 val; 3137 3138 /* Make sure we wait until the RD is done with the initial scan */ 3139 val = read_vpend_dirty_clear(vlpi_base); 3140 val &= ~GICR_VPENDBASER_Valid; 3141 val &= ~clr; 3142 val |= set; 3143 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 3144 3145 val = read_vpend_dirty_clear(vlpi_base); 3146 if (unlikely(val & GICR_VPENDBASER_Dirty)) 3147 val |= GICR_VPENDBASER_PendingLast; 3148 3149 return val; 3150 } 3151 3152 static void its_cpu_init_lpis(void) 3153 { 3154 void __iomem *rbase = gic_data_rdist_rd_base(); 3155 struct page *pend_page; 3156 phys_addr_t paddr; 3157 u64 val, tmp; 3158 3159 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) 3160 return; 3161 3162 val = readl_relaxed(rbase + GICR_CTLR); 3163 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && 3164 (val & GICR_CTLR_ENABLE_LPIS)) { 3165 /* 3166 * Check that we get the same property table on all 3167 * RDs. If we don't, this is hopeless. 3168 */ 3169 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); 3170 paddr &= GENMASK_ULL(51, 12); 3171 if (WARN_ON(gic_rdists->prop_table_pa != paddr)) 3172 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 3173 3174 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3175 paddr &= GENMASK_ULL(51, 16); 3176 3177 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); 3178 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED; 3179 3180 goto out; 3181 } 3182 3183 pend_page = gic_data_rdist()->pend_page; 3184 paddr = page_to_phys(pend_page); 3185 3186 /* set PROPBASE */ 3187 val = (gic_rdists->prop_table_pa | 3188 GICR_PROPBASER_InnerShareable | 3189 GICR_PROPBASER_RaWaWb | 3190 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 3191 3192 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3193 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); 3194 3195 if (!rdists_support_shareable()) 3196 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK; 3197 3198 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 3199 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 3200 /* 3201 * The HW reports non-shareable, we must 3202 * remove the cacheability attributes as 3203 * well. 3204 */ 3205 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 3206 GICR_PROPBASER_CACHEABILITY_MASK); 3207 val |= GICR_PROPBASER_nC; 3208 gicr_write_propbaser(val, rbase + GICR_PROPBASER); 3209 } 3210 pr_info_once("GIC: using cache flushing for LPI property table\n"); 3211 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 3212 } 3213 3214 /* set PENDBASE */ 3215 val = (page_to_phys(pend_page) | 3216 GICR_PENDBASER_InnerShareable | 3217 GICR_PENDBASER_RaWaWb); 3218 3219 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3220 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); 3221 3222 if (!rdists_support_shareable()) 3223 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK; 3224 3225 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 3226 /* 3227 * The HW reports non-shareable, we must remove the 3228 * cacheability attributes as well. 3229 */ 3230 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 3231 GICR_PENDBASER_CACHEABILITY_MASK); 3232 val |= GICR_PENDBASER_nC; 3233 gicr_write_pendbaser(val, rbase + GICR_PENDBASER); 3234 } 3235 3236 /* Enable LPIs */ 3237 val = readl_relaxed(rbase + GICR_CTLR); 3238 val |= GICR_CTLR_ENABLE_LPIS; 3239 writel_relaxed(val, rbase + GICR_CTLR); 3240 3241 out: 3242 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { 3243 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3244 3245 /* 3246 * It's possible for CPU to receive VLPIs before it is 3247 * scheduled as a vPE, especially for the first CPU, and the 3248 * VLPI with INTID larger than 2^(IDbits+1) will be considered 3249 * as out of range and dropped by GIC. 3250 * So we initialize IDbits to known value to avoid VLPI drop. 3251 */ 3252 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3253 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", 3254 smp_processor_id(), val); 3255 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3256 3257 /* 3258 * Also clear Valid bit of GICR_VPENDBASER, in case some 3259 * ancient programming gets left in and has possibility of 3260 * corrupting memory. 3261 */ 3262 val = its_clear_vpend_valid(vlpi_base, 0, 0); 3263 } 3264 3265 if (allocate_vpe_l1_table()) { 3266 /* 3267 * If the allocation has failed, we're in massive trouble. 3268 * Disable direct injection, and pray that no VM was 3269 * already running... 3270 */ 3271 gic_rdists->has_rvpeid = false; 3272 gic_rdists->has_vlpis = false; 3273 } 3274 3275 /* Make sure the GIC has seen the above */ 3276 dsb(sy); 3277 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED; 3278 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", 3279 smp_processor_id(), 3280 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ? 3281 "reserved" : "allocated", 3282 &paddr); 3283 } 3284 3285 static void its_cpu_init_collection(struct its_node *its) 3286 { 3287 int cpu = smp_processor_id(); 3288 u64 target; 3289 3290 /* avoid cross node collections and its mapping */ 3291 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 3292 struct device_node *cpu_node; 3293 3294 cpu_node = of_get_cpu_node(cpu, NULL); 3295 if (its->numa_node != NUMA_NO_NODE && 3296 its->numa_node != of_node_to_nid(cpu_node)) 3297 return; 3298 } 3299 3300 /* 3301 * We now have to bind each collection to its target 3302 * redistributor. 3303 */ 3304 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 3305 /* 3306 * This ITS wants the physical address of the 3307 * redistributor. 3308 */ 3309 target = gic_data_rdist()->phys_base; 3310 } else { 3311 /* This ITS wants a linear CPU number. */ 3312 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); 3313 target = GICR_TYPER_CPU_NUMBER(target) << 16; 3314 } 3315 3316 /* Perform collection mapping */ 3317 its->collections[cpu].target_address = target; 3318 its->collections[cpu].col_id = cpu; 3319 3320 its_send_mapc(its, &its->collections[cpu], 1); 3321 its_send_invall(its, &its->collections[cpu]); 3322 } 3323 3324 static void its_cpu_init_collections(void) 3325 { 3326 struct its_node *its; 3327 3328 raw_spin_lock(&its_lock); 3329 3330 list_for_each_entry(its, &its_nodes, entry) 3331 its_cpu_init_collection(its); 3332 3333 raw_spin_unlock(&its_lock); 3334 } 3335 3336 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 3337 { 3338 struct its_device *its_dev = NULL, *tmp; 3339 unsigned long flags; 3340 3341 raw_spin_lock_irqsave(&its->lock, flags); 3342 3343 list_for_each_entry(tmp, &its->its_device_list, entry) { 3344 if (tmp->device_id == dev_id) { 3345 its_dev = tmp; 3346 break; 3347 } 3348 } 3349 3350 raw_spin_unlock_irqrestore(&its->lock, flags); 3351 3352 return its_dev; 3353 } 3354 3355 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 3356 { 3357 int i; 3358 3359 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 3360 if (GITS_BASER_TYPE(its->tables[i].val) == type) 3361 return &its->tables[i]; 3362 } 3363 3364 return NULL; 3365 } 3366 3367 static bool its_alloc_table_entry(struct its_node *its, 3368 struct its_baser *baser, u32 id) 3369 { 3370 struct page *page; 3371 u32 esz, idx; 3372 __le64 *table; 3373 3374 /* Don't allow device id that exceeds single, flat table limit */ 3375 esz = GITS_BASER_ENTRY_SIZE(baser->val); 3376 if (!(baser->val & GITS_BASER_INDIRECT)) 3377 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 3378 3379 /* Compute 1st level table index & check if that exceeds table limit */ 3380 idx = id >> ilog2(baser->psz / esz); 3381 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 3382 return false; 3383 3384 table = baser->base; 3385 3386 /* Allocate memory for 2nd level table */ 3387 if (!table[idx]) { 3388 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, 3389 get_order(baser->psz)); 3390 if (!page) 3391 return false; 3392 3393 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 3394 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3395 gic_flush_dcache_to_poc(page_address(page), baser->psz); 3396 3397 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 3398 3399 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 3400 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 3401 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); 3402 3403 /* Ensure updated table contents are visible to ITS hardware */ 3404 dsb(sy); 3405 } 3406 3407 return true; 3408 } 3409 3410 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 3411 { 3412 struct its_baser *baser; 3413 3414 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 3415 3416 /* Don't allow device id that exceeds ITS hardware limit */ 3417 if (!baser) 3418 return (ilog2(dev_id) < device_ids(its)); 3419 3420 return its_alloc_table_entry(its, baser, dev_id); 3421 } 3422 3423 static bool its_alloc_vpe_table(u32 vpe_id) 3424 { 3425 struct its_node *its; 3426 int cpu; 3427 3428 /* 3429 * Make sure the L2 tables are allocated on *all* v4 ITSs. We 3430 * could try and only do it on ITSs corresponding to devices 3431 * that have interrupts targeted at this VPE, but the 3432 * complexity becomes crazy (and you have tons of memory 3433 * anyway, right?). 3434 */ 3435 list_for_each_entry(its, &its_nodes, entry) { 3436 struct its_baser *baser; 3437 3438 if (!is_v4(its)) 3439 continue; 3440 3441 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); 3442 if (!baser) 3443 return false; 3444 3445 if (!its_alloc_table_entry(its, baser, vpe_id)) 3446 return false; 3447 } 3448 3449 /* Non v4.1? No need to iterate RDs and go back early. */ 3450 if (!gic_rdists->has_rvpeid) 3451 return true; 3452 3453 /* 3454 * Make sure the L2 tables are allocated for all copies of 3455 * the L1 table on *all* v4.1 RDs. 3456 */ 3457 for_each_possible_cpu(cpu) { 3458 if (!allocate_vpe_l2_table(cpu, vpe_id)) 3459 return false; 3460 } 3461 3462 return true; 3463 } 3464 3465 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 3466 int nvecs, bool alloc_lpis) 3467 { 3468 struct its_device *dev; 3469 unsigned long *lpi_map = NULL; 3470 unsigned long flags; 3471 u16 *col_map = NULL; 3472 void *itt; 3473 int lpi_base; 3474 int nr_lpis; 3475 int nr_ites; 3476 int sz; 3477 3478 if (!its_alloc_device_table(its, dev_id)) 3479 return NULL; 3480 3481 if (WARN_ON(!is_power_of_2(nvecs))) 3482 nvecs = roundup_pow_of_two(nvecs); 3483 3484 /* 3485 * Even if the device wants a single LPI, the ITT must be 3486 * sized as a power of two (and you need at least one bit...). 3487 */ 3488 nr_ites = max(2, nvecs); 3489 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); 3490 sz = max(sz, ITS_ITT_ALIGN); 3491 3492 itt = itt_alloc_pool(its->numa_node, sz); 3493 3494 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3495 3496 if (alloc_lpis) { 3497 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); 3498 if (lpi_map) 3499 col_map = kcalloc(nr_lpis, sizeof(*col_map), 3500 GFP_KERNEL); 3501 } else { 3502 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); 3503 nr_lpis = 0; 3504 lpi_base = 0; 3505 } 3506 3507 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { 3508 kfree(dev); 3509 itt_free_pool(itt, sz); 3510 bitmap_free(lpi_map); 3511 kfree(col_map); 3512 return NULL; 3513 } 3514 3515 gic_flush_dcache_to_poc(itt, sz); 3516 3517 dev->its = its; 3518 dev->itt = itt; 3519 dev->itt_sz = sz; 3520 dev->nr_ites = nr_ites; 3521 dev->event_map.lpi_map = lpi_map; 3522 dev->event_map.col_map = col_map; 3523 dev->event_map.lpi_base = lpi_base; 3524 dev->event_map.nr_lpis = nr_lpis; 3525 raw_spin_lock_init(&dev->event_map.vlpi_lock); 3526 dev->device_id = dev_id; 3527 INIT_LIST_HEAD(&dev->entry); 3528 3529 raw_spin_lock_irqsave(&its->lock, flags); 3530 list_add(&dev->entry, &its->its_device_list); 3531 raw_spin_unlock_irqrestore(&its->lock, flags); 3532 3533 /* Map device to its ITT */ 3534 its_send_mapd(dev, 1); 3535 3536 return dev; 3537 } 3538 3539 static void its_free_device(struct its_device *its_dev) 3540 { 3541 unsigned long flags; 3542 3543 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 3544 list_del(&its_dev->entry); 3545 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 3546 kfree(its_dev->event_map.col_map); 3547 itt_free_pool(its_dev->itt, its_dev->itt_sz); 3548 kfree(its_dev); 3549 } 3550 3551 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) 3552 { 3553 int idx; 3554 3555 /* Find a free LPI region in lpi_map and allocate them. */ 3556 idx = bitmap_find_free_region(dev->event_map.lpi_map, 3557 dev->event_map.nr_lpis, 3558 get_count_order(nvecs)); 3559 if (idx < 0) 3560 return -ENOSPC; 3561 3562 *hwirq = dev->event_map.lpi_base + idx; 3563 3564 return 0; 3565 } 3566 3567 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 3568 int nvec, msi_alloc_info_t *info) 3569 { 3570 struct its_node *its; 3571 struct its_device *its_dev; 3572 struct msi_domain_info *msi_info; 3573 u32 dev_id; 3574 int err = 0; 3575 3576 /* 3577 * We ignore "dev" entirely, and rely on the dev_id that has 3578 * been passed via the scratchpad. This limits this domain's 3579 * usefulness to upper layers that definitely know that they 3580 * are built on top of the ITS. 3581 */ 3582 dev_id = info->scratchpad[0].ul; 3583 3584 msi_info = msi_get_domain_info(domain); 3585 its = msi_info->data; 3586 3587 if (!gic_rdists->has_direct_lpi && 3588 vpe_proxy.dev && 3589 vpe_proxy.dev->its == its && 3590 dev_id == vpe_proxy.dev->device_id) { 3591 /* Bad luck. Get yourself a better implementation */ 3592 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", 3593 dev_id); 3594 return -EINVAL; 3595 } 3596 3597 mutex_lock(&its->dev_alloc_lock); 3598 its_dev = its_find_device(its, dev_id); 3599 if (its_dev) { 3600 /* 3601 * We already have seen this ID, probably through 3602 * another alias (PCI bridge of some sort). No need to 3603 * create the device. 3604 */ 3605 its_dev->shared = true; 3606 pr_debug("Reusing ITT for devID %x\n", dev_id); 3607 goto out; 3608 } 3609 3610 its_dev = its_create_device(its, dev_id, nvec, true); 3611 if (!its_dev) { 3612 err = -ENOMEM; 3613 goto out; 3614 } 3615 3616 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) 3617 its_dev->shared = true; 3618 3619 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 3620 out: 3621 mutex_unlock(&its->dev_alloc_lock); 3622 info->scratchpad[0].ptr = its_dev; 3623 return err; 3624 } 3625 3626 static struct msi_domain_ops its_msi_domain_ops = { 3627 .msi_prepare = its_msi_prepare, 3628 }; 3629 3630 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 3631 unsigned int virq, 3632 irq_hw_number_t hwirq) 3633 { 3634 struct irq_fwspec fwspec; 3635 3636 if (irq_domain_get_of_node(domain->parent)) { 3637 fwspec.fwnode = domain->parent->fwnode; 3638 fwspec.param_count = 3; 3639 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 3640 fwspec.param[1] = hwirq; 3641 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 3642 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 3643 fwspec.fwnode = domain->parent->fwnode; 3644 fwspec.param_count = 2; 3645 fwspec.param[0] = hwirq; 3646 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 3647 } else { 3648 return -EINVAL; 3649 } 3650 3651 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 3652 } 3653 3654 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 3655 unsigned int nr_irqs, void *args) 3656 { 3657 msi_alloc_info_t *info = args; 3658 struct its_device *its_dev = info->scratchpad[0].ptr; 3659 struct its_node *its = its_dev->its; 3660 struct irq_data *irqd; 3661 irq_hw_number_t hwirq; 3662 int err; 3663 int i; 3664 3665 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); 3666 if (err) 3667 return err; 3668 3669 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); 3670 if (err) 3671 return err; 3672 3673 for (i = 0; i < nr_irqs; i++) { 3674 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); 3675 if (err) 3676 return err; 3677 3678 irq_domain_set_hwirq_and_chip(domain, virq + i, 3679 hwirq + i, &its_irq_chip, its_dev); 3680 irqd = irq_get_irq_data(virq + i); 3681 irqd_set_single_target(irqd); 3682 irqd_set_affinity_on_activate(irqd); 3683 irqd_set_resend_when_in_progress(irqd); 3684 pr_debug("ID:%d pID:%d vID:%d\n", 3685 (int)(hwirq + i - its_dev->event_map.lpi_base), 3686 (int)(hwirq + i), virq + i); 3687 } 3688 3689 return 0; 3690 } 3691 3692 static int its_irq_domain_activate(struct irq_domain *domain, 3693 struct irq_data *d, bool reserve) 3694 { 3695 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3696 u32 event = its_get_event_id(d); 3697 int cpu; 3698 3699 cpu = its_select_cpu(d, cpu_online_mask); 3700 if (cpu < 0 || cpu >= nr_cpu_ids) 3701 return -EINVAL; 3702 3703 its_inc_lpi_count(d, cpu); 3704 its_dev->event_map.col_map[event] = cpu; 3705 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3706 3707 /* Map the GIC IRQ and event to the device */ 3708 its_send_mapti(its_dev, d->hwirq, event); 3709 return 0; 3710 } 3711 3712 static void its_irq_domain_deactivate(struct irq_domain *domain, 3713 struct irq_data *d) 3714 { 3715 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3716 u32 event = its_get_event_id(d); 3717 3718 its_dec_lpi_count(d, its_dev->event_map.col_map[event]); 3719 /* Stop the delivery of interrupts */ 3720 its_send_discard(its_dev, event); 3721 } 3722 3723 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 3724 unsigned int nr_irqs) 3725 { 3726 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 3727 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 3728 struct its_node *its = its_dev->its; 3729 int i; 3730 3731 bitmap_release_region(its_dev->event_map.lpi_map, 3732 its_get_event_id(irq_domain_get_irq_data(domain, virq)), 3733 get_count_order(nr_irqs)); 3734 3735 for (i = 0; i < nr_irqs; i++) { 3736 struct irq_data *data = irq_domain_get_irq_data(domain, 3737 virq + i); 3738 /* Nuke the entry in the domain */ 3739 irq_domain_reset_irq_data(data); 3740 } 3741 3742 mutex_lock(&its->dev_alloc_lock); 3743 3744 /* 3745 * If all interrupts have been freed, start mopping the 3746 * floor. This is conditioned on the device not being shared. 3747 */ 3748 if (!its_dev->shared && 3749 bitmap_empty(its_dev->event_map.lpi_map, 3750 its_dev->event_map.nr_lpis)) { 3751 its_lpi_free(its_dev->event_map.lpi_map, 3752 its_dev->event_map.lpi_base, 3753 its_dev->event_map.nr_lpis); 3754 3755 /* Unmap device/itt */ 3756 its_send_mapd(its_dev, 0); 3757 its_free_device(its_dev); 3758 } 3759 3760 mutex_unlock(&its->dev_alloc_lock); 3761 3762 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 3763 } 3764 3765 static const struct irq_domain_ops its_domain_ops = { 3766 .select = msi_lib_irq_domain_select, 3767 .alloc = its_irq_domain_alloc, 3768 .free = its_irq_domain_free, 3769 .activate = its_irq_domain_activate, 3770 .deactivate = its_irq_domain_deactivate, 3771 }; 3772 3773 /* 3774 * This is insane. 3775 * 3776 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely 3777 * likely), the only way to perform an invalidate is to use a fake 3778 * device to issue an INV command, implying that the LPI has first 3779 * been mapped to some event on that device. Since this is not exactly 3780 * cheap, we try to keep that mapping around as long as possible, and 3781 * only issue an UNMAP if we're short on available slots. 3782 * 3783 * Broken by design(tm). 3784 * 3785 * GICv4.1, on the other hand, mandates that we're able to invalidate 3786 * by writing to a MMIO register. It doesn't implement the whole of 3787 * DirectLPI, but that's good enough. And most of the time, we don't 3788 * even have to invalidate anything, as the redistributor can be told 3789 * whether to generate a doorbell or not (we thus leave it enabled, 3790 * always). 3791 */ 3792 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) 3793 { 3794 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3795 if (gic_rdists->has_rvpeid) 3796 return; 3797 3798 /* Already unmapped? */ 3799 if (vpe->vpe_proxy_event == -1) 3800 return; 3801 3802 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); 3803 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; 3804 3805 /* 3806 * We don't track empty slots at all, so let's move the 3807 * next_victim pointer if we can quickly reuse that slot 3808 * instead of nuking an existing entry. Not clear that this is 3809 * always a win though, and this might just generate a ripple 3810 * effect... Let's just hope VPEs don't migrate too often. 3811 */ 3812 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3813 vpe_proxy.next_victim = vpe->vpe_proxy_event; 3814 3815 vpe->vpe_proxy_event = -1; 3816 } 3817 3818 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) 3819 { 3820 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3821 if (gic_rdists->has_rvpeid) 3822 return; 3823 3824 if (!gic_rdists->has_direct_lpi) { 3825 unsigned long flags; 3826 3827 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3828 its_vpe_db_proxy_unmap_locked(vpe); 3829 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3830 } 3831 } 3832 3833 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) 3834 { 3835 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3836 if (gic_rdists->has_rvpeid) 3837 return; 3838 3839 /* Already mapped? */ 3840 if (vpe->vpe_proxy_event != -1) 3841 return; 3842 3843 /* This slot was already allocated. Kick the other VPE out. */ 3844 if (vpe_proxy.vpes[vpe_proxy.next_victim]) 3845 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); 3846 3847 /* Map the new VPE instead */ 3848 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; 3849 vpe->vpe_proxy_event = vpe_proxy.next_victim; 3850 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; 3851 3852 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; 3853 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); 3854 } 3855 3856 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) 3857 { 3858 unsigned long flags; 3859 struct its_collection *target_col; 3860 3861 /* GICv4.1 doesn't use a proxy, so nothing to do here */ 3862 if (gic_rdists->has_rvpeid) 3863 return; 3864 3865 if (gic_rdists->has_direct_lpi) { 3866 void __iomem *rdbase; 3867 3868 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; 3869 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 3870 wait_for_syncr(rdbase); 3871 3872 return; 3873 } 3874 3875 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 3876 3877 its_vpe_db_proxy_map_locked(vpe); 3878 3879 target_col = &vpe_proxy.dev->its->collections[to]; 3880 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); 3881 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; 3882 3883 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 3884 } 3885 3886 static int its_vpe_set_affinity(struct irq_data *d, 3887 const struct cpumask *mask_val, 3888 bool force) 3889 { 3890 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 3891 unsigned int from, cpu = nr_cpu_ids; 3892 struct cpumask *table_mask; 3893 unsigned long flags; 3894 3895 /* 3896 * Check if we're racing against a VPE being destroyed, for 3897 * which we don't want to allow a VMOVP. 3898 */ 3899 if (!atomic_read(&vpe->vmapp_count)) { 3900 if (gic_requires_eager_mapping()) 3901 return -EINVAL; 3902 3903 /* 3904 * If we lazily map the VPEs, this isn't an error and 3905 * we can exit cleanly. 3906 */ 3907 cpu = cpumask_first(mask_val); 3908 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3909 return IRQ_SET_MASK_OK_DONE; 3910 } 3911 3912 /* 3913 * Changing affinity is mega expensive, so let's be as lazy as 3914 * we can and only do it if we really have to. Also, if mapped 3915 * into the proxy device, we need to move the doorbell 3916 * interrupt to its new location. 3917 * 3918 * Another thing is that changing the affinity of a vPE affects 3919 * *other interrupts* such as all the vLPIs that are routed to 3920 * this vPE. This means that the irq_desc lock is not enough to 3921 * protect us, and that we must ensure nobody samples vpe->col_idx 3922 * during the update, hence the lock below which must also be 3923 * taken on any vLPI handling path that evaluates vpe->col_idx. 3924 * 3925 * Finally, we must protect ourselves against concurrent updates of 3926 * the mapping state on this VM should the ITS list be in use (see 3927 * the shortcut in its_send_vmovp() otherewise). 3928 */ 3929 if (its_list_map) 3930 raw_spin_lock(&vpe->its_vm->vmapp_lock); 3931 3932 from = vpe_to_cpuid_lock(vpe, &flags); 3933 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask; 3934 3935 /* 3936 * If we are offered another CPU in the same GICv4.1 ITS 3937 * affinity, pick this one. Otherwise, any CPU will do. 3938 */ 3939 if (table_mask) 3940 cpu = cpumask_any_and(mask_val, table_mask); 3941 if (cpu < nr_cpu_ids) { 3942 if (cpumask_test_cpu(from, mask_val) && 3943 cpumask_test_cpu(from, table_mask)) 3944 cpu = from; 3945 } else { 3946 cpu = cpumask_first(mask_val); 3947 } 3948 3949 if (from == cpu) 3950 goto out; 3951 3952 vpe->col_idx = cpu; 3953 3954 its_send_vmovp(vpe); 3955 its_vpe_db_proxy_move(vpe, from, cpu); 3956 3957 out: 3958 irq_data_update_effective_affinity(d, cpumask_of(cpu)); 3959 vpe_to_cpuid_unlock(vpe, flags); 3960 3961 if (its_list_map) 3962 raw_spin_unlock(&vpe->its_vm->vmapp_lock); 3963 3964 return IRQ_SET_MASK_OK_DONE; 3965 } 3966 3967 static void its_wait_vpt_parse_complete(void) 3968 { 3969 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3970 u64 val; 3971 3972 if (!gic_rdists->has_vpend_valid_dirty) 3973 return; 3974 3975 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, 3976 val, 3977 !(val & GICR_VPENDBASER_Dirty), 3978 1, 500)); 3979 } 3980 3981 static void its_vpe_schedule(struct its_vpe *vpe) 3982 { 3983 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 3984 u64 val; 3985 3986 /* Schedule the VPE */ 3987 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & 3988 GENMASK_ULL(51, 12); 3989 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; 3990 if (rdists_support_shareable()) { 3991 val |= GICR_VPROPBASER_RaWb; 3992 val |= GICR_VPROPBASER_InnerShareable; 3993 } 3994 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); 3995 3996 val = virt_to_phys(page_address(vpe->vpt_page)) & 3997 GENMASK_ULL(51, 16); 3998 if (rdists_support_shareable()) { 3999 val |= GICR_VPENDBASER_RaWaWb; 4000 val |= GICR_VPENDBASER_InnerShareable; 4001 } 4002 /* 4003 * There is no good way of finding out if the pending table is 4004 * empty as we can race against the doorbell interrupt very 4005 * easily. So in the end, vpe->pending_last is only an 4006 * indication that the vcpu has something pending, not one 4007 * that the pending table is empty. A good implementation 4008 * would be able to read its coarse map pretty quickly anyway, 4009 * making this a tolerable issue. 4010 */ 4011 val |= GICR_VPENDBASER_PendingLast; 4012 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; 4013 val |= GICR_VPENDBASER_Valid; 4014 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4015 } 4016 4017 static void its_vpe_deschedule(struct its_vpe *vpe) 4018 { 4019 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4020 u64 val; 4021 4022 val = its_clear_vpend_valid(vlpi_base, 0, 0); 4023 4024 vpe->idai = !!(val & GICR_VPENDBASER_IDAI); 4025 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4026 } 4027 4028 static void its_vpe_invall(struct its_vpe *vpe) 4029 { 4030 struct its_node *its; 4031 4032 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock); 4033 4034 list_for_each_entry(its, &its_nodes, entry) { 4035 if (!is_v4(its)) 4036 continue; 4037 4038 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) 4039 continue; 4040 4041 /* 4042 * Sending a VINVALL to a single ITS is enough, as all 4043 * we need is to reach the redistributors. 4044 */ 4045 its_send_vinvall(its, vpe); 4046 return; 4047 } 4048 } 4049 4050 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4051 { 4052 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4053 struct its_cmd_info *info = vcpu_info; 4054 4055 switch (info->cmd_type) { 4056 case SCHEDULE_VPE: 4057 its_vpe_schedule(vpe); 4058 return 0; 4059 4060 case DESCHEDULE_VPE: 4061 its_vpe_deschedule(vpe); 4062 return 0; 4063 4064 case COMMIT_VPE: 4065 its_wait_vpt_parse_complete(); 4066 return 0; 4067 4068 case INVALL_VPE: 4069 its_vpe_invall(vpe); 4070 return 0; 4071 4072 default: 4073 return -EINVAL; 4074 } 4075 } 4076 4077 static void its_vpe_send_cmd(struct its_vpe *vpe, 4078 void (*cmd)(struct its_device *, u32)) 4079 { 4080 unsigned long flags; 4081 4082 raw_spin_lock_irqsave(&vpe_proxy.lock, flags); 4083 4084 its_vpe_db_proxy_map_locked(vpe); 4085 cmd(vpe_proxy.dev, vpe->vpe_proxy_event); 4086 4087 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); 4088 } 4089 4090 static void its_vpe_send_inv(struct irq_data *d) 4091 { 4092 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4093 4094 if (gic_rdists->has_direct_lpi) 4095 __direct_lpi_inv(d, d->parent_data->hwirq); 4096 else 4097 its_vpe_send_cmd(vpe, its_send_inv); 4098 } 4099 4100 static void its_vpe_mask_irq(struct irq_data *d) 4101 { 4102 /* 4103 * We need to unmask the LPI, which is described by the parent 4104 * irq_data. Instead of calling into the parent (which won't 4105 * exactly do the right thing, let's simply use the 4106 * parent_data pointer. Yes, I'm naughty. 4107 */ 4108 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4109 its_vpe_send_inv(d); 4110 } 4111 4112 static void its_vpe_unmask_irq(struct irq_data *d) 4113 { 4114 /* Same hack as above... */ 4115 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4116 its_vpe_send_inv(d); 4117 } 4118 4119 static int its_vpe_set_irqchip_state(struct irq_data *d, 4120 enum irqchip_irq_state which, 4121 bool state) 4122 { 4123 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4124 4125 if (which != IRQCHIP_STATE_PENDING) 4126 return -EINVAL; 4127 4128 if (gic_rdists->has_direct_lpi) { 4129 void __iomem *rdbase; 4130 4131 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; 4132 if (state) { 4133 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); 4134 } else { 4135 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); 4136 wait_for_syncr(rdbase); 4137 } 4138 } else { 4139 if (state) 4140 its_vpe_send_cmd(vpe, its_send_int); 4141 else 4142 its_vpe_send_cmd(vpe, its_send_clear); 4143 } 4144 4145 return 0; 4146 } 4147 4148 static int its_vpe_retrigger(struct irq_data *d) 4149 { 4150 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); 4151 } 4152 4153 static struct irq_chip its_vpe_irq_chip = { 4154 .name = "GICv4-vpe", 4155 .irq_mask = its_vpe_mask_irq, 4156 .irq_unmask = its_vpe_unmask_irq, 4157 .irq_eoi = irq_chip_eoi_parent, 4158 .irq_set_affinity = its_vpe_set_affinity, 4159 .irq_retrigger = its_vpe_retrigger, 4160 .irq_set_irqchip_state = its_vpe_set_irqchip_state, 4161 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, 4162 }; 4163 4164 static struct its_node *find_4_1_its(void) 4165 { 4166 static struct its_node *its = NULL; 4167 4168 if (!its) { 4169 list_for_each_entry(its, &its_nodes, entry) { 4170 if (is_v4_1(its)) 4171 return its; 4172 } 4173 4174 /* Oops? */ 4175 its = NULL; 4176 } 4177 4178 return its; 4179 } 4180 4181 static void its_vpe_4_1_send_inv(struct irq_data *d) 4182 { 4183 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4184 struct its_node *its; 4185 4186 /* 4187 * GICv4.1 wants doorbells to be invalidated using the 4188 * INVDB command in order to be broadcast to all RDs. Send 4189 * it to the first valid ITS, and let the HW do its magic. 4190 */ 4191 its = find_4_1_its(); 4192 if (its) 4193 its_send_invdb(its, vpe); 4194 } 4195 4196 static void its_vpe_4_1_mask_irq(struct irq_data *d) 4197 { 4198 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); 4199 its_vpe_4_1_send_inv(d); 4200 } 4201 4202 static void its_vpe_4_1_unmask_irq(struct irq_data *d) 4203 { 4204 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); 4205 its_vpe_4_1_send_inv(d); 4206 } 4207 4208 static void its_vpe_4_1_schedule(struct its_vpe *vpe, 4209 struct its_cmd_info *info) 4210 { 4211 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4212 u64 val = 0; 4213 4214 /* Schedule the VPE */ 4215 val |= GICR_VPENDBASER_Valid; 4216 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; 4217 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; 4218 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); 4219 4220 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); 4221 } 4222 4223 static void its_vpe_4_1_deschedule(struct its_vpe *vpe, 4224 struct its_cmd_info *info) 4225 { 4226 void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); 4227 u64 val; 4228 4229 if (info->req_db) { 4230 unsigned long flags; 4231 4232 /* 4233 * vPE is going to block: make the vPE non-resident with 4234 * PendingLast clear and DB set. The GIC guarantees that if 4235 * we read-back PendingLast clear, then a doorbell will be 4236 * delivered when an interrupt comes. 4237 * 4238 * Note the locking to deal with the concurrent update of 4239 * pending_last from the doorbell interrupt handler that can 4240 * run concurrently. 4241 */ 4242 raw_spin_lock_irqsave(&vpe->vpe_lock, flags); 4243 val = its_clear_vpend_valid(vlpi_base, 4244 GICR_VPENDBASER_PendingLast, 4245 GICR_VPENDBASER_4_1_DB); 4246 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); 4247 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); 4248 } else { 4249 /* 4250 * We're not blocking, so just make the vPE non-resident 4251 * with PendingLast set, indicating that we'll be back. 4252 */ 4253 val = its_clear_vpend_valid(vlpi_base, 4254 0, 4255 GICR_VPENDBASER_PendingLast); 4256 vpe->pending_last = true; 4257 } 4258 } 4259 4260 static void its_vpe_4_1_invall(struct its_vpe *vpe) 4261 { 4262 void __iomem *rdbase; 4263 unsigned long flags; 4264 u64 val; 4265 int cpu; 4266 4267 val = GICR_INVALLR_V; 4268 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); 4269 4270 /* Target the redistributor this vPE is currently known on */ 4271 cpu = vpe_to_cpuid_lock(vpe, &flags); 4272 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4273 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; 4274 gic_write_lpir(val, rdbase + GICR_INVALLR); 4275 4276 wait_for_syncr(rdbase); 4277 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4278 vpe_to_cpuid_unlock(vpe, flags); 4279 } 4280 4281 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4282 { 4283 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4284 struct its_cmd_info *info = vcpu_info; 4285 4286 switch (info->cmd_type) { 4287 case SCHEDULE_VPE: 4288 its_vpe_4_1_schedule(vpe, info); 4289 return 0; 4290 4291 case DESCHEDULE_VPE: 4292 its_vpe_4_1_deschedule(vpe, info); 4293 return 0; 4294 4295 case COMMIT_VPE: 4296 its_wait_vpt_parse_complete(); 4297 return 0; 4298 4299 case INVALL_VPE: 4300 its_vpe_4_1_invall(vpe); 4301 return 0; 4302 4303 default: 4304 return -EINVAL; 4305 } 4306 } 4307 4308 static struct irq_chip its_vpe_4_1_irq_chip = { 4309 .name = "GICv4.1-vpe", 4310 .irq_mask = its_vpe_4_1_mask_irq, 4311 .irq_unmask = its_vpe_4_1_unmask_irq, 4312 .irq_eoi = irq_chip_eoi_parent, 4313 .irq_set_affinity = its_vpe_set_affinity, 4314 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, 4315 }; 4316 4317 static void its_configure_sgi(struct irq_data *d, bool clear) 4318 { 4319 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4320 struct its_cmd_desc desc; 4321 4322 desc.its_vsgi_cmd.vpe = vpe; 4323 desc.its_vsgi_cmd.sgi = d->hwirq; 4324 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; 4325 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; 4326 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; 4327 desc.its_vsgi_cmd.clear = clear; 4328 4329 /* 4330 * GICv4.1 allows us to send VSGI commands to any ITS as long as the 4331 * destination VPE is mapped there. Since we map them eagerly at 4332 * activation time, we're pretty sure the first GICv4.1 ITS will do. 4333 */ 4334 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); 4335 } 4336 4337 static void its_sgi_mask_irq(struct irq_data *d) 4338 { 4339 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4340 4341 vpe->sgi_config[d->hwirq].enabled = false; 4342 its_configure_sgi(d, false); 4343 } 4344 4345 static void its_sgi_unmask_irq(struct irq_data *d) 4346 { 4347 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4348 4349 vpe->sgi_config[d->hwirq].enabled = true; 4350 its_configure_sgi(d, false); 4351 } 4352 4353 static int its_sgi_set_affinity(struct irq_data *d, 4354 const struct cpumask *mask_val, 4355 bool force) 4356 { 4357 /* 4358 * There is no notion of affinity for virtual SGIs, at least 4359 * not on the host (since they can only be targeting a vPE). 4360 * Tell the kernel we've done whatever it asked for. 4361 */ 4362 irq_data_update_effective_affinity(d, mask_val); 4363 return IRQ_SET_MASK_OK; 4364 } 4365 4366 static int its_sgi_set_irqchip_state(struct irq_data *d, 4367 enum irqchip_irq_state which, 4368 bool state) 4369 { 4370 if (which != IRQCHIP_STATE_PENDING) 4371 return -EINVAL; 4372 4373 if (state) { 4374 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4375 struct its_node *its = find_4_1_its(); 4376 u64 val; 4377 4378 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); 4379 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); 4380 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); 4381 } else { 4382 its_configure_sgi(d, true); 4383 } 4384 4385 return 0; 4386 } 4387 4388 static int its_sgi_get_irqchip_state(struct irq_data *d, 4389 enum irqchip_irq_state which, bool *val) 4390 { 4391 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4392 void __iomem *base; 4393 unsigned long flags; 4394 u32 count = 1000000; /* 1s! */ 4395 u32 status; 4396 int cpu; 4397 4398 if (which != IRQCHIP_STATE_PENDING) 4399 return -EINVAL; 4400 4401 /* 4402 * Locking galore! We can race against two different events: 4403 * 4404 * - Concurrent vPE affinity change: we must make sure it cannot 4405 * happen, or we'll talk to the wrong redistributor. This is 4406 * identical to what happens with vLPIs. 4407 * 4408 * - Concurrent VSGIPENDR access: As it involves accessing two 4409 * MMIO registers, this must be made atomic one way or another. 4410 */ 4411 cpu = vpe_to_cpuid_lock(vpe, &flags); 4412 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); 4413 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; 4414 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); 4415 do { 4416 status = readl_relaxed(base + GICR_VSGIPENDR); 4417 if (!(status & GICR_VSGIPENDR_BUSY)) 4418 goto out; 4419 4420 count--; 4421 if (!count) { 4422 pr_err_ratelimited("Unable to get SGI status\n"); 4423 goto out; 4424 } 4425 cpu_relax(); 4426 udelay(1); 4427 } while (count); 4428 4429 out: 4430 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); 4431 vpe_to_cpuid_unlock(vpe, flags); 4432 4433 if (!count) 4434 return -ENXIO; 4435 4436 *val = !!(status & (1 << d->hwirq)); 4437 4438 return 0; 4439 } 4440 4441 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 4442 { 4443 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4444 struct its_cmd_info *info = vcpu_info; 4445 4446 switch (info->cmd_type) { 4447 case PROP_UPDATE_VSGI: 4448 vpe->sgi_config[d->hwirq].priority = info->priority; 4449 vpe->sgi_config[d->hwirq].group = info->group; 4450 its_configure_sgi(d, false); 4451 return 0; 4452 4453 default: 4454 return -EINVAL; 4455 } 4456 } 4457 4458 static struct irq_chip its_sgi_irq_chip = { 4459 .name = "GICv4.1-sgi", 4460 .irq_mask = its_sgi_mask_irq, 4461 .irq_unmask = its_sgi_unmask_irq, 4462 .irq_set_affinity = its_sgi_set_affinity, 4463 .irq_set_irqchip_state = its_sgi_set_irqchip_state, 4464 .irq_get_irqchip_state = its_sgi_get_irqchip_state, 4465 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, 4466 }; 4467 4468 static int its_sgi_irq_domain_alloc(struct irq_domain *domain, 4469 unsigned int virq, unsigned int nr_irqs, 4470 void *args) 4471 { 4472 struct its_vpe *vpe = args; 4473 int i; 4474 4475 /* Yes, we do want 16 SGIs */ 4476 WARN_ON(nr_irqs != 16); 4477 4478 for (i = 0; i < 16; i++) { 4479 vpe->sgi_config[i].priority = 0; 4480 vpe->sgi_config[i].enabled = false; 4481 vpe->sgi_config[i].group = false; 4482 4483 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4484 &its_sgi_irq_chip, vpe); 4485 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); 4486 } 4487 4488 return 0; 4489 } 4490 4491 static void its_sgi_irq_domain_free(struct irq_domain *domain, 4492 unsigned int virq, 4493 unsigned int nr_irqs) 4494 { 4495 /* Nothing to do */ 4496 } 4497 4498 static int its_sgi_irq_domain_activate(struct irq_domain *domain, 4499 struct irq_data *d, bool reserve) 4500 { 4501 /* Write out the initial SGI configuration */ 4502 its_configure_sgi(d, false); 4503 return 0; 4504 } 4505 4506 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, 4507 struct irq_data *d) 4508 { 4509 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4510 4511 /* 4512 * The VSGI command is awkward: 4513 * 4514 * - To change the configuration, CLEAR must be set to false, 4515 * leaving the pending bit unchanged. 4516 * - To clear the pending bit, CLEAR must be set to true, leaving 4517 * the configuration unchanged. 4518 * 4519 * You just can't do both at once, hence the two commands below. 4520 */ 4521 vpe->sgi_config[d->hwirq].enabled = false; 4522 its_configure_sgi(d, false); 4523 its_configure_sgi(d, true); 4524 } 4525 4526 static const struct irq_domain_ops its_sgi_domain_ops = { 4527 .alloc = its_sgi_irq_domain_alloc, 4528 .free = its_sgi_irq_domain_free, 4529 .activate = its_sgi_irq_domain_activate, 4530 .deactivate = its_sgi_irq_domain_deactivate, 4531 }; 4532 4533 static int its_vpe_id_alloc(void) 4534 { 4535 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL); 4536 } 4537 4538 static void its_vpe_id_free(u16 id) 4539 { 4540 ida_free(&its_vpeid_ida, id); 4541 } 4542 4543 static int its_vpe_init(struct its_vpe *vpe) 4544 { 4545 struct page *vpt_page; 4546 int vpe_id; 4547 4548 /* Allocate vpe_id */ 4549 vpe_id = its_vpe_id_alloc(); 4550 if (vpe_id < 0) 4551 return vpe_id; 4552 4553 /* Allocate VPT */ 4554 vpt_page = its_allocate_pending_table(GFP_KERNEL); 4555 if (!vpt_page) { 4556 its_vpe_id_free(vpe_id); 4557 return -ENOMEM; 4558 } 4559 4560 if (!its_alloc_vpe_table(vpe_id)) { 4561 its_vpe_id_free(vpe_id); 4562 its_free_pending_table(vpt_page); 4563 return -ENOMEM; 4564 } 4565 4566 raw_spin_lock_init(&vpe->vpe_lock); 4567 vpe->vpe_id = vpe_id; 4568 vpe->vpt_page = vpt_page; 4569 atomic_set(&vpe->vmapp_count, 0); 4570 if (!gic_rdists->has_rvpeid) 4571 vpe->vpe_proxy_event = -1; 4572 4573 return 0; 4574 } 4575 4576 static void its_vpe_teardown(struct its_vpe *vpe) 4577 { 4578 its_vpe_db_proxy_unmap(vpe); 4579 its_vpe_id_free(vpe->vpe_id); 4580 its_free_pending_table(vpe->vpt_page); 4581 } 4582 4583 static void its_vpe_irq_domain_free(struct irq_domain *domain, 4584 unsigned int virq, 4585 unsigned int nr_irqs) 4586 { 4587 struct its_vm *vm = domain->host_data; 4588 int i; 4589 4590 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 4591 4592 for (i = 0; i < nr_irqs; i++) { 4593 struct irq_data *data = irq_domain_get_irq_data(domain, 4594 virq + i); 4595 struct its_vpe *vpe = irq_data_get_irq_chip_data(data); 4596 4597 BUG_ON(vm != vpe->its_vm); 4598 4599 clear_bit(data->hwirq, vm->db_bitmap); 4600 its_vpe_teardown(vpe); 4601 irq_domain_reset_irq_data(data); 4602 } 4603 4604 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { 4605 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); 4606 its_free_prop_table(vm->vprop_page); 4607 } 4608 } 4609 4610 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 4611 unsigned int nr_irqs, void *args) 4612 { 4613 struct irq_chip *irqchip = &its_vpe_irq_chip; 4614 struct its_vm *vm = args; 4615 unsigned long *bitmap; 4616 struct page *vprop_page; 4617 int base, nr_ids, i, err = 0; 4618 4619 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); 4620 if (!bitmap) 4621 return -ENOMEM; 4622 4623 if (nr_ids < nr_irqs) { 4624 its_lpi_free(bitmap, base, nr_ids); 4625 return -ENOMEM; 4626 } 4627 4628 vprop_page = its_allocate_prop_table(GFP_KERNEL); 4629 if (!vprop_page) { 4630 its_lpi_free(bitmap, base, nr_ids); 4631 return -ENOMEM; 4632 } 4633 4634 vm->db_bitmap = bitmap; 4635 vm->db_lpi_base = base; 4636 vm->nr_db_lpis = nr_ids; 4637 vm->vprop_page = vprop_page; 4638 raw_spin_lock_init(&vm->vmapp_lock); 4639 4640 if (gic_rdists->has_rvpeid) 4641 irqchip = &its_vpe_4_1_irq_chip; 4642 4643 for (i = 0; i < nr_irqs; i++) { 4644 vm->vpes[i]->vpe_db_lpi = base + i; 4645 err = its_vpe_init(vm->vpes[i]); 4646 if (err) 4647 break; 4648 err = its_irq_gic_domain_alloc(domain, virq + i, 4649 vm->vpes[i]->vpe_db_lpi); 4650 if (err) 4651 break; 4652 irq_domain_set_hwirq_and_chip(domain, virq + i, i, 4653 irqchip, vm->vpes[i]); 4654 set_bit(i, bitmap); 4655 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i)); 4656 } 4657 4658 if (err) 4659 its_vpe_irq_domain_free(domain, virq, i); 4660 4661 return err; 4662 } 4663 4664 static int its_vpe_irq_domain_activate(struct irq_domain *domain, 4665 struct irq_data *d, bool reserve) 4666 { 4667 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4668 struct its_node *its; 4669 4670 /* Map the VPE to the first possible CPU */ 4671 vpe->col_idx = cpumask_first(cpu_online_mask); 4672 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); 4673 4674 /* 4675 * If we use the list map, we issue VMAPP on demand... Unless 4676 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs 4677 * so that VSGIs can work. 4678 */ 4679 if (!gic_requires_eager_mapping()) 4680 return 0; 4681 4682 list_for_each_entry(its, &its_nodes, entry) { 4683 if (!is_v4(its)) 4684 continue; 4685 4686 its_send_vmapp(its, vpe, true); 4687 its_send_vinvall(its, vpe); 4688 } 4689 4690 return 0; 4691 } 4692 4693 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, 4694 struct irq_data *d) 4695 { 4696 struct its_vpe *vpe = irq_data_get_irq_chip_data(d); 4697 struct its_node *its; 4698 4699 /* 4700 * If we use the list map on GICv4.0, we unmap the VPE once no 4701 * VLPIs are associated with the VM. 4702 */ 4703 if (!gic_requires_eager_mapping()) 4704 return; 4705 4706 list_for_each_entry(its, &its_nodes, entry) { 4707 if (!is_v4(its)) 4708 continue; 4709 4710 its_send_vmapp(its, vpe, false); 4711 } 4712 4713 /* 4714 * There may be a direct read to the VPT after unmapping the 4715 * vPE, to guarantee the validity of this, we make the VPT 4716 * memory coherent with the CPU caches here. 4717 */ 4718 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) 4719 gic_flush_dcache_to_poc(page_address(vpe->vpt_page), 4720 LPI_PENDBASE_SZ); 4721 } 4722 4723 static const struct irq_domain_ops its_vpe_domain_ops = { 4724 .alloc = its_vpe_irq_domain_alloc, 4725 .free = its_vpe_irq_domain_free, 4726 .activate = its_vpe_irq_domain_activate, 4727 .deactivate = its_vpe_irq_domain_deactivate, 4728 }; 4729 4730 static int its_force_quiescent(void __iomem *base) 4731 { 4732 u32 count = 1000000; /* 1s */ 4733 u32 val; 4734 4735 val = readl_relaxed(base + GITS_CTLR); 4736 /* 4737 * GIC architecture specification requires the ITS to be both 4738 * disabled and quiescent for writes to GITS_BASER<n> or 4739 * GITS_CBASER to not have UNPREDICTABLE results. 4740 */ 4741 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 4742 return 0; 4743 4744 /* Disable the generation of all interrupts to this ITS */ 4745 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); 4746 writel_relaxed(val, base + GITS_CTLR); 4747 4748 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 4749 while (1) { 4750 val = readl_relaxed(base + GITS_CTLR); 4751 if (val & GITS_CTLR_QUIESCENT) 4752 return 0; 4753 4754 count--; 4755 if (!count) 4756 return -EBUSY; 4757 4758 cpu_relax(); 4759 udelay(1); 4760 } 4761 } 4762 4763 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) 4764 { 4765 struct its_node *its = data; 4766 4767 /* erratum 22375: only alloc 8MB table size (20 bits) */ 4768 its->typer &= ~GITS_TYPER_DEVBITS; 4769 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); 4770 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 4771 4772 return true; 4773 } 4774 4775 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) 4776 { 4777 struct its_node *its = data; 4778 4779 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 4780 4781 return true; 4782 } 4783 4784 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) 4785 { 4786 struct its_node *its = data; 4787 4788 /* On QDF2400, the size of the ITE is 16Bytes */ 4789 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; 4790 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); 4791 4792 return true; 4793 } 4794 4795 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) 4796 { 4797 struct its_node *its = its_dev->its; 4798 4799 /* 4800 * The Socionext Synquacer SoC has a so-called 'pre-ITS', 4801 * which maps 32-bit writes targeted at a separate window of 4802 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER 4803 * with device ID taken from bits [device_id_bits + 1:2] of 4804 * the window offset. 4805 */ 4806 return its->pre_its_base + (its_dev->device_id << 2); 4807 } 4808 4809 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) 4810 { 4811 struct its_node *its = data; 4812 u32 pre_its_window[2]; 4813 u32 ids; 4814 4815 if (!fwnode_property_read_u32_array(its->fwnode_handle, 4816 "socionext,synquacer-pre-its", 4817 pre_its_window, 4818 ARRAY_SIZE(pre_its_window))) { 4819 4820 its->pre_its_base = pre_its_window[0]; 4821 its->get_msi_base = its_irq_get_msi_base_pre_its; 4822 4823 ids = ilog2(pre_its_window[1]) - 2; 4824 if (device_ids(its) > ids) { 4825 its->typer &= ~GITS_TYPER_DEVBITS; 4826 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); 4827 } 4828 4829 /* the pre-ITS breaks isolation, so disable MSI remapping */ 4830 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI; 4831 return true; 4832 } 4833 return false; 4834 } 4835 4836 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) 4837 { 4838 struct its_node *its = data; 4839 4840 /* 4841 * Hip07 insists on using the wrong address for the VLPI 4842 * page. Trick it into doing the right thing... 4843 */ 4844 its->vlpi_redist_offset = SZ_128K; 4845 return true; 4846 } 4847 4848 static bool __maybe_unused its_enable_rk3588001(void *data) 4849 { 4850 struct its_node *its = data; 4851 4852 if (!of_machine_is_compatible("rockchip,rk3588") && 4853 !of_machine_is_compatible("rockchip,rk3588s")) 4854 return false; 4855 4856 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4857 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; 4858 4859 return true; 4860 } 4861 4862 static bool its_set_non_coherent(void *data) 4863 { 4864 struct its_node *its = data; 4865 4866 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 4867 return true; 4868 } 4869 4870 static const struct gic_quirk its_quirks[] = { 4871 #ifdef CONFIG_CAVIUM_ERRATUM_22375 4872 { 4873 .desc = "ITS: Cavium errata 22375, 24313", 4874 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4875 .mask = 0xffff0fff, 4876 .init = its_enable_quirk_cavium_22375, 4877 }, 4878 #endif 4879 #ifdef CONFIG_CAVIUM_ERRATUM_23144 4880 { 4881 .desc = "ITS: Cavium erratum 23144", 4882 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 4883 .mask = 0xffff0fff, 4884 .init = its_enable_quirk_cavium_23144, 4885 }, 4886 #endif 4887 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 4888 { 4889 .desc = "ITS: QDF2400 erratum 0065", 4890 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ 4891 .mask = 0xffffffff, 4892 .init = its_enable_quirk_qdf2400_e0065, 4893 }, 4894 #endif 4895 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS 4896 { 4897 /* 4898 * The Socionext Synquacer SoC incorporates ARM's own GIC-500 4899 * implementation, but with a 'pre-ITS' added that requires 4900 * special handling in software. 4901 */ 4902 .desc = "ITS: Socionext Synquacer pre-ITS", 4903 .iidr = 0x0001143b, 4904 .mask = 0xffffffff, 4905 .init = its_enable_quirk_socionext_synquacer, 4906 }, 4907 #endif 4908 #ifdef CONFIG_HISILICON_ERRATUM_161600802 4909 { 4910 .desc = "ITS: Hip07 erratum 161600802", 4911 .iidr = 0x00000004, 4912 .mask = 0xffffffff, 4913 .init = its_enable_quirk_hip07_161600802, 4914 }, 4915 #endif 4916 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001 4917 { 4918 .desc = "ITS: Rockchip erratum RK3588001", 4919 .iidr = 0x0201743b, 4920 .mask = 0xffffffff, 4921 .init = its_enable_rk3588001, 4922 }, 4923 #endif 4924 { 4925 .desc = "ITS: non-coherent attribute", 4926 .property = "dma-noncoherent", 4927 .init = its_set_non_coherent, 4928 }, 4929 { 4930 } 4931 }; 4932 4933 static void its_enable_quirks(struct its_node *its) 4934 { 4935 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 4936 4937 gic_enable_quirks(iidr, its_quirks, its); 4938 4939 if (is_of_node(its->fwnode_handle)) 4940 gic_enable_of_quirks(to_of_node(its->fwnode_handle), 4941 its_quirks, its); 4942 } 4943 4944 static int its_save_disable(void) 4945 { 4946 struct its_node *its; 4947 int err = 0; 4948 4949 raw_spin_lock(&its_lock); 4950 list_for_each_entry(its, &its_nodes, entry) { 4951 void __iomem *base; 4952 4953 base = its->base; 4954 its->ctlr_save = readl_relaxed(base + GITS_CTLR); 4955 err = its_force_quiescent(base); 4956 if (err) { 4957 pr_err("ITS@%pa: failed to quiesce: %d\n", 4958 &its->phys_base, err); 4959 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4960 goto err; 4961 } 4962 4963 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); 4964 } 4965 4966 err: 4967 if (err) { 4968 list_for_each_entry_continue_reverse(its, &its_nodes, entry) { 4969 void __iomem *base; 4970 4971 base = its->base; 4972 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 4973 } 4974 } 4975 raw_spin_unlock(&its_lock); 4976 4977 return err; 4978 } 4979 4980 static void its_restore_enable(void) 4981 { 4982 struct its_node *its; 4983 int ret; 4984 4985 raw_spin_lock(&its_lock); 4986 list_for_each_entry(its, &its_nodes, entry) { 4987 void __iomem *base; 4988 int i; 4989 4990 base = its->base; 4991 4992 /* 4993 * Make sure that the ITS is disabled. If it fails to quiesce, 4994 * don't restore it since writing to CBASER or BASER<n> 4995 * registers is undefined according to the GIC v3 ITS 4996 * Specification. 4997 * 4998 * Firmware resuming with the ITS enabled is terminally broken. 4999 */ 5000 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); 5001 ret = its_force_quiescent(base); 5002 if (ret) { 5003 pr_err("ITS@%pa: failed to quiesce on resume: %d\n", 5004 &its->phys_base, ret); 5005 continue; 5006 } 5007 5008 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); 5009 5010 /* 5011 * Writing CBASER resets CREADR to 0, so make CWRITER and 5012 * cmd_write line up with it. 5013 */ 5014 its->cmd_write = its->cmd_base; 5015 gits_write_cwriter(0, base + GITS_CWRITER); 5016 5017 /* Restore GITS_BASER from the value cache. */ 5018 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 5019 struct its_baser *baser = &its->tables[i]; 5020 5021 if (!(baser->val & GITS_BASER_VALID)) 5022 continue; 5023 5024 its_write_baser(its, baser, baser->val); 5025 } 5026 writel_relaxed(its->ctlr_save, base + GITS_CTLR); 5027 5028 /* 5029 * Reinit the collection if it's stored in the ITS. This is 5030 * indicated by the col_id being less than the HCC field. 5031 * CID < HCC as specified in the GIC v3 Documentation. 5032 */ 5033 if (its->collections[smp_processor_id()].col_id < 5034 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) 5035 its_cpu_init_collection(its); 5036 } 5037 raw_spin_unlock(&its_lock); 5038 } 5039 5040 static struct syscore_ops its_syscore_ops = { 5041 .suspend = its_save_disable, 5042 .resume = its_restore_enable, 5043 }; 5044 5045 static void __init __iomem *its_map_one(struct resource *res, int *err) 5046 { 5047 void __iomem *its_base; 5048 u32 val; 5049 5050 its_base = ioremap(res->start, SZ_64K); 5051 if (!its_base) { 5052 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 5053 *err = -ENOMEM; 5054 return NULL; 5055 } 5056 5057 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 5058 if (val != 0x30 && val != 0x40) { 5059 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 5060 *err = -ENODEV; 5061 goto out_unmap; 5062 } 5063 5064 *err = its_force_quiescent(its_base); 5065 if (*err) { 5066 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 5067 goto out_unmap; 5068 } 5069 5070 return its_base; 5071 5072 out_unmap: 5073 iounmap(its_base); 5074 return NULL; 5075 } 5076 5077 static int its_init_domain(struct its_node *its) 5078 { 5079 struct irq_domain *inner_domain; 5080 struct msi_domain_info *info; 5081 5082 info = kzalloc(sizeof(*info), GFP_KERNEL); 5083 if (!info) 5084 return -ENOMEM; 5085 5086 info->ops = &its_msi_domain_ops; 5087 info->data = its; 5088 5089 inner_domain = irq_domain_create_hierarchy(its_parent, 5090 its->msi_domain_flags, 0, 5091 its->fwnode_handle, &its_domain_ops, 5092 info); 5093 if (!inner_domain) { 5094 kfree(info); 5095 return -ENOMEM; 5096 } 5097 5098 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); 5099 5100 inner_domain->msi_parent_ops = &gic_v3_its_msi_parent_ops; 5101 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT; 5102 5103 return 0; 5104 } 5105 5106 static int its_init_vpe_domain(void) 5107 { 5108 struct its_node *its; 5109 u32 devid; 5110 int entries; 5111 5112 if (gic_rdists->has_direct_lpi) { 5113 pr_info("ITS: Using DirectLPI for VPE invalidation\n"); 5114 return 0; 5115 } 5116 5117 /* Any ITS will do, even if not v4 */ 5118 its = list_first_entry(&its_nodes, struct its_node, entry); 5119 5120 entries = roundup_pow_of_two(nr_cpu_ids); 5121 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), 5122 GFP_KERNEL); 5123 if (!vpe_proxy.vpes) 5124 return -ENOMEM; 5125 5126 /* Use the last possible DevID */ 5127 devid = GENMASK(device_ids(its) - 1, 0); 5128 vpe_proxy.dev = its_create_device(its, devid, entries, false); 5129 if (!vpe_proxy.dev) { 5130 kfree(vpe_proxy.vpes); 5131 pr_err("ITS: Can't allocate GICv4 proxy device\n"); 5132 return -ENOMEM; 5133 } 5134 5135 BUG_ON(entries > vpe_proxy.dev->nr_ites); 5136 5137 raw_spin_lock_init(&vpe_proxy.lock); 5138 vpe_proxy.next_victim = 0; 5139 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", 5140 devid, vpe_proxy.dev->nr_ites); 5141 5142 return 0; 5143 } 5144 5145 static int __init its_compute_its_list_map(struct its_node *its) 5146 { 5147 int its_number; 5148 u32 ctlr; 5149 5150 /* 5151 * This is assumed to be done early enough that we're 5152 * guaranteed to be single-threaded, hence no 5153 * locking. Should this change, we should address 5154 * this. 5155 */ 5156 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); 5157 if (its_number >= GICv4_ITS_LIST_MAX) { 5158 pr_err("ITS@%pa: No ITSList entry available!\n", 5159 &its->phys_base); 5160 return -EINVAL; 5161 } 5162 5163 ctlr = readl_relaxed(its->base + GITS_CTLR); 5164 ctlr &= ~GITS_CTLR_ITS_NUMBER; 5165 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; 5166 writel_relaxed(ctlr, its->base + GITS_CTLR); 5167 ctlr = readl_relaxed(its->base + GITS_CTLR); 5168 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { 5169 its_number = ctlr & GITS_CTLR_ITS_NUMBER; 5170 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; 5171 } 5172 5173 if (test_and_set_bit(its_number, &its_list_map)) { 5174 pr_err("ITS@%pa: Duplicate ITSList entry %d\n", 5175 &its->phys_base, its_number); 5176 return -EINVAL; 5177 } 5178 5179 return its_number; 5180 } 5181 5182 static int __init its_probe_one(struct its_node *its) 5183 { 5184 u64 baser, tmp; 5185 struct page *page; 5186 u32 ctlr; 5187 int err; 5188 5189 its_enable_quirks(its); 5190 5191 if (is_v4(its)) { 5192 if (!(its->typer & GITS_TYPER_VMOVP)) { 5193 err = its_compute_its_list_map(its); 5194 if (err < 0) 5195 goto out; 5196 5197 its->list_nr = err; 5198 5199 pr_info("ITS@%pa: Using ITS number %d\n", 5200 &its->phys_base, err); 5201 } else { 5202 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base); 5203 } 5204 5205 if (is_v4_1(its)) { 5206 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); 5207 5208 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K); 5209 if (!its->sgir_base) { 5210 err = -ENOMEM; 5211 goto out; 5212 } 5213 5214 its->mpidr = readl_relaxed(its->base + GITS_MPIDR); 5215 5216 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", 5217 &its->phys_base, its->mpidr, svpet); 5218 } 5219 } 5220 5221 page = its_alloc_pages_node(its->numa_node, 5222 GFP_KERNEL | __GFP_ZERO, 5223 get_order(ITS_CMD_QUEUE_SZ)); 5224 if (!page) { 5225 err = -ENOMEM; 5226 goto out_unmap_sgir; 5227 } 5228 its->cmd_base = (void *)page_address(page); 5229 its->cmd_write = its->cmd_base; 5230 5231 err = its_alloc_tables(its); 5232 if (err) 5233 goto out_free_cmd; 5234 5235 err = its_alloc_collections(its); 5236 if (err) 5237 goto out_free_tables; 5238 5239 baser = (virt_to_phys(its->cmd_base) | 5240 GITS_CBASER_RaWaWb | 5241 GITS_CBASER_InnerShareable | 5242 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 5243 GITS_CBASER_VALID); 5244 5245 gits_write_cbaser(baser, its->base + GITS_CBASER); 5246 tmp = gits_read_cbaser(its->base + GITS_CBASER); 5247 5248 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) 5249 tmp &= ~GITS_CBASER_SHAREABILITY_MASK; 5250 5251 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 5252 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 5253 /* 5254 * The HW reports non-shareable, we must 5255 * remove the cacheability attributes as 5256 * well. 5257 */ 5258 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 5259 GITS_CBASER_CACHEABILITY_MASK); 5260 baser |= GITS_CBASER_nC; 5261 gits_write_cbaser(baser, its->base + GITS_CBASER); 5262 } 5263 pr_info("ITS: using cache flushing for cmd queue\n"); 5264 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 5265 } 5266 5267 gits_write_cwriter(0, its->base + GITS_CWRITER); 5268 ctlr = readl_relaxed(its->base + GITS_CTLR); 5269 ctlr |= GITS_CTLR_ENABLE; 5270 if (is_v4(its)) 5271 ctlr |= GITS_CTLR_ImDe; 5272 writel_relaxed(ctlr, its->base + GITS_CTLR); 5273 5274 err = its_init_domain(its); 5275 if (err) 5276 goto out_free_tables; 5277 5278 raw_spin_lock(&its_lock); 5279 list_add(&its->entry, &its_nodes); 5280 raw_spin_unlock(&its_lock); 5281 5282 return 0; 5283 5284 out_free_tables: 5285 its_free_tables(its); 5286 out_free_cmd: 5287 its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); 5288 out_unmap_sgir: 5289 if (its->sgir_base) 5290 iounmap(its->sgir_base); 5291 out: 5292 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err); 5293 return err; 5294 } 5295 5296 static bool gic_rdists_supports_plpis(void) 5297 { 5298 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 5299 } 5300 5301 static int redist_disable_lpis(void) 5302 { 5303 void __iomem *rbase = gic_data_rdist_rd_base(); 5304 u64 timeout = USEC_PER_SEC; 5305 u64 val; 5306 5307 if (!gic_rdists_supports_plpis()) { 5308 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 5309 return -ENXIO; 5310 } 5311 5312 val = readl_relaxed(rbase + GICR_CTLR); 5313 if (!(val & GICR_CTLR_ENABLE_LPIS)) 5314 return 0; 5315 5316 /* 5317 * If coming via a CPU hotplug event, we don't need to disable 5318 * LPIs before trying to re-enable them. They are already 5319 * configured and all is well in the world. 5320 * 5321 * If running with preallocated tables, there is nothing to do. 5322 */ 5323 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) || 5324 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) 5325 return 0; 5326 5327 /* 5328 * From that point on, we only try to do some damage control. 5329 */ 5330 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", 5331 smp_processor_id()); 5332 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); 5333 5334 /* Disable LPIs */ 5335 val &= ~GICR_CTLR_ENABLE_LPIS; 5336 writel_relaxed(val, rbase + GICR_CTLR); 5337 5338 /* Make sure any change to GICR_CTLR is observable by the GIC */ 5339 dsb(sy); 5340 5341 /* 5342 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs 5343 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. 5344 * Error out if we time out waiting for RWP to clear. 5345 */ 5346 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { 5347 if (!timeout) { 5348 pr_err("CPU%d: Timeout while disabling LPIs\n", 5349 smp_processor_id()); 5350 return -ETIMEDOUT; 5351 } 5352 udelay(1); 5353 timeout--; 5354 } 5355 5356 /* 5357 * After it has been written to 1, it is IMPLEMENTATION 5358 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be 5359 * cleared to 0. Error out if clearing the bit failed. 5360 */ 5361 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { 5362 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); 5363 return -EBUSY; 5364 } 5365 5366 return 0; 5367 } 5368 5369 int its_cpu_init(void) 5370 { 5371 if (!list_empty(&its_nodes)) { 5372 int ret; 5373 5374 ret = redist_disable_lpis(); 5375 if (ret) 5376 return ret; 5377 5378 its_cpu_init_lpis(); 5379 its_cpu_init_collections(); 5380 } 5381 5382 return 0; 5383 } 5384 5385 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work) 5386 { 5387 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state); 5388 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5389 } 5390 5391 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work, 5392 rdist_memreserve_cpuhp_cleanup_workfn); 5393 5394 static int its_cpu_memreserve_lpi(unsigned int cpu) 5395 { 5396 struct page *pend_page; 5397 int ret = 0; 5398 5399 /* This gets to run exactly once per CPU */ 5400 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE) 5401 return 0; 5402 5403 pend_page = gic_data_rdist()->pend_page; 5404 if (WARN_ON(!pend_page)) { 5405 ret = -ENOMEM; 5406 goto out; 5407 } 5408 /* 5409 * If the pending table was pre-programmed, free the memory we 5410 * preemptively allocated. Otherwise, reserve that memory for 5411 * later kexecs. 5412 */ 5413 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) { 5414 its_free_pending_table(pend_page); 5415 gic_data_rdist()->pend_page = NULL; 5416 } else { 5417 phys_addr_t paddr = page_to_phys(pend_page); 5418 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); 5419 } 5420 5421 out: 5422 /* Last CPU being brought up gets to issue the cleanup */ 5423 if (!IS_ENABLED(CONFIG_SMP) || 5424 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask)) 5425 schedule_work(&rdist_memreserve_cpuhp_cleanup_work); 5426 5427 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE; 5428 return ret; 5429 } 5430 5431 /* Mark all the BASER registers as invalid before they get reprogrammed */ 5432 static int __init its_reset_one(struct resource *res) 5433 { 5434 void __iomem *its_base; 5435 int err, i; 5436 5437 its_base = its_map_one(res, &err); 5438 if (!its_base) 5439 return err; 5440 5441 for (i = 0; i < GITS_BASER_NR_REGS; i++) 5442 gits_write_baser(0, its_base + GITS_BASER + (i << 3)); 5443 5444 iounmap(its_base); 5445 return 0; 5446 } 5447 5448 static const struct of_device_id its_device_id[] = { 5449 { .compatible = "arm,gic-v3-its", }, 5450 {}, 5451 }; 5452 5453 static struct its_node __init *its_node_init(struct resource *res, 5454 struct fwnode_handle *handle, int numa_node) 5455 { 5456 void __iomem *its_base; 5457 struct its_node *its; 5458 int err; 5459 5460 its_base = its_map_one(res, &err); 5461 if (!its_base) 5462 return NULL; 5463 5464 pr_info("ITS %pR\n", res); 5465 5466 its = kzalloc(sizeof(*its), GFP_KERNEL); 5467 if (!its) 5468 goto out_unmap; 5469 5470 raw_spin_lock_init(&its->lock); 5471 mutex_init(&its->dev_alloc_lock); 5472 INIT_LIST_HEAD(&its->entry); 5473 INIT_LIST_HEAD(&its->its_device_list); 5474 5475 its->typer = gic_read_typer(its_base + GITS_TYPER); 5476 its->base = its_base; 5477 its->phys_base = res->start; 5478 its->get_msi_base = its_irq_get_msi_base; 5479 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI; 5480 5481 its->numa_node = numa_node; 5482 its->fwnode_handle = handle; 5483 5484 return its; 5485 5486 out_unmap: 5487 iounmap(its_base); 5488 return NULL; 5489 } 5490 5491 static void its_node_destroy(struct its_node *its) 5492 { 5493 iounmap(its->base); 5494 kfree(its); 5495 } 5496 5497 static int __init its_of_probe(struct device_node *node) 5498 { 5499 struct device_node *np; 5500 struct resource res; 5501 int err; 5502 5503 /* 5504 * Make sure *all* the ITS are reset before we probe any, as 5505 * they may be sharing memory. If any of the ITS fails to 5506 * reset, don't even try to go any further, as this could 5507 * result in something even worse. 5508 */ 5509 for (np = of_find_matching_node(node, its_device_id); np; 5510 np = of_find_matching_node(np, its_device_id)) { 5511 if (!of_device_is_available(np) || 5512 !of_property_read_bool(np, "msi-controller") || 5513 of_address_to_resource(np, 0, &res)) 5514 continue; 5515 5516 err = its_reset_one(&res); 5517 if (err) 5518 return err; 5519 } 5520 5521 for (np = of_find_matching_node(node, its_device_id); np; 5522 np = of_find_matching_node(np, its_device_id)) { 5523 struct its_node *its; 5524 5525 if (!of_device_is_available(np)) 5526 continue; 5527 if (!of_property_read_bool(np, "msi-controller")) { 5528 pr_warn("%pOF: no msi-controller property, ITS ignored\n", 5529 np); 5530 continue; 5531 } 5532 5533 if (of_address_to_resource(np, 0, &res)) { 5534 pr_warn("%pOF: no regs?\n", np); 5535 continue; 5536 } 5537 5538 5539 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np)); 5540 if (!its) 5541 return -ENOMEM; 5542 5543 err = its_probe_one(its); 5544 if (err) { 5545 its_node_destroy(its); 5546 return err; 5547 } 5548 } 5549 return 0; 5550 } 5551 5552 #ifdef CONFIG_ACPI 5553 5554 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 5555 5556 #ifdef CONFIG_ACPI_NUMA 5557 struct its_srat_map { 5558 /* numa node id */ 5559 u32 numa_node; 5560 /* GIC ITS ID */ 5561 u32 its_id; 5562 }; 5563 5564 static struct its_srat_map *its_srat_maps __initdata; 5565 static int its_in_srat __initdata; 5566 5567 static int __init acpi_get_its_numa_node(u32 its_id) 5568 { 5569 int i; 5570 5571 for (i = 0; i < its_in_srat; i++) { 5572 if (its_id == its_srat_maps[i].its_id) 5573 return its_srat_maps[i].numa_node; 5574 } 5575 return NUMA_NO_NODE; 5576 } 5577 5578 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, 5579 const unsigned long end) 5580 { 5581 return 0; 5582 } 5583 5584 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, 5585 const unsigned long end) 5586 { 5587 int node; 5588 struct acpi_srat_gic_its_affinity *its_affinity; 5589 5590 its_affinity = (struct acpi_srat_gic_its_affinity *)header; 5591 if (!its_affinity) 5592 return -EINVAL; 5593 5594 if (its_affinity->header.length < sizeof(*its_affinity)) { 5595 pr_err("SRAT: Invalid header length %d in ITS affinity\n", 5596 its_affinity->header.length); 5597 return -EINVAL; 5598 } 5599 5600 /* 5601 * Note that in theory a new proximity node could be created by this 5602 * entry as it is an SRAT resource allocation structure. 5603 * We do not currently support doing so. 5604 */ 5605 node = pxm_to_node(its_affinity->proximity_domain); 5606 5607 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { 5608 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); 5609 return 0; 5610 } 5611 5612 its_srat_maps[its_in_srat].numa_node = node; 5613 its_srat_maps[its_in_srat].its_id = its_affinity->its_id; 5614 its_in_srat++; 5615 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", 5616 its_affinity->proximity_domain, its_affinity->its_id, node); 5617 5618 return 0; 5619 } 5620 5621 static void __init acpi_table_parse_srat_its(void) 5622 { 5623 int count; 5624 5625 count = acpi_table_parse_entries(ACPI_SIG_SRAT, 5626 sizeof(struct acpi_table_srat), 5627 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5628 gic_acpi_match_srat_its, 0); 5629 if (count <= 0) 5630 return; 5631 5632 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), 5633 GFP_KERNEL); 5634 if (!its_srat_maps) 5635 return; 5636 5637 acpi_table_parse_entries(ACPI_SIG_SRAT, 5638 sizeof(struct acpi_table_srat), 5639 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, 5640 gic_acpi_parse_srat_its, 0); 5641 } 5642 5643 /* free the its_srat_maps after ITS probing */ 5644 static void __init acpi_its_srat_maps_free(void) 5645 { 5646 kfree(its_srat_maps); 5647 } 5648 #else 5649 static void __init acpi_table_parse_srat_its(void) { } 5650 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } 5651 static void __init acpi_its_srat_maps_free(void) { } 5652 #endif 5653 5654 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, 5655 const unsigned long end) 5656 { 5657 struct acpi_madt_generic_translator *its_entry; 5658 struct fwnode_handle *dom_handle; 5659 struct its_node *its; 5660 struct resource res; 5661 int err; 5662 5663 its_entry = (struct acpi_madt_generic_translator *)header; 5664 memset(&res, 0, sizeof(res)); 5665 res.start = its_entry->base_address; 5666 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 5667 res.flags = IORESOURCE_MEM; 5668 5669 dom_handle = irq_domain_alloc_fwnode(&res.start); 5670 if (!dom_handle) { 5671 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 5672 &res.start); 5673 return -ENOMEM; 5674 } 5675 5676 err = iort_register_domain_token(its_entry->translation_id, res.start, 5677 dom_handle); 5678 if (err) { 5679 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 5680 &res.start, its_entry->translation_id); 5681 goto dom_err; 5682 } 5683 5684 its = its_node_init(&res, dom_handle, 5685 acpi_get_its_numa_node(its_entry->translation_id)); 5686 if (!its) { 5687 err = -ENOMEM; 5688 goto node_err; 5689 } 5690 5691 if (acpi_get_madt_revision() >= 7 && 5692 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT)) 5693 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE; 5694 5695 err = its_probe_one(its); 5696 if (!err) 5697 return 0; 5698 5699 node_err: 5700 iort_deregister_domain_token(its_entry->translation_id); 5701 dom_err: 5702 irq_domain_free_fwnode(dom_handle); 5703 return err; 5704 } 5705 5706 static int __init its_acpi_reset(union acpi_subtable_headers *header, 5707 const unsigned long end) 5708 { 5709 struct acpi_madt_generic_translator *its_entry; 5710 struct resource res; 5711 5712 its_entry = (struct acpi_madt_generic_translator *)header; 5713 res = (struct resource) { 5714 .start = its_entry->base_address, 5715 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1, 5716 .flags = IORESOURCE_MEM, 5717 }; 5718 5719 return its_reset_one(&res); 5720 } 5721 5722 static void __init its_acpi_probe(void) 5723 { 5724 acpi_table_parse_srat_its(); 5725 /* 5726 * Make sure *all* the ITS are reset before we probe any, as 5727 * they may be sharing memory. If any of the ITS fails to 5728 * reset, don't even try to go any further, as this could 5729 * result in something even worse. 5730 */ 5731 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5732 its_acpi_reset, 0) > 0) 5733 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 5734 gic_acpi_parse_madt_its, 0); 5735 acpi_its_srat_maps_free(); 5736 } 5737 #else 5738 static void __init its_acpi_probe(void) { } 5739 #endif 5740 5741 int __init its_lpi_memreserve_init(void) 5742 { 5743 int state; 5744 5745 if (!efi_enabled(EFI_CONFIG_TABLES)) 5746 return 0; 5747 5748 if (list_empty(&its_nodes)) 5749 return 0; 5750 5751 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID; 5752 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, 5753 "irqchip/arm/gicv3/memreserve:online", 5754 its_cpu_memreserve_lpi, 5755 NULL); 5756 if (state < 0) 5757 return state; 5758 5759 gic_rdists->cpuhp_memreserve_state = state; 5760 5761 return 0; 5762 } 5763 5764 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 5765 struct irq_domain *parent_domain, u8 irq_prio) 5766 { 5767 struct device_node *of_node; 5768 struct its_node *its; 5769 bool has_v4 = false; 5770 bool has_v4_1 = false; 5771 int err; 5772 5773 itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1); 5774 if (!itt_pool) 5775 return -ENOMEM; 5776 5777 gic_rdists = rdists; 5778 5779 lpi_prop_prio = irq_prio; 5780 its_parent = parent_domain; 5781 of_node = to_of_node(handle); 5782 if (of_node) 5783 its_of_probe(of_node); 5784 else 5785 its_acpi_probe(); 5786 5787 if (list_empty(&its_nodes)) { 5788 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 5789 return -ENXIO; 5790 } 5791 5792 err = allocate_lpi_tables(); 5793 if (err) 5794 return err; 5795 5796 list_for_each_entry(its, &its_nodes, entry) { 5797 has_v4 |= is_v4(its); 5798 has_v4_1 |= is_v4_1(its); 5799 } 5800 5801 /* Don't bother with inconsistent systems */ 5802 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) 5803 rdists->has_rvpeid = false; 5804 5805 if (has_v4 & rdists->has_vlpis) { 5806 const struct irq_domain_ops *sgi_ops; 5807 5808 if (has_v4_1) 5809 sgi_ops = &its_sgi_domain_ops; 5810 else 5811 sgi_ops = NULL; 5812 5813 if (its_init_vpe_domain() || 5814 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { 5815 rdists->has_vlpis = false; 5816 pr_err("ITS: Disabling GICv4 support\n"); 5817 } 5818 } 5819 5820 register_syscore_ops(&its_syscore_ops); 5821 5822 return 0; 5823 } 5824